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At the present time much attention is being paid to the 
study of high-energy behaviour of quantum field theory 
amplitudes. A significant contribution to this trend has 
come from the investigations of asymptotic properties 
of the Feynman amplitudes within the framework of 
perturbation theory. One of the most fruitful methods of 
analysis is the Feynman parametrization method, in which 
the rules of writing the Feynman integrals have been set 
down/-'/ (see eq. (3)), along with the recipes for obtaining 
the leading terms of the asymptotic expansion of individual 
graphs / 2 / (see the review of the earlier works in '3'). 
All these results are obtained, in one form or another, 
from the investigation of determinants which appear in the 
process of introducing the Feynman parameters. 

In the present work, a new approach is suggested 
towards the study of the Feynman amplitudes and their 
asymptotic behaviour, based on the relationship between 
the asymptotic properties of the graphs and the unifeirity 
condition or, more precisely, the Cutkosky rule / 4 / This 
new approach allows us to find both simple rule& for 
obtaining the form of the Feynman parametrized integrals 
and prescriptions for extracting the leading term of the 
asymptotic expansion. These prescriptions are much 
simpler than the rules set forth in ref. '2' and, what is 
more important, they are general and bring out some 
essential features which cannot be studied within the 
framework ofthe theory developed in ref. / 2 / . In particular, 
these prescriptions permit one to establish easily the 
fact of the failure of the eikonal approximation for the 
vertex part in the 5th order of perturbation theory, which 
has been discovered in ref. /*/. Furthermore, a procedure 
developed in the present work enables us to understand 
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a somewhat unusual character of the 5th order graph and 
to extract relatively readily information about the vertex 
graph asymptotic behaviour in the higher orders. 

This study is concerned with the boson theory with 
£int =A000.However, the results obtained have a more 
general character and are applicable for a wide class 
of theories. The present work may serve as one more 
illustration of the value of the A ^ 3 theory, in which 
a substantial simplification of calculations is no obstacle 
for obtaining general results applicable in many other 
cases (see, e . g . / 3 ' ). 

Let us consider a vertex diagram shown in Fig. 1. 
In what follows, we assume that the heavy bosons are on 
the mass shell, i.e. pj, = p2

2= m2 ( m is the mass of 
a heavy boson), although the results will not, in principle, 
change if the momenta of particles p2 and P 2 are taken 
beyond the mass shell. 

Fig. 1 

For the vertex diagram of the 2n + 1 order, the 
corresponding Feynman integral is of the form 

6 
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Here (= e 2= Tpj -P 2 J , к. a r e the internal momenta of 
mesons of a mass n ( 0 < fi <mj,<3 ( momenta c o r r e s ­
ponding to the remaining internal lines of the diagram 
and being l inear combination of ks- and the external 
momenta pt and p 3 , a ( =m, ц provided mj =-/J , q, -к, . 

Taking advantage of the Feynman identity, the function 
e (t) may be represented as follows 

= - /П da ,8( I. a.-l)fU d"k. I 2 a (q2-m2)\~ 
I 3n 3 n n л За 

Uit) 
0 i 

(2) 
Integrating over the internal momenta ^ ,this formula 
may be reduced to the following expression 

3n 3n _ , 
1 11 d a . S ( 2 a.-X)[C(a)] 

m = f - L ^ _ ^ I _ i _ _ _ _ _ , ( 3 ) 

•0 \-A(a)t + B(a,m2 )]" 

where С (a) is the principal minor of the quadratic form 
3n 
2 a. (q.-m . ) considered as a quadratic function of 

i=i ' ' ' 
momenta к . . 

The charac ter of the asymptotic behaviour of diagrams 
at t -> ~ is determined by such values of one o r severa l 
integration var iables at for which A(a) becomes zero 
(see, e.g., •3-/ ). Due to zeroes of A(a), the power of 
t may increase and there will appear t e rms such as 
H (n« t, t < n , * = 0,1,.... 

By analogy with the Landau equat ions ' 6 /^(see also '3') 
it may be stated that in the vertex diagrams there a r e 
only end-point type singulari t ies , which a r e character ized 
by the fact that cer ta in sets of variables « ; make the 
rat io A(a)B~!(a, m^) turn to zero at the lower boundary 
of the integration range for the corresponding a, (why 
we should not consider just the value of A (a) , but 
the ratio A(a)B~'(a,m? ) will be clarified la ter , s ee the 
condition (8)). In o rde r to obtain the zeroes of the rat io 
A(a)B~' (a,m?) in the explicit form we scale the var iables 
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a, with the result that the parameter set_ at ,..., ak i S 

changed into the set of variables p, c J f c P..., ak and 
B j •* pa. , dat ,..dak - p""1 dpda, . . . d d ^ S f . S "Г1*^ 

ТЬРП we linearize the expression obtained in the scaling 
parameter p everywhere in the integrand, except for the 
coefficient p of the asymptotic variable e, which is 
essential for the calculation of the asymptotic behaviour. 
As has been shown in ref. / 2 / , it is important to find all 
possible minimal (i.e. containing the least number of 
parameters a.) sets of variables я,- which make the ratio 
A(a)B~1 fa, m?') turn to zero. The number of such sets 
will determine the power of in t and their length - the 
power of t in the asymptotic expression derived. 

