


E2 - 7433

S.A.Anikin: M.K. Polivanov,x O.I.Zavialovlz

SIMPLE PROOF
OF THE BOGOLUBOV-PARASIUK THEOREM

'Lebedev Physical Institute
?gteclov Mathematical Institute



1. Introduction

Renormalization procedure in the quantum field theory
has achieved its final expresqlon in the R -operation by
Bogolubov and Parasiuk - L Bogolubov Parasiuk theorem
on renormalization is a key-stone of quantum field theory
in Lagrangian form. Indeed, this theorem guarantees
finiteness of an arbitrary Feynman graph, and thus gives
way to every real calculation. It allows correct analysis
of unitarity and causality of the scattering matrix, gives
rise to the equations and relations in terms of renormali-
zed Green fuactions 5’ ete.

However, all the proofs of this most important theorem
we have at our diposal at present I~*+" 4re very compli-
cated, because theyare essentially basedon the recurrence
relations describing the involved combinatorial structure
of the R -operation. Use of the requrrence relaticn
necessary leads to the methods of mathematical induction
and combinatorics becomes an intrinsic part of the proof.

These recurrence relations may be explicitly solved
though. This sclution has been obtained as early as in
1964-65 independently in -7’ and“8".In * the following
formulae were >btained for the graphs having no overlap-
ping divergencies:

M here is an operator, which maps a coefficient function
of the J -th divergent subgraph I'j into the sum of
definite number of junior terms of MacLaurin series of
this function. In the same article it has been shown how to
alter this formula in the case of arbitrary graphs.



Namely, performing the multiplication of all the factors
we obtain a sum, in which we have to cross off all the
terms containing any pair of operators M; .Mj corres-
ponding to the overlapping divergencies [ ,F . This
simple rule is completely equivalent to th /formal
procedure recently formulated by Zimmermann

Equation (1) provides a convenient basis for obtaining
explicit representation for renormalized Feynman graphs.
Such representatlons have also been obtained in various
forms in /7 and ’ 8/ For our purposes the formulas of
the type‘B - giving a generalization of the well-known
a -representation to divergent graphs - are most conve-
nient. (Note, by the way, that these formulas also were
many times rediscovered later; see e.g. /97 )R

It is interesting to notice that from this integral
representation the conclusion is easily drawn that the
R -operation has in fact the same form given by Eq. (1)
for graphs containing overlapping divergencies, because
the superfluous terms in the sum automatically vanish.

In this article, beginning with this parametric repre-
sentation and slightly generalizing it, we give a direct
proof of the Bogolubov-Parasiuk theorem, which is - due
to the reasons just discussed - much simpler than proofs
known before

For the sake of brevity and clarity we restrict
ourselves here to the scalar case. A generalization to
nonscalar theories is straightforward and does not include
any serious difficulties. This case may be obtained as
a simple consequence of some more general statement,
which would be a subject of the next article.

2. Basic Definitions and Equations

In describing the R -operation different authors use
close or even the same notions giving them different
content. Therefore we are compelled to begin with some
definitions.

'(L,N>F) is a Feynman graph with L internal lines,

N vertices and F disjoint connected components.



y (¢ n,f)CI" (L N,F) 1s a subgraph of I" with {,nf internal

lines, vertices and components respectively. A numbher
=0 ~2n+21

will be called a divergence index of the subgraphy . Note,

that y(f ,n,f) contains exactly

Naten+f
independent loops andw,, =2 71 ~ f .
Let us consider a set of lines from 1", Adding to

this set all the vertices incident to these lines we obtain
2 subgraph y (£,n,f)C " . In the case w,>0 we call this
cet of lines a divergent structure and }(F n,f)  _divergent
subgraph. There is a one-to-one correspondence between
divergent structures of a graph and its divergent sub-
graphs. It is necessary to underline, that our definition of
a divergent subgraph differs from the usual. We do not
require a divergent subgraphto bea '’generalized vertex’’,
i.e. to be one-particle irreducible and to include all the
iines internal with respect to its vertices.

At last we call a q-tree of a subgraph y(f,n,f) its
subgraph containing all the n vertices of the graph, which
have no loops and exactly q connected components.
Evidently q -tree contains exactly (n—q) lines andq 2f .

By the Feynman rules every graph I'( L,N,F) corres-
ponds to the product

- o€

Foox )= a0, (5 ~xg, )

of causal propagators A g (xg,~x¢;), where /\ cor-
responds to the f -tk line connecting vertices ﬂf and
¢¢. This product of generalized functions in general is
not defined at the points of coincidence of the arguments.
Moreover i{f the graph I' contains at least one divergent
structure the formal integral of Feynman amplitude
provisionally defined by the symbolic equation

F (np.)8(Ep)=] .

