СООБЩЕНИА ОБЪЕАИНЕННORO ИНСТИТУТА ЯAEPHЫX ИСС^ЕАОВАНИЙ

E2-7276
N.K.Dushutin, V.M.Maltsev

RANDOM PROCESS APPROACH
TO MULTIPARTICLE PRODUCTION
AT HIGH ENERGIES

1973
NАБОРАТОРИА TEOPETИЧЕСНОЙ

E2-7276

N.K.Dushutin, V.M.Maltsev

RANDOM PROCESS APPROACH TO MULTIPARTICLE PRODUCTION
AT HIGH ENERGIES

Душутин Н.К., Мальцев В.М.

E2 - 7276
Приближение случайных процессов для множественного рождения частиц при высоких энергиях

Множественное рождение частиц при высоких энергиях иэучается в приближении случайных процессов. Работа содержит основные результатh, полученные в этом приближении. (Обзор).

Сообщение Объединенного института ядерных исследований Дубна, 1973

Dushutin N.K., Maltsev V.M.
E2 - 7276
Random Process Approach to Hultiparticle Production at High Energies
A review of. some fundamental results obtained in models, which use an approximation of random processes for multiparticle production, is given.

Communications of the Joint Institute for Nuclear Research. Dubna, 1973
such attention is given to the problem of multi particle produotion in hadron interaotion at high energies 1 and at present a great number of models is suggested and studied together with experimental data both in the range of accelerator and oosmic-ray energies ${ }^{2}$.

A number of produoed charged particles is one of the most important and directly observable characteristios. But we know little about this quantity: it is known, that the average multiplicity grows siowly with.the energy (presumably, es $\ln S$ or S^{k}, where S is equal to initial energy in lab. system and K is equal to or less than $1 / 4$), but sometimes: we observe the events, which differ from the average distribution ${ }^{3-5}$.

Presently, we get the opportunity to study in detail the multiplicity distribution and the data about the existence of high correlations between secondary partioles.

From theoretical point of view the cross sections of inclusive processes, i.e. the following form

$$
A+B \rightarrow C+\mathcal{Z}+\cdots+\text { anything }
$$

where only one part of secondary partioles is 1dentified and measured, are described in terms of single- or multipartiale momentum distribution funotions, or, equally, by the correlation functions. Thus, the multiplicity distribution in definite region of phase-space allows one to evaluate the momentur distribution and the corralation functions integrated over this region.

This multiplicity distribution was considered from the point of view of correlations by some suthors ${ }^{6}$ and especially by dueller, tho suggested a good scheme - namely, the generating funotional method.

In the present paper we rant to suggest another approach which differs from the Mueller method and allows one to get the correlation functions. Moreover, the physical basis of our approach seems to be mora Fisual.

We call it $=$ " jet approa ${ }^{\prime \prime}$, though the most important is the description of random prooess int eraction. Such an approach is somewhat not very new; 1t was used by: a) Farry 7 for the description of the travelling of high energy electrons through mattes; b) it Fas used for the desoription of nucl ear prooesses (so oalled Master Equation Approaoh) ${ }^{8}$; o) Fujiwara and Kitazoe for constructing a jet model (and we have ohosen this name for our approsoh).

But in present paper we would like to show the possibilities of this method for the description of inclusive processes Whioh speoifically differ \pm =om the processes considered by the authors, and in more general way than by Fufiwara and Kitazoe ${ }^{9}$ 。
ts of this approach, show how to write down the Chapmen-Kolmogorov equations for the interaction and their corresponding inttial conditions, and how to pass over to the momentum distribution equations, ioe. to the definition of correlation funotions.

In Section II we will discuss the solutions of these equations for different types of elementary processes (production, generation and anninilation).

In Section III the correlation functions are considered. At first, we w111 consider the restriotions on their behaviour, which follow from analytioity and unitarity of the soattering amplitude, and also the behariour, satisfying scale invarianoe then we will prooeed to the correlation form for each of distributions, obtained in previous section.

In Section IV the comolusions are studied and discussed in oomparison Fith experiment.

I. Basio statements of fet-approach

The most sigaificant in jet approaoh is the following: the interaotion process consists of a set of elementary" processes, eaoh of which occurs independently and has definite charaoteristic probabilityo

The following system of the Chapmen-Kolmogoror
equation oan be written down for n-particle production. probability $P_{m}^{a}(t)$ at a time $t \quad(Q$ is a sort of parttcles).

$$
P_{n}^{a}(t)=\sum_{-2}^{k}\left[\lambda_{i}(n-i \mid t) P_{n-i}^{a}(t)-\lambda_{i}(n-i+1 \mid t) P_{n-i+1}^{a}(t)\right](1.1)
$$

where $\lambda_{:}(n-i \mid t)$ is transition probability from the state With $n-i$ partioles to n particle state. The summing is defined by the maximum number of partioles of a kind produced in elementary process. Transition probabilities depend both on elementary prooess probabilities per unit of time and on a number of intermediate particles. So, if we have such prooesses as

then we have four transition probabilities, defined as follows
$\lambda_{1}(n-1 \mid t)=q_{i}^{a}(n-1)+g_{b}^{a} \sum_{k=0}^{n} k P_{k}^{b}(t)+q_{c}^{a} \sum_{m=0}^{\infty} m \cdot P_{m}^{c}(t)$,
$\lambda_{1}(n \mid t)=g_{1}^{a} n+g_{i}^{a} \sum_{k=0}^{\infty} k P_{k}^{b}(t)+g_{c}^{a} \sum_{m=c}^{\infty} n \cdot P_{m}^{c}(t),(1,3)$
$\lambda_{-i}(n+1 \mid t)=-g_{0}^{a}(n+1)$
$\lambda_{-1}(n \mid t)=-g_{0}^{a} n$
And if we have more kinds of partioles, (1.3) oomplete and olosed it is neoessary to use the equations for multiplioity distributions of cther particles, which oan be produoed as a result of an interaotion. The boundary oonditions on this system are connected with the initial partiole taken into aocount. We can oonsider the initial particles independently of secondaries. Then we write

