ОБЬЕАИНЕННЫЙ ИНСТИТУТ
 คAEPHWX ИССАЕАОВАНИЙ

AYБHA

$c-58$
$424 / 2-74$
S.Ciulli, C.Pomponiu, I.Sabba-Stefanescu, G.Steinbrecher

CDD POLES, INELASTICITIES
AND OPTIMIZATION OF N/D EQUATIONS

$$
\text { E2• } 7453
$$

S.Ciulli, C.Pomponiu, I.Sabba-Stefanescu, G.Steinbrecher*

CDD POLES, INELASTICITIES AND OPTIMIZATION OF N/D EQUATIONS

Submitted to Nurlear Phyoics

University of Craiova, Rumania.

I. INTRODUCTZON

An important problem of ten encounted in narticle physics is to congtruct an analytic amplitude subjected to unitarity on its physical cut γ, starting from its (error-affected) boundary values on the left-hand cut Γ.

This is alsc the goal or the corventional N/D equations rith start. from the left-hand cut jump of the amplitude; l.h.c. boundary एalues (and so the jump) can be found in relativistic scattering by an analytic extrapolation from the physical region of the crasaed reactiuna. Nevertheless in finding auch an tmplitude, one has to be very careful in choosing the actual equations io be uged, as it is well known that quivalent mathematical methods may have different degrees of senaitipity towards the errors of the input data; this is the more so, as the data may be not known at all i apari from some boundedness condition) on the far region of the l.h.c. Ye would like to stress that this instability occurs even if we lise the complete extrapolated amplitude as input data, not only its jump acrobs T.

In a previous paper [1], using the method of construction based on the cjepsical N / D equations. slightly modified to accomodate twe whole amplitude on Γ, we have managed to find, among all the tautological equations that one which yielda results least affected by the lack of exact knowleage conceraing the input data, As it will be shown in section 2 , this optimization was performed by noticing $[1]$ that the kernels of the various tautological equations differ among them by a function $F_{4}(\alpha)$
(eq. 2.17b of [1]) holomorphic in the 5 -complex plone cut only along Γ and otharwise arbitrary. Then the most ingensitive equation to the uncertainties of the initial data is found by solving an extremal $L^{\frac{1}{2}}$-norm problem, namely that of finding that function $F_{I}\left(z^{\prime \prime}\right)$ for which the norm $\left\|F_{I}+G_{I}\right\|_{L}$ is least, where $G_{1}{ }^{(x)}$) is a given, fixed function (see further eq.(2.8)) appearing in the integral kernels. (This norm multiplies the initial errors, to yield the error of the output). As $G_{i}\left(z^{\prime \prime}\right)$ defined by (2.8) has a right-hand cut in the 5 plane which F_{z} ($z^{\prime \prime}$) does not exhibit, one cannot simply take F_{z} equal to $-G_{z}$; therefore the norm $\left\|F_{I}+G_{Z}\right\|_{L^{1}}$ can never be zero but rather attains a minimal value, namely for that F_{z} which turna one of the Cauchy kernels of the classicsil integral equation for $D(z)$ into a auitably weighted Poisson kernel.

We have not discussed so far any questions concerning CDD ambiguitiea and inelasticity. These will be the main purpose of the present note. After a ahort review of the relevant results of paper [1] in gection 2 , we discues how the CDD ambiguities may be controlled by requiring that the conetructed amplitude get. inside the error corridor of the l.h. cut data. This problem did not arise in the classical N / D enuatione, as the inaginary part or the amplitude alone is too poor an information to perform auch a feedback. In section 4 we treat the inelastic case using a weight function of the Froisaart type, while in section 5 we discuss the extenaion of the method to the matrix many-channel case.

2. OPTMMAL N/D EQUATIONS

As in the paper [1], we use the canonical mappings $4:$, end $\zeta(s) ; z(s)$ transforms the cut plane onto the unit disk, cut between the zero and 1 , so that the l.h.c. \because comes onto the unit circle, and y - the phyaical cut - onto the cut between 0 and 1 , whereas $\zeta(s)$, to be used in section 4 , maps both cuts onto the unit circle, so that $?$ comes on the left semicircle, whereas f comes onto the right one (see figs. 1 and 2).

Let. $A_{z}^{(s)}$ be a partial wave amplitude, supposed to be holomorphic in the cut unit circle of fig. 1 , and satisfying the elastic unifarity condition;

$$
\operatorname{lm} a_{l}(s)=\xi(s)\left|a_{l}(s)\right|^{2}
$$

on γ. Here $\rho(j)$ is the correaponding phase spece factor ($\rho(s)=\sqrt{(s-4) / s}$ in the equal mass case). Then, if $\left(l_{c}(s)\right.$ vanishes ot infinity and if it observes the usual threahold behaviour $C q_{f} q^{2 i}$ at $q \rightarrow 0$, it is useful to introduce the "reduced" partial wave:

$$
\begin{align*}
& \left.A_{i} i z\right) \equiv\left(l_{i}(l) /\left[i^{1}(1-x)^{2}\right]\right. \tag{2.18}\\
& \operatorname{im}_{\text {m }} A_{i}(z)=\rho_{i}(z)\left|A_{i}(x)\right|^{2}, \rho_{t}^{(2)} \equiv z z^{2}(1-x)^{2} \rho(x) \tag{2.1b}
\end{align*}
$$

end the corresponding data function $\mathcal{A}_{i}\left(e^{i \theta}\right)$ as ite approximent on Γ, within an error corridor $\varepsilon(\theta)$. (The latier are obtained hy dividing the estimated extrapolation noise by the factor appearing in (2.1)). Hence

$$
\begin{equation*}
\mid A_{e}\left(e^{(\theta)}-A_{e}\left(e^{\alpha \theta}\right) \mid \leqslant \varepsilon(\theta)\right. \tag{2.2}
\end{equation*}
$$

On $\Gamma_{2} \subset \Gamma$ where no information at all is known about the amplitude, we siuply take $\mathcal{A}_{\ell}\left(e^{i \theta}\right)=0$, and $\varepsilon(\theta)=M(\theta)-a$ (known) function bound for the amplitude.

We can reduce this variable error channel to a conatant one of width $\varepsilon \quad(\varepsilon \quad i s$, for instance, a mean value of the errors)
 outer " C-function" [2]

$$
\begin{equation*}
C(z)=\exp \left\{\frac{1}{\pi \pi} \oint d \theta \frac{e^{i \theta}+z}{e^{i \theta}-z} \ln (\varepsilon / \varepsilon ; \theta)\right\} \tag{2.3}
\end{equation*}
$$

such that

$$
\begin{equation*}
\mid C\left(e^{(\theta)} \mid=\varepsilon / E(\theta) \quad \text { on } \Gamma\right. \text {. } \tag{2.3e}
\end{equation*}
$$

The resulting enplitudes

$$
\begin{equation*}
\tilde{A}_{e}(z) \equiv A_{l}(z) C(z) \tag{2.3b}
\end{equation*}
$$

are approximanta to the modified data function $\tilde{\mathcal{A}}_{\ell}\left(e^{i \theta}\right) \equiv \mathcal{A}_{\ell}\left(e^{i \theta}\right) C\left(e^{i \theta}\right)$ within a conatant error ε :

$$
\begin{equation*}
\left|\tilde{A} \cdot\left(e^{i \theta}\right)-\tilde{f} \vec{t}_{k}\left(e^{i \theta}\right)\right| \leqslant E \quad \text { on } \Gamma \text {, } \tag{2.4}
\end{equation*}
$$

and also obaerve on $\gamma \quad$ a modified unitarity condition

$$
\begin{equation*}
\operatorname{jim} \tilde{A}_{f}(x)=\frac{\rho_{e}(x)}{C(x)}\left|\tilde{A}_{f}(x)\right|^{2}, \quad x \in \gamma \equiv[0,1] . \tag{2.5}
\end{equation*}
$$

In this and the following section we shall aseune only elastic unitarity (on γ), whereas in aection 4 we shall raduce the general inelastic case to this one, via a Frosseart weiglit function.

This done, to achiefe the actual construction at intarior points of an analytic and unitary reduced amplitude from the data
$\mathcal{K}_{e}(z)$ given on the unit circle, one looks for a reduced amplitude of the form $N(x) / D(x)$, with $N(x)$ holomorphic in the unit circle and $D(z)$ holomorphic in the whole z-plane, except for the cut between 0 and 1 (see fig. 3).

