СООБЩЕНИЯ
 ОБЪЕАИНЕННOГO ИНСТИТУТА
 ЯAEPHЫX
 ИССАЕАОВАНИЙ

АУБНА
C 324.1
-58
E2 - 7433
$4510 / 2-73$
S.A.Anikin, M.K.Polivanov, O.I.Zavialov

SIMPLE PROOF
OF THE BOGOLUBOV-PARASIUK THEOREM
$197<$
АAБOPATOPИR ТЕОРЕТИЧЕСНОЙ

S.A.Anikin, M.K.Polivenov, ${ }^{2}$ O.I.Zavialov ${ }^{\text {' }}$

SIMPLE PROOF
OF THE BOGOLUBOV-PARASIUK THEOREM

[^0]
1. Introduction

Renormalization procedure in the quantum field theory has achieved its final expression in the R-operation by Bogolubov and Parasiuk ${ }^{1,2}$. Bogolubov-Parasiuk theorem on renormalization is a key-stone of quantum field theory in Lagrangian form. Indeed, this theorem guarantees finiteness of an arbitrary Feynman graph, and thus gives way to every real calculation. It allows correct analysis of unitarity and cansality of the scattering matrix, gives rise to the equations and relations in terms of renormalized Green functions 5^{\prime}, etc.

However, all the proofs of this mostimportant theorem we have at our diposal at present $1-t$ are very complicated, because they are essentially based on the recurrence relations describing the involved combinatorial structure of the R-operation. Use of the requrrence relation necessary leads to the methods of mathematical induction and combinatorics becomes an intrinsic part of the proof.

These recurrence relations may be explicitly solved though. Thas solution has been obtained ás early as in 1964-65 independently in ' $^{\prime \prime}$ ' and ${ }^{\prime 8 /}$. In ${ }^{\prime 8 \prime}$ the following iormulae were sbtained for the graphs having so overlapping divergencies:

$$
\begin{equation*}
R=\left(1-M_{1}\right) \ldots\left(1-M_{k-1}\right)\left(1-M_{k}\right) . \tag{I}
\end{equation*}
$$

M_{j} here is an operator, which maps a coefficient function of the 1 -th divergent subgraph Γ_{j} into the sum of definite number of junior terms of MacLaurin series of this function. In the same article it has been shown how to alter this formula in the case of arbitrary graphs.

Namely, performing the multiplication of all the factors we obtain a sum, in which we have to cross off all the terms containing any pair of operators M_{i}, M_{j} corresponding to the overlapping divergencies Γ_{i}, Γ_{j}. This simple rule is completely equivalent to the formal procedure recently formulated by Zimmermann ${ }^{(5 /}$.

Equation (l) provides a convenient basis for obtaining explicit representation for renormalized Feynman graphs. Such representations have also been obtained in various forms in /7/ and ${ }^{\prime 8 /}$. For our purposes the formulas of the type ${ }^{/ B /}$ - giving a generalization of the well-known a-representation to divergent graphs - are most convenient. (Note, by the way, that these formulas also were many times rediscovered later; see e.g. ${ }^{19 \prime^{\prime}}$).

It is interesting to notice that from this integral representation the conclusion is easily drawn that the R-operation has in fact the same form given by Eq. (1) for graphs containing overlapping divergencies, because the superfluous terms in the sum automatically vanish.

In this article, beginning with this parametric representation and slightly generalizing it, we give a direct proof of the Bogolubov-Parasiuk theorem, which is - due to the reasons, just discussed - much simpler than proofs known before ${ }^{\text {/l-4/ }}$.

For the sake of brevity and clarity we restrict ourselves here to the scalar case. A generalization to nonscalar theories is straightforward and does not include any serious difficulties. This case may be obtained as a simple consequence of some more general statement, which would be a subject of the next article.

2. Basic Definitions and Equations

In describing the R-operation different authors use close or even the same notions giving them different content. Therefore we are compelled to begin with some definitions.
$\Gamma(L, N, F)$ is a Feynman graph with L internal lines, N vertices and F disjoint connected components.
$y(\ell, n, f) \subset C^{\prime}(\mathbf{L}, \mathbf{N}, \mathbf{F})$ is a subgraph of $\mathrm{I}^{`}$ with $\mathrm{P}, \mathrm{n}, \mathrm{f}$ internal lines, vertices and components respectively. A number $\omega_{y}=f-2 n+2!$
will be called a divergence index of the subgraph y. Note, that $\gamma(\ell, \mathrm{n}, \mathrm{f})$ contains exactly

