СООБЩЕНИЯ ОБ bЕАИНЕННОГО ИНСТИТУТА คAEPHЫX ИССАЕАОВАНИЙ
 АУБНА

$$
\frac{C 323.3}{S-66}
$$

N.B.Skachkov

ON THE SPIN STRUCTURE
OF ELECTROMAGNETIC INTERACTION
OF TWO RELATIVISTIC PARTICLES

$13 z$

ААБОРАТОРИЯ ТЕОРЕТИЧЕСНОЙ

N.B.Skachkov

ON THE SPIN STRUCTURE
OF ELECTROMAGNETIC INTERACTION
OF TWO RELATYVISTIC PARTICLES

1. In paper $/ 1 /$ the spin structure af Feynman matrix eleatints of scattering amplitude which describe the interaction of iwo rebativistic particles in onemeson exchange approximation ho , cen studied. These matrix elements correspond to some quasi-motential by which the interaction is described in the quasi-noiontial method for relativistic two-particle problem proposed by Loganav and Tavkhelidze $/ 3,3 /$. In what follows, like in 'l/, we shall use the equation for the wave function describing the relative motion of two relativistic particles with spin $1 / 2$, obtained within the framework of Kedyshevsky quesi-potential approach $/ 4-6 /$.

$$
E_{p}\left(E_{p}-E_{q}\right) \Psi_{q}(\vec{p})_{\sigma_{1} \sigma_{2}}=\frac{1}{\left(L_{2} \pi\right)^{3} \sum_{\sigma_{1}^{\prime}, \sigma_{2}^{\prime}=-\frac{1}{2}}^{\frac{1}{x}}} \int_{\frac{d^{3} \vec{k}}{E_{k}}}^{\left.v_{1}^{\sigma_{1}^{\prime} \sigma_{2}^{\prime}}\left(\vec{p}, \vec{k} ; E_{q}\right) \Psi_{q}(\vec{k})_{\sigma_{1}^{\prime} \sigma_{1}}^{x 1}\right), ~}
$$

or in the case of scattering

$$
\begin{aligned}
& \Psi_{q}(\vec{p})_{\sigma_{1} \sigma_{2}}=\frac{(2 \pi)^{2}}{m} \delta(\vec{p}-\vec{q}) \sqrt{\vec{p}^{2}+m^{2}} \xi_{\sigma_{1}} \xi_{\sigma_{2}}+
\end{aligned}
$$

where

$$
E_{p}=p_{0}=\sqrt{\vec{p}^{1}+m^{2}} ; \quad E_{q}=q_{0}=\sqrt{\vec{q}^{2}+m^{2}}
$$

In the second approximation in coupling constant the quesi-potential $V_{1}^{\sigma_{1}^{\prime} \epsilon_{1}^{\prime}}\left(\vec{\beta}, \vec{k} ; E_{q}\right)$ coincides with the Feynman matrix element of the scattering amplitude, that corresponds to diagrams of one-boson exchange.

In equations (1) and (2) ali the momenta of particles belong to the mass shell

$$
\begin{equation*}
p_{0}^{2}-\vec{p}^{2}=m^{2} \tag{3}
\end{equation*}
$$

©quality (3) defines the three-dimensional manifold of hyperboloid on the upper sheet of which the Lobachevsky space is realized. The inteprat in in (1) and (2) is performed with the volume element on hyperboloid $\frac{d^{3} \vec{E}}{E_{x}}$, which is the volume element in Lobachevsky space. So, it is possible to consider the geometry of the momentum space in equations (1) and (2) to be the Lobacheraky geometry $/ 7 /$. In $/ 1 /$ equation (2) with a quasi-potential correaponding to one-meson exchange interaction has been transformed to a form in which an interaction is described by local in lobachevsky space quasi-potential. The spin structure of such quasi-potential looks like e direct geometrical relativistic generalization of the spin atructure of quantum-mechanical potentials in the sanse of replacement of the $\dot{\text { Luclidean geometry of momentum space by lobachevsky }}$ geonetry in relativistic case.

The aim of the present work is to study the spin structure of electromngnetic interation of two relativistic particles with the hely of method develo; ed in $/ 1 /$. We shall restrict ourselves to consideration of the electron-positron interaction only, and for the quasi-patential in (1) and (2) we shall take the Feyman nialrix elements, corresponding toone-photon exchange. As it will be shown later the spin structure of this interaction looks like the geometrical relativistic generalization of the spin structure of Breit interaction.
2. Let us coneider at first an interaction of two electrons.In nccordance with the general rules for constructing the quasifotential from the matrix elements of relativistic scattering amplitude $T / 1-4,6 /$ in the second order in coupling constant,
to quasi-potential V there corresponds the matrix element of the scattering amplitude $\left\langle\vec{p}, \sigma_{1} \sigma_{L}\right| \vec{T}\left|\vec{k}, \sigma_{2}^{\prime} \vec{S}_{2}^{\prime}\right\rangle$, anformoble to the Feynman diagrams on Fig. 1.

Fig. 1.

The first diagram describes the"direct" interaction and the second - the"exchange" one. The foments of incoming ?riches P_{1}, p_{t} and the moments of outgoing particles k_{1}, k_{2} belling
 $\vec{k}_{1}=-\vec{k}_{2}=\vec{k}$, the solid tune corresponds to a opinor particle, the waned line- to photri. Thus, for the matrix element of the quasi-potential V there exists the following representation (the index (2) mesne the second approximation in the coupling constant).

$$
\begin{align*}
& \left\langle\vec{p}, \sigma_{1} \sigma_{\perp}\right| V^{(1)}\left(E_{q}\right)\left|\vec{k}, \sigma_{1}^{\prime} \sigma_{\perp}^{\prime}\right\rangle=\left\langle\vec{p}, \sigma_{1} \sigma_{2}\right| T^{(2)}\left|\vec{k}, \sigma_{\perp}^{\prime} \sigma_{2}^{\prime}\right\rangle= \\
& \quad=\left\langle\vec{p}, \sigma_{1} \sigma_{2}\right| V_{d i m}^{(1)}\left(E_{q}\right)\left|\vec{k}, \sigma_{1}^{\prime} \sigma_{د}^{\prime}\right\rangle-\left\langle\vec{p}, \sigma_{1} \sigma_{1}\right| \bigvee_{\text {exch }}^{(2)}\left(E_{q}\right)\left|\vec{k}, \sigma_{1}^{\prime} \sigma_{1}^{\prime}\right\rangle . \tag{4}
\end{align*}
$$

where

$$
\begin{align*}
& \left\langle\vec{p}, \sigma_{1} \sigma_{\perp}\right| V_{d i r}^{(2)}\left(E_{q}\right)\left|\vec{k}, \sigma_{1}^{\prime} \sigma_{2}^{\prime}\right\rangle= \tag{5}
\end{align*}
$$

and

$$
\begin{align*}
& \left\langle\vec{p}, \sigma_{1} \sigma_{2}\right| V_{\text {exch }}^{(\alpha)}\left(E_{q}\right)\left|\vec{k}, \sigma_{2}^{\prime} \sigma_{2}^{\prime}\right\rangle= \\
& =4 \pi e^{2} \cdot \frac{\left.\left[\bar{u}^{\sigma_{1}}(\vec{p}) \gamma^{N} u^{\prime}(-\vec{k})\right] g^{\mu}\left[\bar{u}^{\prime}(-\vec{p}) \gamma^{\nu} u^{\sigma^{\prime}} / \vec{k}\right)\right]}{\left(p_{1}-k_{2}\right)^{2}} \ldots(\tag{6}
\end{align*}
$$

Let us consider the pert of the quasi-potential, describing the direct interaction.

