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1. Introduction 

Renormalization procedure in the quantum field theory 
has achieved its final expression in the R-operation by 
Bogolubov andPa ra s iuk ' ' , 2 .Bogolubov-Parasiuk theorem 
on renormalization is a key-stone of quantum field theory 
in Lagrangian form. Indeed, this theorem guarantees 
finiteness of an a rb i t ra ry Feynman graph, and thus gives 
way to every real calculation. It allows correc t analysis 
of unitarity ami causality of the scattering matrix, gives 
r i se to the equations and relations in t e rms of renormal i -
zed Green functions ">', etc. 

However, all the proofs of this most important theorem 
we have at our diposal at present 1 _ 1 a r e very compli­
cated, because they a re essentially based on the recur rence 
relations describing the involved combinatorial s t ructure 
of the R -operation. Use of the requrrence relation 
necessary leads to the methods of mathematical induction 
and combinatorics becomes an intrinsic part of the proof. 

These recur rence relat ions may be explicitly solved 
though. This solution has been obtained b.s early as in 
1964-65 independently i n - 7 ' a n d ' " . In ' " ' the following 
formulae were obtained for (he graphs having no overlap­
ping divergencies: 

R = ( l - M , ) . . . C l - M k _ , )(1-M k ). (1) 

M j here is an operator , which maps a coefficient function 
of the 1 -th divergent subgraph I'j into the sum of 
definite number of junior t e rms of MacLaurin se r i e s of 
this function. In the same ar t ic le it has been shown how to 
al ter this formula in the case ol a rb i t ra ry graphs. 
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Namely, performing the multiplication of all the factors 
we obtain a sum, in which we have to cross off all the 
terms containing any pair of operators M,-,Mj corres­
ponding to the overlapping divergencies Г{ ,Tj . This 
simple rule is completely equivalent to the formal 
procedure recently formulated by Zimmermann 7 • 

Equation (1) provides a convenient basis for obtaining 
explicit representation for renormalized Feynmangraphs. 
Such representations have also been obtained in various 
forms in/7/ and / 8 / . For our purposes the formulas of 
the type - giving a generalization of the well-known 
a -representation to divergent graphs - are most conve­

nient. (Note, by the way, that these formulas also were 
many times rediscovered later; see e.g. • / 9 ' / ). 

It is interesting to notice that from this integral 
representation the conclusion is easily drawn that the 
R -operation has in fact the same form given by Eq. (1) 
for graphs containing overlapping divergencies, because 
the superfluous terms in the sum automatically vanish. 

In this article, beginning with this parametric repre­
sentation and slightly generalizing it, we give a direct 
proof of the Bogolubov-Parasiuk theorem, which is - due 
to the reasons just discussed - much simpler than proofs 
known before / l ~ i / . 

For the sake of brevity and clarity we restrict 
ourselves here to the scalar case. A generalization to 
nonscalar theories is straightforward and does not include 
any serious difficulties. This case may be obtained as 
a simple consequence of some more general statement, 
which would be a subject of the next article. 

2. Basic Definitions and Equations 

In describing the R -operation different authors use 
close or even the same notions giving them different 
content. Therefore we are compelled to begin with some 
definitions, 

r(L,N>F) is a Feynman graph with L internal lines, 
N vertices and F disjoint connected components. 
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yd ,n,f)cr(L,N.F) is a subgraph of Г withf.n.f internal 
lines, ver t ices and components respectively. A numi^er 

W y = f -2n+2f 
will be called a divergence index of the subgraph у . Note, 
that yd ,n,f) contains exactly 

JUF-n + f 
independent loops andw,, = 2 7l y - 1' . 

Let us consider a set of lines from Г. Adding to 
this set all the ver t ices incident to these lines we obtain 
a subgraph >(F ,n , f )cF . In the case ш^^О we call this 
set of lines a divergent s t ruc ture and yiF.n.f) -divergent 
subgraph. There is a one-to-one correspondence between 
divergent s t ruc tures of a graph and its divergent sub­
graphs. It is necessa ry to underline, that our definition of 
a divergent subgraph differs from the usual. We do not 
require a divergent subgraph to be a "general ized ve r t ex" , 
i.e. to be one-part ic le irreducible and to include all the 
lines internal with respect to its ver t ices . 