$$
h=?-n+1
$$

independent loops and $\omega_{y}=2 \pi_{y}-f$.
Let us consider a set of lines from I'. Adding to this set all the vertices incident to these lines we obtain a subgraph $\gamma(f, n, f) \subset \Gamma^{\circ}$. In the case $\omega \geqslant \geq 0$ we call this set of lines a divergent structure and $y(f, n, f)$-divergent subgraph. There is a one-to-one correspondence between divergent structures of a graph and its divergent subgraphs. It is necessary to underline, that our definition of a divergent subgraph differs from the usual. We do not require a divergent subgraph to be a 'generalized vertex", i.e. to be one-particle irreducible and to include all the lines internal with respect to its vertices.

At last we call a q-tree of a subgraph $\gamma(\ell, n, f)$ its subgraph containing all the n vertices of the graph, which have no loops and exactly q connected components. Evidently q-tree contains exartly ($n-q$) lines and $q \geq f$.

By the Feynman rules every graph $\Gamma(\mathbb{L}, N, F)$ corresponds to the product

$$
\tilde{\mathbf{F}}^{\epsilon} \quad(\ldots \times \ldots)=\Gamma_{\ell} \Delta_{\epsilon, \ell}^{c}\left(x_{\ell_{i}}-x_{\ell_{f}}\right)
$$

of causal propagators $\Delta_{\epsilon, \ell}^{*}\left(x_{\ell_{1}}-x_{\ell_{f}}\right)$, where $\Lambda_{\ell, \eta}^{\prime \prime}$ corresponds to the P-th line connecting vertices \mathcal{l}_{i}^{\prime} and ℓ_{f}. This product of generalized functions in general is not defined at the points of coincidence of the arguments. Moreover if the graph Γ contains at least one divergent structure the formal integral of Feynman amplitude provisionally defined by the symbolic equation

$$
\begin{equation*}
F^{\epsilon}(\ldots p \ldots) \delta\left(\Sigma_{P_{i}}\right)=\int e^{i \Sigma_{P_{1}} x_{i}} \tilde{F}^{\varepsilon}\left(\ldots x^{\prime} .\right) d_{\Delta} \tag{2}
\end{equation*}
$$

is divergent and has no meaning.
Redefinition of F^{ϵ} in this case is given by the R-ope $=$ ration

$$
\begin{equation*}
F^{\epsilon} \rightarrow R F^{\epsilon} \tag{3}
\end{equation*}
$$

Let us briefly describe now the parametric a-representation for renormalized amplitude RF $^{\boldsymbol{\epsilon}}$ mentioned in Section 1, which serves us as a basis for the proof of Bogolubov-Parasiuk theorem.

Ascribe to each line ℓ a parameter a_{ℓ} in such a way that Fourier-transform $\Delta_{\varepsilon, \ell}^{c}$ of a function $\Delta_{\varepsilon, \ell}^{c}$ has a form

$$
\begin{equation*}
\tilde{\Lambda}_{\epsilon, \ell}^{\mathrm{c}}\left(\mathrm{p}_{\ell}\right)=\mathrm{i}^{-1} \int_{0}^{\infty} \mathrm{d} \alpha_{\ell} \exp \left\{\mathrm{i} \alpha_{\ell}\left(\mathrm{p}_{\ell}^{2}-\mathrm{m}_{\ell}^{2}+\mathrm{i} \epsilon\right)\right\} . \tag{4}
\end{equation*}
$$

1 et $\left\{\Gamma_{\boldsymbol{l}}\left(L_{l}, N_{1}, F_{l}\right), \ldots, \Gamma_{k}\left(L_{k}, N_{k}, F_{k}\right)\right\}$ be a set of all divergent subgraphs of Γ (In particular one of Γ_{j} may coincide with Γ; we ise capitals for divergent subgraphs and small letters for general subgraphs; divergence index of Γ_{j} would shortly be written as ω_{j}). Let us ascribe to each Γ_{j} a parameter $\zeta_{\mathfrak{j}}$. Then construct new parameters β_{ℓ} in such a way that

$$
\begin{align*}
& \beta_{\ell}=a_{\ell}, \begin{array}{l}
\text { if a line } \ell \text { does not enter into any } \\
\text { of divergent subgraphs } \Gamma_{1}, \ldots, \Gamma_{\mathrm{k}}
\end{array} \\
& \beta_{\ell}=\zeta_{\mathrm{i} \ell} \cdots \zeta_{\mathrm{j}}{ }_{\ell}^{a} \begin{array}{l}
\text { if a line } \ell \text { enters into } \\
\text { subgraphs } \Gamma_{\mathrm{i}}, \ldots, \Gamma_{\mathrm{j}} .
\end{array}
\end{align*}
$$