Let us now run quickly over the results of paper $[1]$. If the CDD poles are absent, the dispersion relations for N, z) and $D(z) \operatorname{read}\left(A_{l}=N / C, \vec{A}_{1} \equiv \tilde{N} / D\right.$ and $\vec{N}=N C$)

$$
\begin{align*}
& \tilde{N}\left(z^{\prime}\right)=\frac{1}{2 \pi i} \oint_{\Gamma} d z^{\prime \prime} \frac{\tilde{A}_{p}\left(x^{\prime}\right)}{z^{\prime \prime}}-\frac{D}{z^{\prime}}\left(z^{\prime}\right) \tag{2.6a}\\
& D(z)=1+\frac{1}{\pi} \int_{0}^{1} d x^{\prime} \frac{1 \cdot m D\left(z^{\prime}\right)}{z^{\prime}-z}
\end{align*}
$$

or using (2.5),

$$
\begin{equation*}
D(z)=1-\frac{1}{\pi} \int_{0}^{1} d z^{\prime} \frac{\xi^{\prime}\left(z^{\prime}\right) N\left(z^{\prime}\right)}{C\left(z^{\prime}\right)\left(z^{\prime}-z\right)} \tag{2.6b}
\end{equation*}
$$

and one gets straightforwardly one of the possible (tautological) N/D equations $D=1+\mathbb{K}, D$:

$$
\begin{equation*}
D(z)=1+\frac{1}{2 \pi i}{\underset{r}{r}}^{p} \alpha z^{\prime \prime} \tilde{A}_{i}\left(z^{\prime \prime}\right) G_{x^{\prime}}\left(z^{\prime \prime}\right) D\left(z^{\prime \prime}\right), \tag{2.7}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{2}\left(z^{\prime \prime}\right) \equiv \frac{1}{\pi} \int_{0}^{1} d x^{\prime}-\frac{e_{1}\left(z^{\prime}\right)}{c\left(x^{\prime}\right)} \frac{1}{\left(z^{\prime}-1\right)\left(x^{\prime}-z^{\prime \prime}\right)} \tag{2.8}
\end{equation*}
$$

is a well defined function, analytic in z " apart from the cut f; the main point of paper [l] is that one can find a tautological integral equation, by addir r_{5} to $G_{x}\left(z^{\prime \prime}\right)$ any function $F_{2}\left(I^{\prime \prime}\right)$ nolomorphic in the unit disc in $z^{\prime \prime}$ and of arbitrary (continuous) dependence on $\%$. This is so since the factor $\vec{A}_{\ell}\left(x^{\prime \prime}\right) D\left(z^{\prime \prime}\right) \equiv \tilde{N}\left(z^{*}\right)$ a_{r} peering under the integral sign in (2.7) is holomorphic inside the unit circle and hence $\quad \oint_{n} d z^{\prime \prime} \tilde{N}\left(\underline{\underline{\prime \prime}}^{\prime \prime}\right) F_{z^{\prime}}\left(z^{\prime \prime}\right) \equiv 0$, so that the
the integral equation written with the kernel

$$
K_{F}\left(z, z^{n}\right)=\tilde{A}_{e}\left(z^{\prime \prime}\right)\left\{G_{z}\left(z^{\prime \prime}\right)+F_{z}\left(z^{\prime \prime}\right)\right\}
$$

inatead of $K_{0}\left(z, z^{\prime \prime}\right)$ of $(2,7)$, is equivalent to the former. of course, this happens if end only if $\tilde{A}_{f}\left(e^{i t}\right)$ are really the boundary values of a function which enjoys the anelytic and unitary properties of true (reduced) amplitude. Now, in practical computations we are forced to replace the boundary values $\tilde{\mathrm{A}}_{f}\left(e^{i \theta}\right)$ of the reduced amplitude by the data function $\mathcal{A}_{\ell}\left(e^{i \theta}\right)$ (the kernels
K_{F} become \mathcal{K}_{F}); then, the functions $F_{z}\left(z^{\prime \prime}\right)$ will alter the solutions of the approximate equations and it is not at all a priori clear which of these solutions is closest to the solution of the exact equation.

The task of paper [1] was to construct that F_{z} for which the norm of the difference between the exact and the approximate kernels is least ${ }^{+ \text {) }}$:

$$
\begin{align*}
\sup _{A}\left\|K_{F}-\Psi C_{F}\right\| & \equiv \sup _{A} \sup _{z \in F} \frac{1}{2 \pi} \oint_{r}\left|d z^{\prime \prime}\right| \cdot\left|\tilde{A}_{\ell}\left(z^{\prime \prime}\right)-\tilde{A}_{\rho}\left(z^{\prime \prime}\right)\right| \cdot\left|G_{x}\left(z^{\prime \prime}\right)+F_{z}\left(z^{\prime \prime}\right)\right| \tag{2.9}\\
& \leqslant \frac{\varepsilon}{2 \pi} \sup _{z \in F} \oint_{r}\left|d z^{\prime \prime}\right| \cdot\left|G_{I}\left(z^{\prime \prime}\right)+F_{z}\left(z^{n}\right)\right| \rightarrow \text { teast } .
\end{align*}
$$

The optimal $\quad F_{L}\left(z^{\prime \prime}\right)$ is such that the optimized integral equation for $D(z)$ reads

$$
\begin{equation*}
D_{(z)}=1+\frac{1}{2 \pi^{2} i} \oint_{\Gamma} \frac{d z^{\prime \prime}}{z^{\prime \prime}} D_{\left(z^{\prime \prime}\right)} A_{1}\left(x^{\prime \prime}\right) C_{\left(z^{\prime \prime}\right)}^{1} \int_{0}^{1} z^{\prime} \frac{\rho_{e}(x)}{C(x)\left(x^{\prime}-z\right)} P_{\left(x^{\prime}, z^{\prime}\right)} \tag{2.10}
\end{equation*}
$$

[^0]where
$$
\mathrm{P}_{\left(z^{*} ; 2^{n}\right)} \cdots \mathrm{Re}_{\mathrm{m}} \frac{z^{\prime}+z^{n \prime}}{z^{*}-z^{n}}
$$
is the Poisson kernel replacing the Cauciny ket.el $1 /$ iniz* * of the conventional uquation $(2,7)=(2,8)$.

Uaing thia solution $D(x)$ of the optimized equation (in (2.10) both $z^{\prime \prime}$ and z are on the unit circle) one can go bi k and conatruct eatimates of the amplitude at every interior point. This can be done in more than one way:
i) The (non-analytic) eatimate $\hat{A}_{\ell}(z)$

Starting from the "data function" $\left.\left.V_{\left(e^{*}\right)}=\mathcal{A}_{\xi} i e^{\prime \epsilon}\right) D_{\left(\epsilon^{\prime \theta}\right.}\right) \quad$ we can congtruat the beat diepersion relation estimate for $N(z)$, denoted by $\hat{N}^{\prime}(x)$ (aee [3]):

$$
\begin{equation*}
\hat{\mathcal{N}}^{\prime}(z)=\frac{1}{2 \pi i C^{\prime}(z)} \oint_{\Gamma} \frac{d z^{\prime \prime}}{L^{*}} \rho_{\left(z^{\prime}, z\right)} \mathcal{A}_{f}\left(z^{\prime \prime}\right) C^{\prime}\left(z^{\prime \prime}\right) D\left(L^{*}\right) \tag{2.11}
\end{equation*}
$$

where the outer function $C^{\prime}(x)$ is such that

$$
\mid\left(A_{\ell}\left(e^{+\theta}\right)-A_{2}\left(e^{+\theta}\right)\right) C^{1}\left(e^{(\theta)} \lambda\left(e^{+\theta}\right) \mid<\varepsilon,\right.
$$

i.e.

$$
\begin{equation*}
C^{\prime}(x)=\exp \left\{\frac{1}{2 \pi} \oint d \theta \frac{e^{i \theta}+x}{e^{i \theta}-x} \ln \left[E /\left(\varepsilon(\theta) D i^{i \theta}\right)\right]\right\} \tag{2,12}
\end{equation*}
$$

For practical purpoees one can use almost as oucceasfully $\hat{\boldsymbol{N}}(z)$ defined by (2.11) with $C(z)$ given by (2.3) instead of $C^{\prime}(z)$; $\hat{\jmath}(z)$ has the advantage of being directly related to the jump of the optimal $\mathrm{X}(x)$ acrase the cut y.

