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I. INTRCDUCTION

An important problem often encounted in narticle physics
ig to construct an enelytic smplitude subjected to unitarity on
its physical cut Y starting from its { error-affected)
boundary values on the left-hand cut [ .

This is alsc the goal of the corventional N/D equations which
start from the left-hand cut jump of the amplitude; l.h.c. toundary
values { and so the jump) can be found in relativistic scattering
by &an analytic extrapolation from the physical region of the crcassed
reactivna. Nevertheless in finding such an smplitude, one hes to
be very careful ir choosing the actual equations to be used, as it
is well known that aquivalent mathematical methods muy have diffe-
rent degrees of senaitivity towards the errors of the input data;
this is the more so, a8 the data may be not known at all { apart
from some boundedness condition) on the far region of the l.h.c.

We would like to gtress that this instability occurs even if we vse
the complete extrapolated amplitude aa input data, not only its

jump across N
In a previous paper [ll, using the method of construction
based on the ciznsical N/D equationr, slightly modified to
accomodate t.e whole amplitude on I , we have managed to find,
among all the tautological equations that one which yields results
least affected by the lack of exact knowledge conceraing the input
data, As it will be shown in section 2, this optimization was
performed by noticing Ell that the kernels of the varioua tau-

tological equations differ among them by a function E(xau



( eq, 2.17b of [1]) holomorphic in the 5" —complex plene cut
only slong [ and otherwise arbitrary. Then the most ingensitlve
equation to the uncertsinties of the initial data is found by
golving an extremal L* -norm problem, nemely that of finding
that function F;(z) for which the norm | Te +Gul\ys is lesst,
where (3,) is & given, fixed function ( see further eq.(2.8))
oppearing in the integral kernels. ( This norm multiplies the
initial errors, to yield the error of the output). As G ("
defined by (2.8) has a right-hand cut in the 5 plene which F oy
does not exhibit, one cannot simply take F, equal to -Gz
therefore the norm [T, *@:0+ can never be zero but rather
attains a minimal value, namely for that ¥, which turne one of
the Cauchy kernels of the classicsl integral equation for D)y
into a auitebly weighted Pcisson kernel.

We have not discussed so far any questions concerning CDD
ambiguities and inelasticity. These will be the main purpose of
the present note, After a short review of the relevant results
of paper ]_ﬂ in section 2, we discuss how the CDD embiguities
may be controlled by requiring that the constructed amplitude get
inside tk> error corridor af the l.h. cut data. This problem
did not arise in the classical N/D enuationa, as the imaginary
part or the amplitude alone is too poor an information to perform
auch a feedtack. In section 4 we treast the inelastic case
using a weight function of the Froissert type, while in section 5
we discuss the extension of the method to the matrix meny-channel

case.



2. OPTIMAL N/D EQUATIONS

As in the paper [_1_1 , we use the canonicsl mappings ::°)
end % () s ZLe) transforms the cut plene onto the unit disk,
cut between the zero and 1, so that the 1l.h.c. h comes onto
the unit circle, and ¥ — the physical cut — onto the cut
between 0 and 1 , whereas L¢s) , to be used in section 4
maps both cuts onto the unit circle, so that T comes on the
left semicircle, whereas Y comes onto the right one (see figsa.
1 and 2).

Let '\11(5' be e partial wave amplitude, supposed to be holo-
morphie in the cut unit circle of fig. 1, and setisfying the

elastic uniterity condition:

1m Q.((s) = g\ﬁ) \ (1((5)]:l

on X’ . Here g(s) is the correaponding phase space factor

(9(»=¥G-47s in the equal mess cese). Then, if C[[ ) vanishes at
S

infinity end if it observes the usual threshold behaviour Llf-V‘L

at ¢ —+ 0, it is useful to introduce ihe "reduced” partial wave:
v

A!L‘l)-:- Cli(l)/[:((bul] (2.1a)

M 2 P 2

- A(uﬁfﬂ”IA(u)l , seEztu-n e

(2.1v)
. . A (e : .

end the corresponding data function [(e ) as its approximant

on [ , within an error corridor £(4) . { The latier are

obtained hy dividing the estimated extrapolation noise by the

factor appearing in (2.1)). Hence

i Ae\e‘g) ﬂﬂ;((e‘g)[ < e(0) (2.2)



on §. <1 where no information at ell is known about the ampli-
tude, we siwply take .;4((41-6):0 , and €@ =M@ —~ a (imown)
function bound for the amplitnude.

We can reduce this variable error channel to a conatant one
of width £ (¢ is, for instance, a mean value of the erraors)
by multiplying both U{Z‘(e"’) end 4.(¢%j by the limiting values of an

outer " £ ~-function” [2]

i
Cm:exp{%)gw:“;—tzh(s/g;m)l_( (2.3)
such that
[Ce® = e/e® o T (2.8a)

The resulting emplitudes

Ay =A@ @) (2.39)
> 8 0
are approximants to the modified data function ./4'((3‘ )Eﬂe(elgfc(" )
within a conatant error 3 H
‘ .ﬁ.i(eie)-ﬂz(‘laj\ < E on T, (2.4)

and also obaerve on Y a modified unitarity condition

?e( ) (2.5)
Von h ®) = lAw)l cey=[ol.
In this and the following section we shall assume only elastic
uniterity ( on Y ), whereas in section 4 we shall raduce the
genersl inelastic case to this one, via a Froiseart weight function.
This done, to achievs the actual construction at interior

points of an anslytic and unitary reduced amplitude from the data



/Q((Z) given on the unit circle, one looks for a reduced amplitude
of the form Nu)/Dz), with Nwz) holomorphic in the unit
circle and Diz) holomorphic in the whole 7z -plane, e¢xcepti for
the cut between O and L ( see fig. 3).

