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INTRODUCTICN.,

In the preseént paper our aim is to show how it is possible
to calculate the electromegnetic form factor of the pion in a
theory of the chirsl type 12/ on the basis of the method suggest-
ed by one of the authors (M.V.) for describing nonpolynomial
lagrangiana. This method makes it possible to find the contribu-
tion of one-loop diagrams in the pion form factor., These diagrams
describe the form factor behaviour in the low-energy region.

Attemps to describe the chirsl-invariant lagrangiens by means
of the superpropagator method 7Y/ were first undertaken by a
number of authors /3 in 1970 end 1971. It seems to us that the
most interesting studies in this line were performed by Lehmann
in 1972 which were devoted to the description of the low-energy
correlations for pion-pion scattering /4/. The obtained results
are in satisfactory sgreement with experimental dats.

Lehmann has considered the case of maasless pions which is
characteristic of chiral-invariant theories. lfowever, as far an
at low energies the pion mass ig rather essential, we nim at the
caleulation of the pion form factor for the case of massive pions.
In so doing, we start from the lagrangian which, in the limit m,=0
and after the electromagnetic field has been swiiched out,coin-
cides exuctly with the chirel-invariant lagrangian in the exponen-
tial representation /2/. For the expressions corresponding to the
one-loop diaérams we are dealing with the dependence of the chiral-
invariant legrangian on the choice of 3ome or Pther representgfipn
is noneasenﬁihi. It affecisvbnlfithe terms j%(&1fﬁ)] , where ((h)

is the exparnsion coefficient for the chiral-invarient lsgrengian
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in the pion field powera. The latter dependence is of the loga-
rithmic type. We use the exponential representetion which has
some advantages compared with others /4/. In the framework in
which we perform dur calculationg such an approach seems to us
to be quite justifieds. .

The pion radius and the pion form factor in the threshold
region are calcrlated. As far as we are dealing with the massive
pions, we sre able to deduce for the form factor an expres;ion
Trom which it is possible.immediately to calculate the pion £ -
wave length, T@e calculations show that the mszin contribution
to the pion radius comes from trianguler baryon diagrams.

'ext, more speculetive cslculations show thet the position
of the  O-meson resonance .and the 57 phaese behaviour are

in sgreement with experiment.

2. The Pion Form Tactor.

The elassic chiral-invariant lagrangian can be written in

the following form 72,87 +) .
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+5Here the pseudovector current is not taken into account. In
calculating the triangular spinor diagrams we take into account
the contribution from it.by means of renormalization of the
coupling consatants in piqnfnuclecn vertices ( ths Goldberger-
Treiman relations). A similar procedure is used by Lehmann



llere J(x/ is the pion field, #7%/ - the baryen field, £'= P,
the ﬁion decay constant. The pert of the Lagrangian responsible

for pion-pion interactions can be rewritten as

2 6)- LS - 22 ,w/[ :m//;,/ 1]‘ @

We introduce here in a gauge ‘1nvar1ant way en interaction with

electromagnetic field Jq/‘ )
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where f,‘j:é‘, is the antisymmetric tensor. Then we arrive at a
Lagrangian which describes the pion-photon interaction

frn&l:e[/ﬁaﬁﬁ -ﬁ:’""/;),’f. +2_e_/!;,e /.)4/ . / (4)

By expanding Lagrangians (2) and (4) in powers of the field

‘i? and introducing normel ordering of these fields we pess
to the formulation of the perturbation theory of quantized field.
We are interested in the %Z approximation, which is quite
applicable to the description of the pion form factor behaviour
for small velues of the squared photon momentum. As regerds the
diagrams with pion-baryon vertices, following Lehmann, we
calculate them 'in the lowest order .in e/;:l . 1n th.s case higher-
order effects are assumed to be taken into Account, st least partisi-
ly, by normalizing the pion-nucleon vertices /4/.4)'

) N 5 5ol
Contrary te ihe ichmann calculation for low-enerpy 7 - %



Afterwards the Lagrangian responsible for the pio’n—nucléon part

of the interaction can be written in the lowest order in F;

Lew ) = 2 o Py E Py )
where J; > 1.26. Cr
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where %— F 14,7 - is the strong intersction coupling constant.
The interactinn of spinors with th2 electromagnetic field

is introduced in the ordinary wey
Z,,6)=-e¥e B sy A0, ©

Now we show how it is possible to calculate the pion {orm
factor in the (e/;.;z) spproximation by mesna of lagrangiens (2),
(4) and (S) and (6). '

The matrix element corresponding to the pion form factor

can be written in the form

B A
' T*S = - \,_____
xS} > ce (2!_)32/——, ,aw (7)! (7
where P<R+f  , §=F-A , /D,fw‘,) - is the momentua
(energy) of the outgoing pion, A (w,) is the momentum {energ);)

of the incident pion.

scattering, we calculate the interactions of pions not only with
nucleons, but also with &  ,Aand = _baryons. These interactions
contribute noticeably to the pion root-mean-square. r=dius, The -

authors are grateful to D.V.Shirkov who has pointed to this fact.
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Here g,ﬂv is the Bohrn term, o ~ the contribution of
the pion loop in the 9/,_-2 epproximation to the ferm factor,
(8, ” - .
1 ) the contribution of the baryon trisngular diagrams in
v
the same approximation, and AJ,“ the contributions nf the remain-
ing terms higher in powers of (/-.'") which we do not take into

account for small 92 .