Although $\hat{N}^{\prime}(x)$ is the best dispersion ralation estimate, it ie not holomorphic in the unit disk ($\hat{\mathcal{N}}^{\prime}(\mathrm{x})$ is in fact, [3] the envolop of the fanily of analytic functions, every one of them
being the beat approximant of $f_{(z)}$ at a fixed point z,
The functions

$$
\begin{equation*}
\hat{A}_{l}(z) \equiv \dot{X}_{(z)} / 2(z) \tag{2.13}
\end{equation*}
$$

as sell as

$$
\begin{equation*}
\hat{A}_{\ell}^{\prime}(x) \equiv \hat{\hat{h}}^{\prime}(z) / \partial(z) \tag{2.13b}
\end{equation*}
$$

($\delta(z)$ for interior points can be found inserting in the r.h. side of (2.10) the solution $\partial\left(e^{\circ}\right)$ and computing the integral for every z of the cut unit disk) do coincide on the boundary Γ with the data function $\vec{A}_{(}\left(e^{i d}\right)$, due to the fact that $\hat{\mathcal{V}}_{(x)}^{\prime} C^{\prime}(x)$ as well as $\hat{f}(x) C(x)$ are harmonic (see 2.12) inside the unit disk. However, owing to the nonanalytioity of $\hat{\mathcal{N}}^{\prime \prime}(x)$ and $\hat{\mathcal{N}}(x)$, $\hat{A}_{f}^{\prime}(z)$ and $\hat{X}_{f}(z)$ do not have the analytic properties of the true amplitude. On the other hand, it may happen (see below) that the error-channel condition (2.4) is such that there are no amplitudes at all satisfying both (2.4) and (2.6): a drawback of this (i) extrapolation method is then that $\widehat{A}_{\ell}^{\prime}(z)$ (or $\hat{A}_{p}(z)$) can always be written dow, irrespective of the existence or nonexistence of such amplitudes.
ii) In many problems it is preferable to deal with a holdmorphic extrapolation for the amplitude. We would have then to replace $\hat{\mathcal{N}}(z)$ of eq. (2.12) by some holomorphic function $\widehat{N}(x)$ in such a way as to preserve unitarily. Since for the solution
$\chi_{(z)}$ of the optimized integral equation (2.10) unitarity is expressed in terns of the nonanalytic $\hat{\mathcal{N}}(2)$ (see comment following eq. (2.12))

$$
\begin{equation*}
j_{m} D_{(z)}=-\rho_{p}(z) \hat{\mathcal{N}}_{(z)}, z \in \gamma \tag{2.14}
\end{equation*}
$$

we might try to find an analytic extension $\dot{\hat{X}}(\mathrm{z})$ of $\hat{\hat{\lambda}}(z, r)$ to the whole unit disk. This extension might have well not existed but it happily does. Indeed, for real z (and (or $1^{\circ}=x^{0}$)

 coincides with the holomorphic function

$$
\begin{align*}
& =\frac{1}{C(z)}\left\{\left(A_{1}(X)_{+}(x)+\left(\lambda_{l} C D\right)_{-}(1 / z)\right\},\right. \tag{2.16}
\end{align*}
$$

where (...) (z) and (...)(z) are the Fourier positive and negative frequency parts of the function ($-\ldots$)($=$) .

The corresponding amplitude ${ }^{+}$

$$
\begin{equation*}
\check{A}_{\varepsilon}(z) \equiv \stackrel{\breve{N}}{ }(z) / D(z) \tag{2.17}
\end{equation*}
$$

has correct analytic and unitary properties but the price to be paid for this is that its boundary values, unlike those of $\hat{A}_{p}(x)$ are no longer identical with the data function $A_{f}\left(e^{(\theta)}\right.$, and so one might run into trouble with the error condition, ie. with
+)
One might wonder how one is to construct $\boldsymbol{O}_{(1)}$ in interior points of the cut unit dist (the optimized integral equation defines $X(z)$ on the unit circle). One can either resort to the integral equation (2.10) as a means of analytic extension, or, which is exact lay the same, computing from the unit circle values either $\hat{\mathcal{K}}(\mathrm{z})$ or $\hat{N}(x)$ on γ (where they are identical) and using then for $\mathcal{D}(z)$ the dieperaion relation (2.6b).

$$
\begin{align*}
& =\left|\frac{(\operatorname{si}+(x)(x)-(-1+(\lambda)-(t / 2)}{2(z)}\right|_{\Gamma} \leq E . \tag{2.18}
\end{align*}
$$

As this may well happen ${ }^{+}$), we are thus naturally led to consider the CDD poles.
3. COD FOLES.
3.1. Theory for Zero Brrors

In thig subgection we will forget for while about errors and atudy only the "ideal" equationa, i.e. with $r_{<}$-exact limiting values of (Linitary and meromorphic) amplitudes.
A. The "CDD-Class"

As we showed in $[1]$, "any" ${ }^{++)}$gmplitude $A_{f}(z)$ meromorphic in the cut unit disk can be written ose $N_{c}(z) / D_{c}(z)$ with the "canonical" N_{C} and I_{C} defined as

$$
\begin{align*}
& D_{c}(z)=\prod_{j=1}^{n_{C}}\left(z-a_{j}\right) \cdot e^{-\frac{1}{\pi} \int_{0}^{1} \frac{\sum_{0}\left(z^{\prime}\right)}{x^{4} \cdot z} d z} \tag{3,i}\\
& N_{c}(z)=A_{c}(z) D_{c}(z)
\end{align*}
$$

${ }^{+)}$The negative frequency parts appearing on the left-hand aide of ineq. (2.28) are due both to the inaccuracy of the data in tha region where they are known and, mainly, because we took $\mathcal{A}_{\ell}(x)=0$ on the remote parta of Γ. (It is well known from the theory of Fourier aeriea that a function which is zero on a part of the circle cannot have only poaitive coefficienta). Or course, if $f_{f}(x)$ are the exact limiting values of the true amplitude, $A_{f}(x) \not \partial(x)$ would have been limiting values of an analytic function in the unit disk (and so $\mathcal{A}_{f}(z) C(z) \mathcal{Z}(z)$) and the left-hand side of ineq. (2.18) would vanieh identically.
${ }^{++)}$See eq. (2.5) (and comments) of paper [1].

Where the a_{i} 's are the polea (both input and output) of the amplitude and $\delta(z)$ is the phyaical phase of $A,(z)$, chosen auch that $\delta(0)=0$. As it stands, $D_{C}(z)$ fails in general to setisfy a dispersion relation of the type (2.6), firstly because the $z \cdot a_{j}$ factors in front spoil the normelization to 1 at infinity waich was assumed there, and, secondly, because the phase $\delta(x)$ wight give rise to logarithmic singularities in the integrad at $z=1$. Indeed, since in gererel $\quad \delta(1) \neq 0$, near $z: 1, \frac{1}{\pi} \int_{0}^{1} \frac{\delta\left(z^{\prime}\right)}{z^{\prime}} d z^{\prime} \sim \dot{\delta}(4) / \pi \ln (z-1)$ (if $S\left(x^{\prime}\right)$ is Holder continuous near and at $z=1,[4]^{+}$), and so $D_{c}(z) \sim(x-1)^{-i / k) / \pi}$ which preciudes the convergence of the dispersion integrala if $\delta_{(4) / \pi} \geqslant 1$.

The remedy for this is well-known [c] - one writes dispersion integrals not for $D_{c}(z)$ but rather for

$$
\begin{equation*}
D(z)=D_{c}(z) \Phi(z) \tag{3.2日}
\end{equation*}
$$

with $\Phi(z)$ a real rational function chosen as to cancel the singularities of $D_{c}(z)$ at 1 and infinity and with its poles di outaide the unit circle, so as to reep the dispersion relation for

$$
\begin{equation*}
N(z)=N_{c}(z) \Phi(x) \tag{3.2b}
\end{equation*}
$$

unchanged; for inatance

$$
\begin{equation*}
\Phi_{\text {min }}(z)=(z-1)^{(\delta(1) / \pi)} / \prod_{j=1}^{n_{\text {ain }}}\left(z-d_{1}\right), \quad n_{\text {mix }}=n_{c}+(\delta(1) / \pi), \tag{3.3}
\end{equation*}
$$

[^1]where ($\delta(4) / \pi)$ is the ansilest integer greater than or equal to $\delta(4) / \pi$. There are clearly many functions $\Phi(x)$ annihilating the singularities of $D_{c}(z)$ at 1 snd infinity, but the one above is minimal in the sense thut the degree $n_{\text {min }}$ of its denominator is the analleat one required to ensure a dispersion relation for $D(z)$ defined in (3.2a). The points d_{j} - the CDD poles of $D(z)$ -have arbitrary poaitione : we can choose them to lie for instance in 2, 3, 4, ..., but then their residues g_{1} are well determined by the initial $\quad D_{c}(z)$. $\quad D_{\text {min }}(z) \equiv D_{c}(z) \phi_{\text {min }}(z)$ thus atiariea the
equation (see eq. (2.7))

In the following we ahall refer to $n_{\text {min }}$ as the "CDD-claga" or $A_{f}(z)$, it being uniquely determined by $A_{l}(z)$.

B. Spurious CDD's

All other possible D^{\prime} 's (all other choices of $\phi(z)$) could contain a number of (spurious) CDD poles greater than $n_{\text {min }}$, but certainly not lesa. To keep the noralization at infinity or these D 's right, more zeroa will alao have to be included, so that in general

$$
\begin{align*}
& n_{\text {CDD }}=n_{n_{\text {zesess }}}^{\prime}+n_{\text {mix }} \equiv n_{\text {sures }}+(\delta(1) / \pi) \tag{3.5}\\
& \left(n_{\text {zever }}=x_{\text {zaxso }}^{\prime}+x_{\text {enomd }}\right)
\end{align*}
$$

which can also be seen as an expresaion of the Levinson's theorem for D round the cut (0.1). However, in their corresponding equation the residue g_{j} need no longer be preciaely defined
numbers, because their magnitude depends upon the position of the $n_{\text {zoa, }}^{\prime}$ spurious zeroes, and, is, so to say, at our dispoSel^{+})
C. Removal of CDD Ambiguities

We would like to stress again that all this argument concerning the determination of the residues of the CDD poles is rather academic, since it sesames the knowledge of the amplitude in the whole cut unit disk. However, it is worth noticing that, in contradistinction to the conventional N/D equations where only the imaginary part of the amplitude along Γ is given, if we take as input the whole amplitude, in the limit of zero errors this completely determines the residue of the (minimal number of) CDD-poles.