Remind that parameters a are introduced by Eq. (4) in order to perform integrations over internal momenta. in Eq. (2) reducing it to the Gauss integrals. Parameters ζ provide, via Schlemilch formula

$$
\begin{aligned}
& f(p)-\left.\prod_{n_{1}+\ldots+n_{m} \leq k}^{\sum} \prod_{i=1}^{m} \frac{\left(p_{i}\right)}{n_{i}!}\left(\frac{\partial^{n_{i}}}{\partial p_{i} n_{i}} \quad f(p)\right)\right|_{p=0}= \\
& =\frac{1}{k!} \int_{0}^{1} d \zeta\left(1-\zeta^{k} \frac{\partial^{k+1}}{\partial \zeta^{k+1}} f(\zeta p)\right.
\end{aligned}
$$

necessary subtractions in right places prescribed by the R-operation.

This consideration leads to the following representation of RFe

$$
\times \mathbf{e}
$$

Equation (6) includes standard homogeneaus polynomials $D(\beta)$ and $A(p, \beta)$ which are constructed by the following rules: Consider certain 1 -tree of the graph I' . Construct a product of ail β corresponding to the chords of this tree, i.e. to all the lines of V which do not belong to this tree. $D(\beta)$ is sum of such products over all possible 1 -treas of the graph Γ :

$$
\begin{equation*}
\mathrm{D}(\underline{\beta})=\underset{\mathrm{i} \text {-trees }}{\Sigma} \underset{\text { ehords }}{ }\left(\operatorname{II} \beta_{\mathrm{i}}\right) \tag{7}
\end{equation*}
$$

$D(\underline{\beta})$ is homogeneous of degree π in β.
Consider now a 2 -tree and construct a product of β corresponding to its chords. Multiply each of these products by the square of a sum of external momenta $\left(\Sigma_{p_{i}}\right)^{2}$ entering in the vertices of any components of a 2-tree. The sum of these expressions over all possible 2-trees of Γ gives $A(\underline{p}, \underline{\beta})$:

$$
\begin{equation*}
\left.\mathrm{A}(\underline{\mathrm{p}}, \underline{\beta})=\underset{-2}{ } \sum_{\text {trees }} \underset{\text { chords }}{(\mathrm{n}} \beta_{i}\right)\left(\Sigma \mathrm{P}_{\mathrm{i}}\right)^{2} . \tag{8}
\end{equation*}
$$

Thus $A(p, \underline{\beta})$ is a quadratic form in P and is homogeneous of degree $\pi+1$ in β.

Equation (6) - representation of a divergent Feynman graph - was obtained in $/ 8 /$ under some restrictions on the structure of a set of divergent subgraphs. But it holds without any restrictions. In particular so-called

$$
\begin{aligned}
& \mathbf{R F}{ }^{c} \equiv \int_{0}^{\infty} \mathrm{d} a_{1} \ldots \mathrm{~d} u_{\mathrm{L}} \int_{0}^{1} \mathrm{~d} \zeta_{1} \ldots \mathrm{~d} \zeta_{k} \frac{\left(1-\zeta_{1}\right)^{\omega} \cdot \cdots \frac{\left(1-\zeta_{k}\right)^{\omega_{k}}}{\omega_{\mathrm{l}}!}}{\omega_{k}!} \\
& \times\left(\frac{\partial}{\partial \zeta_{1}}\right)^{\omega_{1}+1} \ldots\left(\frac{\partial}{\partial \zeta_{k}}\right)^{\omega_{k}+1} \frac{\zeta_{1}^{2 \eta_{1}} \ldots \zeta_{k}^{2 \eta_{k}}}{D^{2}(\underline{\beta})} e^{i \frac{A(\underline{p}, \underline{\beta})}{D(\underline{\beta})^{2}}} \times \\
& \left.-i \sum_{\ell=1}^{L}{\underset{m}{2}}^{2}-i \varepsilon\right) a_{\ell}
\end{aligned}
$$

overlapping divergences should be treated in quite general grounds and do not lead to any difficulties. Moreover we state that eq. (6) remains valid and equivalent to the prescriptions of the R-cperation when divergent subgraph is understood in a generalized sense described above. The proof in fact is almost trivial and follows from the observation that under the action of operators $\int d \kappa \frac{(1-\kappa)}{\omega!} \frac{\partial^{\omega+1}}{\partial \zeta{ }^{\omega+1}}$, corresponding to generalized vertices, additional subtractions allowed in our formula are reduced to identity operation.