ZPH; -

F©(.x.)Mx 2

is divergent and has no meaning.
Redefinition of F¢ in this case is given by the R -ope-=
ration
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F'-RF . @

Let us briefly describe now the parametric « -repre-
sentation for renormalized amplitude RF ¢ mentioned
in Section 1, which serves us as a basis for the proof of
Bogolubov-Parasiuk theorem.

Ascribe to each line ¢ a parameter ap in such
a way that Fourier-transform A ® ¢ ©f a function Afg
has a form

g(pg =i~ fda explia, (p? —-m 2 i, (4)

Tet i (L;,Ny F}),...,", (L;,N,F)} be a set of all diver-
gent subgraphs of I (In particular one of['; may
coincide with I'; we nse capitals for divergent subgraphs
and small letters for general subgraphs; divergence
index of I'; would shortly be written asw@; ). Letus
ascribe to each l, a parameter C] Then construct new
parameters ﬁy in such a way that

ﬁy=ag, if a line { does not enter into any
of divergent subgraphs I'y,....I"}
(5)
.Bg ¢ - éa if a line ¢ enters into
TPy subgraphs T, y,...,I'ig.

Remind that parameters a are introduced by Eq. (4)
in order to perform integrations over internal momenta
in Eq. (2) reducing it to the Gauss integrals. Parameters
¢ provide, via Schlemilch formula

m (p;) i
fip)— by Po(— =
() —_— mSk iIIln (apl l f(P))[p=o
- i({]dg(l_g)k "Hi F (¢p)
k! ac k+1 P

necessary subtractions in right places prescribed by the
R -operation.
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This consideration leads to the following representa-
tion of RF €

o ! a- ¢ ta-¢ )k
= fdal...dde dgl...d Ck aew k ~ (6)
0 w ! !
0 1 “
2:,"( 25)“ 4.‘\(&,!‘“
g o A g
9¢) 9¢, p* (8)

L o
—i ZE! (mg—ie)ag

x €

Equation (6)includes standard homogeneous polynomials
D(3) and A{p, B)which are constructed by the following
rules: Conblaer certain l-tree ofthegraph I’ . Construct
a product of ail 8 corresponding to the chords of this
tree, i.e. to all the lines of I' which do not belong to
this tree. D(B) is sum ofsuchpreducts over all possible
1 -treos of the graph I':

D(EY= T (1) ™)
~ I—trees chords

D(B) is homogeneous of degree J1 in g.

Consider now a Z2-tre¢ and construct a product of
B corresponding to its chords. Multiply each of these
produgts by the square of a sum of external momenta
(2p;)” entering in the vertices of any components of a
2-tree. The sum of these expressions over all possible
2-trees of 1" gives A(p,8):

2
Alp,B)= £ (I B, XZp, ). (8)
= ~ 2-trees chords

Thus Ap,f8)is a quadratic form inP and is homoge-
neous of degree N +1 in 8.

Equation (6) - representation of a divergent Feynman
graph - was obtained in 8/ under some restrictions on
the structure of a set of divergent subgraphs. But it
holds without any restrictions. In particular so-called
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overlapping divergences should be treated inquite general
grounds and do not lead to any difficulties. Moreover
we state that eq. (6) remains valid and equivalent to
the prescriptions of the R -cperation when divergent
subgraph is understood in a generalized sense described
above. The proof in fact is almost trivial and follows
from the observation that under the action of operators
@ wil

(1-x) 9
Jdo—"r —,

w! g, @
additional subtractions allowed in our formula are redu-
ced to identity operation.

Bogolubov-Parasiuk theorem states the existence and
finiteness of the integral RF. It consists of two parts:
statement of the finiteness of RF® for finite ¢ and
the proof that the limit Llim_ RF¢ exists. The second lpart
is not too complicated and’ may be borrowed from 2

Essentially non trivial is the first part of the theorem.
The remainder of this article is devoted to this proof.

corresponding to generalized vertices,

THEOREM. The integral RF ¢ exists

3. Proof of the Theorem

We split the proof of the Theorem into some simple
lemmas. The convergence of the integral (6) at the upper
limit «;+~ is controlled by the factor |-3a;¢ | , and
therefore the region of the small « is essentially

dangerous. The following lemma accounts for this fact.

LEMMA 1. Let ®a,,..,.a,) be such that the integral

[ ) dayeedap ®(ap,ema)

esists for any positive @,,...,a|, and is poly-
nomially bounded in &,..., & L - Then for
any e, >0,.,¢ L >0 the integral



Ofdal... fdaL&)— (a 1 ,...,aL)exp{—E ae il
0

exists.
Proof of this statement is elementary. It reduces to
integrating by parts repeatcily.