$$
P_{n}^{a}(0)=\sum_{0 n}= \begin{cases}c, & n \neq c \tag{1.4}\\ 1, & n=c\end{cases}
$$

fhis follows from the fact that at the moment of interaction the seoondary partioles do not exist yet. Adding to (1.3) the following terms; conneoted with the seoondary particle generation
by the initial particles, we get

$$
\sum_{k} \mu_{k}^{a}\left(\Gamma_{n-k}^{a}(t)-\Gamma_{n-k+1}^{a}(t)\right)
$$

whero $\left(u_{k}^{a}\right.$ is per unit of time probability for the process

$$
\begin{equation*}
\text { initial particles } \longrightarrow K Q+\text { anything } \tag{1.6}
\end{equation*}
$$

If the initial and secondary particles are of the same sort (e.g. a sort), then $P_{n}^{n}(=)$ is the production probability as a result of interaction, i.e. at the moment $t=\bar{c}(i+1)$ (or $n+2$) C sort of partioles and the average "truen number of a sort of partioles differ from a number of sem ndary particles ($1 . e \cdot$ by 1 or 2) calculated from $N_{a}^{\prime}=\sum_{n=1}^{\infty} n P_{n}^{a}(\tau)$. The system (1.1) for the C sort of particles and the same systems for b, c, \ldots sorts of partioles are highly connected, because in $\lambda(\ldots-i \mid t)$ transition probabilities of one sort of particles we have the average numbers of other particles. To simplify the solution, it is advisable to make some propositions about the behaviour of average particles, and then to make bootstrap 1.e. to caloulate these numbers from the equations

$$
\begin{align*}
& N_{a}=\sum_{n=1}^{\infty} n P_{n}^{k}\left(N_{n}, N_{6}, \ldots\right) \tag{1.7}\\
& N_{i}=\sum_{k=1}^{\infty} k P_{k}^{i}\left(N_{k}, N_{i}, \ldots\right)
\end{align*}
$$

The general character of the behariour and the shape of multiplicity distribution weakly depend on the behaviour of average multiplioities and, thus, we can suppose that almost always transition probabilities do not depend on time (except some
special cases (e.g. Fegnman-gas) when other suppositions are available).

Suoh an assumption is equivalent to the following: all processes ocour virtually during the time of interaction, and then produced particles turn into physical partioles. Thus, to define the ooncrete form of the model it is neoessary to know:

1) production channels (the sort of produced particles, at least);
2) the number of final particles, produoed in elementary reactions (one-partiole, two-partiole, etc. productions);
3) time dependenoe of the average number of particles ($N_{a}(t)$ = const - is more convenlent).

The first two statements are more important.

It is not neoessary to solve equaitons for multiplicity distribution in order to calculate the oorrelation functions, beoause you oan oaloulate them socording to faotorial momonts, the equations for which can be obtained from (1.1). To get the equation for the i th faotorial moment $\alpha_{[i j}=\langle n(n-i) \ldots(n-i+1 j\rangle$ we must multiply both addes of the equation for $P_{n}^{a}(t)$ by $11(n-1) \ldots(n-i+1)$ and sum them from 0 to infinity. As a result, we get the linear differential equaitons

$$
\alpha_{[:]}=-f\left(g_{c}^{a}, g_{1}^{a}, \ldots\right) \alpha_{[:]}+f\left(g_{c}^{a}, g_{1, \ldots}^{a} g_{b}^{a}, g_{c, .}^{a} N_{a}, N_{c, \ldots}\right)
$$

where $\mathcal{F}(\{g\},\{N\})$ is some funotion (most often, consl) and the coefficient of $\mathcal{X}_{[i]}$ is connectod both with the creation and annihilation processes only.

II. Some sorts of elementary processes and distributions

following from them.

Elementary prosesses can be chosen in the following way:

1) creation proosses, i.e. processes in which one partiole of some sort turns into several partioles of the same sort;

$$
\begin{aligned}
& a \rightarrow a+a \text { probability per unit of time } g_{1}^{a} \text { (2.1a) } \\
& a \rightarrow a+2 a \text { probability per unit of time } g_{2}^{a} \text { (2.1b) }
\end{aligned}
$$

2) annihilation processes,i.e. the processes opposite oreation, in which one or several partioles of "a sort are absorbed

$$
\left.\begin{array}{rl}
\begin{array}{r}
a
\end{array} \rightarrow b+\bar{b} \\
a+b & \rightarrow c+c
\end{array}\right\} \text { probability per unit of time } g_{0}^{a} \text { (2.2a) }
$$

3) generation prooesses, i.e. In which one or several C-sort particles are produced with the help of another sort of partioles.

$$
\begin{array}{ll}
b \rightarrow b+a \quad \text { probability per unit of time } g_{0}^{a} \\
b \rightarrow 6+2 a & \text { probability per unit of time } g_{6}^{2 a}
\end{array}
$$

We can also consider the contributions of several prooesses. It seems reasonable to consider only one-particle production and annibilation processes (1.e. in whioh only one-partiole is produced); for annibilation prooesses this approximation is quite available owing to the amall probability of simultaneous double particle absorption (2.2b) but in oreation
processes this approximation $1 s$ justified because of the simplicity sinoe the inolusion of one-particle oreation gives satisfactory results (from the point of view of correlations).

Now, let, us consider in detail the distributions which satisfy H fferent sorts of elementary prooesses.

If we have creation processes with only onempartiole production, and the initial and seoondary partioles are of the same sort, then (1.1) oan be written dom as follows $P_{n}^{a}(t)=-g_{1}^{a}\left[(n+2) P_{n}^{a}(t)-(n+1) P_{n-1}^{a}(t)\right]$.