Bogolubov-Parasiuk theorem states the existence and finiteness of the integral RF. It consists of two parts: statement of the finiteness of RF^{ϵ} for finits ϵ and the proof that the limit $\lim _{\epsilon \rightarrow 0} \mathrm{RF}^{\epsilon}$ exists. The second part is not too complicated and ${ }^{\boldsymbol{\epsilon}}$ may be borrowed from ${ }^{/, 2,3}$.

Essentially non trivial is the first part of the theorem. The remainder of this article is devoted to this proof.

THEOREM. The integral RF ${ }^{\boldsymbol{\epsilon}}$ exists.

3. Proof of the Theorem

We split the proof of the Theorem into some simple lemmas. The convergence of the integrai (6) at the upper limit $a_{i \rightarrow \infty}$ is controlled by the factor $\left|-\Sigma a_{i} \in\right|$, and therefore the region of the small a is essentially dangerous. The following lemma accounts for this fact.

LEMMA 1. I,et $\tilde{\Phi}\left(a_{1}, \ldots, a_{L}\right)$ be such that the integral

$$
\int_{0}^{\tilde{a}_{1}} \ldots \int_{0}^{\tilde{a}_{\mathrm{L}}} \mathrm{~d} a_{1} \ldots \mathrm{~d} a_{\mathrm{L}} \tilde{\Phi}\left(a_{1}, \ldots, \alpha_{\mathrm{L}}\right)
$$

exists for any positive $\vec{a}_{1}, \ldots, \tilde{a}_{\mathrm{L}}$ and is polynomially bounded in $\tilde{a}_{1}, \ldots, \bar{a}_{\mathrm{L}}$. Then for any $\epsilon_{1}>0, \ldots, \epsilon_{L} \geq 0$ the integral

$$
\left.0^{\infty}{ }^{\infty} a_{1} \cdots \int_{0}^{\infty} \mathrm{d} a_{\mathrm{L}} \tilde{\Phi}\left(a_{1}, \ldots, a_{\mathrm{L}}\right) \exp \mid-\Sigma a_{\mathrm{i}} \epsilon_{\mathrm{i}}\right\}
$$

exists.

Proof of this statement is elementary. It reduces to integrating by parts repeatedly.

In accordance with Lemma 1 it is sufficient to convince oneself of the existence and polynomial boundedness of the integral

$$
\begin{equation*}
\mathrm{I}=\int_{0}^{a_{1}} \ldots \int_{0}^{\widetilde{x}} \mathrm{~L} a_{1} \ldots \mathrm{~d} a_{\mathrm{L}} \int_{0}^{1} \mathrm{~d} \zeta_{1} \ldots \mathrm{~d} \zeta_{\mathrm{k}} \widetilde{\Phi}(\underline{a}, \underline{\zeta}, \underline{\mathrm{P}}), \tag{9}
\end{equation*}
$$

where

$$
\begin{align*}
& \tilde{\Phi}(\underline{a}, \underline{\zeta}, \underline{p})={ }_{i=1}^{k} \frac{\left(l-\zeta_{f}\right)^{\omega_{i}}}{\omega_{i}!} e^{-i \Sigma_{m} a_{i}} \times \tag{10}\\
& \times \prod_{s=1}^{k}\left(\frac{\partial}{\partial \zeta_{s}}\right)^{\omega_{s}+1} \frac{\zeta_{s}^{2} \eta_{s}}{D^{2}} e^{i \frac{A}{D}}
\end{align*}
$$

The first two factors $\Pi\left(1-\zeta_{i}\right)^{\omega_{i}}\left(\omega_{i}!\right)^{-1}$ and $\left\{-i \Sigma_{m_{\mu 2}}\right\} \quad$ in (10) are less than one in the absolute value and may only improve the convergence of the integral. Therefore

$$
\begin{equation*}
|I| \leq \mathrm{J}_{00}=\int_{0}^{\tilde{a}_{1}} \cdots \int_{0}^{\tilde{a}_{\mathrm{L}}} \mathrm{~d} \alpha \int_{0}^{1} \mathrm{~d} \underline{\zeta}|\tilde{\Phi}(\underline{a}, \underline{\zeta}, \underline{\mathrm{p}})| \tag{11}
\end{equation*}
$$

and it is sufficient to check absolute convergence of the integral with the integrand

$$
\begin{equation*}
\Phi(\underline{a}, \underline{\zeta})=\prod_{i=1}^{k} \frac{\partial^{\omega_{i}+1}}{\partial \zeta_{i}^{\omega_{i}+1}} \prod_{j=1}^{k} \zeta_{j}^{2 r_{j}} \frac{1}{D^{2}(\underline{\beta})} e^{\left.i \frac{A(p, \beta)}{D} \underline{\beta}\right)} \tag{12}
\end{equation*}
$$