The Dirac biapinors $\mu^{\sigma}(\vec{k})$, normalized by condition

$$
\begin{equation*}
\vec{u}(\vec{k}) u^{\sigma^{\prime}}(\vec{k})=2 m \delta_{55^{\prime}} \tag{7}
\end{equation*}
$$

can be represented as follows:

$$
\begin{equation*}
u^{\sigma}(\vec{k})=S_{\vec{k}} u^{\sigma}(0) \tag{8}
\end{equation*}
$$

In spinar representation, where $\quad($ - matrices are of the form:

$$
\gamma^{\prime^{\prime}}=\left(\begin{array}{cc}
0 & g^{H^{\mu}} \sigma_{\mu} \tag{9}\\
\sigma_{\mu} & 0
\end{array}\right)
$$

(G_{μ}^{\prime}-Pauli matrices with $\sigma_{0}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$), bispinor in the rest frame has the form

$$
\begin{equation*}
u^{\sigma}(0)=\sqrt{m}\binom{\xi_{e}}{\xi_{F}} \tag{10}
\end{equation*}
$$

where \mathcal{F} - two-component spinur with the norm $\dot{\xi} \cdot \xi \sigma^{\prime}=\delta_{5 \sigma^{\prime}} \cdot$ In this representation the matrix S_{R} is diagonal

$$
S_{\vec{k}}=\left(\begin{array}{cc}
H_{\vec{k}} & 0 \tag{11}\\
0 & H_{\vec{k}}^{+-1}
\end{array}\right)
$$

4)

With the help of the matrix $\vec{\alpha}=\gamma^{\circ} \vec{\gamma}=\left(\begin{array}{cc}\vec{E} & 0 \\ 0 & -\vec{G}\end{array}\right) \quad S_{\vec{c}}$ cen be represented as

$$
S_{k}^{a s}=\sqrt{\frac{k_{0}+m}{2 m}}\left(1+\frac{\vec{d} \vec{k}}{k_{0}+m}\right)
$$

In atandard representation, where $y^{0}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right), \mathcal{Z}$ matrix has the form $\vec{\alpha}=\left(\begin{array}{cc}0 & \overrightarrow{6} \\ \overrightarrow{6} & 0\end{array}\right)$. The transition from bispinors in apinor rep= resentation to those in standard representation can be performed

The matrix $\quad H_{k}=\frac{k_{0}+m+\overrightarrow{6} \vec{k}}{\sqrt{2 m\left(k_{i}+m_{0}\right)}} \quad$ Prom $\quad ; L(2 c)$ ur corresponds to the pure Lorentz transformetics $\mathcal{A}_{\vec{k}}$, which
transforms the rest system of the particle into system where the particle momentum is $k=\left(k_{0}, \vec{k}\right)$, i.e. $\left.\Lambda_{2} / m i\right)=\left(k_{i}, \vec{k}^{*}\right.$; Let us introduce for thel-vector $\Lambda_{p}^{-1} k$ the following notation

$$
(k-p)^{0} \equiv\left(\Lambda_{p}^{-1} k\right)^{0}=\frac{k^{c} p^{0}-\vec{k} \vec{p}}{m}=\sqrt{m^{2}+(\vec{x}(-) \vec{p})^{1}}
$$

$$
\begin{equation*}
\vec{k} \leftrightarrow \vec{p} \equiv\left(\overrightarrow{\left.\Lambda_{p}^{1} k\right)}=\vec{k}-\frac{\vec{p}}{m}\left(k^{\Delta}-\frac{\vec{k} \vec{p}}{p^{0}+m}\right)\right. \tag{12}
\end{equation*}
$$

Vector $\vec{\Delta}=\vec{k}(-) \vec{p} \quad$ is the difference of two vectors in
Lobachevsky space, realized on the upper sheet of hyperboloid
(2). In the norrelativistic limit it reduces to the usual differrene of two vectors $\overrightarrow{\Delta_{2}}=\vec{k}-\vec{F} \quad$ in the Euclidean space. So it can be treated as relativistic generalization of threedimensional momentum transfer vector.

Two-component apinor $\mathcal{F} \cdot$ describes the polarization pate of a particle in the rest system or the particle the axes of which coincide with the axes of the system where particle momentum is equal to \vec{k}. Thus, σ here is the spin project. tion on the third axis $h_{3}(\vec{k})$ of the coordinate syatem connected with momentum \vec{k}.

The quasi-potential $V_{\sigma_{f} \sigma_{1}}^{\sigma_{1}^{\prime} \sigma_{j}^{\prime}}\left(\vec{p}, \vec{r} ; E_{q}\right)$ in equations (1), (2) can be obtained from $\left\langle\vec{户}\right.$) $\left.\bar{F}_{2} \sigma_{2}\right| V\left(E_{q}\right)\left|\vec{k}, \sigma_{1}^{\prime} \sigma_{2}^{\prime}\right\rangle$ by passing from bispinors to two- component spinors
with the help of matrix

$$
S_{0}=S_{0}^{-1}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

$$
\begin{align*}
& \left.\left\langle\vec{p}, \sigma_{1} \sigma_{2}\right| T /\left(E_{q}\right)\left|\vec{k}, \sigma_{i}^{\prime} \sigma_{\alpha}^{\prime}\right\rangle=\sum_{\alpha, \beta, \rho, \mu=0}^{3} \vec{u}_{\alpha}^{\sigma_{1}}(\vec{p}) \vec{u}_{\beta}^{\sigma_{2}}(\vec{p})\right]_{\alpha \beta, \rho \mu}\left(\vec{p}, \vec{k} ; E_{q}\right) u_{\rho}^{\sigma_{j}^{\prime}}(\vec{r}) u_{\mu}^{\sigma_{2}^{\prime}}(\vec{k}), \\
& =\xi_{\sigma_{1}}^{+} \xi_{\sigma_{2}} V_{\sigma_{1} \sigma_{1}}^{\sigma_{1}^{\prime} \xi_{2}^{\prime}}\left(\vec{p}, \vec{k} ; E_{q}\right) \xi \sigma_{1}^{\prime} \xi_{\sigma_{1}^{\prime}} . \tag{13}
\end{align*}
$$

Now, in expression for a current in (3) we shall make the translion to bispinors in the rest systems of particles :

$$
\begin{equation*}
\int_{\sigma_{1} b_{3}^{\prime}}^{\mu}(\vec{p}, \vec{k})=\bar{u}^{\sigma_{1}}(\vec{p}) \gamma^{\prime} u^{\sigma_{1}^{\prime}}(\vec{k})=\bar{u}^{\sigma_{1}}(0) S_{\vec{p}}^{-1} \gamma^{H} S_{\vec{k}} u^{\sigma_{1}^{\prime}}(0) . \tag{14}
\end{equation*}
$$

Keeping the definition of Wigner rotation, described by matrix

$$
\begin{align*}
& \text { Ken } \left.H_{p}, k\right) \in S U(2)^{\left.\frac{1}{4}\right),} \\
& S_{\vec{p}}^{-1} S_{\vec{k}}=S_{\vec{k}(\rightarrow)} \cdot \underline{I} \otimes D^{\frac{1}{2}}\left\{V^{-1}\left(H_{p}, k\right)\right\} \tag{15}
\end{align*}
$$

(I - is the unity matrix $4 \otimes 4$), (24) takes the form

$$
\int_{c_{1} \kappa^{\prime}}^{\mu}(\vec{p}, \vec{k})=\vec{u}^{c_{1}}(0) S_{\vec{p}}^{-1} Y^{\mu} S_{\vec{p}} \cdot S_{\vec{k} \oplus \vec{p}} \cdot I \otimes D^{\frac{1}{2}}\left\{V^{-1}\left(H_{p}, k\right)\right\} u^{\left[u^{\prime}\right.}()(16)
$$

An application of the well-known formula

$$
\begin{equation*}
S_{p}^{\prime-1} \gamma^{\mu} S_{p}=\left(A_{p}\right)_{\nu}^{\mu} \gamma^{\nu} \tag{18}
\end{equation*}
$$

slows us to represent (16) like

$$
\begin{aligned}
& \int_{\sigma_{1} \sigma_{1}^{\prime}}^{\mu}(\vec{p}, \vec{k})=\frac{ \pm}{m} \vec{u}^{\sigma_{1}}(0)\left\{p^{\mu}+i \gamma^{5} W^{\mu}(\vec{p})\right\}{\underset{r l}{\vec{k}(-) \vec{p}}} \cdot\left[\otimes D^{\frac{1}{2}}\left\{V_{(19)}^{-1}\left(H_{p}, k\right)\right\}\right. \text {. } \\
& \text { - } u^{\sigma_{1}}(0) .
\end{aligned}
$$