The solution of this system for physioal partioles (i.e. at the moment of $t=\tau$) is

$$
\begin{equation*}
P_{n}^{a}(\tau)=(n+1) e^{-2 g_{1}^{a} \tau}\left(1-e^{-q_{1}^{a} \tau}\right)^{n} \tag{2.5}
\end{equation*}
$$

If we suppose, that in the initial state we hare only one partiole, then we replaoe $(n+2)$ and $(n+1)$ in $(2,4)$ by $(n+1)$ and n, respeotively, and we como to.
the distribution, obtained by Fujiwara and Kitazoe for ons pure pion jet.

We note, that the requirement of jet unintersotions, used by Fujiwara and Kitacoe to get the distribution in 2 jets, is not neoessary, because the equation sjstem for 2 initial particles can be always written down (moreover, if the 2 jet formation acours in the same volume, then the assumption about the independent produotion oannot be justified
from the point of view of jet approach). Let us emphasize once more the need of adjusting boundary conditions and the system of equations for multiplicity distribution. To 1llustrate this statement, we suppose that if there is no partiole in the initial state then (2.4) with boundery oonditions (1.4) does not have any solution at all.

Let us write the average multiplicity for solution (2.5)

$$
\begin{equation*}
N_{a}=2\left(e^{g_{1}^{a} \tau}-1\right) \tag{2.6}
\end{equation*}
$$

the dispersion in this oase is

$$
\begin{equation*}
z^{2}=2 e^{g_{1}^{a} \tau}\left(e^{g_{1}^{a} \tau}-1\right) \tag{2.7}
\end{equation*}
$$

A consideration of the pure creation prooesses is interesting only from the academical point of view, beoause physical analogue for such processes does not exist. So, we will oonsider the case, when both the oreation and anninilation processes are possible. We can consider annihilation processes in several ways:
firstly, annihilation processes are the same as oreation prooesses but having the negative probability. Then the faotor g_{1}^{a}, is replaced by $g_{1}^{a}-g_{c}^{a}$ in (2.4) and solutions can be written in the form of (2.5), (2.6), (2.7), with the same ohange in arguments.

If we present the annihilation processes as independent ones, then we have the following system (one-partiole in the initial state) for one-particle annihilation and creation processes:

$$
\begin{align*}
\dot{P}_{n}^{a}(t)= & -(n+1)\left(g_{1}^{a}+g_{0}^{a}\right) P_{n}^{a}(t)+n g_{1}^{a} P_{n-1}^{a}(t) t \\
& +(n+2) g_{0}^{a} P_{n+1}^{a}(t) \tag{2.8}
\end{align*}
$$

Its solution can be written as
$P_{n}^{a}(\tau)=\left(1-\frac{g_{0}^{a}}{g_{1}^{a}}\right)\left(1-e^{\left.-g_{1}^{a}=+g_{0}^{a}=\right)^{n}\left(1-\frac{g_{0}^{a}}{g_{1}^{a}} e^{-g_{1}^{a} c+g_{0}^{a}=}\right)^{-n-1}(2.9)}\right.$
which coinoides with (2.5) if we replaoe the argument

$$
\left(1-e^{-g_{1}^{a} \tau}\right) \cdot b_{y}\left(1-e^{-g_{1}^{a} \tau+g_{0}^{a}=}\right) /\left(1-\frac{q_{0}^{a}}{q_{1}^{a}} e^{-g_{1}^{a} \tau+g_{0}^{a} \tau}\right)
$$

and take the same number of inital partioles. When produotion probability is equal to annihilation probability, (2.8) takes the following form:

$$
\begin{equation*}
P_{n}^{a}(\tau)=\frac{\left(g_{1}^{a} \tau\right)^{n}}{\left(1+g_{1}^{a} \tau\right)^{n+1}} \tag{2.10}
\end{equation*}
$$

We can consider annihilation prooesses, using another methodo Let us assume that elementary annihilation processes; owing to their small probability, are realized only from the ground state: In this case we have
$\dot{P}_{n}^{a}(t)=-\left[(n+1) g_{1}^{a}+n g_{0}^{a}\right] P_{n}^{a}(t)+n g_{1}^{a} P_{n-1}^{a}(t)$

Then we obtain
$P_{n}^{a}(\tau)=\left(Y-\frac{g_{2}^{a}}{g_{c}^{a}}\right)^{\frac{g_{1}^{a}}{g_{c}^{a}-g_{1}^{a}}}(Y-1)^{\frac{g_{0}^{a}}{g_{c}^{a}-g_{1}^{a}}\left(\frac{g_{1}^{a}}{g_{0}^{a}} Y\right)^{n}}$.
$Y=\left(1-\frac{g_{1}^{a}}{g_{0}^{a}}\right)\left\{\frac{1-e^{\left(\dot{g}_{0}^{a}-g_{1}^{a}\right) \tau}}{1-\frac{g_{1}^{a}}{g_{0}^{a}} e^{\left(g_{0}^{a}-g_{1}^{a}\right) \tau}}\right\}$

It also ooincides with (2,5) if the corresponding change of the argument is made. Thus, applying any method of consideration, the general form of multiplioity distribution does not change; it remains equal to geometric distribution, as for oreation processes, but has different arguments. It is interesting to point out, that if we replace g_{1}^{a} by $\left(g_{1}^{a}-g_{c}^{a}\right)$ and assume annihilation priority over $g_{c}^{a}>g_{1}^{a}$ then some numbers of secondary particles are forbidden (as having negative production probability). In our case this represents mathematical apparatus costs, though this fact can be used in resonanoe description.