At last we call a q- t ree of a subgraph y ( f , n , f ) its 
subgraph containing all the я ver t ices of the graph, which 
have no loops and exactly q connected components. 
Evidently q - t r e e contains exactly (n-q) lines and q > f . 

By the Feynman rules every graph Г( L,N,F) c o r r e s ­
ponds to the product 

? f <-*•••>-9 Кл <% ~ V 

of causal propagators A f j (кг,-*?)-), where Aej cor­
responds to the f -th line connecting ver t ices t\ and 
f f .This product of generalized functions in general is 
not defined at the points of coincidence of the arguments . 
Moreover if the graph Г contains at least one divergent 
s t ructure the formal integral of Feynman amplitude 
provisionally defined by the symbolic equation 

F* ( . . . . p . . . ) 8 ( S P l ) > / e' V l H F e (...x ..Ws (2) 

Is divergent and has no meaning. 
Redefinition of F e in this case is given by the R -ope­

ration 
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F f - R F e . (3) 

Let us briefly descr ibe now the paramet r ic a - r e p r e ­
sentation for renormalized amplitude R F f mentioned 
in Section 1, which se rves us as a bas is for the proof of 
Bogolubov-Parasiuk theorem. 

Ascribe to each line I a. parameter ag in such 
a way that Four ier - t ransform A* f of a function A^ j 
has a form 

~ с — I °° 2 2 
A ^ ( p ? ) = i / d a ? e x p l i a ? ( р ? - n i j , + i f ) i . (4) 

l e t i r , a , , N , , F , ) , . . . , r k ( L k , N k , F k ) i be a set of all d iver­
gent subgraphs of Г (In part icular one of Tj may 
coincide with Г; we use capitals for divergent subgraphs 
and small le t ters for general subgraphs; divergence 
index of Tj would shortly be written as w . ). Let us 
ascr ibe to each Tj a parameter C} -Then construct new 
paramete r s P p in such a way that 

Pn="n, if a line F does not enter into any 
r k 

(5) 
/3 = £. ...£ a ^jf a line ? enters into 

' f ! f subgraphs Г, ,...,I"i • 
4 Jf 

Remind that parameters a a r e introduced by Eq. (4) 
in order to perform integrations over internal momenta 
in Eq. (2) reducing it to the Gauss integrals . P a r a m e t e r s 
£ provide, via Schlemilch formula 

(Pi) ,± 
d P i n i 

f ( P ) - x п £ Ц ( _ f( P ))[ 0 

n 1 + . . .+n <k i = l n , ! д „ п . v ' P = 0 

1 , k+1 

necessary subtractions in right placet, prescr ibed by the 
R -operation. 
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X 

This consideration leads to the following representa­
tion of R F f 

e °° ' (1- S ) (1-C ) k 

RF = !dav..daLfd(l...dCk ± L _ ч ( 6 ) 

О О Ш 1 ^ 

( J ^ ) 1 .... (J? ) £' - k̂ e

 , ) ( . S ) x 

Ь 2 

Equation (6) includes standard homogeneous polynomials 
D(/3) and A(p, /3)which are constructed by the following 
ruFes: Consi3er~certain 1-tree of the graph I' .Construct 
a product of ail /8 corresponding to the chords of this 
tree, i.e. to all the lines of Г which do not belong to 
this tree. D(/3) is sum of such products over all possible 
1 -treos of the graph Г : 

D(,8)= 1 (II /3,) (7) 
— i — Irees с h ords 

D(j8) is homogeneous of degree 31 in p. 
"Consider now a 2-tree and construct a product of 

/3 corresponding to its chords. Multiply each of these 
products by the square of a sum of external momenta 
(Sp,) entering in the vertices of any components of a 
2-tree. The sum of these expressions over all possible 
2-trees of Г gives A(p,,9): 

A(p,/3)= 2 (П /B,XSp, К (8) 
— "" 2— trees chords 

Thus A(p,£)is a quadratic form in P and is homoge­
neous of deg"ree 31 +1 in fi. 

