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1. In peper /17

the apin structure of Feynman muirix eleconts
of scattering amplitude which describe the interaction ~f two relu-
tivistic particles in one-meson exchange approximatiorn he- -een
studied. These metrix elements correspond to some guAsi-pntential
by which the interaction is described in the quasi-npcicntial method
for relativistic two-particle problem proposed by Logunav and
Tavkhelidze /ﬁ,S/. In what follows, like in /1/, we 3hall use the
equation for the wave function describing the relative motion of

twe relativistic particles with spin 1/2, obtained within the framc-

-5
work of Kedyshevsaky queai-potential approach /4 “/.
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EP=F°= ‘F'l‘-rm“_’ ; E,,y’—' %c: \/¢"‘+m‘ .

In the aecond approximaetion in coupling constant the quasi-potentinl
o5 ﬁ%z £ \coincides withtheFeynmen matrix element of the scat-
terlng Bmplltude, thet corresponds to diegrame of one-boamon
axchange.'
In equationa (1) and (2) all the momenta of particles

belong {o the méss ahell
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»quality (3) defines the three-dimensional manifold of hyperboloid
on the upper sheet of which the Lobachevsky space is realized. The
integration in (1) and (2) is performed with the volume element on
hyperboloid 4:5? , which is the volume element in Lobachevsky space.
So, it is possizle to consider the geometry of the momentum space

in equations (1) and (2) to be the Lobachevaky geometry /7/.

4 equation (2) with a quasi-potential correaponding to

In
one-meson exchange interacticn has been transformed to a form in
which an interaction ies described by local in Lobachevaky space
quasi-potential. The spin structure of such quasi-potential looks
like o direct geometrical relativistic generalization of the spin
atructure of yuantum-mechanical potentials in the scnse of replace-
ment of the iZuclidean geometry of momentum space by lLobachevsky
geometry in relativistic case.

The aim of the present work is to study the spin structure
of electromngnetic interntion of two relativistic particles with
the help of method develo;ed in /l/. We shall restrict ourselves
te consideration of the electron-positror interaction only, and
“or the guasi-potential in (1) and (2) we shall take the Feynuan
walrix elements, corresponding toone-photon exchange. As 1t will be
shown later the spin structure of this interaction looks like the
geometrical relativistic generalization of the spin structure of
Breit interaction.

2. Let us coneider at first an interaction of two electrons.In
nccordance with the general rules for constructing the quasi-

jotential from the matrix elements of relativistic scattering

amplitude I-T1 /1-4,8/ in the second order in coupling constant,



to queai-potential \/ there corresponds the watrix element of
. . —_ Pt
the scattering amplitude {}3',6'15‘} ] l)?)s; 5, » , <onformable to

the Feynman diagrams on Fig. 1.
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Fig. 1,
The first diagram describes the®direct® interaction and Lhe

second ~ the”exchange® one. ’I‘hei{momenta of incowring particles

;JL, ps and the moments of cutgeing particles k,  w, belong

to the centre of nags systex { c.n.s5.), il.e. F: = —]3::: F/
. - v .
E:: = —k-;:~ = Kk , the s0lid l:ne corrasponds tn a spinor

particle, the waved line- to photrn. Thus, for the metrix element
nf the quaai-potential V there exists the following represen~
tation ( the index (2] means the second approximation in the

coupling constant).
!
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Let us consider the part of the quasi-potential, describing the

direct interactign.