Proceeding from the unitarity considerations we may 
establish the validity of such an approach. Then, however, 
the insufficiency of the rules given in ref. I2I becomes 
evident. Moreover, from the unitarity considerations it 
becomes clear that some other higher order scalings, 
including npnminimal number of parameters, must be 
taken into account. The knowledge of the set of all neces­
sary scalings (the complete set) is essential for the 
calculation of the coefficient of the leading term of the 
asymptotic expansion. It is precisely the knowledge of 
the complete scaling set (which has been found from quite 
different considerations) that allowed the failure of the 
eikonal approximation in the fifth order of the perturba­
tion theory (the A 9 3 model) to be discovered 

/ 5 / 
It should be noted that the fact that the ranges of 

integration with small values of parameters of the 
set are important for the determination of the asymp­

totic behaviour of the vertex part, is essential in our 
arguments. Cases of the pinch-type singularities (not 
at the boundary of the integration range) call for a special 
investigation. 

According to ref. J*/, Im g (t) may be found from the 
condition of uniiarity. To achieve this, the substitution 
Г«?- »,'+ ic)~' — 2п1в (qoJS (qf- w?) 
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should be made for the diagram under consideration (the 
Cutkosky rule). In other words, lmg(t) is determined from 
the diagrams of fig. 2 where all the intersected lines lie 
on the mass shell and the integration is performed solely 
in the corresponding three-dimensional momentum. It will 
be noted that in this case there are several unitary 
intersections involving lines with a given momentum g ; for 
each propagator fg?-m?J - 'and the variable &t associated 
with it. 

Fig. 2 

Let us now turn our attention to the fact that when one 
of the variables at vanishes in the integrand of eq. (2) 
this lead;.' to the elimination of the term a . (qf - m ?) . This 
implies th.4t there is no Cutkosky rule for the given line. 
If we consider any of the sets of the scaled parameters, 
then the Cutkosky rule for all the propagators with the 
corresponding at are absent. It can be readily shown that 
all unitary intersections for the diagram must correspond 
to each set of the scaling parameters. If the lat+or vanish, 
then all unitary intersections which determine Ira g(t) for 
finite values are eliminated, i.e. Img(t) vanishes. 

Indeed, consider Img(t) as obtained from eq. (3) 

1 3n 3n n-2 (n-1) 
Img(t)~f П da.S(l a.-.t)[C(a)] S (-At+B) 

0 i = t ' Ы1 •' 
(6) 

(tQ< t < ooj 

" ^ « 9 J 
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(the coefficient of the integral is neglected as inessential 
for our arguments). As has been already mentioned, at 
the boundary of the range of integration over some set of 
a, A(a) becomes zero. The scaling operation is as 
follows 

A(a) = p'A'(p,a) (r > I) 

with A'(p,a) being nonzero. It is clear that lmg(t) = 0 at 
t0 <t< °° and p -» 0 if the condition 

A(a)B~J (a,m2.) = 0 ( 8 ) 

is satisfied, i.e., the scaling operation does correspond 
to Im g(t) = 0 at t0 < t <~.On the other hand, it is under­
standable that at t - <*> and A (a)-* 0 the function 8<n~l)(-At+B) 
may have singularities, i.e. Im g (t)\ ^uThis conclusion is 
just in line with the general scheme ofarguments outlined 
above. It may be stated that the region of small values of 
the scaled parameters is essential only in the calculation 
of the asymptotic behaviour of g(t) and tells but weakly 
at finite momentum transfer. 

Thus, we shall define the scaling of parameters as an 
operation eliminating all the unitary intersections if 
a ; = O.Then, the complete set of scaling is a set of all 
possible scalings each of which eliminates all the unitary 
intersections allowed for the gr"°n diagram. 

An additional criterion for our choice of scalings is the 
condition (8) which has a profound physical meaning. The 
analysis of this condition is connected with the question 
of what is "the vertex function asymptotic behaviour". 
It is natural to understand this phrase as the behaviour 
of the g(t) function at 

|2n *| » tnm* fin. = m,(i) 

0 Г \bt\ »tn \p] I, Ь\р]\, Ьт] (10) 

when we consider the corresponding off-mass-shell 
diagram. As has been mentioned above, the character of 
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the asymptotic behaviour of the Feynman integral is de­
termined by ranges of in tegra t ionofcer ta inse tsof var iab­
les a . scaled, in which the coefficient at the asymptotic 
variable t vanishes. Taking into account that the function 
B(a,mf) may be written in the form 