Equation (6) - representation of a divergent Feynman 
graph - was obtained in / ' 8 ' / under some restrictions on 
the structure of a set of divergent subgraphs. But it 
holds without any restrictions. In particular so-called 

7 



overlapping divergences should be treated in quite general 
grounds and do not lead to any difficulties. Moreover 
we state that eq. (6) remains valid and equivalent to 
the prescriptions of the R -operation when divergent 
subgraph is understood in a generalized sense described 
above. The proof in fact is almost trivial and follows 
from the observation that under the action of operators 

ui CO+I 

fdx ' ' — , corresponding to generalized vertices, 

additional subtractions allowed in our formula are redu­
ced to identity operation. 

Bogolubov-Parasiuk theorem states the existence and 
finiteness of the integral RF. It consists of two parts: 
statement of the finiteness of RF e for finite e and 
the proof that the limit limoRFf exists. The second part, 
is not too complicated an3°may be borrowed from л • 

Essentially non trivial is the first part of the theorem. 
The remainder of this article is devoted to this proof. 

THEOREM. The integral R F f exists. 

3. Proof of the Theorem 

We split the proof of the Theorem into some simple 
lemmas. The convergence of the integral (6) at the upper 
limit a ; - .» is controlled by the factor l-2aj e 1 , and 
therefore the region of the small a is essentially 
dangerous. The following lemma accounts for this fact. 

LEMMA 1. I.et Ф(а,,...,a L ) be such that the integral 

°i °"L 
/ ... / da. ... d a , Ф (a , , . . . , a .) 

0 0 ' L 1 L 

exists for any positive a,,...,a"L and is poly­
nomial^ bounded in <f,,..., a L . Then for 
any ( > 0,..., ( >.0 the integral 
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^ d a , . . . / ( 1 а ь Ф (a j , . . . , a J e x p l - 2 a ,e . | 

exis ts . 
P r o o f of this statement is elementary. It reduces to 
integrating by par t s repeatedly. 

In accordance with Lemma 1 it is sufficient to convince 
oneself of the existence and polynomial boundedness of 
the integral _ 

1= / l . . . / a d a , . . . d a I J -dC r . .d< k «F («_, С , p) , ( 9 ) 

к ( l - O ' -i2. m -a 
I * ( а » ^ . р ) « Л <—e J x (10) 

ui +1 . 2 ^ s i A 

s=I dis D z 

to , - I 
The first two factors П(1-£) (<u.!) and f-i£m«,l in (10) 
a re l ess than one in the absolute value and may only 
improve the convergence of the integral . Therefore 

I 1 I * Joo - J ' - J ^ / d £ I * (a-- i 6> I (H) 
and it is sufficient to check absolute convergence of the 
integral with the integrand 

Ф ( а > 0 = П ^ _ _ - П к ^ - I _ . ~ ^ T . (12) 
- - i=i d£?i+l i = 1 ' D2(/8) 

When all /Sj or some combinations of /3. a r e going to 
zero D(£) has in general nonintegrable s ingular i t ies . 
This fact reflects of course the well-known ultraviolet 
divergencies of quantum field theory. The analysis of 
these singulari t ies and the proof that they a r e compensa­
ted т Ф ( £ , ^ ) due to the R-operat ion, i .e. due to the 
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action of the derivatives {д/д^ ) ш - + on the respective 
expressions is just our task. 

Notice, by the way, that tiiis analysis cannot be reduced 
to the simple power counting with some set of parameters 
simultaneously going to zero, as it is sometimes stated 
(see e.g. ! ). Thus an integral 

f da dx 2 
О (а + к 2 ) 2 

which satisfies the conditions of the power counting 
"theorem", evidently diverges. Therefore considerations 
based on this trick do not have, in general, a convincing 
power. 

First we consider an integral with cutoffs at the 
lower limits in a and ( : 

« i a l l i 
J =/da,... fdafd(v.Jd£k\*(a_,£)\, (13) 
- - r l r I . 'S , ^ ( r i > 0 , 5 i > 0 ) , 

which corresponds to the product of regularized propaga­
tors. J r _s is absolutely convergent and we have full 
right to"'change an order of integration in it, to use any 
variable substitutions, etc. 

Then we show that 

l i m

n b , S = Jo,o <14> 

exists and is polynomially bounded. 
The very form of the function Ф (Eq. (12)) makes it 

evident that the natural variables in it are not s and 
£, but £ -defined by Eq. (5)- and £_ . 