Let us prooeed to gene ration'processes. If in elementary processes it is possible to produce only one particle of
a sort with effective probabillty $a_{a}(t)$ (i.e. by all other possible particles), defined as:
$Q_{a}(t)=g_{i}^{a} \sum_{n} n P_{n}^{b}(t)+g_{c}^{a} \sum_{m} m P_{m}^{c}(t)+\ldots$
then for the normalized multiplicity distribution we have:

$$
\begin{equation*}
\dot{P}_{n}^{a}(t)=-a_{a}(t)\left[P_{n}^{a}(t)-P_{n-1}^{a}(t)\right] \tag{2.14}
\end{equation*}
$$

As a solution of this equation we have

$$
\begin{equation*}
P_{n}^{a}(\sigma)=e^{-N_{a}} \frac{\left(N_{a}\right)^{n}}{n!} \tag{2.15}
\end{equation*}
$$

where N_{a} is an average number of particles

$$
\begin{equation*}
N_{a}=\int_{c}^{T} a_{a}(t) d t \tag{2.16}
\end{equation*}
$$

Such a distribution is charaoteristic of thermodyamical models, and, thus, the Fujiwara and Kitazoe/9/ requirements of nonequilibrium are not necessary.

If we assume that 2-particle generation prooesses exist With the effective probability $C_{2 a}(t)$, defined as $C_{a}(t)$; then we come to the following system
$\dot{P}_{n}^{a}(t)=-a_{a}(t)\left[p_{n}^{a}(t)-P_{n-1}^{a}(t)\right]-a_{2 a}(t)\left[P_{n-1}^{a}(t)-P_{n-2}^{a}(t)\right](2.17)$

Its solution is
$P_{n}^{a}(\tau)=(n!)^{-1} e^{\frac{1}{2}\left(N_{a}^{2}-A\right)-N_{a}}\left(\frac{N_{a}^{2}-A}{2}\right)^{\frac{n}{2}} H_{n}\left(\frac{N_{a}^{2}-A+N_{a}}{\sqrt{-2 N_{a}^{2}-2 A}}\right)$
where $H_{n}(x)$ are the Hermit polynomials N_{a}-the average number of partioles and A are defined by the following relations

$$
N_{a}=\int_{0}^{2}\left[C_{a}(t)+a_{2 a}(t)\right] d t=J_{1}
$$

$A=2 \int_{0}^{\tau} N_{a}(t)\left[a_{a}(t)+a_{2 a}(t)\right] d t+2 \int_{0}^{\tau} a_{2 a}(t) d t=f_{2}-f_{1}^{2}$
This ooinoides with the distribution for Feyman-gas/10/
(the seoond equalities determine tho oonnection with the Yueller correlation functions $/ 6 /$). There is nothing unexpected in our coinoidenoe, because binary-interaotion, characterigtio for Fejnman-gas (short-range foroes), is equiralent to the pair partiole produotion.

Now we will oonstder the top oase of generation prooesses,

When the produotion of any number of particles, up to
m. N mimultaneously is possible. In this case h. effective probabilities enter the equations for multiplicity distributions:

$$
\begin{equation*}
P_{n}^{a}(t)=-\sum_{k=1}^{n} a_{k a}(t)\left[P_{n-k+1}^{a}(t)-P_{n-k}^{a}(t)\right] \tag{2,20}
\end{equation*}
$$

Let K particle production probability $a_{\kappa a^{(t)}}$ be connected with $\lll 1$ particle production probability in the following form:

$$
\begin{aligned}
& a_{a}(t)=F_{1}(t) \\
& a_{2 a}(t)=F_{2}(t) \\
& a_{k a}(t)=a_{(k-1) a}(t)-F_{2} \frac{e}{(k-1)!(n-k-1)!}
\end{aligned}
$$

where $F_{1,2}(t)$ are some functions, $\quad C_{\text {. is the base }}$ of nat ural logarithms; $\Gamma(\chi, x)$ is an uncomplete gamma function. Though this oonnection is somewhat specifio, its oonsequences result in experimentally observed behaviour of the correlation functions. Using the oonnection in (2.20), we obtain:

$$
\begin{align*}
\dot{P}_{n}^{a}(t)= & -F_{1}(t)\left[P_{n}^{a}(t)-P_{n-1}^{a}(t)\right] \\
& -\sum_{i=0}^{n} P_{n-i}^{a}(t)(-1)^{i} \sum_{v=1}^{n} F_{2}(t)\binom{v}{i} \frac{1}{V!} \tag{2.22}
\end{align*}
$$

$$
\begin{align*}
P_{n}^{c}(\tau) & =e^{2 N_{a}\left(N_{a}-1\right)} \sum_{k=0}^{n} \frac{\left[N_{a}\left(N_{a}-\frac{3}{2}\right)\right]^{k}}{k!} \\
& \cdot \prod_{i=0}^{k-1} \sum_{m=0}^{n-i-1}(-1)^{m} e \frac{\Gamma(n-m-1 ; 1)}{m!(n-m-1)!} \tag{2.23}
\end{align*}
$$

where

$$
\begin{equation*}
N_{L}=\int_{0}^{=} \frac{F_{2}(t)}{F_{2}(t)-\frac{3}{2}} d t \tag{2.24}
\end{equation*}
$$

is the average number of particles. This distribution oan be approximated more simply

$$
\begin{equation*}
\Gamma_{n}^{a}(\tau) \approx \frac{e^{2 N_{a}\left(N_{a}-1\right)}}{n!} \frac{\left[N_{a}\left(N_{a}-\frac{3}{2}\right)\right]^{n}-1}{N_{a}^{2}-\frac{3}{2} N_{a}-1} \tag{2.25}
\end{equation*}
$$

which coincides in principal terms with the czyzewski and Rybicki/ll/ empirical distribution. Now we will consider combined distributions. If there exist one-particle creation and one-particle generation prooesses, then we can represent the normalized multiplicity distribution as follows:

$$
\begin{align*}
& \dot{P}_{n}^{a}(t)=-q_{1}^{a} \\
& {\left[n P_{n}^{a}(t)-(n-1) P_{n-1}^{a}(t)\right]-} \tag{2.26}\\
&-a_{a}(t)\left[P_{n}^{a}(t)-P_{n-1}^{a}(t)\right]
\end{align*}
$$