The Dirac bispinors u“(bl‘. , normulized by condition
GYE) v (2) =2 S Q)
can be represented as follows:
U2 = S ulo) (8
In _spinor representation,where Y - matricee are of the
X/l _ ( 0 gl‘ﬂ s’,,
- & 0 (9
( G’,. ~Pauli matrices with 6, = (:‘7 i) ), bispinor in the

form:

rest freme has the form

Uf/O) = fm' (?: s (10)

where ge’ - two-component spinor with the norm g,— go-/ = 5’;6’ “
In this representation the matrix ,S,z is diagonal *)
’g_’ . N‘z 4]
k= Yl (1)
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With the help of the matrix £ =K {: o-& Stcan be

represented as

Sz=\f’°"—“‘7 (L+;ZE—-)

A Kotwr
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n atandard repr;sentatmn, where K = o-i) I matrix has
0
the form & = (gr o o The trensition from bispinors in spinor rep-

resentation to those in standard representation can be performed

6
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The matrix H-' = G‘ﬁm‘ from ;L{l C)gr up

corresponds tothe pure Lorente transformaticsn A;: , whicn
transforms the rest system of the part *"le into a gystem where
the particle momentum is |k = (kc,k‘.) , i.e. Az{w o) = (k‘.,K/'

Let us introduce for theqvector /1 ¥ the following notution

’kx—JF) (/l“k\ }—1——1———— Vh‘l*(ﬁ‘ﬂi’

o o -4 )‘_ > B s fc.'" \
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vector A =k ~p is the difference of two vectors in

Labachevsky space, realized on the upper sheet of hyperboloid
{2). In the nonrelativistic limit it reduces %o the usual diffe-
rence of two vectoras A—: = E’*/? in the Euclidesn apace.
So it cen be treated as a reletivistic generalization of three-
dimensional momentum transfer vector.

Twa-compoaent spinor f.,—— " degcribes the polarizstion
etate of s perticle in the rest system of the particle the axes
of which coincide with the axes of the system where particle mo-
mentum is equal to e . Thua, © here is the spinm projec-
tion on the third axis [ (E’) of the coordinate syatem connected
with momentum ? .

The quasi-potential Vb_ “ F’ E ) in equations (13,
(2) cen be obteined from <F)‘£‘ﬂ \V{E‘})’ '?);llb:i,7 by passing

from bispinors ta two=- componenf spinors
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with the help of matrix So = Sai = et I' _1)
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Now, in expreasion for a current in (3) we shall make the transi-

tion to biaspinorsin the reest systems of particles :

K =L v ) %) Sy Ly
j«ﬁ,’/ﬁﬂ’“ (F)( U*(R) = U*o) SFX S? U™) . a)
Keeping the derinitign of Wigner rotation, described by matrix
Vit e SU?

gl
-4 3 -
Si Sz = Seapled? { VL8 (15)

(1 - is the unity matrix Lok 1,(14) takes the form

(0= 85 [ S S TODHV T e
An application of the well-known formula

S: {r S|> = (Ar )':,' XQ (18)
allows us to represent (16) like ) .
§1 52 =4 it { pF ot WS Seg TOD Y 00

'Uf'l(o).
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The 4-vector of the relativistic spin \/\/ (F) 79/ has the

t'ollowing components
Wi =i¢F
p/ =z
—
\,\/'{* 18w
P/=z
5 .
and Y -matrix in spinor representation is
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Y“(oa.- (21)
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From (19) there follows the formula for the current jqq F) :

mﬁ{v—YHF,K)J can be written as ]
DHV - (t_:)_(ﬁ_”:l{ o
V= e [ - ET

. PG F) (20)
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Let us mention that in nanrelmtivastic lilmat A, = Vpa e F*

iakes the form
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Making use of (243, [&8) end {20) &
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18 easy te £ind the nanrela-
tivistie limit of the current {1
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From (22), {23) sna (17) the symmetry relstisn. Tollow
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Relations {22} m.d (2R8) atlow us te renresent the quasi-potential

)

. “ e N .
General psresmetrization for vector current with the help of

relativistic spin vecter is given in /10/.