&
3. Calculationa of Pl "

Let ue conpider the disgrem of Fig. l(=m)

"f - -~ Pion }
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Rig. 1.

The integral correspanding to this diagrem is quadratically
divergent., To derive an ultimate expreasion for this part of the
form factor weé use the superpropsgator method.

We consider an infinite ssries of two-vertex diagrams with
an arbitrary number of internal pion lines in each of them.Theae
diagrems are obtained by taking the T product of the lagran-~
gians (2) ard (4). The superpropsgator method makes it possible

to caleulate the final expression for all the diagrams. Then we



can extract from the a:xpression obtained the part that concerns

disgram (a) of intereat for us

. 244 )
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00
/Zw is the form factor corresponding to the
diagram {b). )
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4‘(")=f(7'/’%)5"/e)))’ , r/h) is the gamma function.

As far as we are interested in the one-loop approximation,
we need diegrams with four and more internal lines with the only
sim to regulaerize the one-loop diesgram (a). Therefore in our
further calculetions the propsgators in the squere brackets are
agsumed to be massive, and the propagators in (11) are massless
one, keeping only the main festures of the msssive pro{pagators/ 5/ .
We replace the pum in eq. (11) by the Mellin integral and iﬁte'grate
over dix « Then we perform a geries expansion of the Besael
function appearing due to integrat:ing. over the engulsr v‘ariablea
and integrate over dr . As s result, we Are led to the follow-

ing expreesion

B0 =fe e ltee),



where the contour L goea around clockwise the real positive

axis and the origin, end

1/1r2
Ciz)= % (2z-3)
G (ZIF) (2¢ "'2)(2?'4)/_'(2?1‘3) (14)
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Here Aj,(ﬁ) is a gauge-noninvariant term which does not contribute
to the one-loop approximation, if, following Salem, we introduce
a term ;—i; z and make a transition to the limjt é=0O
at the end of the calculationa. For a discussion of the same
procedure applied to describing nonpolynomial lagrangians with
rediretives in the case of measless particles see paper of Salam
et al./s/ *)

To calculate /,7..:.(4) it is enough in the integral (13) to
take a residue only at the point E=¢ ‘. As a result, we get aftar

s 2
summing the series over the powers of (”/,;5_2)

:d{' ( )(lu }J_n.‘ -3:-4/&:/]-
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The term in the square brackets contributes to the foote

a7)

mean squere radiue of the pion. This contribution is found to be

S : ) -
*)Note that the calculation of /Z-v {7/ without recourse to
the Salem procedure little affects the ultihate results for the



not so large

2 2
<? )r = 0 065 (18)
in the Ferai units . The remaining part is proportional to
)
7/",! at low energies. When ¢°2 #md the form factor

becomes complex since the point ?": ¢m? is the beginning of

the cut in the q' plane. The wave length in the Born approxi-

w 2
mation is the imaginary part /7,«.., (7 divided by (;7-_,,,’7'2
at the point 7‘- 4my and 18 equal to 0.03lnin y which is

’
in good agreement with the experimental values a’ =fgos3€:

2g0)n! /7/.

Here we indieate enotle» ‘u%:r23ting faature of eq. (17).When
the pion loop is regularized hy nréinery methods, for example,by
means of the Pauli-Villars regularization, after & transition to
the 1imit Mm,=( there can orise infrared divergences, Nothing
of the kxind can happen in the expression (17), where after the
transition to the limit the squared pion mess under the sign of
logarithm ia simply replaced by q? + Thia follows from the fact
that we are dealing with the whole set of an infinite number of two-
vertex diagrams with any number of intermediate pions rather than

with a single disgram.

pion form factor,



4. Calculation of ﬂ/w 9)

Now we pess to the calculation of the contribution of the
baryon loops to the pion form factor., We show that this contri-
bution defines the value of the root-mean-square radius of the
pion.

. . €, : .

In the approximation (4 ,we are interested in, the

contribution to the pion form factor comes from the following

diegrams ( Fig. 2). The account of these dingrams

7 ' 2
/N N /IN\&’

L N N ;S Fe . SA . .
x¢ Ll T r - T
() ) (e)

Fig. 2.

introduces an easential correction to the 7? term in eq.(17).
Terms with higher powers of 73 are nonessential at low energies
and have small coefficients, so thet they will be neglected in whst
follows,

By the exsmple of the nucleon diagram (c) we recall
briefly how one celculates triangular disgrems of the kind. In the
same way 88, e.8., in the monograph of Schveber/e/, we consider

the following set of the diagrams

¥ P ¥

p/\pP ” -4 5~.'
e aNE-a s ;;l,,O 41 ;‘

ey (¢) (M (") ‘«y’



In virtue of the Yord identity, the divergences in the integrala
. . + " 1

of the corresponding diagrsms C' ¢, [ f C are mutually

compensated. The constant terms cancel. The remaining integrals

are slready finite and can be calculated in a usual way.