The solution
$P_{n}^{a}(\tau)=\frac{a_{a} \ldots\left[a_{a}+(n-1) g_{1}^{a}\right]}{\left(q_{i}^{a}\right)^{n} \cdot n!} e^{-\int_{0}^{\tau} a_{a}(t) d t}\left(1-e^{-g_{i}^{a}}\right)^{n}(2.27)$
coincides by form with the Fuj1wara an Kitazoe $/ 9 /$ distribution. If the simultaneous generation of 2 particles 1 s possible,

$$
\begin{align*}
& \text { then we have } \\
& \quad \dot{P}_{n}^{a}(t)=-q_{1}^{a}\left[n P_{n}^{a}(t) \cdots(n-1) P_{n-1}^{a}(t)\right]- \\
& -{\underset{a}{a}}_{(t)}^{C^{a}}\left[P_{n}^{a}(t)-P_{n-1}^{a}(t)\right]-a_{2 a}^{a}(t)\left[P_{n-1}^{a}(t)-P_{n-2}^{a}(t)\right] \tag{2.28}
\end{align*}
$$

$$
\begin{aligned}
& \text { Its solution 1s } \\
& P_{n}^{a}(\tau)= \\
& \quad \exp ^{-\frac{U^{n}}{0} Y^{n}} \exp \left\{\int_{0}^{\pi}\left[a_{a}(t)+a_{2 a}(t)\right] d t\right\} \frac{Y}{n!}
\end{aligned}
$$

We will not consider the combination with annihilation prooesses as thes lead to a shift of the argument in (2.28) (2.29) distributions onily but do not change their 'forms. A combination of creation and generation processes of 3 or more particles does not seem to be reasonable, as it does not give any important things, but makes the distribution more complete.

To sum up:

1) There exist 3 sorts of elementary processes: generation, creation and annihilation.
2) Creation processes lead to the geometrical disttibution; while generation processes lead to more sharp distribution (Poisson, Feynman-gas).
3) Three new types of distributions are found:two for combined processes (creation + one-particle generation and creation+ two-partiole generation) and one for marimum generation. The combinations with anthilation processes do not lead to changes In a distribution form (oniy its argument is changed).

Later we will consider the obtained distributions from
the point of view of their fitness to the desoription of experimentalis observed situation.

III. Correlations in models of fet approsoh.

To characterize the oorrelations we will use correlation parameters, whioh are calculated simply (e.g. $/ 4 /$)

$$
\rho_{1}=\frac{1}{\sigma_{t+t}} \int_{c} \frac{d \sigma}{d y} o y=\langle n\rangle
$$

$$
\rho_{2}=\frac{1}{\sqrt{n}_{1+c}} \int \frac{d^{2} \sigma_{1}}{d y_{1} d y_{2}} d y_{1} d y_{2}-\left(\frac{1}{\sigma_{+0 t}} \int \frac{d v_{1}}{d y_{1}} d\right)^{2}=\langle n(n-i)\rangle-\langle n\rangle^{2}
$$

$S_{3}=\frac{1}{\sigma_{+1}} \int \frac{d^{3} \sigma}{d y_{1} d y_{2} d y_{3}} d y_{1} d y_{2} d y_{3}-3 \int_{0 y_{1} d y_{2}}^{d d_{1}^{2} d y_{2}} \cdot \frac{1}{\sigma_{0}^{-2}}$

- $\int \frac{d \sigma}{d y} d y-\left(\frac{1}{\sigma_{n+}} \int \frac{d \sigma^{6}}{d y} d y\right)^{3}=\langle n(n-1)(n-2)\rangle-3\langle n(n-1)\rangle\langle n\rangle-$

From experimental data, obtained reoently, high-order corre-
lations are consid ered to be well-established (higher than
four, at least)/4/. To prove this, there are some theoretioal speoulations /12/, which follow as from the momentum conservation laws, so from dynamical effeots (Pomeron exohange nonfaotorisability). Another characteristic feature of correlam tion functions is their sign alteration with the energy inorease which follows from the conserration laws of four momenta/2/. Besides, oorrelation paramoters, ($1, e$. the oorreIation funotions integrated over phase space) higher than seoond order, have approximately the same magnitude; but alter in sign.*

Let us oonsider some restrictions on correlation funotions. Using the Froissart theorem/13/

$$
\begin{equation*}
\tilde{T}_{\text {tot }}(s)<\left(\ln ^{2}\left(\frac{S}{S_{0}}\right)\right. \tag{3.2}
\end{equation*}
$$

$$
\begin{aligned}
& \text { and the inequality } \\
& J_{1}\left(s_{1}\right)=\frac{1}{J_{t+t}} \int_{t_{1}}^{d y_{1}} d y_{2} \leqslant \frac{i}{2}\left(\frac{d 5}{d y}\right) \frac{1}{J_{1}} \int_{0}^{Y} d y= \\
& \text { Where } \\
& =\frac{1}{2}\left(\frac{d \sigma}{d y}\right) \frac{Y}{V_{t+t}},
\end{aligned}
$$

$$
\begin{equation*}
y_{i}=\ln \left(\frac{S}{m_{i}^{2}}\right) \quad, \quad Y=\ln \left(\frac{S}{m^{2}}\right) \tag{3.4}
\end{equation*}
$$

are rapidities of i-th secondary and projectile partioles, we hate

$$
\begin{equation*}
S_{1}\left(S_{1}\right)<\frac{S_{1}}{S} n \tag{3.5}
\end{equation*}
$$

The faotor n appears because of the identits of partioles. Inequality (3.5) coincides with the result, obtained by Logunor et al./24/

Similarly, for the seoond correlation function we get

$$
\begin{align*}
P_{2}(S) & \leqslant \frac{S_{1} S_{2}}{S^{2}}\left(1-\ln \frac{S}{S_{0}}\right) \frac{n(n-1)}{2}-\frac{S_{1}^{2}}{S^{2}} n^{2}= \tag{3.6}\\
& =S_{1}\left(S_{1}\right) S_{1}\left(S_{2}\right)\left(1-\ln \frac{S}{S_{0}}\right)-S_{1}^{2}\left(S_{1}\right)
\end{align*}
$$

For estimation we assume that both particles have equal energy, then

$$
\begin{equation*}
\rho_{2}(s) \leqslant-A^{2}(s) \tag{3.7}
\end{equation*}
$$

where the coefficient A is approximately equal to unity.
The restrictions on the correlation functions of higher order are weaker, than experimentally observed amplitude constancy of the correlation funotions; so we will not cons1der them.