When all β_{j} or some combinations of β_{j} are going to zero $D(\underline{\beta})$ has in general nonintegrable singularities. This fact reflects of course the well-known ultraviolet divergencies of quantum field theory. The analysis of these singularities and the proof that they are compensated in $\Phi(\underline{a}, \zeta)$ due to the R-operation, i.e. due to the
action of the derivatives $\left(\partial / \partial \zeta_{i}\right)^{\omega_{i}+1}$ on the respective expressions is just our task.

Notice, by the way, that iiis analysis cannot be reduced to the simple power counting with some set of parameters simultaneously going to zero, as it is sometimes stated (see e.g. ${ }^{/ 9 /}$). Thus an integral
$\int_{0} d a d \kappa \frac{\kappa}{\left(a+\kappa^{2}\right)^{2}}$
which satisfies the conditions of the power counting 'theorem', evidently diverges. Therefore considerations based on this trick do not have, in general, a convincing power.

First we consider an integral with cutoffs at the lower limits in $\underline{\alpha}$ and \leqq :
which corresponds to the product of regularized propagators. $\mathrm{J}_{\mathrm{r}}, \delta$ is absolutely convergent and we have full right to change an order of integration in it, to use any variable substitutions, etc.

Then we show that

$$
\begin{equation*}
\lim _{\substack{r \rightarrow 0 \\ \underline{\delta} \rightarrow 0}} J_{\underline{n}} \underline{\delta}=J_{0,0} \tag{14}
\end{equation*}
$$

exists and is polynomially bounded.
The very form of the function Φ (Eq. (12)) makes it evident that the natural variables in it are not a and ζ, but β-defined by Eq. (5)- and ζ.

LEMMA 2

After substitution

$$
\begin{align*}
& \zeta_{i} \rightarrow x_{i}=\zeta_{i}, \quad(i \in\{1,2, \ldots, k\}) \\
& a_{\ell} \rightarrow \beta_{\ell}=\zeta_{i_{\ell}} \ldots \zeta_{j_{\ell}} a_{\ell}=\pi \ell_{\ell},(\ell \in\{1, \ldots, \mathrm{~L}\}) \tag{15}
\end{align*}
$$

(a product $s_{i f} \ldots \zeta_{\mathrm{jk}}$ is taken over all divergent graphs containing a line ${ }^{\prime} \mathrm{M}$ an integral J, δ may be written in the form

$$
\begin{equation*}
\mathrm{J}_{\underline{r}, \delta}=\int_{\delta_{1}}^{1} \frac{\mathrm{dx}}{\mathrm{x}_{1}} \ldots \int_{\delta_{k}}^{1} \frac{\mathrm{dx}_{\mathrm{k}}}{\mathrm{x}_{\mathrm{k}}}\left|\Psi_{\underline{r}}(\underline{\mathrm{x}})\right| . \tag{16}
\end{equation*}
$$

Here
and nperators S_{j} are of the form

$$
\begin{equation*}
\xi_{j}=\int_{s=0}^{\omega_{j}}\left(2 r_{i}-s+\underset{i \in I_{j}}{\Gamma_{i}} \beta_{i} \frac{\partial}{\partial \beta_{i}}\right) . \tag{18}
\end{equation*}
$$

Proof: The substitution - Eq. (15) - introduces the Jacobian

$$
\begin{equation*}
\frac{\partial(\alpha, \underline{\zeta})}{\partial(\underline{\beta}, \underline{x})}=x_{1}^{-L_{1}} \ldots x_{k}^{-I_{k}} \tag{19}
\end{equation*}
$$

The operators $\left(\partial / \partial \zeta_{\mathrm{j}}\right)^{(\omega)}+\mathrm{l}$ in terms of the new variables are

$$
\begin{equation*}
\left(\frac{\partial}{\partial \zeta_{j}}\right)^{\omega_{\mathrm{j}}+1} \rightarrow\left\{\frac{1}{\mathrm{x}_{\mathrm{j}}}\left(\mathrm{x}_{\mathrm{j}} \frac{\partial}{\partial \mathrm{x}_{\mathrm{j}}}+\underset{\mathrm{i} \epsilon \Gamma_{\mathrm{j}}}{\underline{L}} \beta_{\mathrm{i}} \frac{\partial}{\partial \beta_{\mathrm{i}}}\right)\right\}_{\mathrm{j}}^{\omega_{\mathrm{j}}+1} \tag{20}
\end{equation*}
$$