Let us now run quickly aover the results ot paper Kl.) . If
the DD poles are absent, the dispersion reiations for N.z) and

Dz} reaa ( AgNso o, ;ﬁﬁ/D na N=NC )

= dar A o Do
Rewi = 37 @F \ L (2.6a)
D) = 4 + 4-far D)
N ? .L“L

or using (2.5),

1
L e Sey N
&“" o (2.6b)

Nigy = 4~
Mz n C ot (2'=1)

and one gets gtraightforwardly one of the possible { tautological)

N/D equations D:1+:[I<\D :

Diay=1 "2-—“ J? dz" Ai 2"y Gtz Dezy o (2.7)
where
1 * \’ (z; 4
ayom o= |\ dr' - —_—
Gy = 5 o TGy GhET (2.8)

is a well defined function, anelytic in z" apsrt from the cut §
the main point of paper l_l] is that one can find a tactological
integral equation, by adding to (3,(Z) any function F. (z*s holo-
morphic in the unit disc in 2" and of arbitrary ( continuous)
dependence un i . This is so since the factar ,&((r’)bkr‘) = &(1")
a,_pearing under the integral sign in (2.7) is holomorphiz inside

the unit circle end hence & de Ny Fry =0 , 80 that the
r



the integral equation written with the kernel
Koty = A { Guta + Ry}

instead of Kotl,l") of (2.7), is equivelent to the former. Of
course, this happens if end only if Z:cu_“’) are really the
boundary values of a function which enjoys the anelytic and unitary
propertiea of true ( reduced) amplitude. Now, in practical compu-
tations we are forced to replace the boundary values K( (l[e) of
the reduced amplitude by the data function ﬁt (lw) { the kernels
Kr become j-{, ); then, the functions F,(z“) will alter the

solutions of the approximate equations and it is not at all a
priori clear which of these solutions is closest to the solution
of the exact equation.,

The task of paper [ 1] was to construct that F,  for which
the norm of the difference between the exact and the approximate

kernels is least +):

- = L& A e A g » s .
sep IK, - JC, | = sup sup z,‘@rl“'\-lA,(zJ Al GarEe]  (2.9)
teast
< EETH §:¢ é|- ‘dflllch (z"y +Fiu.)\ —r s
The optimsl F.(z'y is such that the optimized integral equation

for Dw) reads

3 " H (x)
Day= L+ § 42 Dpery A ey Cray (82! S
r o

C e (aty)

Piiy, (2,10

an "

+ s
) When we are for from the eigenvalues, this does mean that the

solution of the approximate equation is close to the exact one.



where

7I* L\I
Payey = Re 505

ez

is the Poisson kernel replacing the Cauchy xe..el 1/221"} of the
conventional wquation {2.7) - (2.8).

Using this solution 2¢2) of the optimized equation { in
{2.10) both " and 1 ere on the unit circle) one csan go
b: X end construct eastimates of the amplitude at every interior
point. This can be done in more than one way:

A

i) The (non-analytic) estimate Ay

Starting from the "data function" Nt = J'1€'~¢'é)zie‘°) we
can conatruct the best dispersion relation estimate for N(z)

denoted by .N"(z) ( aee [3-\ )i

J( (1)= 2mc‘m Jy dz 5)(1',1).4,(1."; C'zey), (2.11)

wihere the outer function C'(1) is such thac
J(Age®) A ) C'ie® Deeny| < €

i.e.

Cloor= el & $o8 5 ¢ = [e/Ce@Be} L (2.12)

For practical purpoees one can use almost as succeasfully qu)
dffined by (2.11) with C(3> given by (2.3) instead of C'(x) H
qu.) has the advantege of being directly related to the jump of
the optimal By acroes the cut Y .

Although .Aj"'[l) is the best disperaion relation eatimate,
it ie mot holomorphic in the unit disk (f('cz) is in fact, [3]

the envelope of the family of analytic functions, every one cf them



veing the best epproximant of M2y at a fixed point z ).

The functions

A
/2\( W = }f(U/Z‘I) (2.28)
as vell as I
2l (\ ;
.&‘(m = KN/ o) (2.13D)

( 3(7.) for interior points can be found inserting in the r.h.

side of (2.10) the solution 2(¢°) and computing the integral

for every z  of the cut unit disk) do coincide on the bonnfary
r with the data function A{(e ) , due to the fact that .;V('zjdl)

as well as —\(1) Ca) ere harmonic ( see 2,12) 1nsxde the unit

d1sk However, owm,g to the nonanalyticity of Jf(z) and \N(I) ,
A‘ (2 and A( (z) do not have the analytic properties of the

true amplitude. On the other hand, it may happen { see below) that
the error-channel condition (2.4) is such that there are no
amplitudes at all satisfying both (2.4) and (2 6). a dravback of
this (i} extrepolation method is then that A ({2} for A (z) )
can always be written down, irrespective of the exisience or

nonexistence of such amplitudes.

ii) In many problems it is preferable to deml with a holo-
morphic ex}\rapolation for the ampliiude. We would have then tg
replace N12) of eq. (2.12) by aome holomorphic function A (z)
in such a way as to preserve unitarity. Since for the solution

2(1) of the optimized integral equnt:}\on (2,10) unitarity is
expressed in terms of the nonanalytic N ( see comment follow-

ing eq. (2.12))



I Dy = -?e“”v“) sreY (2.14)
A

we might try to find an analytic exteneion Ny o M)
to the whole unit disk. Thie extension might have well not exist-
ed but it heppily does. Indeed, for real Z (ad fu1%<?)

oA Apuntrida

A i d et N Av AU
Nay® fnicas JEZies r:‘At(”c‘”hb“) mtm‘{?‘ [ETTR TN (2-13)

since on the unit cirele 2'":4/2" . Therefore on , Mz

coincides with the holomorphic function

i % PR A2y CayDas (2.18)
JWL\ Tw< Ctz.) Py vz =

A L (AC2)@ + (e wa}

i)

where (~-.)‘L1) and (.12} are the Fourier positive and
negative frequency parts of the function (---)(z)}
The corresponding amplitude +)
v v
A = Ny/ 2@) (2.17)

has correct analytic and unitary properties but the price to be
A

paid for this is that its boundary values, unlike those of A(iz}

are no longer identical with the data function ﬂ( te'9 , and so

one might run into trouble with the error condition, i.e®. with

+)
One might wonder how one is to conatruct D) in interior points

of the cut unit disk ( the optimized integral equation defines
3@} on the unit circle). One can either resort to the integral
equation (2.10) as » means of analytic extension , or, which is
exactly the same, computing from the unit circle velues either
M) or My on § ( whera they are identical) snd using
then for D(2) the dispersion relation (2.8b).



v (ReCD) 1) 4 (1, (2) () (,)ng)(z)l
YA e —:*!(\L'x(n.\\r '=‘ = TR v

(z) bHiz)
T‘(:’;fﬁ)_m.—ufch)‘n/z)\ <t (2.18)
B Eoay e

As this may well hsppen +), we are thus naturslly led to
conaider the CDD poles.