Indeed, starting from the boundary values $A_{\ell}(z)$ which we suppose here as hundred per cent exact - let $D_{\mathcal{F}}(I)$ be the soluLions of the Fredholm integral equations

$$
\begin{gather*}
D_{j}(z)=\frac{1}{z-d_{j}}+\frac{1}{2 \pi^{i} i} \oint_{F} d x^{\prime} D_{j}\left(z^{\prime \prime}\right) A_{l}\left(z^{\prime \prime}\right) \int_{0}^{1} d x^{\prime} \frac{\rho_{e}\left(z^{\prime} j\right.}{\left(z^{2}-z\right)\left(z^{\prime} \cdot z^{\prime \prime}\right)} \tag{3.0}\\
d_{1}=2, d_{2}=3, \ldots
\end{gather*}
$$

and $D_{p}(I)$ the solution of the eq. (2.10). Then we have

$$
\begin{equation*}
D_{\text {min }}(x)=\sum_{j=1}^{\operatorname{mos}} g_{j} D_{j}(z)+D_{0}(z), \tag{3.7}
\end{equation*}
$$

${ }^{+)}$For instance, if $\phi(z)=\Phi_{m i n}(z)(z-a) /\left(z-d_{n+1}\right)$, the new residues g_{i}^{\prime} depend upon the arbitrary a. Indeed, $g_{f}^{\prime}=g_{1}\left(d_{1}-a\right) /\left(d_{1}-d_{n+1}\right)$ forger and $g_{n+1}^{\prime}=\left(D_{c} \phi_{\text {mix }}\right)\left(d_{n+1}\right) \cdot\left(d_{n+1}-a\right)$
where both the constante g_{v} and their number $n_{\text {min }}$ are yet unknown but can easily be determined (if $n_{\text {mix }}$ is finite) from the error corridor condition (2.18) with ε set equel to zero. One can take, for instance, increasing aumbers $n_{\text {mia }}$ in (3.7) and impose that the first $n_{m i n}$ negative Pourier coefficiente of ACD appearing ${ }^{+ \text {) }}$ in (2.8) vanish. This provides us with a set of algebraic linear equations which jields the required numerical values for g_{j}. The correctness of a particular choice for $n_{\text {mix }}$ is verified by the fact that all the following ($>n_{\text {mon }}$) negative Fourier coefficients vanish identically.

We come back to these questions in the case of non-zero errors in sect. 3.2A.

D. Problem of Eigenvalues

At the end of this aubsection we turn to the case when the kernel of the integral equation for $D(x)$ happens to have i ac an eigenvalue. This ceuses trouble in the optinization procedure, which only works (see footnote near eq. (2.9)) when one is far Prom eigenvaluea.

Now, in the "exact case", eigenvalues can crop up when and only when the CDD-cless of $A_{f}(x)$ is negative. Indeed, if the clas of $A_{f}(z)$ is negative, $D_{c}(x)$ has a sufficiently strong zero at 1 , so that, dividing it by
+)
In the exact case $(\varepsilon=0), C(z)$ can be taken equal to 1 .

$$
(z-1)^{(\delta(1) / \pi)-x} \quad \text { ith } \quad 0 \leq n=1 n-1-1
$$

we find functions $D(z)$ vanishing at infinity and for which fiepersion relations are still valid, so that they satisfy the homogeneous equation

$$
\begin{equation*}
D(z)=\frac{1}{2 \pi^{2} i} \oint_{\Gamma} d z^{\prime \prime} D_{\left(z^{\prime \prime}\right)} A_{l}\left(z^{\prime}\right) \int_{0}^{1} d z^{\prime} \frac{\rho_{l}\left(x^{\prime}\right)}{\left(z^{\prime}-z^{\prime \prime}\right)\left(z^{\prime}-x\right)} . \tag{3.8}
\end{equation*}
$$

The converse is also true: homogeneous equations imply negative CDD-class. Also, as i : is easily seen, all the degenerate D 's produce the aame amplitude upon its reconstruction as N/D.

Heppily, sigenvelues should res.iy cause nc problems, because if one defines instead of $A_{i}(z)$ a nnew" amplitude

$$
\begin{equation*}
A_{p}^{(1)}(z)=\frac{A(x)}{z-z_{0}} \tag{3.96}
\end{equation*}
$$

(with z_{0} real, inaide the cut unit disk) obeying a modified unitarity condition with

$$
\begin{equation*}
\rho_{e}^{(x)}(z)=\rho_{r}(z)\left(z-z_{0}\right) \tag{3.9b}
\end{equation*}
$$

one can conclude from the very definition of the canonical $D_{c}^{(1)}$ of $A_{l}^{(1)}$ (see eq. (2.19)) thet the CDD clase of $A_{l}^{(1)}(z)$ is lirted by one with respect to that of $A_{f}(x)$. (Surficiently many auch divisions will result in an integral equation with no aigenvalue equal to one). In the sero error caee, the artificial pole of $A_{l}^{H}(z)$ will certainly be found anong the zeroes of its $D^{(3)}(z)$ (uniquenese is guaranteed because its equation is no longer degenerate) and will be canceled then by the factor relating $A_{f}^{(1)}(x)$ back to $A_{l}\left({ }^{(x)}\right.$.

3.2. Finite Brrors

A. Allowed Islands for CDD Rosidua

At the end of section 2, it was pointed out that the analytic and unitary amplitude $\dot{A_{l}}(z)=\dot{\sim}(z) / \mathscr{D}(z)$, conetructed there (and defined so as to coincide with the "optimal", but nonanalytic $\hat{A}_{f}(z)=\hat{X}(x) / \mathcal{X}(z)$ on the real axis) might fail to get into the error, channel, when returning back to Γ. This is a direct consequence of the fact that the limiting values of functione defined by Cauchy kernels do not neceasarily coincide with the imput on the boundery. (This ia to be contrasted with the propertios of the Poisson Kernel).

The reason for this failure may be twofold:
i) the presence of negetive Fourier coefficiente born by our lack of knowledge of the far region of the l.h. cut and by the inaccuracy of the data.
ii) a wrong choice of the D-equation, i.e. an equation with en insufficient number of CDD poles and /or with wrong reaidues.

Since, in practice, one does not know a priori the CDD clasa of the true amplitude, one ray reasonably hope to get y/ob amplitudes consistent with the error corridor by gradually increasing the nmber of CDD poles and then patiently acanning in reaidue space for an appropriate choice. However, due to the linearity of the equations this amounts to the not very formidable task of finding a set of real constants $g y$ (the reaidues of the CDD poles) so thet:

$$
\begin{align*}
& \left|\Delta\left(g_{1}, g_{2}-. g_{n} ; z\right)\right|_{r} \equiv \left\lvert\, c(z) \frac{\sum_{0}^{n} g_{1} \mathscr{N}_{j}(z)}{\sum_{d} g_{d} D_{j}(z)}-c(z)\left(\left.A_{l}(z)\right|_{\Gamma} \equiv\right.\right. \\
& \text { (} g_{0} \equiv 1 \text {) } \\
& \equiv\left|\frac{\sum_{j}^{n} g_{f}\left[\left(A_{c}\left(D_{j}\right)_{-}(z)-\left(A_{l}\left(D_{j}\right)_{-1}(z / z)\right]\right.\right.}{\sum_{j} g_{j} D_{d}(z)}\right|_{\Gamma} \tag{3.10}
\end{align*}
$$

gets amaller than the (constant) error corridor ε. The quantities $D_{d}(z)$ are defined by en equation similer $t \circ$ (2.24), using the optimel ${ }^{+}$) Poisson kernel :

$$
\begin{equation*}
D_{f}(z)=\frac{1}{z-d_{j}}+\frac{1}{2 \pi^{2} i} \oint_{r} d z^{\prime} A_{l}\left(z^{\prime \prime}\right) C\left(z^{*}\right) D\left(z^{\prime \prime}\right) \int_{0}^{1} d z^{\prime} \frac{\rho_{i}\left(z^{\prime}\right)}{\left(z^{\prime}-1\right)} P\left(z^{\prime}, z^{\prime \prime}\right) \tag{3.11}
\end{equation*}
$$

and the $\mathscr{N}_{i}{ }^{\prime} s$ are defined by equaticn (2.15) from their corresponding X_{j}.

In the aecond form of $\Delta(g ; x)$ in (3.10) it is the negative Fourier coefficients $\mathcal{C}_{j ;-}$ of $\mathcal{A}_{2} C D_{j}$ that are involved, so that, in practice, one could take as an approximate way of fulfilling the error channel condition the minimizesion of their sum of squares in the numerator of (3.10):

$$
\begin{equation*}
\sum_{k=1}^{n}\left(\sum_{j=1}^{k_{200}} g_{1} k_{j ;-h}\right)^{2} \longrightarrow \text { minimal },\left(g_{0} \equiv 1\right) \tag{3.12}
\end{equation*}
$$

One ahould recall (see sact. 3.1) that when errora are present (exact case), this sum is identically zero.