)
The difference of the second term of (26) from the snalogous
expressaion in 137 follows from the fact that together with the
transformaticn to nonrelativistic limit there has been done an
additional tranaformetion from two-component spinera to "Schridin-
ger" amplitudes, i.e, the uubuitu;ion S - (1 -EL-’:;)E?S%-L



(5) like:
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where, obviously, . we
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The role of Wigner rotation, that appears in expression for the

(30)

quasi-potential, cesn be easily understood if one considers the
transformation law for the atete vector under the Lorentz trans-

formation A

'U( Ny ]”397 Zﬁj)nr'g_v (H K-)} \A' o, 57 (a1)

6—--
So the matrix of PDlHl‘lZBthn index transformation depends on the mop-

mentum of the state.Therefore,for the matrix element (5) the right
!
indices q,ﬁl’ and left ones6; &, tranaform under the Lorentz
)
transformation in a different way. By the terminology of the

/10/

authors of paper s where this question hes been studied, the
8pin indices are "sitting” on their own momenta. This is based

on the fact that spin projection on the third axes is defined in
the rest syatem of e particle. But, in general, to each momentum

there corresponds itaown system, so the axes of spin quantization

has been performed.



€ and 2/ are different for right and left indices. The function
“S{V-7Hp;r.)jmatches the axes of quentization and by 1}lis opers-
tion it performs the “removing” of spin 4ndices from the momentwr
i to the momentum ? » Thus, the indices 6,,%, and G}Fﬁ:?cf e
quasi-potentisl (30) ere "sitiing” on the aame momentum F .
Let us mention that in the left hand side of the equat:ouns

(1) and (2) the spin 1indices of the wave f“ﬂCtiOH’TE&(?jgls; are
"gitting"” on the momentum -r’ , and in the right hand side the apin
indices of the function q’{k)ﬁg‘ are "sitting" on the momentum
\_C' . Let us perform now in equatlona (1) and (2) the trasnsition
ta spin indices of the same nature ,by defining under the sign cf

integration the wave function

2 4
I >
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spin i{ndices of whxch G‘P and E“T ere "sitting" on the momentia

‘-:’ . A8 a result, the equations (1) and (2) take the form:
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where 8ll spin 1ndices in (33) and (34) are "sitting" on the same

momentum F’ « Natural character of this transformatiocn to the

form (33-34) can be understood when solving the guaai-potential



eyuation by the iteration methcd. Indeed, putting in (2) es the
first approximation :}¢ expression (-%:\1—)-3 Xr{ia’ —5;)\1“;""-&\»‘ SC,LSQ)
describing the free motion, we ere to perform in addition the
"removing" of spin indices ©) and -4 from the momentum F’.
to the comentum . At the ssme time, when iterating (34)

we do not need this additional operation, because it is taken into
account &utonsticelly by the transformation (32). It is easy to
obtain en erplicit form of the quasi-potential in (33) and (34)

by substituting into (30) equality (23) and making use of the

relationg (28). The denominator in (30) can be represented as /7/.‘
i i _ i ]
(p-w=>? T 2w -2pwe Do (o - 82 ) (35

-
As & result, the operstor of quasi-potentisl \/;lun [\C‘ )?} PJ 1},])
which corresponds to the matrix element of the scattering empli-
tude (§), cen be written through its spin structurefin the

following way
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waere
A = g e>F.

Now let us clarify the meaning of different 'crms appearing in
(36). The first term, a3 it 18 clear from (3%), describes the
Coulomb interaction of spinless particles, because it corresponds
to the seme Feynman diagram as drawn in Fig. (1},if one would
consider the solid lines there as corres-onding to scelar particles,
bui not to spinor ones.

In nenrelativistic limit, neglectimg in (36) all the terms
proportionsl to é , only thLe first term contributes, which

according to (24), transforms into {nhe nonrelstivistic Coulomb

. Lk ] .
otential - 1. . In the next . 4pproxime-~
P ine B L PP
tion, & ncnvanishing coatribution comes from the =econd, third

and fourth terws in {36}, The la.t term does not contritute
becauge of itz proporticnelity to év » Thus, we find thet in
the nonrelativistic limit, with rnccount of terms of the order of
f; only’the operator of guasi-potential (368) is
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where

-
&, =
is the difference of vectors in Euclidean apace.