3. CUD POLES.

3,1, Theory for Zero Errors

In thig subsection we will forget for a while about errors
end study only the “idesl” equations, i.e. with S, ~-exact

limiting values ef ( unitery snd meromorphic) amplitudes.

A. The “CDD-Class"

As we showed in [1] , many" **) smplitude Ailz) meromorphic

in the cut unit disk can be written aa Nea)/ D12y  with the

“canonical” N( and ,T.-c defined 22
-1 S_i‘z", d
Ty T

e
Dew= [Ta-ay e (3.1)
=

Nc (z) = AQKIJADC(Z) ’

+)'I‘he negative frequency parts appearing on the left-hand side of

ineq. (2.18) are due both to the inaccuracy of the data in the
region where they are known snd,mainly,because we took ﬂ(r:}‘=ﬂ

on the remote parts of T ., ( It is well known from the theory

of Fourier series that a function which is zero on a part of the
circle cannot have only positive coefficientas). Of course, if

ﬂ‘ (z) are the exact limiting values of the true amplitude,ﬂ((“)'z(l)
would have been limiting valuees of en analytic function in the
unit disk { end so A;(2)C(2)D(x)) and the left-hand side of ineq.
(2.18) would vanish identically.

**)gqe eq. (2.5) ( and comments ) of paper (1] .



where the o..-‘s are the poles ( both input and output) of the

amplitude and Sl’-) is the physicel phase of A( 1) , choeen sauch
thet  0(0)=D . As it stends, D, =) feils in general to setisfy
e dispersion relation of the type (2.6), firstly because the z-Qj
factors in front 8poil the normalization to | at infinity which
was easumed there, and, secondly, because the phase S(?) might

give rise to logarithmic singularities in the integral at Z=1 .

1, .
Indeed, since in gerersl ?3(1)',15 , near 1:4 , SS“:_J-:‘AI bom Cnfz-4)
]

z-

1, "), and

i
n
(ie 39 is HBlder continuous near and at Z
koM
80 _Dcu.)N (z-0 which precludes the convergence of the dispersion
integrals if %l“l/sr »1 .
The remedy for this is well-known (&] - one writes disper-

sion integrals not for D (%) but rather for

Day= D:(‘L)¢(L) (3.2a)

with CP(-:.) a real rational function chosen as to cancel the
singularities of D¢@ at 1 and infinity and with its poles
dt. outside the unit circle, so as to keep the dispersion rela-

tion for

Ny = Neayda (3.2b)

unchanged; for instance

[2I0% ) I,

Cp_i‘(z):(z—*) /('], (z-&,) 5 -n_;_=-n¢+(5mm, @.2)
11

”lan; delicate queations,related to the precise conditions under
which the N/D method is meaningful, and alao the eigenvalue prob-
lem,are all treated in the exhaustive paper on the N/D mathema-
tics due to Lyth {4} .



where (54)/m) is the amalleat integer greater than or equal to
Su)/ o There are clearly many functions 4’(1) annihilating the
singulerities of Dc(z) at 1 and infinity, but the one above
is minimal in the sense thut the degres m_,  of its denominator
is the smallest one required to ensure a dispersion relstion for
Diz) defined in (3.2a). The points  dj — the CDD poles of D)
— h&ve arbitrary positiomns : we can choose them to lie for inatance
in 2, 3, 4,..., but then their residues 4 are well determined
by the initial D.z) . D, @)= D.23B2) thus satisfies the
equation { ses eq. (2.7))
D'ni'n(".) L+ i‘ Z- d) %dr D"‘ “‘ZH)A (1)541' b8 7-2)(!1'1') (3.4)
In the following we shall refer to M,:. &8 the "CDD-claas" of

A(('z.) , it being uniquely determined by A( =) .

B. Spurious CDD’s

All other possible ])’s ( all other choices of ¢(1) ) could
contain a number of ( spurious) CDD poles greater than M.
but certainly not less. To keep the normalizetion at inlfinity of
these D’ right, more zeros will also have to be included, sao

that in general
’
Mepy = Mgy * Maga = Mg+ (3O /7)) (3.5)
+
(Mhm,=mw4+lw)
which cen also be seen as an expression of the Levinson's theorem

for D round the cut (0.1). However, in their corresponding

equation the residua 431 need no longer be precisely defined



numbers, because their magnitude depends upon the position of
the My, Spurious zeroes, and, is , 8o to say, at our dispo-

8al +).

C. Removal of CLp Ambiguities

We would like to stress again that all this argument concerning
the determination of the residues of the CDD poles is rather
scademic, since it e8gumes the knowledge of the amplitude in the
whole cut unit disk. However, it is worth noticing that, in
contradiatinction to the conventional N/D equations where only
the imaginary part of the amplitude along [ is given, if we
take es input the whole emplitude, in the limit of zero errors this
completely determines the residua of the { minimal number of )
CDD-poles.