In accordance with Lemma 1 it is sufficientto convince
oneself of the existence and polynomial boundedness of
the mtegral

2 EL 1 ~
1= da..d 4, de, 8 (a, £ ,p),

d f ay, f 44 d4 @ la, R0 (o
where @
’ ~ kK (1-4) ' -iE
‘ @ (a,4,p) =11 _ﬁ_e L (10)

= i=1 “Ji' -
PR Cifng i

-1
The first two factors l'l(l—g) (a) 1 and {-iZm in (10)
are less than one in the absolute value al’:& may only

improve the convergence of the integral. Therefore
a

ajg, 1 ~
<l = = f da Jddl®(a bp)] an

and it is sufficient to check absolute convergence of the
integral with the integrand

. Ap.p)
i

3wi+l k2N

d>(a€)— S L e PR g
= ’"18{(“ +1 =1 T D2(é)

I
When all B or some combinations of 61 are going to
zero D(B) has in general nonintegrable singularities.
i This fact reflects of course the well-known ultraviolet
divergencies of quantum field theory. The analysis of
these singularities and the proof that they are compensa-
ted in®(g,¢) due to the R -operation. i.e. due to the

Q



action of the derivatives (3/3¢ )“i*" on the respective
expressions is just our task.

Notice, by the way, that tiiis analysis cannot be reduced
to the simple power counting with some setof parameters
simultanegusly going to zero, as it is sometimes stated
(see e.g. 79/ ). Thus an integral

fdadx —&E——

0 (a 1-:(2)2
which satisfies the conditions of the power counting
>’theorem’’, evidently diverges. Therefore considerations
based on this trick do not have, in general, a convincing
power.

First we consider an integral with cutoffs at the
lower limits in « and ¢

-~

1 ol R | I
day . Jda fd o fd o @la, O], as)
L8, ko (1;50,8,>0),

which corresponds to the product of regularized propaga-
tors. J, 5 is absolutely convergent and we have full
right to c¢hange an order of integration in it, to use any
variable substitutions, etc.

Then we show that

lim J, o =Jgo0 (14)
20 = ?
20
exists and is polynomially bounded,
The very form of the function @ (Eq. (12)) makes it

evident that the natural variables in it are not ¢ and
&, but B -defined by Eq. (5)- and £. .

LEMMA 2
After substitution
§iox=¢s (Ci1.2,...kD)
(15)
ag »By=C; wly ay=ma, (£G 1L LD

0



(a product ;, ... g'“, is taken over all diver-
gent graphs containing a line ), an integral

J .5 may be written in the form
1 I
dx] dxk
- (X)
0% % R I (16)
k
Here
ﬂl—;l] nI,ZL 1 i )
¥ &)= [ dB...fdB £, .8 —z— ~(17)
L 7N ﬂ[‘r I (ﬁ

and operators £ are of the form

¢ =1 eN.—s g 9y,
i _0( _s+ /,dﬁ) (18)

Proof: The substitution - Eq. (I5) - introduces the Jaco-
bian

d{a,l ~L =Ly
e =X X 19
3B, 0 ! . 19
w, +1
The operators(O/(?() i in terms of the new
variables are
J wj+l 1 P tujH
(=)' » I (x;s—+ X B, —)° (20
. X i ;
94 ! ij Ty 9B,
2‘nj
Taking X to the left of respective operator one
obtains 2“1—((u.+l) x Lj"l
SRS I
which alongwith x. ! from the Jacobian gives a factor

x~in Eq. (16). Under this operation a power (w; + (Eq.
(éO)) splits out into a product of ©j + 1 factors, which



we mee: in the definition, Eq. (18). of the operator &;

After baving proved this Lemma we have, roughly

spe.nmz oy prove that the function ¥o= ﬁ“b“'r_ exists,
that ! i. .olynomially bounded in ¢  and thatthe integrai
Eq % ver N converges, 2% the T wer limit.
Siaguiines of ihe function D Texplia /D | on
the L.v e Vaang fi i =0,..,8 -0 he e rather complicated
struricie But we know, that 37 in e sectors of the

form . _ ..ifj, these singularities are sffectively
factori::t “onsider for example a sector

Py Lty (2h)
and i=- ....¢ o substituticn /‘
oo

(22)

The :uictions D and & exprassed in terms of the
new via:oiles ¢ would te distinguishbed by the dash
Above yeeadi e factorizafion of singularibes is demon-
strated 1y the following:

The equality N
1AW

L e N7y =__,.(_SQ.T." ' -

D ‘(1) 22T

takes place. Here W(1) is s function of the

variables ¢ ,....,t; holomorphic in all points,
where ;30,6130 and :n, are numbers of independent
loops in the special subgfaphs. Namely, each N, cor-
responds to subgraph constructed precisely by lines
1,2 ,...,jwithout omitting any line. The proof of this Lemma,
first formulated by Speer /4/, may be easily obtained
from initial definitions of D and A

12



Equation (23) exhibits an origin of ultraviolet diver-
gencies in the sector. Indeed, the Jacobianof the substitu-
tion (22) is

1.1
Zz-wé-—-—t (t, ey (24)

Thus, if in Eq. (17) the "’ subtracting'’ operators i, were
absent, and a set of lines 1,2,...,j would be suych that
w =2 in -j 20, the integral over t;, J'dtl((j)_‘"i‘( would
bé badiy divergent. Therefore only special subgraphs
mentioned in the formulation of .emma 3 are "’dangerous’’
in the sector, and we should see that they are regularized
by ’subtractors’’ £. .