Using Lagrangians (5) and (6) and following the above

3
procedure we derive for  /10(9). the following expressions
2
()— oy G + Oft&. 7 (e}
6&:)2 N;
6'2
Inserting the value of the strong coupling conetant /9rr =14.7

in eq. (19) we obtain for the nucleon-loop contribution to the

pion mean-square radius the following value
2y 2
%), = 0206 5. (20)

This noticeably exceeds the pion loop contribution.

Now we have only to estimate similar ocontributions of the
baryon diasgrams (d), (e) and (f), Ths expressions corresponding
to these disgrame have the form analogous to eq. (19), but with
other values of the constant d end the masa M . It follows

from the ,.G’% invariant theory that all these constants are

expressed in terms of two constants %, and F» 9/,
=
S =5 (Gotdc)= 4 ) drxs =4, (213
=L
3::4',‘:‘,’?.‘; ; E""(is 3’)
£ £ 5 b7
The procesa X~ = A+ e ry yields for the ratic 7%

the value = 2, ref, /10/. Using this ratio and eqs. (21} all
the coupling constants can be expressed via the strong pion-

nucleon interaction constant ¢

12
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Aa a result, for /7,.., (7) we get
(s) 3 & 2 2 2
/7. = S [ENN L 4 ) L6 ) s
b (1 G (il “Fli) 5 ) ) 9

>g, 7¢ ¢

2(7‘,)2;\7”,— 1,723 .

From where we find
<2y =~ g 35 72,

By adding thie value to the contribution of the pion loop

we finally obtain for the pion-mean-square radius the following
+)

value

V <z > 0 65F (24)

This velue is in good mgreement with the available experimental
data /11/.

+) We notice that if eq. (5) is used for the pion-nucleon vertex

then the root mesn~square radiua slightly decreases y<:2» ~ £62f



5, Discussion of the Results,

The diagrams considered give the main contribution to the
pion form factor. As we have seen, the baryon triangular diagrams
define almost completely the coefficient for the g°~ term while
the pion loop gives the correct energy description of the form
factor in thc threshold region. The account of the K- meason loop
little affects the coefficient for ?2 since, as the calcula-
tions show, the contributlion of it is much esmaller than even a
small contribution of the pion loop. The form factor behaviour
in the threshold region is also little affected by the K~ meson
contribution. Therefore we do not take into account the £ =

meson diagrama. Inserting eqs. (17) and (23) to (B) we get for the

form factor the ultimate expression

/"(9)—1+—’-( ){/ +-_/-osl+fﬁ]* (25)
+;4—M" 4.,,,_1/ oo /4,,,, 1) !/j

The first figure in the square brackets corresponds to the pion
loop, the second one to the baryon diagrams, This formula well
describes the pion form factor behaviour in the region of small
71 up to the production threshold for two pions as well aa
in the threshold region. It leads to the pion radius being in
good agreement with experiment ( eq. 24) and gives a reasonable
value for the acattering wave length qf calculnted by the
formulas which are valid for small 72
g/ = Im K (9) ) 6;'= o’ 9_72— m,’)%,

T ReE (26)



where Jlt is the ¥f - scattering phase in the state
I=> =1, '

The absolute values of the pion form factor calculated by
eq. (25) in the threshold energy region of 7 are also in
good agreement with experimental data recently obtained at Dubna/}z/

The correeponding values of thé form factor are given in Table I.

Yime | 085 | 1.1 1,45

v 2 ’

£ () [ 1102007 | 7,14%gos|L,3070¢7

[_r—ﬂnar 1, 12 1' 16 1’22 J

A less atrict result is the following one. If we sum up a chain
of diagrams conaisting of pion loops then in the obtained expres-
sion there can be observed a JD- resonénce 2¢ an energy of about
950 MeV. A similar result has been obtained by Lehmann when

P /47

analysing the A scattering wave . However, the
main contribution to the \JO - meson resonence is found by him

to come from the Born term and the nucleon diagrams.
CONCLUSION
The calculations performed show that the pion root-mean~

square redius is almost completely defined by the contribution of

the baryonr triangular diagrams to the pion form factor. The pion



looo, similarly to the K -meson loops, give a small contribu-
tion to the 91 tern of the form factor. At the same time the
account of the pion loop is very important for the correct deserip-
tion of the threshold description of the form factor. The set of
¢diagrams in Figs, 1 and 2 definﬁs thereby completely the form
factor behaviour in the thresholad reéion. 7

The question associated with the estimetion of the contribu-
tions of diagrsms of higher orders in 6E_y to the form factor
remains still open. The estimation of individuvel diagrams shows
that for small 72 these contributions are not of wuch impro-

tance. However, thié question neede undoubtedly be studied more

thoroughly.

The authors express their deep gratitude to D.I.Blokhintsev,
V.A,LEfremov, V.A,Meshcheriekov, Nguen Ven Hieu,L L.Nemenov,

V.V.Serebriakov and D.V.Shirkov for useful discussions.
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