The 4 -vector of the relativistic spin $W^{\mu}(\vec{p})$ /9/ has the following components

$$
\begin{align*}
& W(\vec{p})=\frac{1}{2} \vec{\sigma} \vec{p} \\
& \vec{W}(\vec{p})=\frac{1}{2} \vec{\sigma} m+\frac{\vec{p}\left(\frac{1}{2} \vec{b} \vec{p}\right)}{p_{0}+m} \tag{20}
\end{align*}
$$

and γ^{5}-matrix in spinor representation is

$$
V^{5}=i\left(\begin{array}{rr}
-1 & 0 \tag{21}\\
0 & 1
\end{array}\right)
$$

From (19) there follows the formula for the current $\int_{\sigma_{1} \sigma_{1} \prime}^{N}(\vec{p}, \vec{k})$:
The function $D^{\frac{1}{2}}\left\{V^{-1}\left(H_{p}, k\right)\right\}$ can be written as

$$
D^{\frac{1}{2}}\left\{V^{-1}\left(H_{p_{1}}, k\right)\right\}=\sqrt{\frac{\left(p_{0}+m\right)(k+m)}{2 m\left(\Delta_{0}+m\right)}}\left\{1-\frac{\overrightarrow{p_{k}}+i \vec{\sigma}[\vec{p} \vec{k}]}{\left(p_{0}+m\right)\left(k_{0}+m\right)}\right\}(17)
$$

where* ${ }^{*}$

Let us mention that in nonemativactie iitatt $\quad \Delta a=\sqrt{m^{2}+\vec{B}}$ lakes the form

$$
A_{0} \approx \operatorname{mc}+\frac{(\vec{c}-\vec{p})^{2}}{2 m c}
$$

and

$$
D^{\frac{1}{2}}\left\{V^{-1}\left(H_{p ;}, k\right)\right\} \approx 1-i \frac{\vec{G}[\vec{p} \vec{k}]}{4 m^{2} c^{2}}
$$

 tivistic limy t of the erumpent (14) ${ }^{0 \%}$

$$
\begin{align*}
& \int_{\sigma_{1} \sigma_{L}}^{0}(\vec{p}, \vec{x}) \approx \approx m\left\{1+\frac{\left(\vec{x}-\vec{F} j^{2}\right.}{8 m^{2} c^{2}}+i \frac{\vec{G}[\vec{p} \vec{x}]}{4 m^{2} c^{2}}\right\}_{r_{1} \sigma_{1}} \tag{26}\\
& \overrightarrow{\dot{b}}_{\sigma_{s} \epsilon_{s}}(\vec{p}, \vec{k}) \approx \frac{1}{c}\left\{(\vec{p}-\vec{k})+2 \vec{k}+i\left[\overrightarrow{v^{*}}(\vec{p}-\vec{k})\right]\right\}_{\sigma_{1} \sigma_{l}} \tag{27}
\end{align*}
$$

From (22), (23) emo (17) the symmetry :austin, foll cw

$$
\begin{equation*}
j^{0}(-\vec{p},-\vec{k})=j^{0}(\vec{p}, \vec{k}), \quad ; \quad \vec{j}(-\vec{p},-\vec{k})=-\vec{j}(\vec{p}, \vec{k}) \tag{28}
\end{equation*}
$$

-)
General perantetrizotion for vector current with the help of relativistic spin vector is given in $f 10 \%$.

The difference of the second terms of (26) from the analogous expression in $/ 13 /$ follows from the fact that together with the transformation to nonrelativistic limit there has been done an additional transformation from twowomponent apinore to "Schrodinger" amplitudes, ide. the substitution $\underset{9}{ } \quad \xi=\left(1-\frac{\vec{P}^{2}}{8 m^{2} c^{x}}\right) Y_{\text {Sch }}$.

$$
\begin{align*}
& \text { (5) like: } \\
& \left\langle\vec{p}, \sigma_{1} \sigma_{2}\right| V_{\text {dir }}^{\left.()_{j}\right)}\left(E_{g}\right)\left|\vec{k}, \sigma_{1}^{\prime} \sigma_{2}^{\prime}\right\rangle= \tag{29}
\end{align*}
$$

$$
\begin{align*}
& \text { where, obviously, } \\
& \left\langle\vec{p}, \sigma_{1} \sigma_{2}\right| V_{d i r}^{(2)}\left(E_{q}\right)\left|\overrightarrow{c_{2}} \sigma_{1 p} \sigma_{2 p}\right\rangle=\xi_{\sigma_{1}}^{t} \xi_{\sigma_{2}} V_{d \text { ir }}^{(2) \sigma_{1 p} \sigma_{2 p}} \sigma_{2}\left(\vec{x}()_{p} ; \vec{p}_{j} E_{q}\right) \xi_{\sigma_{i p}} \xi_{\sigma_{2 p}}= \\
& =\frac{\int_{\sigma_{1} \sigma_{2 p}}^{\mu}(\vec{p}, \vec{k}) g^{\mu \nu} \int_{\sigma_{2} \sigma_{\alpha p}}^{\nu}(-\vec{p},-\vec{k})}{(p-k)^{2}} . \tag{30}
\end{align*}
$$

The role of aligner rotation, that appears in expression for the quasi-potential, can be easily understood if one considers the transformation law for the state vector under the Lorentz transformistion $\Lambda_{\vec{p}}^{-i}$:

$$
\begin{equation*}
U\left(A_{p}^{-1}\right)\left|\overrightarrow{k_{j}}, \sigma\right\rangle=\sum_{\sigma^{\prime}=-\frac{1}{2}}^{\frac{1}{2}} D_{\sigma \sigma}^{\frac{1}{2}}\left\{V^{-1}\left(H_{p,}, k\right)\right\}\left|\vec{A}_{p,}^{-1} k^{\prime}, \sigma^{\prime}\right\rangle \tag{OI}
\end{equation*}
$$

So the matrix of polarization index transformation depends on the momentum of the state.Therefore,for the matrix element (5) the right indices $\sigma_{1}^{\prime}, \sigma_{2}^{\prime}$ and left ones σ_{1}, σ_{2} transform under the Lorentz transformation in a different way. By the terminology of the authors of paper ${ }^{\prime 10 /}$, where this question has been studied, the spin indices are "sitting" on their own momenta. This is based on the fact that spin projection on the third axes is defined in the rest system of a particle. But, in general, to each momentum there corresponds its own system, so the axes of spin quantization
has been performed.
Z and Z^{\prime} are different for right and left: indices. The funcidin $D_{5}^{\frac{1}{2}}\left\{V^{-1}\left(H_{p}, k\right)\right\}$ matches the axes of quantization and by $1: 1, \theta$ operacion it perform a the "removing" of spin indices from the moment ur
\vec{k} to the momentum \vec{p}. Thus, the indices σ_{1}, σ_{2} and $\sigma_{i p}, \sigma_{i p}$ of tie quasi-potentisl (30) are "sitting" on the same momentum \vec{p}.