Indeed, starting from the boundary values A‘(-:.) —which we
suppose here as hundred per cent exact -~ let D‘ (zy be the solu-

tions of the Fredholm integral equations

Iy . . Qe (3.¢)
Diu) - 1-‘13 i'ﬂlbé dx' Dy (IJA((Z“&AI -y I ED)
dy=2 ,dy3,
and D,@) the solution of the eq. (2.10), Then we have

B

miw,

LY.
- 3.7
@) = ’Y:‘ 9y Dyx) + Do(l) , (3.7)

*yor inatence, if ={>(z)—_q>_;_(z).(1-o.)/(z-dm) , the new residues
’
depem} upen the arbitrary o . Indeed, 9= ﬂ;(dg'“)/(‘ig“’lmu)k\i‘\
snd gy, =D, Jd) (o)



where both the constants (}t and their number ™., are yet
unknown but cen easily be determined ( if m,,, is finite) from
the error corridor condition (2.18) with & set equal to zero.
One can take, for instance, incremsing numbers W, in (3.7) and
impose that the first m,. negative Fourier coefficients of ACD
appearing *) in (2.8) venish. This provides us with a set of
algebraic linear equations which yields the required mmericsal
values for 3‘ . The correctnese of a particular choice for m,.
ia verified by the fact thet all the following (>wn,) negative
Fourier coefficients vanish identically.

We come back to these questions in the case of non-zero

errors in sect. 3.2A.

D. Problem of Eigenvalues

At the end of this aubsection we turn to the case when the
kernel of the integral equation for Di(z) happens to have 1 ac
sn eigenvalue, This ceuses trouble in the optimization procedure,
vhich only works ( see foatnote near eq. (2.9)) when one is far
from eigenvelues.

Now, in the "exact case", eigenvalues can crop up when and
only when the CDD-class of A((l) ia negative, Indeed, if the
class of AE“" is negative, D:L'l) has a sufficiently strong zero

at 4 , 8o that, dividing it by

+
) In the exact case {t-=p) , C) can be taken equal to 1 .



[RIC I e
(- with 0 4meinealot

we find functiona Du.) venishing at infinity and for which
dispersion relations are still valid, so that they sstisfy the

homogeneous equation
S

dw = Fn '5? dz* Dy Agta Sndm ok (a.8)
The converse is mlso true: homogeneous equations iamply negative
CDD-clase. Also, as i is easily seen, all the degenerate D’s
produce the same amplitude upon its reconstruction ss N/D,
Heppily, eigenvelues should res’'ly cause nc problems,because

if one defines instead of AL(‘I-) a "new” amplitude

(<] _ A (3.9a)
A(’ (z) = z-2,
( with z, real, inside the cut unit disk) obeying & modified

unitarity condition with

@ = gz -z (3.9b)

one can conclude from the very definition of the canonical D:)

of A:ﬂ ( see eq. {2.19)) thet the CDD class of A(:)(Z) is lirted
by one with respect to that of A( () « ( Sufficiently many such
divisions will result in an integral equation with no eigenvalue
equal to one ). In the gero error case, the artificial pole of
A:’(-.-.) will certainly be found among the geroes of its D%
{uniqueness is guaranteed because its equation is no longer
degenerate) and will be canceled then by the factor relating A:‘(z)
back to Al(’-) .



3.2, Finite Errors

A. Allowed Islands for CDD Residus

At the end of section 2, it was pointed out thot the analy-
tic and unitary amplitude A(ﬂ:’fﬁyﬁ(’-) , constructed there (and
uef:mad so as to coincide '1th the "optimal”, but nonanalytic
A ()= Mz)/bu) on the real axis ) might fail to get into the error,
cnannel, when returning back to " . This is a direct consequence
of the fact thet the limiting values of functions defined by
Cauchy kernels do not necessarily coincide with the imput om the
boundary. { This is to be contrasted with the properties of the
Poisson kernel).

The reason for this failure may be twofold:

i) the preasence of negative Fourier coefficients bora by
our lack of kmowledge of the far region of the l.,h. cut and by
the inaccuracy of the data,

ii) m wrong choice of the D -equation, i.e. an equation
with an insufficient number of CDD poles and /or with wrong
residues.

Since, in practice, one doea not kmow a priori the CDD class
of the true amplitude, one may reasonably hope to get }/;D
amplitudes consistent with the error corridor by giadually increas-
ing the number of CDD poles and then patiently scanning in residue
space for an appropriate choice. However, due to the linsarity of
the equations this amounts to the not very formidable task of
finding a set of real constants 3‘ ( the residues or the CDD
poles) so that:



);_g Jf,()
lA(‘)th 9»"')‘ = ‘ (a3 19,2,

”l

- Ay

4 \:;s.MCZ)u) (4,C2). Wl);
(4.31) S
geta smaller than the ( constant) error corridor & + The

(3.10)

quantities Y)A(Z) are defined by an equation similar to (2.24),

using the optimal +) Poisson kernel :
4 M
‘b‘g) = —:T;, ’:\‘ %di A (1’)C[z)%(z)%dl J(‘L 2" (3.11)
v
and the -)(; s are defined by equaticn (2.18) from their corres-

ponding ‘7_33 .

In the second form of A(g;:) in (3.10) it is the negative
Fourier coefficients £y,  of ﬂlCZ} that are involved, so that,
in practice, one could take Bs sn approximate way of fulfilling
the error channel condition the minimizetion of their sum of

squares in the numerator of (3,10):

n Reen a
:1:1(%_;4 ‘31‘3;4.} —» minimel , (%e'ii). (3.12)
One should recall ( see sect. 3,1} that whr2n errors are
present ( exact c¢ase), this sum is identically zerc.

When the scanning is nerformed, one usually finds only &
minimel CDD class conaistent with the error channel, i.e. as the
number of degrees of Freedom ( of the 3,.‘5 } increases, the more

probable it is tc satisfy the error condition ++)

*ione optimality of the Poisson kernol when CDDL polea are introduced
should be teken to mean that the Poismon kernel renders the diffe-
rence between the exeet snd approximate D minimal ( see {1], chapter
1) with respect to all the amplitudes of the same CDD class and with
the same CDD residuss which get inside the error channel.