The condition that KNO soaling does exdst can be written in the form:
$\sqrt{\frac{L^{2}}{\langle n\rangle^{2}}}=\sqrt{1+\frac{\rho_{2}}{\rho_{1}^{2}}}=$ Const.
Now we proceed to correlations for different distributions, obtained earller.

For (2.5) distribution we may write down the correlation functions of any order

$$
\begin{align*}
& \rho_{1}=2\left[\in g_{2}^{a}-1\right] \\
& g_{2}=2\left[G_{1}^{a}-1\right]^{2}=\frac{1}{2} S_{1}^{2} \\
& S_{3}=4\left[e^{g_{1}^{a}}-1\right]^{3}=\frac{1}{2} S_{1}^{3} \tag{3.9}
\end{align*}
$$

$\Theta_{m}=\frac{2}{e^{2}}(m-1) \Gamma(m-2 ;-2)\left[e^{g_{1}^{a}}-1\right]^{m}$

Scaling is fulfilled and scaling oonstant is equal to

$$
\begin{equation*}
\sqrt{\frac{\hbar^{2}}{\langle n\rangle^{2}}}=1.7 \tag{3.10}
\end{equation*}
$$

But this distmbution has somedrawbacks: the behaviour of correlation functions does not agree with the experimentaliy observed one and does not satisfy the restriotion (3.7).

$$
\text { The substitution of } g_{1}^{a} \text { by } g_{i}^{a}-g_{c}^{a}
$$ (an acoount of annthilatbin processes) in (3.9) does not change essentially the situation.

For (2.9) distribution the form of correlation functions is analogous:
$S_{2}=\left(\frac{g_{0}^{a}}{\left.g_{2}^{a}-g_{0}^{a}\right)\left[e^{\left(g_{1}^{a}-g_{0}^{a}\right) \tau}-1\right]}\right.$
$S_{2}=\left(\frac{g_{0}^{a}}{g_{1}^{a}-g_{0}^{a}}\right)\left[e^{\left(g_{1}^{a}-g_{0}^{a}\right) \tau}-1\right]^{2}=\frac{g_{1}^{a}-g_{0}^{a}}{g_{0}^{a}} \rho_{1}^{2}$
$S_{m}=\frac{(m-1)}{e^{2}}\left(\frac{g_{0}^{a}}{g_{1}^{2}-g_{0}^{a}}\right) \Gamma(m-2 ;-2)\left[e^{\left(g_{2}^{a}-g_{0}^{a}\right) \tau}-1\right]^{m}$
For the scaling constant we have

$$
\begin{equation*}
\sqrt{\frac{\mathcal{D}^{2}}{\langle n\rangle^{2}}}=\sqrt{\frac{g_{1}^{a}}{g_{a}^{a}}} \tag{3.12}
\end{equation*}
$$

Though the correlation functions of given distribution can be put in an agreement with experimental data and the oondition (3.7), the agreement is possible in the lower part of spectra only (1.e. for momenta less than 20-30 Gev/s).

It is know, that correlation functions for Poisson distribution equal zero, though the scaling is fulfilled.

For Fegnman-gas (2.18) distribution correlation parameters are

$$
\begin{aligned}
& P_{i 2}=\int_{0}^{\tau}\left[a_{a}(t)+a_{2 a}(t)\right] d t \\
& i_{2}=2 \int_{0}^{5}\left[a_{a}(t)+a_{2 a}(t)\right] d t \cdot \int_{0}^{t}\left[a_{a}(t)+a_{2 a}(t)\right] d t_{1}- \\
& -\left\{\int_{0}^{\tau}\left[a_{a}(t)+a_{2 a}(t)\right] d t\right\}^{2}+2 \int_{0}^{\tau} a_{2 a}(t) d t \\
& \exists_{3}=6 \int_{0}^{T}\left[a_{a}(t)+a_{2 a}(t)\right] d t \int_{0}^{t}\left[a_{a}\left(t_{1}\right)+a_{2 a}\left(t_{2}\right)\right] d t_{1} . \\
& \int_{0}^{t_{1}}\left[a_{a}\left(t_{2}\right)+a_{2 a}\left(t_{2}\right)\right] d t_{2}+G \int_{0}^{2}\left[a_{a}(t)+a_{2 a}(t)\right] d t \\
& -\int_{0}^{t} a_{2 a}\left(t_{1}\right) d t_{1}+6 \int_{0}^{\tau} a_{2 a}(t) d t \int_{0}^{t_{1}}\left[a_{a}\left(t_{1}\right)+a_{2 a}\left(t_{1}\right)\right] d t_{1} \\
& -\left\{\int_{0}^{T}\left[a_{a}(t)+a_{2 a}(t)\right] d t\right\}^{3}-6 \int_{0}^{T}\left[a_{a}(t)+\right. \\
& \left.+a_{2 a}(t)\right] d t\left\{\int _ { 0 } ^ { T } [a _ { a } (t) + a _ { 2 a } (t)] d t \int _ { 0 } ^ { 0 } \left[a_{a}\left(t_{1}\right)+\right.\right. \\
& \left.\left.+a_{2 a}(t)\right] d t_{1}\right\}-6 \int_{0}^{T_{2}}\left[a_{a}(t)+\left(\lambda_{2 a}(t)\right] d t\left\{\int_{0}^{0} a_{20}(t) d t\right\}\right.
\end{aligned}
$$

When $a_{a}(t)$ and $a_{2 a}(t)$ are poly nomads in t, the expressions are simplified

$$
\begin{align*}
& S_{1}=\int_{0}^{T}\left[a_{a}(t)+a_{2 a}(t)\right] d t \\
& S_{2}=2 \int_{0}^{\tau} a_{2 a}(t) d t \tag{3.14}\\
& \Omega_{3}=0, \quad J_{m>3}=0
\end{align*}
$$

The distribution has two independent parameters, so the behave our of the first and the second oorrelation parameters can be agreed both with restriction (3.7) and with the scaling but as it was pointed out, the distribution has the lack of correlation functions higher than the second order.