The terma in the second line in (36) and (37) describe the
spin-gpin interaction and have the same form in the relativistic
case @8 in the -nonrelativistic one. The transformation frou
one theory to another in these terms is performed by chenge of
Lobachevsky geometry to Euclidean one for the nonrelativistic case.
S0 it is possible to amy that the spin-spin intersction in the
second order in coupling constant has an "absolute" geometrical
character according to replacement of nonrelativistic theory
by relativistic one. The terms in the third line in (36) and (37)
describe the spin-orbital interaction. The spin structure of this
interaction also has an "absolute" geometrical meaning. The terms
in the fourth line of (36} and (37) have the orbital origin.

Now the last term in (36) can be expanded in the following
spin structures
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The equetions (1), {2) and (33), (34) are written in c.m.s., so

the weve function f\i/‘ ("’)e_ deacribes the relative qotion of
1 Pleie

two particles with equel massea and apin 1/2. Theretore, we can

add the spina of particles using uausl additional rules for two

sngular moments in quantum mechanics. Let us define the wave func-

tion with the total spin S = 0)1

?(F)ss—Z 4:2..7.)81 alser ¥ (F)ﬁr : (39)

%, =’
Using the relation fcr Clebsh-Gordan coefficients

X,
&!
IR IR LS E ST Ly Jee (40)
1)5"1
‘1 n@ repredent an equation (33) in the form

Er(Er-E?)'Y?(‘F’)a—Lg. B
(1)2: £ Vi st “’f”'E‘;W@
(2

where the qx.as:t—potentlel V P(\&C)P 7 1) ip defined

(41)

by equelity

(R ge| V'm(Ei) I, 8'6,> = )
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On transforming the second line in (36) to the form
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where



for

and taking the lamat term in the form (38) it becomes clear that

spin operators of nartic{gg emerge ir quasi-patential only in the
form of the totsl spin :g . Thus, the quasi-potential (36) commutes
with the operator 3’1 , lL.e. the total spin of the system is
conserved, In general case, the singlet-triplet transitiona are
forbidden because of the Psuli principle. Therefore the quasi-

potential in (33) cen be tuken being diagonsl ip the total spin
2 1) a - 1
(FEeIVTRIEES > - (F 8otV fsar)}k,Sep Fegt .

That leads 1o a separation of equation (33)1nto two cquations, one-
she triplet gtate end the second - For the singlet one.

Now let us study snother part of quasi-potential, that cor-
responds to a diagram of "exchenge" interaction given by expression

{6). The Jenominator in (6) cen be represented in the following

wEY
R [
(P,__k,_)‘:.h‘z-,zp&m = 2 (V"‘“A+" (43)
where
~ -
A 5 (M) = pee *+FZ o BT (aa)
m

and

(45)

u

k-_°+__i-':E__- )
Prw) )

g+ E
e+ E

Z, = () = TwF

Obviously; applying to (6) the same tranaformations (14-19) ;

i

allowing to represent the "direct" quasi-potential (5) in the form

(29» we come to analogous repredentation for “exchange" quaai-

potential
¢an| Vad (E)IFSIE = o
5 @ i A E 4
=) ¢ Fas Vs (BB s sy q{V(u,,-u)jJ)% Vil
"P)S,F‘i



It is easy to be convinced of that the explicit expression for

"exchange® guasi-potential can be obtained from {36) by cringing thne
—— —-

vector 4 = E’(—)F’_ by the vector A, = K@ end making

use of equelity

-—_ — - =
__k_(_)r ,;_W_Lw)‘:.
1 -1
En
The ,:b {V (Hrik)} functiona in (46} describe Wigner rota-
tion that performs a "removing" of spin indices from mumentum