++)Onco the minimal number of CDD poles is found, the admissible
range of reaiduea for any numbsr of CDD poles larger than it is
necessarily infinite, since, as was seen in sect. 3,1., the "spuri-
ous”™ CDD's give rise to a whole linear variety of possible residues
for the same amplitude A¢ . 19



B. The E. Limitation

However, at this point, one should be cautioned against a rath-
er nontrivial fact:if one is looking for amplitudes holomorphic in
the cut unit disk,one must keep in mind,of course,that the N/D me~
thod cannot prevent ghosts or antiresonsncea frox appearing on the
physical sheet.Now,given A ), one knows {61 that,in general,there are
no holomorphic and unitary smplitudes srbitrarily close to it,(in
the sense of the I"norm onf').Indeed,defining the outer function
Covy \cr(!.)\‘ﬂi’ln,\c{’!)\;i (see fig.2 for the § wariable),unitarity on

t 1is equivalent to: -~
fepteyA sy el =1 (3.13a)

while the error channel condition (2.4) reads:
1<) (As)- A6Jl < € (3.130)
However,there are no anslytic functions satiafying (3.13a,b) with

€ lese than a certain number &, which is found by eolving the equ-

ation .
= £ '\.;1 o
fuo= Eal htece] (3.13¢)

Here £[h%]is a functional of Alt) (equal to -i on § and to C'ﬂe on
I" ),being the norm of the mstrix:

£y Loy Ly~=9
En[l\;}’;_l = :-.;, -C-s .-. -_...

LA ’ {3.132)
wherec, sre the negative frequency Fourier coefficients of MJ((:5)

ywith the outer function (, defined by l('.(;]\,'—'t and ]C.G)]‘.Fi .

So,in trying to render the sum AYz) of (3.12) very small,one should
be aware that as soon ss the left hand side of inequality (3.13b)
gets smeller than £, ,it ia sure that poles are already present

on the physicsl sheet (inside the unit circle)!

20



C. Eigenvalues in the Finite Error Case

Some words are now in order about what might heppen when the
true amplitude is of negative CDD claes { i.e. the "exact"- but
unknown — kernel hes an eigenvalue 1 ) or, which is the same, when
there exist amplitudes of negative CDD clase passing inside the
error channel. We mean that although the probability for the data
to exactly hit upon an eigenvalue is nil, they may nevertheless
be auch as to give a too large norm to the Fredholm resolvent.
Now, refering to sect. 3.1D one knows that if one divides &n
amplitude of, say, CDD clese ~ 1 by a factor z2-z, , with =z,
inside the unit circle, one is likely to move mway from near the
eigenvalue.

However, when the data are "erroneous”™ , one runs into trouble
because there is no asaurance that the 5«&) obtained by solving

the resulting modified equation:

m,A(w g RDE @
b((z)‘ :nh dzz y £ C(-L)\iz TR Yz (3.14)

( modified mccording o preacriptions (3.9)) will indeed exhibit

a sero at the right piace, i.e. in 2z, . (Clearly, when e-0 ,'2)(0(7-)
must have a zero there, by the uniqueness of the canonical decompo-
sition (3.1) and the uniqueness of the solution of (3.14)). So,

one cannot be sure that when one turns back to the initial ampli-
tude s pole in the neighbourhood of 2z, doea not survive, ‘as

it im no lomger killed by the factor z-x, , and this is, of course,
undepirable ( z, wam chosen arbitrary, without eny significance).

So far, we do not know of any fundamental way of getting out of
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this difficulty, but one may atill try to modify slightly the
data A{(-x) staying nontheless in the err.r channel, 30 that the
zero of the resulting &) fall at the right place, To this end
one can, for instance, add to the "data” J%(l)C(Z)/ﬂJ-) a small
function, of the form A €%/ d%(x) (ewcan be even token equal
to 1) which has the advantage that, upon its introduction, it ie
only the free term of the equation that is modified ( by a known
quantity):

AEM = 2;_ *r‘l?"‘”i ?c\‘>[=-~=) e (3.15)

So the rinal ™) is changed to
'Z)“"('L) = %(41(1) . %«: (z)

«!y de oty .):qu, )&

!

S (3,16)
24 @ = Eay 457, TS D).

If 25"%1.\ really had & zero in a neighbourhood of Z , it is
to be expected that small A'S will suffice to move it back to

Zo .+ Then,
vl N & 7
)(-(4{»1) = N9z + 4 X9 @) (8.17a)

with

f v 22 e
.
e T (3.17v)

@ A
V B 5 C(z)

v r
and 80, the amplitude thus obtained AY(2) has a pole precisely at <
v 2’
and the initisl smplitude A”(x){z-Z.)  will indeed be of CDD

class -1 and show no insignificant pole.

D. Input Bound States

It is often desired to uss the data on the left-hand cut in



conjunction with some precise info.rmation ( see section 2 of ref., [7
about the position of a bound stste, lying, sey, at 2z, , in the
region ( «1,0). As ueusl, this is done by solving the N/D equations
for a new amplitude A’!(Z)r‘l‘L)A!“’ , which obeys & modified
unitarity with ¢,(x)= f®/k-1.) . A;(l) will, in general, have
no zero at 2z, , and so Ae () will necessarily have & pole
precisely there. However, this causeg the CDD clasa of Aé (z) to
decrense by ane with respect to that of A((‘l) . This praocedure
runs into trouble if it happens that the class of the initial A,\l)
is zero, But then, one can directly manufacture a zero for %(z)

at the right place, by varying the data as in 3,2C.

E. Short Conclusigns

In conclusion, it might be worth peinting out that, in
contrast to the usual N/D setting when one feeds in complete data
on the left~hsnd side, the CDD ambiguity is totally removed in the
limit of zero errors ( naturally) and ite persistence in "real”,
error-affected squations is only due to the uncertainties existing
in the data., Even then, however, the feedback exarted by the
complete data { sect. 3.2.2) may severely reetrict the allowed range
of CDD claspes and residues. Certainly, no such constraints can

be performed by the imaginary part only, in the usual N/D method.