Let us mention that in the left hand side of the equations (1) and (2) the spin indices of the wave function $\Psi_{q}(\vec{P})_{\sigma_{1} \sigma_{2}}$ are "sitting" on the momentum $\overrightarrow{\vec{r}}$, and in the right hand side the spin indices of the function $\Psi_{q}(\vec{k})_{\epsilon_{1}^{\prime} \sigma_{2}^{\prime}}$ are "sitting" on the momentum \vec{K}. Let us perform now in equations (1) and (2) the transition to spin indices of the same nature, by defining under the sign of integration the wave function

$$
\Psi_{q}(\vec{k})_{\sigma_{L p} \sigma_{2 p}}=\sum_{\sigma_{i}^{\prime} \sigma_{2}^{\prime}=-\frac{1}{2}}^{\frac{1}{2}} \delta_{\sigma_{1 p}, \sigma_{2}^{\prime}}^{\frac{1}{2}}\left\{V\left(H_{p},,^{1}\right)\right\} D_{\sigma_{2 p}, \sigma_{2}^{\prime}}^{\frac{1}{2}}\left\{V^{-1}\left(H_{p}, k\right)\right\} \psi_{q}(\vec{k})_{\sigma_{1}^{\prime} \sigma_{1}^{\prime}(32)}
$$

spin indices of which $\sigma_{1 p}$ and $\sigma_{2 p}$ are "sitting" on the momenta \vec{p}. Aa a result, the equations (1) and (2) take the form:

$$
\begin{aligned}
& E_{p}\left(E_{p}-E_{q}\right) \Psi_{q}(\vec{p})_{\sigma_{1} \sigma_{2}}= \\
& =\frac{1}{(A T)^{3}} \sum_{\sigma_{1 P}^{\prime}, \sigma_{2 p}=-\frac{1}{2}}^{\frac{1}{2}} \int \frac{d^{3} \vec{k}}{E_{k}} V_{\operatorname{dir} \sigma_{1} \sigma_{2}}^{(2)}\left(\vec{k}(-) \vec{p} ; \vec{p} ; E_{q}\right) \Psi_{q}(\vec{k})_{\sigma_{ \pm p} \sigma_{2 p}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { os } \\
& \Psi_{q}(\vec{p})_{\sigma_{1} \varepsilon_{2}}=\frac{(2 \pi)^{3}}{m} \delta(\vec{p}-\vec{q}) \sqrt{\vec{p}^{2}+m^{2}} \xi_{\sigma_{1}} \xi_{c_{2}}+
\end{aligned}
$$

where all spin indices in (33) and (34) are "sitting" on the same momentum \vec{p}. Natural character of this transformation to the form (33-34) can be understood when solving the quasi-potential
equation by the iteration method. Indeed, putting in (2) as the first approximation : fie expression $\frac{(2 \pi)^{3}}{m} \delta(\vec{p}-\vec{q}) \sqrt{\vec{p}^{2}+m^{2}} \xi \sigma_{i} \zeta \sigma_{2}$, describing the free motion, we are to perform in addition the "removing" of sin in indices σ_{1} and σ_{2} from the momentum \vec{p} to the ramentum \vec{k}. At the same time, when iterating (34) we do not need this additional operation, because it is taken into account autoabtichlly by the transformation (32). It is easy to obtain an explicit form of the quasi-potential in (33) and (34) by substituting into (30) equality (23) and making use of the relations (28). The denominator in (30) can be represented as /7/:

$$
\begin{equation*}
\frac{1}{(p-k)^{2}}=\frac{1}{2 m^{2}-2 p k}=\frac{1}{2 m\left(m-\Delta_{0}\right)} \tag{35}
\end{equation*}
$$

As a result, the operator of quasi-potential $V_{\operatorname{din}}^{(\lambda)}\left(\vec{k}<-3 \vec{p} ; \vec{p} ; E_{q}\right)$ which corresponds to the matrix element of the scattering ampletude (5), can be written through its spin structures in the following way

$$
\begin{align*}
& V_{\operatorname{dir}}^{(\alpha)}\left(\vec{k}(-) \vec{p} ; \vec{p} ; E_{q}\right)= \\
& =-4 \pi e^{2} \cdot \frac{2 m}{\Delta_{0}-m}- \tag{36}\\
& -4 \pi e^{2} \cdot \frac{\left(\overrightarrow{\sigma_{1}} \vec{\Delta}\right)\left(\vec{\sigma}_{2} \vec{\Delta}\right)-\left(\vec{\sigma}_{1} \vec{\sigma}_{2}\right) \vec{\Delta}^{2}}{\vec{\Delta}^{2}}- \\
& -4 \pi e^{2} \cdot \frac{i \vec{\sigma}_{1}[\vec{p} \vec{\Delta}]+i \overrightarrow{\sigma_{2}}[\vec{p} \vec{\Delta}]}{\Delta_{0}-m} \cdot \frac{2 p_{0}}{m^{2}}- \\
& -4 \pi_{1} e^{2} \cdot \frac{p_{0}^{2}\left(\Delta_{0}+m\right)+2 p_{0}(\vec{p} \vec{B})-2 m^{3}}{\Delta_{0}-m} \cdot \frac{2}{m}- \\
& -4 \pi e^{2} \cdot \frac{\left(\overrightarrow{\sigma_{i}} \vec{p}\right)\left(\overrightarrow{\sigma_{i}} \vec{\Delta}\right) \cdot\left(\overrightarrow{\sigma_{2}} \vec{p}\right)\left(\overrightarrow{\sigma_{2}} \vec{\Delta}\right)}{\vec{\Delta}^{2}} \cdot \frac{2}{m^{2}} .
\end{align*}
$$

where

$$
\vec{\Delta}=\vec{k}(-) \vec{p}
$$

Now let us clarify the meaning of different 'rms napearing in (36). The first term, as it is clear from (3), describer the Coulomb interaction of spinless particles, because it corresponds to the same Feynman diagram as Irani in Fig. (I), if no would consider the solid lines there as corresponding to scalar particles, but not to spinor ones.

In non relativistic limit, neglectirip in (36) all the terms proportional to $\frac{1}{c}$, only the first term contributes, which according to (24), transforms into the nonrelativistic Coulomb potential $-4 \pi^{2} \cdot \frac{4 m^{2}}{(\vec{k}-\vec{\beta})^{2}}$. In the next $\frac{1}{c^{2}} \quad$ toppoximaton, a norvenishing contribution comes from the second, third and fourth terms in ide. The lest term does not contribute because of its proportionality bo $\frac{1}{c^{4}}$. Thus, we find that in the nonrelativistic limit, with Recount of terms of the order of $\frac{1}{C^{2}}$ only, the operator af quasj-potential (36) is

$$
V_{\text {hovel }}^{(2)}\left(\vec{k}-\vec{p} ; \vec{p} ; \varepsilon_{q}\right)=
$$

$$
\begin{aligned}
& =-4 \hbar e^{2} \cdot \frac{4 m^{2}}{\Delta_{3}^{2}}- \\
& -4 \pi e^{2} \cdot \frac{1}{c^{2}} \cdot \frac{\left(\overrightarrow{\sigma_{1}} \overrightarrow{A_{y}}\right)\left(\overrightarrow{\vec{\sigma}_{1}} \overrightarrow{\Delta_{3}}\right)-\left(\overrightarrow{\sigma_{1}} \overrightarrow{\sigma_{2}}\right) \vec{\Delta}_{3}^{2}}{\overrightarrow{\Delta_{3}}}- \\
& -4 \pi e^{2} \cdot \frac{4}{c^{2}} \cdot \frac{i \vec{ज}_{1}\left[\vec{p} \vec{\Delta}_{3}\right]+i \vec{G}_{4}\left[\overrightarrow{\vec{p}} \vec{\Delta}_{3}\right]}{\vec{\Delta}_{7}^{2}} \\
& -4 \pi e^{2} \cdot \frac{2}{c^{2}} \frac{\vec{\Delta}_{0}^{2}+\frac{A \vec{p} \vec{\Delta}}{}+4 \vec{p}^{2}}{\vec{\Delta}_{3}^{2}}
\end{aligned}
$$

where

$$
\vec{A}_{3}=\vec{k}-\vec{p}
$$

is the difference of vectors in Euclidean space.
The terms in the second line in (36) and (37) describe the apin-spin interaction and have the same form in the relativistic case in the nomrelativistic one. The transformation from one theory to another in these terms is performed by change of Lobachevsky geometry to Euclidean one for the nonrelativistic case. So it is possible to say that the spin-spin interaction in the second order in coupling constant has an "absolute" geometrical character according to replacement of nonrelativistic theory by relativistic one. The terms in the third line in (36) and (37) describe the spin-orbital interaction. The spin structure of this interaction also has an "absolute" geometrical meaning. The terms in the fourth line of (36) and (37) have the orbital origin.