-
-~ onto momentum Fo-

3. Now let us consider an important case of electron-positron
interaction. In papers /15-17/ the quasi~potential method was
applied for description of this aystem. In 76,17/ it was shown
that the wave function of this system satisfies ecuations (1}
and (2), Our aim here is to show that the spin structure of the
quesi-potential in this case cen be built analogously to electron
-electron interactions with the help of elements of Lobachevsky
space., As before,our consideration will be confined to the qumsi-
potentiel in the second approximation in coupling constant. Quite
enalogounsly to (4) the quesi-potentiml is constructed with the help
of matrix elements of scattering amplitude, consisting of two

parts: & o ()] = s"s" B
(I VENIZ > = (Fas | T TIE w6’ -
(47)

v (Ep)fé;%’@'? AN AT (E?)];?,e,'e:’»

= L-F)slel ' scaH-

The first term in (47)
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correasponds to "scattering” diegram ( see Fig. 2 ).

(48)

Fig. 2.

and to the expression *)

(FasIVom (BB Sz - dnet

abn

[y vrly” [ﬂ?fz)fuc%aj

( P+ P,_)‘L (49)

there corresponda " annihiletion " diagram, drswn in Fig. 2.

s "(g . fes
Bispinor u , corresponding to positive energy solution
of Dirac aquatmn and negative energy biapinor U (“)
connected with the expansion of spinor field in creation end

]
annihiletion operators as follows:

) - A 3 ik 2 R fc')
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Fig. 3.

Let us perform a transition in (48} to the charge-conjugeted bi-
spinors that describe positrons ( cf. with paper /6/) with the
4
help :f matrix C= J Js N
T T
- — Te ‘-1
v=CuU 3 vr=uUucC . (52)

A charge-conjugated bispinor ‘u'r[\?) has the same form as bi-

spinor (8):

ko +m +e
S e

.
W@ = il =
kp + -é’k'- u- !

where J (‘c"ﬂm)
\;Fr ¢ = g;s' -

A3 a result the operator of the quasi-potential (48), rewritten

e ol el
‘1‘1,\{:“1*{‘51),“);‘;‘7 [ r ( b - k.)g (54)

after the transformations, snalogous to those used to dbtain from

(5) the expression (36), will be of the same form as (36).



now we shail gtudy the expression (12). In order .0 get a
nag31bility to use in (49 the relatien (15) for separation of
¥ipner rointier let us clunge the order of biapinore in (49). An
spplication of Firte ‘heorem allows to represent t-e numerator of

149) in the farm:

[y v g [T ) (59

Let us perform uetransition in (55} to charge-conjugated biapinors

#ith the help of (52). Taking into account the relations
m_ ) ) AT TS
i PP
Cyc=y jceye=~y

we obtain for (49) the “olloving representation

{F,e1% J ..\E"))k &'y = ' ‘ (56)
- [Hez [we [F\ 'u“‘('u’)] ['M"‘( P us -]
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P ) 9 [ [ W *)]
[pat pa)* "




[5% {* wio ][5y w ]
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In c.m.s, the denominator of (49) can be written as
i _ 1 _ 4 )
(p+ P> (piepty A (mrtEY) 57
Thua, after transformation of yuaszi-potential {49) to the form

(56) we can use the relstion (15). As & result analogously to {29)
the quasi-potential (56) c¢en be represented in the form

{pas| Vﬁ(ﬁ)\?ﬁ'q’) =
1 - i -
=i (paal V2 I e D gV ?”h‘)}:bé,,q{v by},

B 6oz -1
whelﬁ.éJIP *

AARN Vi (E‘})l Easy = (s8)

- 5
- gﬂ g;‘i \/’c“) ﬁ:g;:(ﬁ"e-)fj?:‘gqr)g ‘Psql‘.

Avn &

So , in the case of electron-positron interaction, described by
the quesi-potential (47), efter the traonsition in equotions (1)
and (2) to the wave function (32), which spin 4ndices are “sitting"
on the same momentum F , equations (1) end (2) take the form
(33)~-(34).