Then the acanning is nerformed, one uavally finds only a minimel CDD class consietent with the error channel, i.e. as the number of degress of Freedom (of the $g_{d} ' s$) increases, the more probable it is tc astiafy the error condition ${ }^{++}$).
${ }^{+3}$ The optimality of the Poisson kernol when CDL poles are introduced should be taken to mean that the Poisaon kernel renders the difference between the exact and approximate D minimal (see [l], chapter 1) With reapect io all the amplitudes of the same CDD class and with the same CDD residues which get inside the error channel.
${ }^{++}$Once the minimal number of CDD poles ie found, the admissibla range of reaiduea for any nuabr of $C D D$ polea larger than it is necestarily infinite, since, se was sean in sect. 3.1., the "opurious" CDD's give rise to a whole linear variety of possible residues for the ame mplitude A_{l}.

B. The E. Lialtation

However, at this point, one should be cautioned against a rather nontrivial fact:if one is looking for amplitudes holonorphic in the cut unit disk, one must keep in mind, or course, that the N/D method cannot prevent ghosts or antiresonancea from appearing on the physical sheet.Now, given $A_{f}(t)$, one knows [6] that, in general, there are no holomorphic and unitary amplitudes arbitrarily close to it, (in the sense of the $\mathrm{I}^{\text {mon }}$ norm on Γ). Indeed, defining the outer function $C_{f}\left(g\right.$ by $\left|C_{\rho}(f)\right|_{r}=2 \rho(5),\left|C_{\rho}(\xi)\right|_{r}=1$ (see fig. 2 for the ζ variable), unitarity on f is equivalent to:

$$
\begin{equation*}
\left|c_{p}(\zeta) \tilde{A}_{p}(\zeta)+i\right|_{\gamma}=1 \tag{3.13a}
\end{equation*}
$$

while the error channel condition (2.4) reads:

$$
\begin{equation*}
\left|C_{s}(\xi)\left(\tilde{A}_{f}(\xi)-\tilde{F}_{\rho}(\xi)\right)\right|_{\Gamma} \leqslant \varepsilon \tag{3.13b}
\end{equation*}
$$

However, there are no analytic functions satiafying (3.13a,b) with ε leas than a certain number ε_{∞} which is found by oolving the equation

$$
\begin{equation*}
\varepsilon_{00}=\varepsilon_{0}\left[h ; 1 / \varepsilon_{00}\right] \tag{3.13c}
\end{equation*}
$$

Here $\varepsilon_{\rho}\left[h_{;} ; h_{2}\right]$ is a functional of $h(t)$ (equal to $-i$ on γ and to $C_{f} \tilde{A}_{c}$ on Γ), being the norm of the matrix:
 , with the outer function C_{0} defined by $\left|C_{0}(5)\right|_{\gamma}=\varepsilon$ and $\left|C_{\alpha}(\xi)\right|_{\Gamma}=1$. So, in trying to render the sum $\Delta\left(g_{i} z\right)$ of (3.12) very ball, one should be aware that as aoon as the left hand aide of inequelity (3.13b) gets amaller than E_{∞}, it ia aure that poles are already preaent on the phyaicsl sheet (ingide the unit circla)!

C. Eigenvaluea in the Finite Brror Case

Some worde are now in order about whet might hoppen when the true amplitude is of negative CDD clese (i.e. the "exact"-but unknown - kernel has an eigenvalue 1) or, which is the sage, when there exist amplitudes of negative CDD class passing inside the error channel. We mean that although the probability for the data to exactly hit upon an eigenvalue is nil, they may nevertheless be such as to give a too large norm to the Fredholm resolvent. Now, refering to sect. 3.1D one knows thet if one divides an
 inside the unit circle, one is lirely to move awey from near the eigenvalue.

However, when the data ara "erroneoug", one runs into trouble because there is no aseurance that the $\mathrm{X}^{(1)}$ (a) obteined by solving the resulting modified equation:
(modified according to prescriptions (3.9)) will indeed exhibit a sero at the right piace, i.e. in z_{0}. (Clearly, when $E=0, Z^{(4)}(z)$留ut have a tero there, by the uniqueness of the canonical decomposition (3.1) and the uniqueness of the solution of (3.14)). So, one cannot be sure that when ons turns bsck to the initial amplitude a pole in the meighbourhood of z. does not aurvive, as it in no longer killed by the factor $z=I_{\text {, }}$, and this is, of course, undeoirable (Z_{0} wea chosen arbitrayy, without any aignificance). So far, we do not know of any fundemental way of getting out of
this difficulty, but one may gtill try to modify slightly the date $A_{i}(2)$ staying nontheless in the errior channel, so that the zero of the resulting $\boldsymbol{\sigma}(\mathrm{l})$ fall at the right place. To this end one can, for instance, add to the "data" $\mathcal{F}_{\mathcal{F}}(x) C(x) /\left(x-z_{0}\right)$ a amall function, of the form $\lambda e(z) / \partial^{H}(x)(e(x) c a n$ be even taken equal to 1) which has the advantage that, upon its introduction, it is only the free term of the equation that is modified (by a known quantity):

$$
\begin{equation*}
\left.\lambda E(z) \equiv \frac{\lambda}{2 \pi^{2} i} \oint_{r} \frac{d z^{\prime}}{z^{\prime \prime}} e\left(z^{\prime}\right)\right|_{0} ^{1} d z^{\prime} \frac{P_{l}\left(z^{\prime}\right)\left(z^{\prime}-z_{0}\right)}{z^{\prime}-z} P_{\left(z_{i}^{\prime} z^{\prime}\right)} \tag{3.15}
\end{equation*}
$$

So the final $\nabla^{(i)}(x)$ is changed to

$$
\begin{aligned}
& z^{(1)}(z) \equiv z^{(4)}(z)+\lambda \partial_{E}^{(1)}(z)
\end{aligned}
$$

If $z^{(t)}(z)$ really had a zero in a neighbourhood of z, it is to be expected that small $\dot{\lambda}$'s will suffice to nove it back to z_{0}. Then,

$$
\begin{equation*}
\dot{N}^{(u)}(z) \equiv \stackrel{N}{N}^{(1)}(z)+\lambda \mathcal{N}_{b}^{(d)}(z) \tag{3.17a}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathcal{N}_{E}^{V}(x)=\frac{1}{2 \pi z} \frac{1}{C(z)} \oint_{\Gamma} d x^{\prime \prime} \frac{1-z^{2}}{1-z^{\prime \prime}} \frac{e\left(z^{n}\right)}{z^{\prime \prime}-z} \tag{3.17b}
\end{equation*}
$$

and so, the amplitude thus obtained $\quad \hat{A}^{0 \prime \prime}(x)$ has a pole prooisely at $x=z_{0}$ and the initial amplitude $\quad \vec{A}^{(t) \prime}(x)\left(z-z_{0}\right) \quad$ will indeed be of cDD class -1 and show no insignificant pole.

D. Input Bound States

It is often desired to use the data on the left-band cut in
conjunction with eome precise informstion (see section 2 of ref. [7) about the poaition of a bound atste, lying, say, at z_{c}, in the region ($-1,0$). Af usual, this is done by solving the N / D equations for a new amplitude $A_{f}^{\prime}(z)=\left(z-z_{0}\right) A_{\rho}(x)$, which obeys a modified unitarity with $\rho_{e}^{\prime}(x)=p_{l}^{(x)} /(z-z$.$) \quad . A_{l}^{\prime}(x)$ will, in general, have no zero at z_{0}, and so $A_{e}(x)$ will necessarily have a pole precisely there. However, this causes the CDD class of $\mathcal{A}_{e}^{\prime}(x)$ to decresse by ane with respect to that of $A_{f}(z)$. This procedure rune into trouble if it heppens thet the class of the initial $A_{1}(z)$ ia zero. But then, one can directly manufacture a zero for $\mathcal{D}(z)$ at the right place, by varying the data as in 3,2C.

E. Short Conclusions

In conclusion, it might be worth peinting out that, in contrat to the usual N / D setting when one feeds in complete data on the left-hand aide, the CDD anbiguity is totally removed in the limit of zero errors (naturslly) and ite persistence in "real", error-affected equations is only due to the uncertainties exiating in the data. Fven then, however, the feedback exarted by the complete data (aect. 3.2.A) may severely reatrict the allowed range of CDD clasees and residues. Certainly, no such constrainte can be performed by the inaginary part only, in the usual N/D method.