Thecorrelaton parameters (2.23) can be presented as follows

$$
\begin{align*}
& O_{2}=N_{a}=\int_{0}^{T} \frac{F_{2}(t)}{F_{2}(t)-\frac{3}{2}} d t \\
& P_{2}=J_{1}^{2}-\frac{3}{2} \rho_{1} \tag{3.15}\\
& O_{m}=(-1)^{m} O_{2}
\end{align*}
$$

This agrees with experimentally observed behaviour of corelation parameters. The value $\left[\mathcal{B}^{2} /\langle n\rangle^{2}\right]^{1 / 2}$ is equal to

$$
\begin{equation*}
\sqrt{\frac{\dot{x}^{2}}{\langle n\rangle^{2}}}=\sqrt{2-\frac{3}{2} s_{2}^{-2}} \tag{3.16}
\end{equation*}
$$

1.e. the scaling is reached in assymptotios only but the value of the scaling constant does not coincide with that,

Obtained by Koba,NiElsen and Olesen for their generating functional $/ 6 /$. Condition (3.7) for this model also holds.

For distribution (2.27) the oorrelation functions are as follows:

$$
\begin{align*}
& \rho_{2}=\frac{g_{1}}{g_{1}^{a}}\left(e^{g_{1}^{a}-L}-\quad g_{a}=\int_{c}^{\tau} a_{a}(t) d t\right. \\
& \rho_{2}=\frac{2 g_{a}}{g_{1}^{a}}\left(e^{g_{2}^{a} \tau}-1\right)^{2} \tag{3.17}\\
& \rho_{m}=\frac{g_{a}}{g_{2}^{a}}(m-1)!\left(e^{g_{1}^{a} \tau}-L\right)^{m} \sum_{i=c}^{m-3}\left(-\frac{g_{i}}{g_{1}^{u}}\right)^{c} \frac{1}{t!}
\end{align*}
$$

They agree with experimental data only with annihilation processe: talen into aooount and under condition that annihilation probability is larger, than oreation probability only In the region of nothigh emrgies. Next section will be dedicated to (2.27)-sort of distribution, whioh describes prooesses of diffractive dissociation kind.

The existence of the soaling for (2.27) can be 1llustrated as follows

$$
\begin{equation*}
\sqrt{\frac{\mathbb{L}^{2}}{\langle n\rangle^{2}}}=\sqrt{1+\frac{g_{1}^{2}}{g_{n}}}=\text { Const } \tag{3.18}
\end{equation*}
$$

Condition (3.ip) is also fulfilled, As it is known, diffractive dissociation processes give small oontribution with energy increase, so the behaviour of correlation parameters (3.17) can be agreed with experimental ones at high energies. For
(2.28) distribution there exist correlation parameters, which differing from O in any order, are too unvieldy; so for the flrst three equations we have:

$$
\begin{aligned}
& \rho_{1}= \frac{f_{1}}{g_{1}^{a}}\left[e^{g_{1}^{a} \tau}-1\right] \\
& \rho_{2}=\left(\rho_{1}\right)^{2}+\frac{f_{2}}{2\left(g_{2}^{a}\right)^{2}} e^{2 g_{1}^{a} \tau}-\frac{f_{2} \tau}{g_{1}^{a}}-\frac{f_{2}}{2\left(g_{1}^{a}\right)^{2}} \\
& \rho_{3}=-\left(\rho_{1}\right)^{3}\left[1+\frac{2}{3}\left(\frac{g_{1}^{a}}{f_{1}}\right)^{2}+\frac{2}{3} \frac{g_{1}^{a} f_{2}}{\left(f_{1}\right)^{3}}+\frac{1 c}{3} \frac{g_{1}^{a}}{f_{1}}\right]- \\
&-\left(\frac{\rho_{1}}{\rho_{1}^{a}} \rho_{2}-e^{2 g_{1}^{a} \tau}\left[\frac{f_{2}}{g_{1}^{a}}+\frac{\left.f_{1}\left(\frac{f_{1}}{g_{1}^{a}}\right)^{2}\right]+e^{g_{1}^{a} \tau}\left[\frac{2 f_{2}}{\left(g_{2}^{a}\right)^{2}}+\frac{13}{3} \frac{\left.f_{1} f_{2}\right)^{2}}{\left(g_{1}^{a}\right)^{2}}\right.}{}\right.\right. \\
& f_{1}=\frac{1}{\tau} \int_{0}^{\tau}\left[a_{a}(t)+a_{2 a}(t)\right] d t, f_{2}=\frac{1}{\tau^{2}} \int_{0}^{\tau} a_{2 a}(t) d t
\end{aligned}
$$

From (3.19) it is clearly seen, that the correlation functions have correct 'sign alternation.

Three free distribution parameters allow us to coordinate the behaviour of correlation parameters with experimentially observed ones.