4. TICITIES THRESH VIOUR

So, far, we have treated only the elastic cmse, but inelasti-

city can easlly be brought into our scheme. Certainly, the ideal
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way of treating inelasticity is to consider simultaneously all the
coupled channels. The problem of optimizing in the same way as we
did so far, the matrix N/D equations ( which include, of course,
only those chennels corresponding to binary reactions) will be
dealt with in section 5. However, for practicel purposes inelasti-
city is most often taken into account globally, via two alternative
parametrizations:

a) The Chew-Mandelstom paremetrization R, (z) 181
. z
b Ay = R R @ | A (4.1)

In our optimization scheme , clearly sall the results stay
unchanged, since this amounts unly to a change @,@)— € (®)R,@).
b) The Froissart paremetrization [9] ( also [5]): 7 (%)
In the inelastic region { see fig. 2 }
|l T @
In the Bpirit of Froiseart's original derivation [9), this %

is included by working with a modified S -matrix:
5/m= S ) (4.3)

with C_(z) an outer function of modulus 4/ () on the inelestic
region and 1 on ithe elastic one, mo that S; (z) be unitary
on the whole right-hand cut. There are however two additional
constraints to be palced on the function Cy(z) :

i) The threshold behaviour of 5;(7-) should be the same as
that of S,(x) : for the £ ~th partial wave

hh)

Spz) ~ 1+ 0(z {4.4)
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Cleerly, this is only possible if the function Cr \z] has the same
threshold beheviour as  S,(z).

ii) At leaat on the region,where daia are asvailable (I"(—F\r:),
the modulus of CF(-L) should be 1, so as not to disturb the

S -matrix enalog of the error-channel condition (2.4).
\5 ()= fﬁml < £y, (4.5)
(4 T,

If we impose ,CF(’~)1=:L everywhere outside Y, , such a
function may not exist, However, one overcomes thia by using the
freedom left in preacribing the lefinition of the bound M(‘L) on
the remote ("unknown") left hend cutf,.

With this freedom there are many functions satisfying these
restrictions. We shall construct one of them ( fulfilling ell the

requirements) and geometrically more intuitive, in the ¢ -plane

(fig. 2):
_ wiv;) e G
C.(3) = <x5 T Wi I (4.6)

where w(%) is the function transforming the unit circle of the

% -plane onto the domain of fig. 4 :

w(‘,__Js..*Z-ds,.-rI[m;iB (] . { 5 is the beginning
T ARV, ramo ey of Ty in the s-plape) 4.7

and % (8) is & function which ie taken equal to 1 outside the

inelasticity region ( so that the integrand vanishes except on ¥3).
The threshold behaviour Cp=)~1 +06™" is ensured by

the factor wi(%) , which wanishes in %=1 ( wW()=0«")  near

=4 ). On the other hand, the Schwartz-Villat kernel in (4.6)

conatructe a function holomorphic in the unit disk, having
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its real part on the boundary equal to bn"[((el/v'(c"a) ; this
last quantity is indeed real everywhere on the boundary, since on
Yy where bup,m#0 , w'e) is resl. So, the integral in the
exponent is purely imaginary on {, , Nt and [, . Tharefore,
tcr__(r.)f ={ on ¥y, sand T , Bince here the factor wig)
is real and =20 the whole exponent is purely imaginary. On I“, ,‘J!“)
is complex and so, & {" »
:CFW(F: ey {‘i Ihlw‘(l"))/!.'anE—n:_?s %ll—li?'})’ k = H‘h) N1
As already remarked, the fact that \Cr(i,)[rlt.i should not
bother one too much because the data are unknown lhera, and this
will only amount to changing M'(o‘, by a known factor M,(’) .
On the inelasticity region Y¢ , C.(¢) fulrills its
purpose of making the modulus of 5;17-) in (4.2} equel to one,
since wl[e‘e) is real here end the real part of the Schwartz-
Villart kernel reproduces - &u7,i0) /vri(e®) on the boundary, and
s0,

Leqol, = Veed. (4.8)

ie 3 [
Now, it is easy to go on constructing new amplitudes Ae(-‘-)

and data functions ﬁeil) from 5,;(’1) and :fgi(lj H

g(z)= 4 + 248w Ay @) (4.92)
Jetar - raigrk (4.90)

These satisfy on [,
| A @)= 4,¢°) ‘r' < eV ) fage) (4.10a)

and on [, ( aa usual [1] , we put here .4;("-‘)=0 )
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. _ MM K
| A (e °)[r‘s M= T e

and so we have returned to formulse similar to those of the
beginning ( see (2.2))}, from which one proceeds in e manner iden-

tical to that of section 2.

S. COUPLED CHANNELS

Happily, the optimization procedure described in (_1) can be
generalized to include the meny channel two~body processes describ-
ed by the matrix N/D equations [10} We would like to warn the
reader that one needs m rather good acquaeintance with the type of
proofs of paper [l'l to go through this section, but the results
of practical relevance, basically similar to those of [11 , can be
found gathered at its end ( formula (5.17)ff).

A8 usual, we start with a symmetrized amplitude ( see, for
instance [11} ,[12]

A = Ma D » (5.1)
where N(‘i) and .Dl?.) are mXm matrices, with the same snalytic

properties as tha scalar N(z) and Diz) of the preceding eections,

and tone matrix D) cen be chosen such that :
.D.ku-)""gih as Z-to (5.2)
(3

For & general proof of the existence of such decompositions

we refer to the papers of R.L.Warnock [13_1 the resulta of which

can be immediately adapted to our particulsr analytic structure +).

1‘)le restrict ouraelvea to the caae of no CDD poles.
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The unitarity condition for Aw reada :

[w Ainy = AU"E)S"(Z“*)AC‘“‘), (5.38)

where g\l'l.n'i) is the disgonal metrix :

§o =)= 5, 805 )Y EER (5.30)

with Siz) the mepping function of fig. 1, s; ~the thresholds
for the various two-body channels and O (5-%)-the Heaviside side

function.