4. THELASTICITIES AND THRESHOND BKHAYIOUR

So, far, we have treated only the elastic case, but inelasticity can eanily be brought into our scheme. Certainly, the ideal
way of treating inelasticity is to consider simultaneously all the coupled channels. The problen of optiaizing in the ame way as we did so far, the matrix N / D equations (which include, of course, only those chennels correaponding to binary ractiona) will be dealt with in eection 5. However, for practical purposes inelasticity is most often taken into account globally, via two alternative parametrizations:
a) The Chew-Mandelatan paranetrization $\mathcal{R}_{\ell}(z),[8]$:

$$
\begin{equation*}
\operatorname{im} A_{\ell}(z)=p_{f}(z) R_{\ell}(z)\left|A_{l}(z)\right|^{2} \tag{4.1}
\end{equation*}
$$

In our optimization scheme, clearly all the results stay unchanged, since this amounts unly to a change $\rho_{e}(z) \rightarrow \rho_{\ell}(z) R_{\rho}(z)$.
b) The Froisast parsmetrizstion [9] (also [5]): $\eta_{\ell}(x)$;

In the inelastic region (see fig. 2)

$$
\begin{equation*}
\left|S_{\ell}(z)\right|_{\gamma_{2}}=\eta_{l}(z) \leqslant 1 \tag{4.2}
\end{equation*}
$$

In the spirit of Proiseart's original derivation [9], this η, is included by working with a modified S-matrix:

$$
\begin{equation*}
S_{l}^{\prime}(x)=S_{l}(z) C_{F}(z) \tag{4,3}
\end{equation*}
$$

with $C_{F}(z)$ an outer function of modulus $1 / \mathcal{Z}_{f}(x)$ on the inelastic region and 1 on the elastic one, so that $S_{\rho}^{\prime}(z)$ be unitary on the whole right-hand cut. There are however two additional constraints to be palced on the function $C_{F}(z)$:
i) The threshold behaviour of $S_{\rho}^{\prime}(z)$ should be the sane as thet of $S_{\ell}(x)$: for the ℓ-th pertial wave

$$
\begin{equation*}
S_{p}(z) \sim 1+0\left(z^{1+1 / 2}\right) . \tag{4,4}
\end{equation*}
$$

Clearly, thia is only possible if the function $C_{F}(x)$ has the sage threshold behaviour as $S_{e}(z)$.
ii) At leat on the region, where data are ovailable ($\Gamma_{1}=\Gamma \backslash \Gamma_{2}$), the modulus of $C_{F}(x)$ should be 1 , so as not to disturb the S-matrix analog of the error-channel condition (2.4).

$$
\begin{equation*}
\left|S_{\ell}(x)-\mathscr{S}_{l}(z)\right|_{\Gamma_{1}} \leq \varepsilon^{\prime}(x) \tag{4.5}
\end{equation*}
$$

If we impose $\left|C_{F}\{x)\right|=1$ everywhere outside γ_{2}, such a function may not exist, Howerer, one overcomes thia by using the freedom left in preacribing the lefinition of the bound $M(z)$ on the remote ("unknown") left hand cut Γ_{2}.

With this freedom there are many functions satisfying these restrictions. We shall construct one of then (fulfilling ell the requirementa) and geometrically more intuitive, in the ζ-plane (fig. 2):

$$
\begin{equation*}
C_{F}(\zeta)=\exp \left\{-\frac{w(\zeta)}{2 \pi} \oint_{\Gamma+\gamma} d \theta \frac{e^{i \theta}+\zeta}{e^{2 \pi}-\zeta} \frac{\ln { }^{r} z(\theta)}{w^{1}\left(e^{i \theta}\right)}\right\} \tag{4.6}
\end{equation*}
$$

where $w(\zeta)$ is the function transforming the unit circle of the ζ-plane onto the domain of fig. 4 :

and $\eta_{l}(\theta)$ is a function which is taken equal to 1 outside the inelasticity region (so that the integrand vaniahes except on γ_{2}).

The threahold behaviour $C_{F}(z) \sim 1+O\left(z^{(1 / h}\right)$ ia ensured by the factor $w^{d}(\zeta)$, which vaniahes in $\zeta=1\left(w(\zeta)=0\left(z^{2}\right)\right.$ near $\zeta=1$). On the other hand, the Schwartz-Villat kernel in (4.6) conetructa function holomorphic in the unit 5 disk, having
 lest quantity is indeed real everywhere on the boundary, since on
 exponent is purely imaginary on γ_{1}, Γ_{1} and Γ_{2}. Therefore, $\mid C_{F}\left(r_{1} \mid=1\right.$ on γ_{1} and r_{1}, since here the factor $v^{\prime \prime}(\zeta)$ is real and so the whole exponent is purely imaginary. on $\Gamma_{2}, w^{l}(\zeta)$ is complex and oo,

As already remarked, the fact that $\left|C_{F}(f)\right|_{\Gamma_{2}} \neq 1$ should not bother one too much because the data are unknown hera, and this will only amount to changing $M^{\prime}(0)$ by a known factor $M_{1}(0)$.

On the inelasticity region $\gamma_{2}, C_{F}(\zeta)$ fulfills its purpose of making the modulus of $S_{f}^{\prime}(2)$ in (4.2) equal to one; since $w^{t}\left(e^{\theta \theta}\right)$ is real here and the real part of the schwartzVillart kernel reproduces - Ex $\eta_{j}^{(\theta)} / \omega^{t}\left(e^{i \theta}\right)$ on the boundary, and so,

$$
\begin{equation*}
\left.\mid C_{F} ; \zeta\right)\left.\right|_{V_{2}}=1 / \eta_{p}(\theta) . \tag{4.8}
\end{equation*}
$$

Now, it ie easy to go on constructing new amplitudes $A_{p}^{\prime}(z)$ and data functions $\mathcal{R}_{p}(x)$ from $S_{p}^{\prime}(x)$ and $\mathcal{J}_{p}^{\prime}(x)$:

$$
\begin{align*}
& S_{l}^{\prime}(z)=1+2 i \rho_{\rho}(x) A_{l}^{\prime}(x) \tag{4.9a}\\
& J_{\rho}^{\prime}(z)=1+2 i \rho_{1}(x) A_{l}^{\prime}(x) . \tag{4,9b}
\end{align*}
$$

These satisfy on Γ_{1}

$$
\begin{equation*}
\left|A_{e}^{\prime}\left(e^{2 \theta}\right)-A_{e}^{\prime}\left(e^{i \theta}\right)\right|_{\Gamma_{1}} \leqslant E(\theta) \equiv \varepsilon^{\prime}(\theta) /\left(2 \xi_{e}^{\left(e^{(\theta)}\right)} \mid\right. \tag{a}
\end{equation*}
$$

and on Γ_{2} (as usual $[1]$, we put here $\mathcal{A}_{f}^{\prime}\left(e^{i \theta}\right)=0$)

$$
\left|A_{c}^{\prime}\left(e^{(\theta)}\right)\right|_{r_{2}} \leq M(\theta)=\frac{M^{1}(\theta) M_{1}(\theta)+1}{\left|2 \rho_{r}\left(e^{(\theta)}\right)\right|}
$$

and so wave returned to formulae aimilar to those of the beginning (\quad (2.2)), from which one proceeds in manner identical to that of aection 2.

5. COUPLLED CHANNELS

Happily, the optimization procedure described in [1] can be generalized to include the many channel twombody procesaes described by the matrix N / D equationa $[10]$. We would like to warn the reader that one needs a rather good acquaintance with the type of proofs of peper [1] to go throuph this section, but the results of practical relevance, basically aimilar to those of $[1]$, can be found gathered at its end (formula (5.17)ff).

As usual, we start with a symmetrized amplitude (see, for instance $[11],[12]$

$$
\begin{equation*}
A(x)=M(z) D^{-1}(z) \tag{5.1}
\end{equation*}
$$

where $N(z)$ and $D_{(z)}$ are $n \times n$ matrices, with the same analytic properties as the scalar $N(z)$ and $D(x)$ of the preceding esctions, and the matrix $\mathbb{D}(z)$ can be chosen auch that :

$$
\begin{equation*}
D_{i k}(I) \rightarrow \delta_{i k} \quad \text { as } x \rightarrow \infty \tag{5,2}
\end{equation*}
$$

For a general proof of the existence of such decompositions we refer to the papers of R.L. Warnock [13] the resulta of which can be immediately adapted to our particular analytic atructure ${ }^{+}$).

[^2]The unitarity condition for $\hat{A}(z)$ reada :

$$
\operatorname{lm} A_{i(1)}=A(z-i \epsilon) \rho(z+i \epsilon) A(z+i \epsilon),
$$

where ρ (zrig) is the diagonal jetrix :

$$
\begin{equation*}
g_{1} k(=)=c_{i k} \theta\left(s(z)-s_{i}(z)\right) y \frac{\sqrt{s(z)-s_{i}}}{s(x)} \tag{5.3b}
\end{equation*}
$$

with $S(z)$ the mepping function of fig. $1, s_{i}$-the thresholds for the various two-body channels and $\theta\left(s-s_{i}\right)$-the Heaviside side function.

5.1. The Reduction to Constant Brrors

As in paper [1], we assume that a "data matrix" $\mathcal{A}_{i j}(x)$ ia given on the left-hand cut, i.e. on the unit sircle in the $z-$ plane, 90 that

$$
\begin{equation*}
\left|A_{y}(z)-A_{c j}(z)\right|_{\Gamma} \leqslant \varepsilon_{+j}(z) . \tag{5.4}
\end{equation*}
$$

The functions $\varepsilon_{i f}(2)$ also contain the boundednass conditions assumed on the "unknown", remote part of Γ (see section 2).