LEMMA 2 
After substitution 

<rxr^ • ае11,2,...,к}) 
V ^ r S - S a r V r ( { 6 i l > - - i i ) ( 1 5 ) 
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(a product S i ... £j(, is taken over all diver­
gent graphs containing a line (f\ an integral 

J я may be written in the form 

1,в%!р"*тИч&\- Об) i>£ 5. x l <5, x k L 
1 к 

H e r e 

- i - , - , - L _ l , ^ f l ) 
4- r (x)- / d f t . . . / d ^ f | . . . i ' k - i _ c "^'(17) 

ir, г, n y , D (£) 

and opera tors ? ; a re of the form 

A' = [Г (2 31.-S+ v p. _ i L ) . ( 1 8 ) 

P r o o f : The substitution - Eq. (15) - introduces the Jaco­
bian 

_<9(a,£) ., ~ L l 
a (/3,7) 

- L , - I . . . 
: X . . .x . (19) 1 - " k 

O). + 1 

The opera tors (д/д £.) J in t e rms of the new 
variables a r e 

(^T ) !^ ^яг^'Ъ"1 ( 2 0 ) 

Taking x. to the left of respect ive operator one 
obtains 2 Jl , -(*.+•) L . - I 

SJ - i . , 1 = x i which alongwith *• ' from the Jacobian gives a factor 
X:~ in Eq. (16). Under this operation a power (<->j +1) (Eq. 
(20)) spli ts out into a product of«J:+ 1 factors, which 
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we me?; in the definition, Eq, (18), of the operator S •j . 

After hiding proved this Lemma we have, roughly 
spe;,.-r-:,j Ы prove that the function Ч ^ iiro4' r exists , 

that ! i :.;i!ynomial!y bounded in ^ and that the integral 
Eq •'•;. -с!' 5 converges, <?t the '. wer limit. 

Siiix'Ui it Uses of the function Г* 'I7!)expt tA ''D I on 
the l, :! ( ' ' ' .IA.'S /i j =,0,.,.,/i f - 0 hv c~r:',ther complicated 
struct-.;!, Rat we know, that 3- in :he sec to r s of the 
form , ' ; ' , ._. . . </У jj these singulari t ies a re effectively 
factor;: ;.;. ; "onsider for example a s ec to ' 

/ > , . / , - - 1 0 i. (2!) 

and H'- -....<•( ,; substitution --Л 
• ! 

u « ! u / / i , (22) 

The sanctions D and A expressed in t e rms of the 
new va iu i i i es t. would be distinguished by the dash 
Above n-e-iHc :-"i faetorl2'8.f'en oi singulari t ies is demon­
strated ; у the following: 

LEMMA 
The equality 

, i A M 
L _ _ e I>'(t) 

(23) 

D' z(tJ t z/ '" ...«"РП 
takes place. Here W(0 is s function of the 
variables t ,,..., t L holomorphic in all points, 

where t|>.0,...,t i^O and Jlj are numbers of independent 
loops in the special subgraphs. Namely, each Jlj cor­
responds to subgraph constructed precisely by lines 
1,2,...,(without omitting any line. The proof of this Lemma, 
first formulated by Speer / 4 / , may be easily obtained 
from initial definitions of D and A . 
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Equation (23) exhibits an origin of ultraviolet diver­
gencies in the sector . Indeed, the Jacobian of the substitu­
tion (22) is 

_iI^^L = t ( t ) 2 . . . ( t , ) ' " " ' (24) 

Thus, if in Eq. (17) the " sub t rac t ing" operators V ; were 
absent, and a set of lines l,2,...,j would be such that 
ш.=2 ЭТ:-) £. 0, the integral over t -t , j'dt-U^~"'rl would 
be badly divergent. Therefore only special subgraphs 
mentioned in the formulation of Lemma 3 a r e "dangerous" 
in the sector , and we should see that they a re regularized 
by " s u b t r a c t e r s " Si- . 

In the s t r ic t t e r m s this discussion is expressed by 
the following: 

LEMMA 4 
A function "Pr (x) entering Eq. (17) exists 
for all г Й.0 and admits an est imate 

1. . I . k l i, . I I . 
[ 4 ' r ( x ) | < P ( « L ) ( x 1 . . . x k ) ( a , . . . « ,_ ) , 

where P(a L ) is some polynomial in a ( . 