5.1. The Reduction to Constant Errors

As in paper [11, we assume that a "data matrix" JQ-‘-J (x) is
given on the left-hend cut, i.e. on the unit circle in the = =

plane, 8o that

lAté ()~ ”4‘3“)]5 Eq) - (5.4)

The functions &;_5 (z) also contain the boundedness conditions
agsumed on the "unknown", remote part of " ( see section 2),

At first eight, one is tempted to work, ma in {11 , with a
modified amplitude, ob*ained by multiplying every amplitude A,:) (2)
by a auitable outer function C;A(z) , but, thie brings about
complications in the treestment of the unitarity condition.

We shall instead use the freedom offered by the tautology
group, in a rather nontrivial way, and finally reduce the problem
to one equivalent to the scallar case.

A8 in [1] , the different tautological kernels of the
integral equations can be found by writing all the possible disper-
sion relastions for N(ﬂ”:

) s R :
* Unleas explicitly stated, an index appearing twice means summa-
tion. If it appears three times, this means nothing.
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&) o o
Nq(‘f)' Eﬂ\é Pax D‘L % A drt, SEE

2 apieg,eL
where the functions ‘juo,ib;m'(z"\ have orbitrary dependence
on z,1z' but are holomorphic in z" in the unit disk, Also,

they must be such that:

3“‘""33’-'1'(L)=”MOPA . ) D

The "teutology" ( equivalence) of all these dispersion relations

is ensured by the fact thet A, (z")P..(¥)  is & function holo-
morphiec inside the unit disk. In practice, of course, when A.,“lljis
replaced by ,4,“(1") , the tautology is broken — the diapersion
reletions yield results depending upon the chosen function 3“\.)"}.&1')__
and hence the problem of optimizing among the verious “"tautologies"”
mekea senae.

Upon introaducing (5 58) in the dispersion relation for I)z):

Dyt = h*&L—’“MN‘ =g (5.7)

we get the equation for DLQLT-)

1
, " PLllt, " ' {5.8)
D, yB = :m’ %drA @b, 2 S oot Japctiea’” .
-]

Following the philosophy of [1} , we shell try to find that
341\»*'3‘»’-"-‘(’"“) for which the norm of the difference between tha
¥erneis of equation (5.8) and of the equation obtained by replac-
ing in (5.8) A“(l) by A“K(l) , is minimal,

In the space of mxm matrix functions continuous on the
unit eircie T » the norm of the difference between the kernels

of the two equstions reeds : ( see also appendix 1 of _Ll') ):

“ K W " ""fX- # ld""‘ ,@‘4&(:")-‘& I ))Sdzutlx:' 1")3&@ "b" z‘(z'") l (5.9)
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Since no information is sssumed about the phase of the
difference A, @)1-Au(*) | we try to minimize not || K,-K,I
but SA"IPHKA~}<Al , where the aupremum is taken with reapect

to all amplitudes A pasaing through the error chamnela. So

s«.\:ﬁﬁ\ X< 'mo.x swl_%'i’-' “k ’-')' Siz’w{‘.iz' ) ey ’\ (5.102)
- a

- ” Sailzy "
""ng‘ S“f’i@“iﬂ 6 l ). ‘&AL [CXS z)(l—!’)ﬂ‘f"iiz‘f(l Jl 2
where the last egquality follows from the obeervation that the sum

over f beers only on the functions €, (z") so that opne can

introduce & new function

G, (2 >—Z () - (5.10b)

Now, the fact that the errors appesr in (5.10a) in e form
depending only on the index L allows one to split a factor
-1, a i u i
C; ), &) off the tautology function %ﬂ(P,ia;l,L'(L) , with

the C_’s ehosen such that
| Camle ) =€ ( no summationl) 2T (5.11)

for every o » The formulse giving these functiors are analo-
gous to (2.3) ( see, further (5.17b)).
Thus, with

-~ - ~1 - i ]
ﬁup,‘:};z,z'("‘lr'c‘ (”ﬂ-c;,q;u'(’-)c,;(ﬂ ( no summation!) (5.12)
our equations become successively :
« {d' E&iu‘l) a
sl KXl < Ty uY :L &L\h lh i g | (5.132)
..’]\

n

o g 2 ‘%’ . ““1 u-m(m“) (S«Sr-f ) ap iy
(,\ 1 4p

e



E w0y Suyp Z ér\dl"\“ Glliklll).&“z’i +E. RREtY “;‘4"2 3

R I
where
o~ + ' “1 «
80 \2) = Qix €= (5.13b)
. S
G = 1'7 S‘L““_"‘—"l- 51 z)")
’ o LB (5.18¢}
C%ixu”)"is a matrix function holoemorphic in %" in the cut unit
disk — and
1 o~
Rt
M= L \Az' £ 1z (5.13d)
Ep,£3;1 =y Yoo {q\,ig;m' ) N

which is a function hplomorphic in 2" in the whole unit disk,

but otherwise arbitrary.

5.2. The Optimization Procedure

The lest equality of (5.13m) has cast our problem in a form
very similar to the scalar one discuesed in [1], end reminded of
in the Introduction of the present paper ( cf. formula (3.3) of

[171 ): nemely, that of finding functions 3 {z} holomorphic

Ap,ty52
in Z" &nd of arbitrary dependence on =z ? so that supRﬂS{ﬁﬁg“
on the left hand side of (5.13a) becomes least. ~
Following now closely paper il} , one can verify for oneself
that the minimax theorem of aection ZA}[I],goes through unchanged;

i.e.

inf.mex, sup { ...- ) = max sup inf. {....) . (5.14)
¥ <% z <y z 3

3!




This theorem then leads us to recognize the problem just
stated as that of finding the best holomorphie approximant in the
sense of the L' -norm of the given nonholomorphic { cut between
0 and 1) function G‘;,lz");‘;ﬂ’ .