Let us study now the spin structure of ithe qussi-potential
,V-'::)h e‘g‘zr[ga_)?) F)EP) » The spin structure, given by the

second term in (56) is defined by (22). The structures, correspond-

ing to the first and last line in (S56), have been found in pﬂper/l/;

2
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(59
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- 2w (S GE[@D(ED]) 3o

Altw
The spin structure of the quesi-potential (58} corresponding
to the third line in (56) is defined ty the spim structure of the

sxial current

N - =\ Pl AT, 21 I 5" {""
= W Uit ),
§, (%) @Y ) (61)
The matrix SF , due to its dependence on metrix rg , commutes

with ‘ 11 makes it possible to use relations (15) and (18). So,
after separatinn of Wigner rotstion, we find the expression for

axial current components:
.M . +6y )'-rz) W()(:Lf"v‘) f
3 #?) = -2 —5 {P (< - (62)
A‘lr‘lr Vﬂnm[u.fhb
Teking account of symmetry relatione -
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QD - (295 HFD=FED) e
we come ta the equality
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+ ra Y

+-JZ(A,*¢M

) J{(ﬂ?’)(i?) NGl jsqﬁfq’”
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Thus, finally the quasi-pntential which describes fthe interast .

»f electron Aand nositron and stands in eguations (o) sl (0aY s
(a)‘?ips:. ( -
e B ADE
Vo (FeFs FiBy)
(2) & (8) 61p5p
=V P “P( 3 P (\u—) E)
icatt ¢, o K‘—)P)F) 1, Vam« 4 F)? v

where the quasi-potential operator V (kt—)f \’; 1’)nq it was

shown before, is given by (3€) with the opposxte 3ign, and

) spé,
Qnn. &, 6 (“‘“’P i cY) = (65)
pres. 12 @)+ 3 I (B 5 L(BD Tpe (i)
zATe”.
L (e *\?j

The form of js (F’)k"-j)’jf(?’?> and 'jA (?')\?) is defined

by relations (53], (60) and (£4), respectively #ith the help of
(22) and (36), it is emsy also to define { k)

To(p) = [ F (Y @] 31“0 17(“’3( Pt U] -
. fﬂgﬁ{ e . 2 (EDED - EE T

Aot

alpfl s [FE]
. 4,,.,__&__;.,___._____

+
v+‘11 p:(ﬂeﬂn) +ipn(,'=”5')—2w\3
™
(#)EE)  (TDEL) j Sy
* - N(Ao*w) 5
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Now, let us lmo¥ T¢T thenonrvlativistic limit of the quasi-

sotential (£5). Taving into account that the deneminator in (65)

E S PRS- - N
is praportional tr , the contribution to vm‘_‘ (K"”P,P)Eq,)

A e
will 8give the firat term in (66), ffg and tae term 1/Zo-+wJ_
. v
oWt (51 ) in the third line of (f4). As a result in the

nonrelstivistic limit only the expression
(A
te te ) 1p LpTap
€. ~
-é_ﬁe“-w.l 5150 (3*‘ 162 }S H) ©7)

cantributes to "annihilation" part of the quasi-poten-
tisl (47). This expression 1is used in Brezit equation for

description of positronium.

4. In conclusion we ur< going to svmamarize Lhe results

~btained here. Ae have tnken Teynman matrix elements of the
ascattering amplitude, corresp:nding to one-photon exchange, s
the quasi-potential. Tt turns zut, thet after separstion from them of
the Wigner rotation, that nas the kinematical nature,they are
parametrized through the jusntities defined on tne hyperboleid{3) 1.e,

elonging to Lobachevsy, space.An expansion of the quasi--potential

in spin structures was carrled out withoui using the expansicn in é .
It is rewarkable thst in this considerstion some ierms in the
expansion of the quasi-potential in spin structures and the spin
structures themselves luok like the direct gecwetricel ( in the
sense of change of Euclidean geometry by Lobachevsky ane)
relativistic generalization of spin structures and potentials
in quantum mechanics. The natural cpntinuatién of formelism
developed here will consist in its formulation in the relativistic
configuration representation 77/ becouse in this representation
the relativistic Coulomb problem has been explicitly solved for

the spinless case.,
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