B(a,m2.)=mBI(a) + n S2(a) , B2 (a) = C(a) 1 у. ^щ 

( у. a r e the Feynman pa rame te r s corresponding to the 
meson lines), i t can be readily understood that some other 
sets, tor which Bj(a)(or B2(a) ) vanish (A(a) remaining 
finite), will determine the asymptotic proper t ies of the 
function g(t) with respec t to m2 (or м 2 ) at m2-» » (or 
^ 2 - » ~ ) . That i s , the condition (8) corresponds precisely 
to the consideration of the asymptotic behaviour with 
respect to the variable t. Bearing in mind that the complete 
set of scal ings may consist not only of the simplest sets 
for which 

A(a)~ p, Вг(а) 4 0, B2(a) t 0, 

but also such sets for which, e.q., 

A(a)~p3, Bt(a)~p, B2(a)-p ( 1 3 ) 

(in both cases the se ts a r e determined by the Cutkosky 
ru les and satisfy the condition (8)), we may generalize 
the condition (8) as follows: The conditions 

Ma) p k > А(а)_рк ( к > _ 1 } 

Вj (a) B2(a) (14) 

must correspond to the asymptotic relat ions (9) o r (10). 
The conditions (14) will be re fer red to a s the linearuty 
condition. It i s evident that this condition is satisfied, 
for example, with the scalings leading to expressions of 
the type 

A(a) ~ p2, Bl(a) £ 0,- B2(a) * 0 
(lo; 

9 



which may be reduced to the case of eq. (12) by a suitable 
substitution of variables p2=b .On the other hand, scalings 
leading to expressions such as 

A(a) ~ p2, Bt(a) ~ p2 , B2(a) ~ p от р° (16) 

A(a) ~ p 2, Вг(а)~рогр°, В2(а)~р2, (17) 

A(a) - p2, Bt(a) - p, B2(a) ~ p° (18) 

and so on, correspond to the cases 

\lnt\ - inm 2 » bfi2 , 

\int\ - Ьр.2 У> inm2, 

\fa t\ » Inm2 » inu.2. 

(16a) 

(17a) 
(18a) 

Ф — - ^ 

Fig. 3 

These arguments become still mo re obvious in the ana lysis 
of asymptotic properties of the vertex part using its Mellin 
transform. 

In conclusion, the arguments stated above can be 
illustrated with the example of the irreducible fifth-order 
vertex diagram (fig. 3). Three unitary intersections, shown 
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in fig. 3 by dotted lines, correspond to this diagram. 
Reversing the above-described rules , which corresponds 
in the given case to the rules given in ref. ,we 
immediately find that 

A(a) = at Pt (a2 + p2 + Y l + y2 ) + a, V2 P2 + P, У, « 2 (19) 

without considering the corresponding determinants. Un­
fortunately, the absence of relations analogous to those 
given in (5) with respect to mass does not allow us to 
write out immediately the expressions for B(a,mf) in 
a similar way. Nevertheless, it can be readily obtained that 

B(a,mf) = ffla{(-a/+j8J + ^ 2 ) f a / + a 2 + / 3 i Я<*2 + P2 > + 

+ Vt («t +«2+ Pj)2+ r2("t+Pi+ P2)2+ v(y1+y3)C(a)\l 

(20) 

where 

C(a) = (аг +Pt )(a2 + P2 + yj +y2 ) + (a2 + y2)(P2 + y, ) , 

m2 " 

In conformity with the above definition of the scaling 
operation, the minimal sets 
ata2, P,y2, a l Y l , PtP2, « , P, ( 2 2 ) 

are allowed in the given case (by the way, the a, p, set is 
absent in the rules of ref. hi ), as well as the higher 
sets 

a1a2P,y2, PtP2alYl. ( 2 3 ^ 

The remaining possible sets (including, in particular the 
set ata2Pt P2) do not satisfy the linearity condition (14). 
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Performing the scaling operation successively for all 
sets (23) and (22), substituting into eq. (3), linearizing 
the integral obtained and calculating it, we find the leading 
term of the asymptotic expansion 

&<0>и) = s -~r — fo 4 t 

(16 л2)2 t2 41 (24) 

Formula (24) is in line with the result obtained in ref. '. 
It can be easily understood that among the diagrams 

of the (2a +1) th order (n > 2) there must be a diagram 
such as shown in fig. 4. It is clear that the ay set is 
a minimal one and the leading behaviour of the vertex 
function has the form 

! , ^ , (t) j - (25) 

for diagrams of any order with respect to the interaction 
constant. Hence follows that the complete behaviour of the 
vertex part is essentially noneikonal. 

Fie- 4 
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It is seen from the above analysis that the method 
developed in the present work has a general character 
and is applicable for a broad class of theories. Such an 
approach is also valid when we consider diagrams of 
other types, in particular, for the processes of scattering 
and production of new particles. 

The authors wish to thank A.N.Sissakian and S.P.Ku-
leshov for helpful discussions. 
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