At first sight, one is tempted to work, a in [1], with a modified amplitude, obtained by multiplying every amplitude $A_{i j}(2)$ by a auitable outer function $C_{i f}(2)$, but, thie brings about complications in the treatment of the unitarity condition.

We shall instead use the freedom offered by the tautology group, in a rather nontrivial way, and finally reduce the problea to one equivelent to the scallar case.

As in [1], the different tautological kernels of the integral equations can be found by writing all the possible diepersion relations for $\mathbb{N}(x)^{+)}$:

[^3] on z, z^{\prime} but are holomorphic in $z^{\prime \prime}$ in the unit disk, flso, they must be such that:
$$
g_{\alpha \beta, i} j_{j} z, z^{\prime}\left(L^{\prime}\right)={ }^{\prime} z_{x}{ }^{\prime} \beta g \text {. }
$$

The "teutology" (equivalence) of all these dispersion relations is ensured by the fact that $A_{\alpha k}\left(Z^{\prime \prime}\right) D_{k p}\left(Z^{\prime \prime}\right)$ is a function holomorphic inside the unit disk. In practice, of course, when $A_{\mathrm{A}} \mathrm{A}_{\mathrm{N}} \mathrm{i}$ is replaced by $\mathcal{A}_{\alpha k}\left(z^{\prime \prime}\right)$, the tautology is broken - the diapersion
 and hence the problem of optimizing among the various "tautologies" makea sense.

Upon intraducing (5.5a) in the dispersion relation for $\mathbb{D}(x)$:

$$
\begin{equation*}
D_{i j}(x)=1-\frac{1}{\pi} \int_{0}^{1} \frac{\left.\operatorname{Sii}\left(z^{\prime}\right) N_{0} j z^{\prime}\right)}{z^{\prime}-z} d z^{\prime} \tag{5.7}
\end{equation*}
$$

we get the equation for $D_{a y}(I)$:

$$
\begin{equation*}
D_{i j}(z)=1+\frac{1}{2 \pi^{1} i} \oint_{p} d z^{\prime \prime} A_{\alpha x^{(2 n}} D_{k \beta}\left(z^{\prime \prime}\right) \int_{0}^{1} \frac{\rho_{i<}\left(z^{\prime}\right)}{\left(z^{\prime}-z\right)\left(z^{\prime}-z^{\prime \prime}\right)} g_{\alpha \beta, i j ; z_{2} z^{\prime}}\left(z^{n}\right) d z^{\prime} . \tag{5.8}
\end{equation*}
$$

Following the philosophy of $[1]$, we shall try to find that $g_{\alpha, i, i j ; x, z^{\prime}}\left(z^{\prime \prime}\right)$ for which the norm of the difference between the kerneis of equation (5.8) and of the equation obtained by replacing in (5.8) $\quad A_{\alpha K}(x)$ by $\mathcal{A}_{\alpha K}(x)$, is minimel.

In the space of matrix functions continuous on the unit circje Γ, the norm of the difference between the kernela of the two equations reads : (see also eppendix 1 of [1]);

Since no informetion is assumed about the phase of the difference $A_{A k}\left(z^{\prime \prime}\right)-\dagger_{\alpha k}\left(x^{n}\right)$, we try to minimize not $\left\|\mathbb{K}_{\alpha}-\Psi_{\alpha}\right\|$ but $\sup _{A}\left\|\mathbb{K}_{A}-\mathbb{K}_{A}\right\|$, where the supremum is taken with respect to all amplitudes A paseing through the error channels: So
where the last equality follows from the observation that the sum over k bears only on the Punctions $\epsilon_{\alpha k}\left(z^{4}\right)$ so that one can introduce a new function

$$
\begin{equation*}
\sigma_{\alpha}\left(z^{\prime \prime}\right)=\sum_{k} \varepsilon_{\alpha k}\left(z^{\prime \prime}\right) . \tag{5.10b}
\end{equation*}
$$

Now, the fact that the errore appear in (5.10a) in e form depencing only on the index a allowa one to aplit a factor $C_{i}^{-1}\left(x^{\prime}\right) C_{\alpha}\left(z^{\prime \prime}\right)$ of the tautology function $g_{\alpha \beta, i j ; z, z^{\prime}}\left(x^{\prime \prime}\right)$, with the C_{L} 's ohosen wuch that

$$
\begin{equation*}
\left|C_{\alpha}\left(z^{\prime \prime}\right)\right| \sigma_{\alpha}\left(I^{\prime \prime}\right)=\varepsilon \quad \text { (no a urumation!), } x^{\prime \prime} \in \Gamma \tag{5.21}
\end{equation*}
$$

Por every α. The formulae giving these functiors are analogous to (2.3) (aee, further (5.17b)).

Thus, with

$$
\begin{equation*}
\tilde{g}_{\alpha \beta, i j ; j, z^{\prime}}\left(z^{*}\right) \equiv C_{\alpha}^{-1}\left(x^{\prime}\right) g_{\alpha \beta, i} i j x x^{\prime}\left(z^{\prime \prime}\right) C_{i}\left(z^{\prime}\right) \text { (no summation!) } \tag{5.12}
\end{equation*}
$$

our equetions become successively :
where

$$
\begin{align*}
& \tilde{g}_{i i}\left(z^{\prime}\right) \equiv g_{i i}\left(z^{\prime}\right) C_{i}{ }^{1}\left(z^{\prime}\right) \tag{5.136}\\
& \mathcal{G}_{L i}\left(z^{\prime}\right) \equiv \frac{1}{\pi} \int_{0}^{1} d z^{\prime} \frac{\tilde{f}_{L i}\left(z^{\prime}\right)}{\left(z^{\prime}+z\right)\left(z^{\prime}-z^{\prime}\right)} \tag{5.13c}
\end{align*}
$$

$G_{i, Z^{\prime}}\left(z^{n}\right)$ - is a matrix function holomorphic in $z^{\prime \prime}$ in the out unit dibk - and

$$
\begin{equation*}
F_{\alpha \rho, i j ; z}\left(z^{n}\right) \equiv \frac{1}{\pi} \int_{0}^{1} d z^{\prime} \frac{\tilde{\varphi}_{a i}\left(z^{\prime}\right)}{z^{*}-z} f_{\alpha \beta, i j ; z, z^{\prime}}\left(z^{\prime \prime}\right) \tag{5.13d}
\end{equation*}
$$

which is a function holomorphic in $z^{\prime \prime}$ in the whole unit diak, but otherwise arbitrary.

5.2. The 0ptimization Procedure

The lest equality of (5.13a) has cast our problem in a ford Very similar to the scalar one discuseed in $[1]$, and reminded of in the Introduction of the present paper (ef. formula (3.3) of [1]): namely, that of finding functions $F_{x, x_{j}, z}\left(z^{\prime \prime}\right)$ holomorphic in $z^{\prime \prime}$ and of arbitrary dependence on z, so that sup $X_{A}-\mathbb{K}_{A}$ on the 1 eft hand side of (5:13a) becomes least.

Following now closely paper $[1]$, one can verify for oneself that the minimax theorem of aection $3 A_{,}[1]$, goes through unchanged; i.e.

$$
\begin{equation*}
\inf _{F} \cdot \max _{i, j} \cdot \sup _{x}(\ldots)=\max _{i j} \sup _{z} \inf _{F}(\ldots)(\ldots) \tag{5.14}
\end{equation*}
$$

This theorem then leado us to recognize the problem just otated as that of finding the best bolomorphic approximent in the sense of the L^{1}-norn of the given nonholomorphic \& cut between 0 and 1) function $G_{i ; 2}\left(x^{\prime \prime}\right) J_{\alpha i} J_{n,}$.

Now it is easy to aee that for fixed i, j the given nonholomorphic part is nonzero only for both $\alpha \approx i$ and $\beta=j$, i.e. the best approximant $F_{\alpha \beta, i j ; z}\left\{^{\prime \prime}\right)$ nust be zero, unless $m=i$ ond $\beta=j$. (Clearly, those $F^{\prime} y_{s}$ with $\alpha_{i} i$, $\beta_{j} j$ can only enhance the ava of moduli by poaitive quantitiea!). So F depende only upon a and j and the sums over α and β diasppear.

Horeover, aince the nonholomorphic part to be approximated does not depend or f, the optimal function F is the same for every f and sa depends effectively only upon i. So, one ia finally left with evalusting:

$$
\begin{equation*}
\max _{i} \sup _{z} \inf _{F} \oint_{r}\left|d z^{*}\right| .\left|G_{i ; z}\left(z^{*}\right)+F_{i ; z}\left(z^{\prime \prime}\right)\right| \tag{5,15}
\end{equation*}
$$

Again following [1], the minimization over F is turned into its dual problem which allow the conatruction of an upper bound for inf $\left\|G_{1 i 2}+F_{i ; 2}\right\|_{4}$:

$$
\begin{equation*}
m_{0, L}=\frac{1}{\pi} \int_{0}^{1} d_{z^{\prime}} \frac{\vec{\rho}_{c i}\left(z^{\prime}\right)}{1-z^{\prime}} \tag{5.16}
\end{equation*}
$$

This bound can be ahown to be actually attained for $z=1$, at which point one can construct explicitly the optimal function; the latter turne out [1] to be such as to turn one of the Cauchy denominators $1 /\left(z^{\prime}-z^{\prime \prime}\right)$ into a Paisson kernel.