In the strict terms this discussion is expressed by
the following:

LEMMA 4
A function ¥ _(x) entering Eq. (17) exists
for all r > 0 and admits an estimate

L. l‘k 11 L L

¥, 6 <P@ ), x ) (@) d ),

where P(a ) is some polynomial in @, .

Proof: Consider the intersection ofthe integration region
in (17) with some sector ;; <pB;, <...<fi A contribution
to the integral from this region would be designated by
¥° (x; x, ). Evidently it is enough to prove Lemma only
for ¥ Without loosing generality we may consider a sec-
tor /h/ Using substitution (22), Jacobian (24)and Lemma 3

we may write
b

. L 1
¥ (x)=f de, ... [de x(0, (25)
- al ‘ 8y
where
a,;=gmn/1 w1t L bi=maxiai ,min(l,c:in/ et N
i<

13



aELTL
and
2 L1 O . > .
x(0 =, (1) (k) g7 ¥ x
LE(D] 9
CTER, T
¢ -
Operators i’; are of the form:
(l)
&".’ =ﬂf’71—-‘ 2 (t‘T—t =1, 2n

tios t =0
0
Note, that if a divergent subgraph l'j is subordinate to
the sector, i.e. is resulting from divergent structur.
containing all the lines L2 ..., F (i.c.L=f ), then the
operationijf takes simpler furm: )

£ =(2’

U ) ")
! N ;[‘_;_.)...(I pr, e ) (28)

i ¥ e

l.et us show, that the function x{¢) is holomorphic at
tyz0, .., 1120, Due to the holomorphness of the functiv:
W and factorization of singularities in differentt,

it is enough toconvince oneself of the holomorphness of
x(t) in everyt,, when the other t~0 are fixed. If a sut.

graph constructed from lines 1,2,....0  is not dwﬁrgen :
the Laurent series of a funﬁtwn 7008 W/ _—
ty begins with a power t; "mdapole is compensatp

by the factor (E.V“' . Indeed | f-! /( 2N Lol
and «z2~1 . Let nuw the lme‘\, 1,2,.. V defme a dlvergem

subgraph. Then the Laurent sprleﬁs of a function W/...t ¢ .,K
again beglnﬁ_‘ from a power ¥ But a series for
A e ,..‘7. begins only from term proportional tu

el
ty Indeed among operators ‘. entering into x (U
an operator &’ i of the form (28) should be present. Thue

i4
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}

s, W) ' R d . It
e Y 0N, e e Y e, Ny
RS ) Gl ey IV Y Tl AR
.t es R
f i
. (29
C_P (,__F_H
e b e b +
F—_‘ _..l e
@Y

It is manifest now that all negative powers of ¢ up
to «i¥  vanish under theaction of the operator ;" so that
after multiplying this function by =t the pole again
disappears. Indeed, for any A such that 2%~ ¢
a factor (A +ep ,‘) } may be found in the product (29)
and (f'l’

(A ”l‘—L) <~ =0.

;?”: t
Thus we have shown that the function y (1) isholomorphic
in the region of integration (25) and the following estimate
takes place:

@'« P (30)

P- here is a constant, depending on ?ZL and rising with
@ not faster then a polynomial. Therefore
’ b b
L t

P2 P [dop o [ dy (31

ay, N a
Returning in this integral to the previous variables
we have

~ . 1 R a B
7 al, mmg”L—la ,ﬁ[‘s mm%nlul,lzi

- L—-1 ! 1
v <P [ d d by
] L] J 9hy of Br-i Oj & B By B
(32)

In the secior under consideration the parameters
are subject to the condition ﬁl_gﬁzg...gﬁl‘. Therefore

15



1 < 1

- (33)
8,8, B, pl-VL gl-l/L
and
ma,  ma ~I+1/L  —1+1/L
<
L L_" _ /L
=pPx, wex, Li(a)ap)

This is the statement of Lemma 4.

Using the estlmate and remmdlng LemmaE we obtain
L)
1+ — —l+—
Js SP G- aL) f‘dx fdxkx+ L. (35

Therefore the llmlt (14)
]00 HO&-»O Jr,3
exists and is polynomially bounded.

Now the estimate (11) tells us that we are under
conditions of Lemma 1. This completes the proof of the
Theorem.

Authors are greatly indebted to N.N. Bogolubov for
a valuable discussions.
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