Now it is easy to see that for fixed 4,4 the given non-
holomorphic part is nonzero only for both «x<{ and P4 i.e.
the -best approximant EP,,;B.).L{:") nust be zero, unless =<
end p=j . { Clesrly, those F’f. with «a: , fx) can only
enhance the sum of moduli by poasitive quantilieu!). so ¥ depends
only upon « and 3 and the sums over and f
disappear,

Moreover, since the nonholomorphic part to be approximated
does not depend or 3 , the optimal function F is the same
for every } and sa depends effectively only upon i « So,
one ia finally left with eveluating:

o sup inf § 141G @) 4R (818

Agein following {17 , the minimization over ¥ is turned
into its dual problem which allows the conatruction of an upper

bound for v-% Raet Rl g

ER eu (’-) .
Mo, = ]d Jut (5.16)

¥ {2

o

This bound can be ahown to be actually attained for z:1

at which point one can construct explicitly the optimal function;
the latter turns out [1] to be such as to turn one of the Cauchy
denominators 4,1z-1") into a Poisson Xernel,

So, the final optimized equauom read:

i (%)
D, (=it 5;‘ CL DT Y} - ’S‘“L (9;11- ) Py (5170

211’
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The reader is reminded of the definitions employed:

C,:(7.') ia an outer function in the unit circle of modulus
|l = t/een
on the circle, with

6, () =% £,

where £,.(2') are the errors on the symmetrized "dets matrix”

A @) : .
b 219+1. e.\(E_/G (e‘e))‘f
- Q — :
Cyl) = o {UCS)‘. -1 : (5.170)
¢ is arbitrary, equal, say, to the average error.
Also, the Poisson kernel is :
L 1-nt
Pty = ReL% = maape (5.17¢)
6. OUTLOOK

Am explaeined in the Introduction, it might make a great deal
of difference for the results of the N/D equations whether the
input on the left-hand cut is exact limiting values of holomorphic
and unitary emplitudes or it just consists of approximate data.

In this connection, it is essential to notice that the exact
equations, i.e, those with holomorphic end unitary input admit
of a whole set of tautologieal traneformations that leave their
solution strictly unchanged: namely, those obtained by adding to
the usual N/D kernel functions with the holomorphy properties of
N(z) . { We should remind the reader that we use not only the
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imaginary part on the left~hand cut as input, but the complete
amplitude). Since this tautology invarience of the exact equations
is broken when approximate datm are used — which ie the case in
practice —~ one might look for that one of the possible equations
whose results are least perturbed by the departure of the input
from “exact" data.

It was the purpose of this peper and of :1} to show how one
can obtain such optimal kernels and to investigate all the problems
they raise in connection with CDD poles and the inclusion of
inelaaticities,

Section 2 of this paper recalls the main result of |1} — namely,
that for no CDD poles, the optimal kernel is obtained by simply
replacing the Cauchy kernel of the dispersion relation for Ny
by a suitably weighted Poisson kernel. ( see eq. (2.10)). An
optimal nonanalytic estimate of the amplitude at interior points
can then be constructed ( eq. (2.11))-(2,13)) but one can also
produce an analytic extension ZL(I) of f the unitarity cut ( eq.
(2.16)). The error channel condition is rewritten then ( eq.(2.18))
in terms of the negative Fourier coefficients of J@(ﬂC(l)QKZJ .

Section 3 explores along well-worn lines the queetion of CDD
poles for our particular choice of holomorphy domaina for Nz
and Diz) .

In Section 3.1. we treat the ideal case of zero errors, i.e.
data "exact" in the above sense and essentially show that, in this
limit, as expected from the principle of the uniqueness of analytic
continuation, the CDD ambiguities are completely removed., In sub-
section 3.1A we introduce the concept of CDD cless of a given

amplitude, which is the minimal number of CDD poles required for




the dispersion relations to hold, end then show ( subsection U.11)
that the use of a larger number of CDD poles then the minimal

one leads to correasponding degrees of freedom in the choice «f
their residua. In subsection 3.1C' we dwell B bit on the juestion
of the actual determination of the residua of the CLU poles from
the Fourier coefficients of the boundary date and finnally { sub-
section 3.1D), show how the degeneracy appearing necessnrily
when the CDD class is negative is removed.

In Section 3.2A we first show to what extent the presence of
finite errors allows CDD ambiguities to persist in the solution, by
finding allowed domaina for the residun of the possible CDD poles,
(eqas. (3.10~3.12})). Subsection 3.2B is concerned with the impor-
tant question of the appearance of ghosts and proves, in relation
with results of extremal problems of analytic function theory,
that if the constructed unitary amplitude gets closer to the data
than a certain number £, , uniquely determined@ by the data them-
selves ( eq. (3.13)), ghosts ( or bound states ) amre bound tc
appear on the physical sheet. Nonzero errors lead to some trouble
in the procedure of 3.1D for the removel of degeneracy, and this
difficulty is approximately solved in 3.2C. Subsection 3.2D shortly
treats the problem of input bound d states.

In Section 4 we move on to the treatment of inelasticities.
The Chew-Mandelstam paremetrizetion is trivially included in the
optimization scheme ( eq. (4.1)), but the Froissart parameter 7%
requires a more careful construction of a suitable outer function
to include it without affecting the assumed threshold dbehaviour
( eq. (4.6)).
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Finally, section S considers the case of binary coupled

channels and shows that the optimization results go through essen-

tislly unchanged, although one has to treat cerefully ( subsection

5.1)

the question of variable error channels.

The finel formulme to be used in practice ( including the new

outer function deviced in section 5.1) are gathered together in

equations (5.17).
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Fig. 1. The conformal mapping z=(\s,—s—i\ s,-« (a7 ey
leading from the cut energy plane to the cut unit circle.
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Fig. 2. The canonical mapping ((s)a(yvizu—y I-w)/( irusvi-u),
u=Qs ~s -5, ¥ (s,~s)) transforming the 1.h., cut |' onto the
left uait semicircle and the r.h. cut y onto the right
semicircle
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Fig. 4. 'the domain onto which the unit < -disk of fig. 2 1is
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