Now the last term in (36) can be expanded in the following spin structures

$$
\begin{align*}
& 4 \pi e^{2} \cdot \frac{2}{n^{2}} \cdot \frac{\left(\overrightarrow{\sigma_{1}} \vec{p}\right)\left(\overrightarrow{G_{2}} \vec{\Delta}\right) \cdot\left(\overrightarrow{\sigma_{2}} \overrightarrow{P^{\prime}}\right)\left(\overrightarrow{\sigma_{2}} \vec{\Delta}\right)}{\vec{\Delta}-2}= \tag{38}\\
& =4 \pi e^{2} \cdot \frac{2}{m^{2}} \cdot \frac{(\vec{p} \vec{U})^{2}+[\vec{p} \vec{U}]^{2}}{\vec{\Delta}^{2}}+ \\
& +4 \pi e^{2} \cdot \frac{1}{m^{2}} \frac{i \overrightarrow{\theta_{2}}[\vec{P} \vec{A}]+i \overrightarrow{g_{2}}[\vec{P} \vec{\Delta}]}{\vec{\Delta}^{-2}} \cdot(\vec{P} \vec{A})^{2}+ \\
& 4 \pi e^{2} \cdot \frac{1}{m^{2}} \cdot \frac{\langle i \overrightarrow{\vec{a}}[\overrightarrow{\vec{p}} \vec{\Delta}]+i \vec{i}[\vec{p} \vec{A}]\}^{2}}{\vec{\Delta}^{2}} \text {. }
\end{align*}
$$

The equations (1), (2) and (33), (34) are written in comes., so the wave function $\mathcal{Y}_{q}(\vec{p})_{\sigma_{\perp} \sigma_{l}}$ describes the relativenotion of two particles with equal masses and spin $1 / 2$. Therefore, we can add the spine of particles using usual additional rules for two angular momenta in quantum mechanics. Let us define the wave funddion with the total spin $S=0,1$

$$
\begin{equation*}
\Psi_{q}(\vec{p})_{s, \sigma}=\sum_{\sigma_{1}, \sigma_{2}}^{\frac{1}{2}}\left\langle\frac{1}{2} \frac{1}{2} ; \sigma_{1} \sigma_{2} \mid S \sigma\right\rangle \Psi_{q}(\vec{p})_{\sigma_{1} \sigma_{2}} \tag{39}
\end{equation*}
$$

Using the relation for Glebsh-Gorden coefficients

$$
\begin{equation*}
\sum^{\frac{1}{2}}\left\langle\frac{1}{2} \frac{1}{2} ; \sigma_{1}^{\prime} \sigma_{2}^{\prime} \mid S \sigma\right\rangle\left\langle\frac{1}{2} \frac{1}{2} ; \sigma_{1}^{\prime} \sigma_{2}^{\prime} \mid S^{\prime} \sigma^{\prime}\right\rangle=\delta_{S S^{\prime}} \delta_{\sigma \sigma^{\prime}} \tag{40}
\end{equation*}
$$

$\sigma_{1}^{\prime}, \sigma_{2}^{\prime}=-\frac{1}{2}$
\cdots. Te represent an equation (33) in the form

$$
\begin{align*}
& E_{p}\left(E_{p}-E_{q}\right) \Psi_{q}(\vec{F}) \sigma_{1 \xi}= \tag{41}
\end{align*}
$$

where the quasi-potential $V^{(\alpha)} S^{\prime \prime} \sigma_{p}^{\prime}\left(\vec{k}(\rightarrow) \vec{p} ; \vec{p} ; E_{q}\right) \quad$ is defined by equality

$$
\begin{align*}
& \langle\vec{p}, S \sigma| V^{(2)}\left(E_{q}\right)\left|\vec{k}, S^{\prime} \sigma_{p}\right\rangle= \tag{42.}\\
& =\sum_{\sigma_{1}, \sigma_{2}=-\frac{1}{2}}^{\frac{1}{2}}\left\langle\frac{1}{2} \frac{1}{2} ; \sigma_{1} \sigma_{2} \mid S \sigma_{\sigma}\right\rangle\left\langle\vec{p}, \sigma_{L} \sigma_{2}\right| V^{(2)}\left(E_{q}\right)\left|\vec{k}, \sigma_{4}, \sigma_{1 p}\right\rangle\left\langle\frac{1}{2} \frac{1}{2} ; \sigma_{1 p} \sigma_{2 p} \mid S^{\prime} \sigma_{p}^{\prime}\right\rangle
\end{align*}
$$

On transforming the second line in \{36\} to the form

$$
\frac{\left(\vec{\sigma}_{1} \vec{\Delta}\right)\left(\overrightarrow{\sigma_{n}} \vec{\Delta}\right)-\left(\vec{\sigma}_{1} \vec{\sigma}_{1}\right) \vec{\Delta}^{2}}{\vec{\Delta}^{2}}=2 \frac{\left(\vec{S} \vec{\Delta}^{2}-\vec{\Delta}^{2} \cdot \vec{S}^{2}+\vec{\Delta}^{2}\right.}{\vec{\Delta}^{2}}
$$

where

$$
\vec{S}=\frac{1}{2}\left(\vec{\sigma}_{1}+\vec{a}_{\lambda}\right)
$$

and taking the last, term in the form (3B) it becomes clear that spin operators of nstiticleg emerge ir quasi-potential only in the form of the total spin S. Thus, the quasimpotential (36) commutes with the operator \vec{S}^{2}, i.e. the total spin of the system is conserved. In general case, the singlet-triplet transitions are forbidden because of the Pauli principle. Therefore the quasipotentig? in (33) can be taken being diagonal in the total spin $\langle\vec{p}, s \sigma| V^{(a)}\left(E_{q}| | \vec{k}, s^{\prime} \sigma_{p}^{\prime}\right\rangle=\langle\vec{p}, s \sigma| V^{(a)}\left(E_{p}\right)\left|\vec{k}, s \sigma_{p}^{\prime}\right\rangle \delta_{s s^{\prime}}$.

That leads to a separation of equation (33)into two equations, onefor the triplet state and the second - for the singlet one.

Now let us study another part of quasi-potential, that corresponds to a diagram of "exchange" interaction given by expression (6). The denominator in (6) cen be represented in the following way

$$
\begin{equation*}
\left(p_{1}-k_{2}\right)^{2}=2 m_{1}^{2}-2 p_{1} k_{2}=2 m\left(m-\Delta_{1}^{0}\right) \tag{43}
\end{equation*}
$$

Where

$$
\begin{equation*}
\Delta_{+}^{0} \equiv\left(\Lambda_{p} k\right)^{v}=\frac{p_{0} k_{0}+\vec{p} \vec{k}}{m}=\sqrt{m^{2}+\vec{\Delta}_{+}^{2}} \tag{44}
\end{equation*}
$$

and

$$
\begin{equation*}
\vec{\Delta}_{+} \equiv \overrightarrow{A_{p} k}=\overrightarrow{k^{\prime}}+3 \vec{p}=\vec{k}+\frac{\vec{e}}{m}\left(k^{0}+\frac{\vec{k} \vec{B}}{\left.p^{0}+m\right)}\right) \tag{45}
\end{equation*}
$$

Obviously s applying to (6) the same transformations (14-19), allowing to represent the "direct" quasiwpotential (5) in the form (29), we come ta analogous representation for "exchange" quasipotential
$\left\langle\vec{P}, \sigma_{1} \sigma_{2}\right| V_{a \operatorname{coh}}^{(2)}\left(E_{q}\right)\left|\overrightarrow{k_{1}}, \sigma_{1}^{\prime} \sigma_{2}^{\prime}\right\rangle=$
(46)