Taking $\mathrm{x}_{\mathrm{j}}{ }^{2} \pi_{\mathrm{j}}$ to the left of respective operator one obtains $x_{j}^{2 \lambda_{j}-\left(\omega_{j}+1\right)}=x_{j}{ }_{j}{ }^{-1}$
which alongwith $x_{j}^{-1}{ }_{j}$ from the Jacobian gives a factor $\mathrm{x}_{\mathrm{j}}^{-1}$ in Eq. (16). Under this operation a power ($\omega_{j}+1$) (Eq. (20)) splits out into a product of $\omega_{j}+1$ factors, which
we med: in the definition, Eq. (18; of the operator \mathcal{L}_{j}
After lowing proved this Lemma we have, roughly
 that $1:$ angomially bounced in $\underset{\sim}{\ddot{*}}$ and that the integral Eq $5: \therefore$ a converges, at the ${ }^{2}$ yer limit.
 struriex, Bat we know, that 3: in tie sectors of the form: $\because_{1} \cdot \ldots \leq 1 j_{1}$, these singularities are affectively factorise: -onside for example a sector

$$
\begin{equation*}
r_{1}: \therefore \leq \beta_{1} \tag{21}
\end{equation*}
$$

and in : substitution

$$
\begin{aligned}
& { }^{1} \text { - }
\end{aligned}
$$

$$
\begin{align*}
& i j \tag{22}
\end{align*}
$$

The sanctions D and A expressed in terms of the new val: hes i would te atsthguished by the bash Above from: mactorfefton of fitagularitaes is tenonstated :y the following:

LEMMA:

> The equality

$$
\frac{1}{D^{\prime 2}(\underline{1})} e^{i \frac{A(U)}{D}(t)}=\frac{B(L)}{t_{1}^{2 \pi_{1}} \ldots t_{L}^{2 \pi}}
$$

takes place. Here $T(i)$ is s function of the variables ${ }_{1}, \ldots, t_{L}$ holomorphic in all points, where $t_{1} \geq 0, \ldots, t_{1} \geq 0$ and r_{1} are numbers of independent loops in the special subgraphs. Namely, each π_{1} corresponds to subgraph constructed precisely by lines $1,2, \ldots$, without omitting any line. The proof of this Lemma, first formulated by Speer $/ 4 /$. may be easily obtained from initial definitions of D and A.

Equation (23) exhibits an origin of ultraviolet divergencies in the sector. Indeed, the Jacobian of the substitution (22) is

$$
\begin{equation*}
\frac{\partial(\ldots \beta \ldots)}{\partial(\ldots t \ldots)}=t_{2}\left(t_{3}\right)^{2} \ldots\left(t_{1}\right)^{1 .-1} \tag{24}
\end{equation*}
$$

Thus, if in Eq. (17) the 'subtracting' operators $\left\{_{1}\right.$, were absent, and a set of lines $1,2, \ldots, j$ would be such that $\omega_{j}=2 r_{j}-j \geq 0$, the integral over $t_{j}, \int \mathrm{dt}_{\mathrm{i}}\left(\mathrm{c}_{\mathrm{j}}\right)^{-i t} \mathrm{j}^{-1}$ would be badly divergent. Therefore only special subgraphs mentioned in the formulation of Lemma 3 are 'dangerous'" in the sector, and we should see that they are regularized by "subtractors" \mathscr{L}_{j}

In the strict terms this discussion is expressed by the following:

LEMMA 4
A function $\Psi_{r}(\underline{x})$ entering Eq. (17) exists for all $\underline{i} \geq 0$ and admits an estimate

$$
\left.\left|\Psi_{\underline{r}}(\underline{x})\right| \leq \mathbf{P}\left(\tilde{a}_{\mathbf{L}}\right) \mathbf{x}_{1}^{\mathrm{l}_{1}} \ldots \mathbf{x}_{\mathbf{k}}^{\mathrm{L}_{\mathrm{k}}}\right)^{1 \cdot 1}\left(\tilde{a}_{1} \ldots \tilde{a}_{\mathrm{l}}\right),
$$