So, the final optimized equations read:

$$
\begin{equation*}
D_{i j}(z)=1+\frac{1}{2 \pi^{2} i} \oint_{r} \frac{d z^{n}}{z^{n}} A_{i k}\left(z^{\prime \prime}\right) C_{i}\left(z^{\prime \prime}\right) D_{k j}\left(z^{\prime \prime}\right) \int_{0}^{1} d x^{\frac{\rho_{i i}\left(z^{\prime}\right)}{C_{i}\left(x^{\prime}\right)\left(z^{\prime}-z^{2}\right)}} P_{\left(x^{\prime} ; z^{\prime \prime}\right)} \tag{5.17a}
\end{equation*}
$$

The reader is reminded of the definitions employed:
$C_{i}\left(z^{*}\right)$ is an outer function in the unit circle of modulus

$$
\left|C_{i}\left(z^{\prime \prime}\right)\right|_{r}=\varepsilon / \sigma_{i}\left(z^{n}\right)
$$

on the circle, with

$$
\sigma_{i}\left(z^{\prime \prime}\right)=\sum_{k} \varepsilon_{\left.i k^{\left(z^{\prime}\right.}\right)},
$$

$$
\begin{align*}
& \text { Where } \varepsilon_{i k}\left(z^{\prime \prime}\right) \text { are the errors on the symmetrized "data matrix" } \\
& A_{i k}\left(z^{\prime \prime}\right): \\
& \qquad C_{i}\left(z^{\prime \prime}\right)=\exp \left\{\frac{1}{2 \pi} \oint_{r} d \theta \frac{e^{i \theta}+z^{*}}{e^{i \theta}-z^{\prime \prime}} \ln \left(\varepsilon / \sigma_{i}\left(e^{i \theta}\right)\right)\right\} \tag{5.17b}
\end{align*}
$$

ε ia arbitrary, equal, say, to the average error.
Also, the Poisson kernel is :

$$
\begin{equation*}
P_{\left(z^{\prime}, z^{\prime \prime}\right)}=\operatorname{Re} \frac{z^{\prime}+z^{\prime \prime}}{z^{\prime}-z^{\prime \prime}} \equiv \frac{1-r^{\prime 2}}{1-2 r^{\prime} \cos \left(\theta^{\prime} \theta^{\prime}\right)+r^{\prime 2}} . \tag{5.17c}
\end{equation*}
$$

6. OUTLOOK

Ae explained in the Introduction, it might make a great deal of difference for the results of the N / D equations whether the input on the left-hand cut is exact limiting values of holomorphic and unitary amplitudes or it just consiate of approximata data. In this connection, it is essential to notice that the exact equations, i.e. those with holomorphic and unitary input admit of a whole set of tautologisal transformations that leave their solution atrictly unchenged: namely, those obtained by adding to the usual N/D kernel functions with the holomorphy properties of $N(z)$. (We should remind the reader that we use not only the
imaginary part on the left-hand cut as input, but the complete amplitude). Since this tautology invariance of the exact equations is broken when approximate data are used - which ia the case in practice - one might look for that one of the possible equations whose resulte are least perturbed by the departure of the input from "exact" data.

It was the purpose of this paper and of $\left.{ }^{[} 1\right]$ to show how one can obtain such optimal kernels and to investigate all the problems they raise in connection with CDD poles and the inclusion of inelasticities.

Section 2 of this paper recalls the main result of $[1]$ - namely, that for no CDD poles, the optimal kernel is obtained by simply replacing the Cauchy kernel of the dispersion relation for $N(z)$ by a suitably weighted Poisson kernel. (see eq. (2.10)). An optimal nonanalytic estimate of the amplitude at interior points can then be constructed (eq. (2.11))-(2.13)) but one can also produce an analytic extension $\check{A}_{f}(z)$ aff the uniterity cut (eq. (2.16)). The error channel condition is rewritten then (eq.(2.18)) in terms of the negative Fourier coefficients of $\mathcal{A}_{(}(x) \mathbb{C}(x) D(z)$.

Section 3 explores along well-worn lines the question of CDD poles for our particular choice of holomorphy damains for $N(x)$ and $D(z)$.

In Section 3.1. we treat the ideal case of zero errors, i.e. data "exact" in the above sense and essentially show that, in this limit, as expected from the principle of the uniqueness of analytic continuation, the CDD ambiguities are completely removed. In subsection 3.1A we introduce the concept of CDD class of a given amplitude, which is the minimal number of CDD poles required for
the dispersion relations to hold, and then show (subsection $\mathbf{~ a . l p) ~}$ that the use of a larger number of CDD poles than the winimal one leads to corresponding degrees of freedom in the choice of their residua. In subsection 3.1C' we dwell abit on the ve:ation of the actual determination of the residua of the CLD moles frod the Fourier coefficients of the boundary data and finnally (sutaection 3.1D), show how the degeneracy appearing necesanrily when the CDD clase is negative is removed.

In Section 3.2A we first show to what extent the presence of finite errors allows CDD ambiguities to persiat in the golution, by finding allowed domains for the residua of the possible CDD poles, (eqs. (3.10-3.12)). Subsection 3.2B is concerned with the important question of the appearance of ghoata and proves, in relation with resulte of extremal problems of analytic function theory, that if the constructed unitary amplitude gets closer to the data than a certain number $\varepsilon_{c o}$, uniquely determined by the data themselves (eq. (3.13)), ghosts (or bound states) are bound to appear on the physical sheet. Nonzero errors lead to sone trouble in the procedure of 3.1D for the removal of degeneracy, and this difficulty is approximately solved in 3.2C. Subsection 3.2D shortly treats the problem of input bound d states.

In Section 4 we move on to the treatment of inelasticities. The Chew-Mandelatam parametrization is trivially included in the optimization scheme (eq. (4.1)), but the Froissart parameter ? requires a more careful construction of a suitable outer function to include it without affecting the assumed threshold behaviour (eq. (4.6)).

Finally, section 5 considers the case of binary coupled channela and shows that the optimization results go through essentially unchanged, although one has to treat carefully (aubsection 5.i) the question of variable error channels. The final formulae to be used in practice (including the new outer function deviced in section 5.1) are gethered together in equations (S.17).

REFERENCES

1. S. Ciulli, C.Pomponiu, I.Sabba-Stefanescu, G.Steinbrecher. Phys.Rev., D, June 1973.
2. S.Ciulli, G.Nenciu. Commun. Math. Phys., 26 (1972), 237.
3. S.Ciulli, J.Fischer. Nucl.Phye., B24 (1970), 537.
4. D.H.Lyth. J.Math. Phys., 11 (1970), 2546.
5. G.Frye, R.L.ilifarnock. Phys.Rer., 130 (1963), 478.
6. S.Ciulli, G.Nenciu. J.Math. Phys., in press.
7. S.Ciulli, Gr.Ghika, hi.Stihi, M.Visinescu. Phys.Rev., 154 (1967), 1345.
8. G.F.Chew, S.Mendelstam. Phys.Rev., 119 (1960), 467.
9. M.Froissert. Nuovo Cim., 22 (1961), 191.
10. J.D.Bjorken, Phyo.Rev.Lett., 44 (1960), 473.
11. R.Newt on. J.Nath. Phys., 2 (1961), 188.
12. M.Kato, Ann. Phys., 31 (1965), 1930.
13. R.L.Warnock. Phys.Rev. 146 (1966), 1109 and Nuovo Cim., 50A (1967), 894.

 leading from the cut energo plane to the cut unit circie.

Fig. 2. The canonical mapping $\zeta(s)=(\sqrt{1+u-v} \sqrt{1-u}) /(\sqrt{1+u+v} \overline{1-u})$, $u=\left(2 s-s_{1}-s_{2}\right) /\left(s_{2}-s_{1}\right)$ transforming the $1 . h$. out 1 onto the left uait semicircle and the r.h. cut y onto the right semicircle

(N)

(0)

ド1g. 3. :olomorpny domans for $i(z)$ and $b(z)$, respectively.

Fig. 4. 'ine domain onto which the unit -disk of fig. 2 is

[^0]: +) Then we are for from the eigenvalues, this does mean that the solution of the approximate equation is close to the exact one.

[^1]: ${ }^{+}$Many delicate queations, related to the precise conditions under which the N/D nethod is meaningful, and also the eigenvalue problem, are all treated in the exhaustive paper on the N / D nathematics due to Lyth 4].

[^2]: ${ }^{+)}$We restrict ouraelvea to the caae of no GDD poles.

[^3]: ${ }^{+}$Unless explicitly stated, an index appearing twice means sumation. If it oppears three times, this means nothing.