It. is easy to be convinced of that the explicit expression for "exchange" quasi-potential can be obtained from (36) by chan; int the vector $\quad \vec{\Delta}=\vec{k}(-) \vec{p} \quad$ by the vector $\vec{\Delta}_{+}=\vec{k}(+) \vec{p} \quad$ and making use of equality

$$
-\vec{k} \leftrightarrow \vec{p}=-\vec{k}(+) \vec{p} .
$$

The $D^{\frac{1}{z}}\left\{V^{-1}\left(H_{f}-k\right)\right\}$ functions in (46) describe wigner rotadion that performs a "removing" of spin indices from momentum $-\vec{k}$ onto momentum \vec{p}.
3. Now let us consider an important case of electron-positron interaction. In papers /15-17/ the quasi-potential method was applied for description of this system. In / $5,17 /$ it was shown that the wave function of this system satisfies equations (1) and (2). Our aim here is to show that the spin structure of the quasi-potential in this case can be built analogously to electron -electron interactions with the help of elements of Lobachevsky space. As before, our consideration will be confined to the quasipotential in the second approximation in coupling constant, Quite analogously to (4) the quasi-potentisl is constructed with the help of matrix elements of scattering amplitude, consisting of two

$$
\begin{aligned}
& \text { parts: } \\
& \left\langle\vec{p}, \sigma_{1} \sigma_{2}\right| V\left(E_{q}^{\left(\sigma_{2}\right)}\right)\left|\vec{k}, \sigma_{1}^{\prime} \sigma_{2}^{\prime}\right\rangle=\left\langle\vec{p}, \sigma_{1} \sigma_{1}\right| T^{(2)}\left|\vec{k}, \sigma_{1}^{\prime} \sigma_{2}^{\prime}\right\rangle= \\
& =\left\langle\vec{p}, \sigma_{1} \sigma_{2}\right| V_{s \text { ca } H}^{(2)}\left(E_{q}\right)\left|\vec{k}, \sigma_{1}^{\prime} \sigma_{1}^{\prime}\right\rangle-\left\langle\vec{p}, \sigma_{1} \sigma_{2}\right| V_{a \operatorname{ann}}^{(2)}\left(E_{q}\right)\left|\overrightarrow{K_{1}} \sigma_{1}^{\prime} \sigma_{2}^{\prime}\right\rangle
\end{aligned}
$$

The first term in (47)

$$
\begin{align*}
& \left\langle\vec{p}, \sigma_{1} \sigma_{2}\right| V_{\text {stat }}^{(2)}\left(E_{q}\right)\left|\vec{k}, \sigma_{1}^{\prime} \sigma_{2}^{\prime}\right\rangle= \\
& =-1 \pi e^{2} \cdot \frac{\left[\bar{u}^{\sigma_{1}}(\vec{p}) \gamma^{\prime \prime} u^{\sigma_{1}^{\prime}}(\vec{k})\right] g^{\mu^{\nu}}\left[\bar{V}^{-\sigma_{1}^{\prime}}(\vec{k}) \gamma^{\nu} v^{\sigma_{2}}(-\vec{p})\right]}{\left(p_{2}-k_{1}\right)^{2}} \tag{48}
\end{align*}
$$

corresponds to "scattering" diagram (see Fig. 2).

Fig. 2.
there corresponds " annihilation" diagram, drawn in Fig. 3.
*)
Bispinor $U^{\sigma}(\vec{k})$, corresponding to positive energy solution of Dirac equation, and negative energy bispinor $v^{\sigma}(\vec{k})$ are connected with the expansion of apinor field in creation and annihilation operators as follows:
\qquad

$$
\bar{\Psi}(x)=\Psi^{+}(x) y^{0}=\frac{1}{(2 n)^{-3 / 2}} \sum_{\sigma_{x}-\frac{1}{2}}^{\frac{1}{2}} \int \frac{d^{3} \vec{k}}{k_{0}}\left\{e^{i k y} a_{\sigma}^{+}(\vec{k}) \overrightarrow{u^{\sigma}}(\vec{k})+e^{-i k b_{\sigma}}(\vec{k}) \vec{v}^{-}(\vec{k})\right\}(51)
$$

Fig. 3.

Let us perform a transition in (48) to the charge-conjugated bispinors that describe positrons (cf. with paper /5/) with the help of matrix $C=\gamma^{0} \gamma^{5}$.

$$
\begin{equation*}
v=c \frac{T}{u} c \quad ; \quad \vec{v}=\vec{u}^{\mathbf{c}} \cdot c^{T} \tag{52}
\end{equation*}
$$

A charge-conjugated bispinor $u^{f}(\vec{k})$ has the same form as bispinor (8):
where

$$
u^{c \sigma}(\vec{k})=\sqrt{m}\left(\begin{array}{ll}
\frac{k_{0}+m+\vec{k} \vec{k}}{\sqrt{2 m\left(k_{0}+m\right)}} & \varphi^{\sigma} \tag{53}\\
\frac{k_{0}+m-\vec{k} \vec{k}}{\sqrt{2 m\left(k_{0}+m\right)}} & \varphi^{\sigma}
\end{array}\right)
$$

$$
\dot{y}^{5} \varphi^{\sigma 1}=\Gamma_{\sigma \sigma^{\prime}}^{\prime}
$$

As a result the operator of the quasi-potential (48), rewritten

after the transformations, analogous to those used to obtain from
(5) the expression (36), will be of the same form as (36).

Now we shail gtudy the expresoion (13). In order io get a ragsteilits in use in (49) the relatirn (1s) for separation of Higner rothtins. le: us riluge the order of bioninorg in (49). An spplication of firtz : heorem allowit to represent tumumerntor of (49) in the form:

$$
\begin{align*}
& \left.\left[\vec{u}^{-\sigma_{2}}(\vec{p}) \gamma^{\mu} v^{\sigma_{1}}(-\vec{p})\right] q^{\mu \nu}\left[\vec{v}^{\sigma_{2}^{\prime}}(-\vec{k}) \gamma^{\prime} v^{\bar{s}^{\prime}} / \vec{k}\right)\right]= \tag{55}\\
& =\left[\vec{u}^{\sigma_{i}}(\vec{p}) \cdot U^{\sigma_{1}^{\prime}}(\vec{k})\right] \cdot\left[\vec{v}^{\sigma_{2}^{\prime}}(-\vec{k}) \cdot v^{s_{i}}(-\vec{p})\right]- \\
& -\frac{1}{2}\left[\vec{u}^{5_{1}}(\vec{p}) \gamma^{\mu^{\prime}} u^{\sigma_{s}^{\prime}}(\vec{k})\right] \cdot g^{\mu^{\prime}} \cdot\left[\vec{v}^{\sigma_{2}^{\prime}}(-\vec{k}) \gamma^{\lambda} v^{\sigma_{2}}(-\vec{p})\right]+ \\
& +\frac{1}{2}\left[\vec{u}^{5}(\vec{p}) y^{+v^{5}} u^{\sigma^{\prime}}(\vec{k})\right] \cdot q^{\mu^{2}} \cdot\left[\vec{v}^{\sigma^{\prime}}(-\vec{k}) y^{\nu} v^{5} v^{\sigma}(-\vec{p})\right]+ \\
& +\left[\vec{u}^{a_{i}}(\vec{p}) v^{5} u^{\bar{w}_{1}^{\prime}}(\vec{k})\right] \cdot\left[\vec{v}^{\sigma_{2}^{\prime}}(-\vec{k}) v^{5} v^{\sigma_{2}^{\prime}}(-\vec{p})\right]=
\end{align*}
$$

Let us perform thetransition in (55) to charge-conjugated bjafinora with the help of (52). Taking into account the relations

$$
C^{-1} Y^{\nu} C=Y^{-1} ; C^{-1} V^{5} C=-Y^{5}
$$

we obtain for (49) the following representation

$$
\begin{align*}
& \left\langle\vec{F}, \sigma_{1} \sigma_{2}\right| V_{a n n}^{(a)}\left(E_{q}\right)\left|\vec{k}, \sigma_{1}^{\prime} \sigma_{2}^{\prime}\right\rangle= \tag{56}\\
& =4 r_{1} e^{2} \cdot \frac{\left[\vec{u}^{\sigma_{1}}(\vec{p}) \cdot u^{\sigma_{1}}(\vec{k})\right] \cdot\left[\vec{u}^{c \sigma_{2}}(-\vec{p}) \cdot u^{c \varepsilon_{2}^{\prime}}\left(-\overrightarrow{k^{\prime}}\right)\right]}{:\left(p_{1}+p_{2}\right)^{2}}+ \\
& +1 \operatorname{li}^{2} \cdot \frac{\left[\vec{u}^{\sigma_{1}}(\vec{p}) \gamma^{\mu} u^{\sigma_{2}}(\vec{k})\right] \cdot g^{\mu 2}\left[\vec{u}^{c \sigma_{2}}(-\vec{p}) \gamma^{\lambda} u^{c \sigma_{2}^{\prime}}(-\vec{k})\right]}{\left(p_{2}+p_{2}\right)^{2}}+ \\
& +4 \pi e^{2} \cdot \frac{\left[\vec{u}^{\sigma_{1}}\left(\overrightarrow{p^{\prime}}\right) \cdot \gamma^{\mu} \gamma^{5} u^{\sigma^{\prime}}(\vec{k})\right] \cdot g^{\mu \nu} \cdot\left[\vec{u}^{c=}(-\vec{p}) \gamma^{\lambda} \gamma^{5} u^{c \sigma_{2}^{\prime}}(-\vec{k})\right]}{\left(p_{1}+p_{2}\right)^{2}}+
\end{align*}
$$