where $\mathbf{P}\left(\tilde{a}_{\mathrm{L}}\right)$ is some polynomial in \tilde{a}_{l}.
Proof: Consider the intersection of the integration region in (17) with some sector $\beta_{i_{1}} \leq \beta_{i 2} \leq \ldots \leq \beta_{i_{1}}$. contribution to the integral from this region would be designated by $\Psi_{r}^{s}\left(x_{1}, \ldots, x_{k}\right)$. Evidently it is enough to prove Lemma only for Ψ^{s}. Without loosing generality we may consider a sector $/ 2 / /$. Using substitution (22), Jacobian (24) and Lemma 3 we may write

$$
\begin{equation*}
\Psi_{\underline{L}}^{s}(\underline{x})=\int_{a_{L}}^{b_{1}} d t_{L} \ldots \int_{a_{1}}^{b_{1}} d t_{1} \chi(\underline{t}), \tag{25}
\end{equation*}
$$

where

$$
a_{i}=r_{i} \pi_{i} / t_{i+1} \cdots t_{L} ; b_{i<L}=\max \left\{a_{i}, \min \left(l, \tilde{a}_{i} \pi_{i} / t_{i+1} \cdots t_{L}\right)\right\}
$$

$$
a_{1}=r_{L} \pi_{L} ; b_{L}=\max \left|a_{L}, \tilde{a}_{L}{ }_{L}\right|
$$

and

$$
\begin{aligned}
& x(\underline{t})=t_{2}\left(t_{3}\right)^{2} \ldots\left(t_{L}\right)^{\mathrm{L}-1} \oiint_{1} \ldots \bigotimes_{k}^{\prime} \quad x \\
& \frac{W(t)}{t_{1}^{2 \pi_{1}} \ldots t_{L}^{2)}} \mathrm{L}
\end{aligned}
$$

Operators d_{j} are of the form:

$$
\begin{equation*}
\left.Q_{j}=\prod_{s=0}^{w} \left\lvert\, 2 \eta_{i}-s+\sum_{i=1} Y_{i}\left(t_{i} \frac{\partial}{\partial t_{i}}-t_{i-1}-\frac{\partial}{\partial t_{i-1}}\right)\right.\right\}_{\left\{t_{0}=0\right.} \tag{27}
\end{equation*}
$$

Note, that if a divergent suberaph I_{j} is subordinate is the sector, i.e is resulfing from divergent structure containing , all the lines $1,2, \ldots, f$ (i.c. $L_{i}=f^{\prime}$), then the operation $\mathcal{S}_{\mathbf{j}}$ takes simpler iurm:

$$
\begin{equation*}
\dot{Q}_{i}=\left(2 R_{L_{j}}+t_{\beta} \frac{\partial}{\partial t_{i}}\right) \ldots\left(r+t_{y} \frac{\partial}{\partial t_{i}}\right) \tag{28}
\end{equation*}
$$

Let us show, that the function $x(1)$ is holomorphic at $t_{1} \geq 0, \ldots, t_{1} \geq 0$. Due to the nolomorphness of the function W(1) and factorization of singularities in different , it is enough to convince oneself of the holomorphness of $x(t)$ in every t_{y}, when the other $t 0$ are fixed. If a sut. graph constructed from lines $1,2, \ldots, \rho$ is not divergen the Laurent series of a function $S_{i} \ldots \dot{l}_{\mathbf{k}} \times W(\underline{2})^{\prime} \ldots i_{p}^{2} \ell_{p} \ldots$ t_{p} begins with a power $t_{f}^{-2} \pi_{\rho}$ and a pole is compensated
 and $\quad \ldots \leq-1$. Let n; w the lines $1,2, \ldots, p$ define a divergent subgraph. Then the Laurent series of a function $W / \ldots t{ }_{\ell}^{2} \mu_{f}$ again begins from a power $\mathrm{c}_{\mathrm{p}}^{2} \mathrm{H}_{p}$. But a series for $L_{i}^{\prime} \ldots \dot{N}_{k}^{W} W, L_{i}^{2} \cdot ?$ begins only from term proportional to ' l ' l I Indeed among operators l^{l}. ${ }_{j}$ entering into $x(0)$, an operator \mathscr{S}_{j} of the form (28) should be present. Thus

$$
\begin{aligned}
& \cdots+\frac{C_{-\ell}}{t_{p}^{F}}+\frac{C_{-l}+1}{1_{p}^{f-1}}+\cdots l
\end{aligned}
$$