P r o o f : Consider the intersection of the integration region 
in (17) with some sector £ , , £.j8 i 2 i . . .</9 i (. A contribution 
to the integral from this region would be designated by 
f/Cxi ,.. . ,x k ) . Evidently it is enough to prove Lemma only 

for 4". . Without loosing generality we may consider a s e c -
tor /21/ Using substitution (22), Jacobian (24) and Lemma 3 
we may write 

4 . b i 
V r ( x ) - / d t , ... / d t ( x ( t ) . (25) 

where 
"L 

a i = r i V x i+1 - 4 ; b .=max|a. ,min(l, а , я / t j + , . . . t ,_)! 
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a i . - r r . f f i . : b i ; m a x l a i . > a L , 7 L l 

and 

1 I - l L 

(26) 

Operators i 1 ' a r e of the form: 

i ' i •> 1. _ .- x *• / . <? *.' •J?. , 2V"M,-. ( t.^T- i-, - ^ и ' ( 2 7 ) 

(t 2 0) 
0 

Note, that if a divergent subgraph Г. is subordinate to 
the sector , i.e. is resulting from divergent s tructure 
containing all the lines 1,2,..., F ( ic .L=C ) , then the 
operation i : takes s impler form: 

V - < - ' \ . - ^ ) - ^ ' - ' , ^ > . (28) 
bet us show, that the function \ ( 0 is holomorphic j t 
t | ^ 0 , . . . , t I r iO . Пне to the holomorphness of the function 
W (j_) and factorization of singularit ies in different ( , 
it is enough to convince oneself of the holomorphness of 
,y(t_) in every t(,, when the other t--0 a re fixed. If a sui 
graph constructed from lines 1,2 F is not diY,ergen 
the Laurent se r i es of a function i , ' ..Л' к ' x W(t)/...Л <'... • 
tp begins with a power t j F and a pole is compensate:! 
by the factor t p

M . Indeed , (-1 /t 2?i = t -<"- | 
and i•><, - 1 . Let now the lines I ,2 ,...,F define a divergent 
subgraph. Then the Laurent se r i es of a function W/...t p ... 
again begins from a power tJ 2^F . But a s e r i e s for 
i'l'...A'j|W/.t .,'./. begins only from term proportional to 

t(i Indeed among operators i '. entering into X'ty , 
an operator £"• of the form (28) should be present . Thus 
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J 2 J lp i ' "<(' ( 'II,. , -~l 
. . . t ( , . . . , 

(29) 
C_P C _ , + | 

' .-Г" + 7ТГГ + - ! 

f 7 
It is manifest now that all negative powers of t, up 

to 177*} vanish under the action of the operator Ay so that 
after multiplying this function by t*, - 1 the pole again 
disappears . Indeed, for any Л such that 2 '>i ,• N\ ^ Г 
a factor (л +t» ———) may be found in the product (29) 
and °4 

(A +t, .-bLo 'ТА =o. 

Thus we have shown that the function y d ) is holomorphic 
in the region of integration (25) and the following estimate 
takes place: 

LvOJ'i. P (30) 

P - here is a constant, depending on « , and rising with 
a •*•*• not faster then a polynomial. Therefore 

s ' ' i . ь, 
14' ! < P Г dt ... f dt . (31) 

Returning in this integral to the previous variables 
we have 

77, <TL

 m i " l " ' 1 _ , a , _ 1 A , ' m i n ! , r

1 " l Л . ' 

(32) 

In the sector under consideration the paramete rs 
a re subject to the condition ji < (1 < ...<fi, • Therefore 
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1 ' ! (зз) 
and 

» l A » i e i _ i + 1 / L _ 1 + 1 / L 

| f , | < P g / ^ . . . o / - V , " A = (34) 

= p x j - x

k

L ( a , . . . e L ) • 

This is the statement of Lemma 4. 
Using the estimate and reminding Lemma 2 we obtain 

_ < / L i ' . + L 1 - i + -
J r S < P ( a ~ . . . a L ) / d x i . . . / d x k x ' ]

+ L . . . x k L . (35) 
- - s, s t 

Therefore the limit (14) 
1 = lim J ' 
0.0 ^0,8-0 ,,S 

exists and is -polynomially bounded. 
Now the estimate (11) tells us that we are under 

conditions of Lemma 1. This completes the proof of the 
Theorem. 

Authors are greatly indebted to N.N.Bogolubov for 
a valuable discussions. 
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