$+4 \pi e^{2} \frac{\left[\bar{u}^{\sigma_{1}}(\vec{p}) Y^{c} u^{\sigma^{2}}(\vec{k})\right]\left[\bar{u}^{c \boldsymbol{c}}(-\vec{p}) \gamma^{5} u^{c_{4}^{2}}(-\vec{k})\right]}{\left(p_{1}+p_{2}\right)^{2}}$

In comes. the denominator of (49) can be written as

$$
\begin{equation*}
\frac{1}{\left(p_{1}+p_{2}\right)^{2}}=\frac{1}{\left(p_{i}^{i}+p_{2}^{2}\right)^{2}}=\frac{1}{4\left(m^{2}+\vec{p}^{2}\right)} . \tag{57}
\end{equation*}
$$

Thus, after transformation of (hasi-rootertisil (49) to the form (56) we can use the relation (15). As a result analogously to (29) the quasi-potential (56) can be represented in the form

$$
\begin{aligned}
& \left\langle\vec{p}, \sigma_{1} \sigma_{2}\right| V_{a n m}^{(2)}\left(E_{q}\right)\left|\vec{k}, \sigma_{2}^{\prime} \sigma_{2}^{\prime}\right\rangle= \\
= & \sum_{{ }_{\sigma}^{\sigma} \sigma_{r} \sigma_{\Omega_{p}}=-\frac{1}{2}}^{\frac{1}{2}}\left\langle\vec{p}, \sigma_{1} \sigma_{2}\right| V_{a n n}^{a)}\left(E_{q}\right)\left|\vec{k}, \sigma_{s p} \sigma_{2 p}\right\rangle D_{c_{4 p} \sigma_{1}^{\prime}}^{\frac{1}{2}}\left(V^{-1}\left(H_{p,}, k\right)\right\} D_{\sigma_{2 p} \sigma_{2}^{\prime}}^{\frac{1}{2}}\left\{V^{-1}\left(H_{p}, k\right)\right\},
\end{aligned}
$$

$$
\begin{align*}
& \left\langle\vec{p}, \sigma_{1} \sigma_{2}\right| V_{a n k}^{(2)}\left(E_{q}\right)\left|\vec{k}, \sigma_{1}^{\prime} \sigma_{2}^{\prime}\right\rangle= \tag{58}\\
& =\xi^{+} \sigma_{1} \grave{\varphi}^{+\sigma_{2}} V_{a n n}^{(2)} \sigma_{i p} \sigma_{2 p}\left(\vec{k}\left(\vec{p} ; \vec{p} ; E_{q}\right) \xi^{\sigma_{i p}} \xi^{\sigma_{2 p}} .\right.
\end{align*}
$$

So, in the case of electron-positron interaction, described by the quesi-potential (47), 㫙ter the transition in equations (1) and (2) to the wave function (32), which spin indices are "sitting" on the same momentum \vec{p}, equations (1) and (2) take the form (33)-(34).

Let us study now the spin structure of the cuesimpotential $V_{\text {ann }}^{(2)} \sigma_{1} \sigma_{1} \sigma_{2 p}\left(\vec{c} \leftrightarrow \vec{p} ; \vec{p} ; E_{p}\right)$ - The spin structure, given by the second term in (56) is defined by (22). The structures, corresponding to the first and last line in (56), have been found in paper ${ }^{1 / \prime}$;

$$
\begin{align*}
& {\left[\vec{u}^{\sigma_{1}}(\vec{p}) \cdot u^{\sigma_{i p}}(\vec{k})\right]\left[\vec{u}^{\sigma_{2}}\left(-\vec{p} i u^{\sigma_{2 p}}(-\vec{k})\right] \equiv J_{s}(\vec{p}, \vec{k})=\right.} \tag{59}\\
& =2 m\left(\Delta_{0}+m\right)\left(\xi^{t_{i}} \xi^{c_{r}}\right)\left(\psi^{\sigma_{2}} y^{\sigma_{2}} p\right) \text {, } \\
& {\left[\bar{u}^{5}(\vec{p}) \gamma^{5} u^{5}+(\vec{k})\right] \cdot\left[\bar{u}^{5}(-\vec{p}) \gamma^{5} u^{\sigma_{2 p}}(-\vec{k})\right] \equiv \eta_{P \leq}(\vec{p}, \vec{k})=(60)} \\
& =-\frac{2 m}{\Delta_{0}+m} \vec{\xi}^{+\sigma_{1}} \mathcal{Y}^{+}\left\{\left(\vec{\sigma}_{1} \vec{\Delta}\right)\left(\vec{\sigma}_{2} \vec{\Delta}\right)\right\} \xi^{\sigma_{3 P}} \varphi^{\sigma_{1} P} .
\end{align*}
$$

The spin structure of the quest-potential (58) corresponding to the third line in (56) is defined ty the spin structure of the axial current

$$
\begin{equation*}
\int_{A}^{\mu}(\vec{p}, \vec{k})=\vec{u}(\vec{p}) Y^{\mu} Y^{5} u(\vec{k}) . \tag{61}
\end{equation*}
$$

The matrix $\int_{\vec{p}}$, due to its dependence on matrix $\vec{\alpha}$, commute a with X^{5} It makes it possible to use relations (15) and (18). So, after separation of wigner rotation, we find the expression for axial current components:

Taking account of symmetry relation e

$$
\begin{equation*}
\dot{J}_{A}^{0}(-\vec{p},-\vec{k})=-j_{A}(\vec{p}, \vec{c}) ; \vec{j}_{A}(-\vec{p},-\vec{k})=\overrightarrow{j_{A}}(\vec{p}, \vec{c}) \tag{63}
\end{equation*}
$$

we come to the equality

$$
\begin{align*}
& {\left[\vec{u}^{\sigma_{y}}(\vec{p}) \gamma^{\mu} \gamma^{5} u^{\sigma_{1 p}}(\vec{k})\right] \cdot g^{N+} \cdot\left[\vec{u}^{c \sigma_{2}}(-\vec{p}) \gamma^{\lambda} r^{5} u^{c \sigma_{1}}(-\vec{k})\right] \equiv J_{A}(\vec{p}, \vec{k})=} \\
&=\xi^{+} \sigma_{1} \vec{p}^{\sigma_{2}} {\left[\frac{2\left(p_{0}^{2}+\vec{p}^{-1}\right)}{m\left(\Delta_{0}+m\right)} \cdot\left(\vec{\sigma}_{1} \vec{\Delta}\right)\left(\vec{\sigma}_{2} \vec{\Delta}\right)+\right.} \tag{64}\\
&+4_{p-1} \frac{\left(\overrightarrow{\sigma_{1}} \vec{p}\right)\left(\vec{\sigma}_{2} \vec{J}\right)+\left(\vec{\sigma}_{1} \vec{\Delta}\right)\left(\overrightarrow{\sigma_{2}} \vec{p}\right)}{m}+ \\
&\left.+2\left(\Delta_{0}+m\right) \frac{2\left(\vec{\sigma}_{1} \vec{p}\right)\left(\vec{\sigma}_{2} \vec{p}\right)+\left(\overrightarrow{\sigma_{1}} \overrightarrow{\sigma_{2}}\right) m^{2}}{m}\right\} \xi^{\sigma_{1} p} \varphi^{\sigma_{2} p}
\end{align*}
$$