It is manifest now that all negative powers of t_{i} up to $t_{p^{\prime}}$ vanish under the action of the operator P_{i}^{\prime} so that after multiplying this function by $\mathrm{t}_{\mathrm{f}}^{\mathrm{f}}-1$ the pole again disappears. Indeed, for any a such that $2 T_{1}: 1$ a factor $\left(\lambda+i p \frac{\partial}{\partial t_{p}}\right)$ may be found in the produc't (29)
and

$$
\left(\lambda+i p \frac{\partial}{\lambda t}\right) \frac{C-\lambda}{i l}=0 .
$$

Thus we have shown that the function $X(t)$ is holomorphic in the region of integration (25) and the following estimate takes place:

$$
\begin{equation*}
!x(\underline{t})!=p \tag{30}
\end{equation*}
$$

P- here is a constant, depending on $\tilde{\pi}_{1}$ and rising with ${ }^{\prime} \mathrm{l}^{+\cdots}$ not faster then a polynomial. Therefore

$$
\begin{equation*}
\underset{\underline{E}}{\mathcal{F}^{s}}=P \int_{a_{1}}^{b_{1}} d t_{1} \ldots \int_{a_{1}}^{b_{1}} d t_{1} \tag{31}
\end{equation*}
$$

Returning in this integral to the previous variables we have

In the sector under consideration the parameters are subject to the condition $\beta_{1} \leq \beta_{2} \leq \ldots \leq \beta_{1}$. Therefore

$$
\begin{equation*}
\frac{1}{\beta_{2} \beta_{3} \ldots \beta_{L}} \leq \frac{1}{\beta_{1}^{1-1 / L} \ldots \beta_{L}^{1-1 / L}} \tag{33}
\end{equation*}
$$

and

$$
\begin{align*}
& \left|\Psi_{\underline{s}}^{\mathrm{s}}\right| \leftrightharpoons \mathrm{P}_{0}^{\pi_{\mathrm{L}} \tilde{a}_{\mathrm{L}}} \mathrm{~d}_{\mathrm{L}} \ldots \int_{0}^{\pi_{1} \tilde{a}_{\mathrm{L}}} \mathrm{~d} \beta_{1} \beta_{1}^{-1+1 / \mathrm{L}} \cdots \beta_{\mathrm{L}}^{-1+1 / \mathrm{L}}= \tag{34}\\
& =P x_{1}{ }^{L_{1}} \quad \ldots x_{k}{ }^{L_{k}}\left(\tilde{a}_{1} \ldots \tilde{a}_{L}\right)^{1 / L}
\end{align*}
$$

This is the statement of Lemma 4.
Using the estimate and reminding Lemma 2 we obtain

$$
\begin{equation*}
J_{r_{2} \delta} \leq P\left(a_{1}^{\sim} \ldots \tilde{a}_{L}\right)_{\delta_{1}}^{1 / L} \int_{1}^{1} d x_{1} \ldots \int_{\delta_{k}}^{1} \mathrm{dx}_{k} \ddot{x}_{1}^{1+\frac{L_{1}}{L} \ldots x_{k}^{-1+\frac{L_{k}}{L}} .} \tag{35}
\end{equation*}
$$

Therefore the limit (14)

$$
\mathbf{J}_{0,0}=\lim _{\boldsymbol{r}+0, \delta \rightarrow 0} \mathbf{J}, \dot{\delta}
$$

exists and is polynomially bounded.
Now the estimate (ll) tells us that we are under conditions of Lemma l. This completes the proof of the Theorem.

Authors are greatly indebted to N.N.Bogolubov for a valuable discussions.

References

1. N.N.Bogolubov, O.S. Parasiuk. Acta Math., 97, 227 (1957).
2. О.С.Парасюк. Укр.Мат.Журнал. 12, $287 / 1960 /$.
3. X.Hepp. Comm.Math.Phys., 2, 301 (1966).
4. E.R.Speer. Journ.Math.Phys., 9, 1404 (1968).
5. W.Zimmermann. Lectures at Brandejs 1970, MIT 1971.
6. Б.М.Степанов. Теор. и мат. физ., $5,356 / 1970 /$.
7. В.А. ербяна. О вычитательном формализме в квантовой теорин поля, 38-64. Каталог депоннрованных работ. ВИНИТИ 1964.
8. О.И.Завьялов, Б.М.Степанов. ЯФ, 1, $922 / 1965 /$.
9. T.Appelquist. Annals of Physics (New York), 54, 27 (1969).

Received by Publishing Department on August 29, 1973.

[^0]: 'Lebedev Physical Institute
 ${ }^{2}$ Steclov Mathematical Institute