Thus, finally the yuasi-potential which describes the int.ritt, .. or electron and positron and stands in equations (., in in , :

$$
\begin{aligned}
& V \begin{aligned}
(2) \sigma_{i p} \sigma_{2 p}
\end{aligned}\left(\vec{k}(-) \vec{p} ; \vec{p} ; E_{q}\right)= \\
& \left.\left.\quad=V_{\text {scott }}^{(\alpha)} \sigma_{1 p} \sigma_{1} \sigma_{2}(\vec{k} t) \vec{p} ; \vec{p} ; E_{q}\right)-V_{a n n}^{(a) \sigma_{1 p} \sigma_{2 p}}(\vec{k} t) \vec{p} ; \vec{p}, E_{q}\right)
\end{aligned}
$$

where the quasi-potential operator $V_{S_{c a t t}}^{(2)}\left(\vec{k} \leftrightarrow \vec{p} ; \vec{p} ; E_{q}\right)$ ns it was shown before, is given by (3ε) with the opposite sign, and

$$
\begin{aligned}
& V_{a n n}^{(\alpha)} \quad \sigma_{1 p} \sigma_{A p}\left(\vec{k} \leftrightarrow 3 \vec{p} ; \vec{p} ; E_{q}\right)= \\
& =4 \pi e^{2} \cdot \frac{J_{f}(\vec{p}, \vec{c})+\frac{1}{2} J_{V}(\vec{p}, \vec{k})+\frac{1}{2} J_{A}\left(\overrightarrow{p_{j}}, \vec{k}\right)+Y_{p s}\left(\overrightarrow{p_{j}}, \vec{c}\right)}{4\left(m^{2}+\vec{p}^{2}\right)}
\end{aligned}
$$

The form of $\mathcal{Y}_{S}(\vec{p}, \vec{k}), Y_{P}(\vec{p}, \vec{k})$ and $Y_{A}(\vec{p}, \vec{k})$ is destined by relations (53), (60) and (64), respectively, isth the help of (22) and (36), it is easy also to define $\mathcal{J}_{A}(\vec{p}, \vec{k})$

$$
\begin{aligned}
& Y_{V}(\vec{p}, \vec{k}) \equiv\left[\vec{u}^{\sigma}(\vec{p}) y^{H} u^{\sigma_{1}}(\vec{k})\right] \cdot g^{\mu \nu}\left[\bar{u}^{c \sigma_{\alpha}}(-\vec{p}) \gamma^{\nu} u^{c \sigma_{\alpha} p}(\vec{k})\right]= \\
& =\xi^{+\sigma_{1}} \dot{\varphi}^{\sigma_{2}}\left\{4 m^{2}+2 m \frac{\left(\overrightarrow{\sigma_{1}} \vec{\Delta}\right)\left(\overrightarrow{\sigma_{2}} \vec{\Delta}\right)-\left(\overrightarrow{\sigma_{1}} \overrightarrow{\sigma_{2}}\right) \vec{\Delta}^{2}}{\Delta 0+m}+\right. \\
& +4 p_{0} \frac{i \overrightarrow{\sigma_{1}}[\vec{p} \vec{\Delta}]+i \overrightarrow{\sigma_{2}}[\vec{p} \vec{\Delta}]}{m}+ \\
& +4 \frac{p_{0}^{2}\left(\Delta_{0}+m\right)+2 p_{0}(\vec{p} \vec{\Delta})-2 m^{3}}{m}+ \\
& \left.+\frac{4 \cdot\left(\overrightarrow{\sigma_{2}} \vec{p}\right)\left(\overrightarrow{\sigma_{1}} \vec{\Delta}\right) \cdot\left(\overrightarrow{\sigma_{2}} \vec{p}\right)\left(\overrightarrow{\sigma_{2}} \vec{\Delta}\right)}{m\left(\Delta_{0}+m\right)}\right\} \xi^{\sigma_{2}} y^{\xi_{p}}
\end{aligned}
$$

Now, let us loot fer the monrelativistic limit of the quasipotential ($C 5$). Thing into account that the denominator in (65) is proportional $t \frac{1}{4 m^{2} c^{i}}$, the contribution to $\left.V_{a n m}^{(\alpha)}(\vec{k} G) \vec{p} ; \vec{p} ; E_{q}\right)$ will give the firi.t terai in (66), J_{S} and the term $\frac{2\left(\Delta_{0}+m\right)}{m}$. . $m^{2}\left(\vec{\sigma}_{1} \vec{\sigma}_{2}\right)$ in the thirdine of (64). As a result in the nonrelstivistic limit only the expression

$$
\begin{equation*}
-4 \pi e^{2} \cdot m^{2} \cdot \stackrel{ \pm}{\xi} \sigma_{1} \varphi^{+} \sigma_{2}\left\{\frac{1}{2 m^{2} c^{2}} \cdot\left(3+\vec{\sigma}_{1} \vec{\sigma}_{2}\right)\right\} \xi^{\sigma_{1 p}} \varphi^{\sigma_{1 p}} \tag{CT}
\end{equation*}
$$

contributes to "annihilation" part of the quasi-potenrial (47). This expression is used in Erect equation for description of positronium.
4. In conclusion we fri doing to summarize the results stained here. Te have taken Toscana maris elements of the scattering amplitude, correspmeng to one-photon exchange, ns the quasi-potential. It turns gut, that after separation from than of the Wigner rotation, that mas the kinematical nature, they are parametrized through the wantities defined on the hyperbolojd(3), ie. belonging to Lobachevsr; space. An expansion of the quasi-potential
in spin structures was carried out without using the expansion in $\frac{f}{\varepsilon}$. It is remarkable that in this consideration some terms in the expansion of the quais-potential in spin structures and the spin structures themselves look like the direct geciuctricel (in the sense of change of Euclidean geometry by Lobachevsky one) relativistic generalization of spin structures and potentials in quantum mechanics. The natural continuation of formalism developed here will consist in its formulation in the relativistic configuration representation $/ 7 /$ because in this representation the relativistic Coulomb problem has been explicitly solved for the spinless case.

The author considers it to be his pleasant dent to express his sincere gratitude to V.G. Kadyshevsky, h.M. ifir-hnsimov, A.D.Donkov, M.D. Mateev, S.C.Mavrodiev, V.M.Vinoprhdov, L.I.Fonomarev and R.N.Faustov for useful discussions.

References

1. N.B.Skachkov. JINR Communicetion ER-7159, DubnA, (1973).
2. A.A. Logunov, A. f.Tavichelidze. Nuovo Cim., 29, 380 !1963).
3. V.G.Kadyshevsky, A. N.Tarkhelidze. Problems of Theoretical Physics, Nauka, Moscow (2969) (In Russian). (In/3/ one can find a mors complete liat of the articles on the quasi-potential approach).
4. V.G.Kadyshevsis. Nucl. Phys., B6, 125 (2968).
5. V.G.Kadyshevsky. IETP, 46, 654 (1964); JETP, 46, G72 (2964); Dokl. Akad. Neuk sSSf, 760, 573 (1965).
6. V.G.Kadyshevsky, M.D.Mateet. Nuovo Cim, 55A, 275 (2967).
7. V.G.Kadyshevsky, H.M.Mir-Kasimov, N. I.Skachkof. Nuovo Cim., 55A, 233 (1369).
 And Nucleus", vol.s, N.3, (translation of "slementary Particlea and Atomic Nucleus", Dubne (1370)).
8. Yu.M.Sh1rokot, JETP 21, 74e ?1951).
9. A.A.Cheshkov, Yu.M.Shsrokov. JETP, 44, 1982 (1963) (In Rusisian),
10. A.A.Cheshbov. JETP: 80 144: (1966) (In Fussian).
11. Y.P.Kozhevnikot, V.E.Troitski, S.V.Trubngkov, Yu.M.Shirokov. TMP, 10, 47 (1972). (In Rusaian).
12. P.Moussa, R.Stora. Analysis of Scattering and Decay, Gordon and Breach , New-York-London-Paris (1968).
13. V.B.Bereatetsky, E.M.Lifshitgh, A.P.Pitaevsky. Relativistic quantum theory, part I, Nauka, Nogeow (296e) (In Ruasian) r
14. R.N.Faustov. Nucl.Phys., 7E, 669 (1966); Nuovo Cime, 69A, 37, (1970).
15. R.N.Faustov. Paticles and Nucleus, vol.3, N.1, 238 (1972) (In Russian).
16. A.S.Ilohev, MoD.Mateev. JINR Communication E2-5225, Dubna (1970).

Reoeived by Publishing Department on July 17, 1973.