The soaling condition
$\sqrt{\frac{f^{2}}{\langle n\rangle^{2}}}=\left[2+\frac{f_{2}}{2 f_{1}^{2}}+\frac{f_{2}}{2 f_{1} g_{1}^{a}}-\frac{f_{2}}{2\left(g_{1}^{a}\right)^{2}} \cdot \frac{1-q_{1}^{a} \tau}{\langle n\rangle^{2}}\right]^{\frac{1}{2}}$
is fulfilied assymptotically at high energies. (3.7) is also fulfilled. So, we conclude:

1) Experimentally observed existence of the correlation functions up to n-order satisfies the distributions, Fhich include production(annihilation) prooesses and sometimes generation processes (when the simultaneous production of any number of particles is possible).
2) Distribution for pure areation processes gives correlation functions which differ from O in any order, but their behaviour cannot agree with experimentally observed distribution.
3) Combined distributions of oreation processes with annihilation and creation processes (fragmentation), With one-particle generation give correlation parameters which agree with experimentally observed behaviour in the region of not very figh energies (up to $20 \mathrm{GeV} / \mathrm{c}$). The scaling for such a distribution exists.
4) The top case of generation processes, oombined creation processes and two-partiole generation give a consistent behaviour of correlation parameters in the whole energy interval.

- Here the scaling is achieved only, asymptotically.

IV. Comparison rith experiment and discussion.

To compare distributions, obtained earlier, with experiment it is necessary to attach some physical and practical meaning to probabilities of "elementary processes". We will use the approximation by physioal processes, i.e. elementary processes, probability $a \rightarrow C+a$ is assumed to be equal to the probability of physical processes $a+B \rightarrow a+a+C$ (where B and are target partioles before and after interaction correspondingly).

$$
\begin{align*}
& g_{1}^{a}=\frac{5(a+B \rightarrow a+a+c)}{J_{t+t}(a B)} \\
& g_{b}^{a}=\frac{\sigma(b+B \rightarrow \hat{b}+a+C)}{\sigma_{t+t}(\dot{b} B)} \tag{4.1}
\end{align*}
$$

Though this method sllows us to caloulate all the unknown distribution parameters, its applicability is not quite substantiated. So, when possible, it is necessary to calculate elementary prooess probabilities from such equations:

$$
\begin{equation*}
P_{0}^{a}(\tau)=\frac{ज_{e l}(A B)}{S_{\text {tot }}(A B)} \tag{4.2}
\end{equation*}
$$

where A and B are initial particles. The given relation (at first used by Fujiwara and Kitazoe $/ 9 /$) satisfies any sorts of elementary processes. The only drawback of such
an approach is that we can write down as many relations (4.2) as sorts of particles obtained after the interaction, whlle in models there are often much more parameters.

One more approximation may be proposed for the elementary process probabilities.From Regge analysis we get, that these probabilities must be linear functions of rapidity ${ }^{+}$), i.e.

$$
\begin{align*}
& G_{1}^{a}=\alpha_{1} Y+\beta_{1} \tag{4.3}\\
& \int_{0}^{=} Q_{a}(t) d t=\alpha_{2} Y+\beta_{2} \quad \text { etc., where } Y=C_{L e}\left(\frac{s}{M_{A} m_{B}}\right)
\end{align*}
$$

Though the number of parameters doubles, it allows us to caloulate the approximate energy behaviour of the distribution. The average multiplioity dependence on energy for all scts of distributions is close to that experimentally observed:

```
distr. (2.6), (2.8) \(\quad N_{a} \sim S^{\alpha}\)
distr. 2.10 ), (2.15)
\((2.18),(2.25)\)\(\quad \mathrm{N}_{a} \sim \ln _{\mathrm{a}}\left(\frac{\mathrm{S}}{S_{\mathrm{c}}}\right)\)
distr. (2.12) \(\quad N_{a} \sim S^{x} \ln _{n}\left(\frac{S}{S_{0}}\right)\)
\(\begin{array}{ll}\text { distr.(2.27), (2.29) } & N_{a} \sim\left[\left(\frac{S}{S_{0}}\right)^{-\gamma}+1\right] \frac{\ln \left(\frac{S}{S_{0}}\right)}{\ln \left(\frac{S}{S^{\prime}}\right)} \\ 0 \leqslant x \leqslant E .5 & C \leqslant \gamma \leqslant 1\end{array}\)
where \(0 \leqslant x \leqslant 0.5\)
\(C \leq X \leq 1\)
```

[^0]All the given distributions do not differ much. The distributions, which include creation and annihilation processes, are somewhat wider than Poisson distributions (i.e. they have more low and more wide maximum). The distributions which take account of several particle generation simultaneously , are narrower than Poisson distribution (the maximum is more sharp), moreover, the distribution becomes narrower with the increase of simultaneously generated particles. However, even in the limiting case (when simultaneous generation of any number of particles is possible) the distribution is not so narrow that we cannot define using any calculations, what distribution is in the best agreement with experiment.

There is one more possibility to compare the prediction with experiment. Excluding unknown parameters, we have obtained certain sum rules which connect topological cross--sections. These sum rules for interactions, including various kinds of elementary processes, can be represented as follows: annihilation and creation processes
(distributions (2.6), (2.8), (2.10)

$$
\begin{equation*}
\sigma_{n-1} \cdot \sigma_{n+1}=\sigma_{n}^{2} \tag{4.5}
\end{equation*}
$$

one-particle generation (distribution (2.15))

$$
\begin{equation*}
\frac{\left(n^{2}-1\right)}{n^{2}} \sigma_{n-1} \cdot \sigma_{n+1}=\sigma_{n}^{2} \tag{4.6}
\end{equation*}
$$

two-particle generation (distribution (2.18))

$$
\begin{aligned}
& \frac{n^{2}}{(n-1)} \cdot \frac{S_{n}^{2}}{J_{n-2}}+\frac{(n+1)(n-2)}{n} \cdot \frac{5_{n-2} \cdot 5_{n+1}}{\int_{n+1} \int_{n-1}}+ \\
& +\frac{(n+2)(n-1)}{(n+1)} \cdot \frac{S_{n+2}}{J_{n} \cdot 5_{n+1}}=(2 n+1)+\frac{n^{2}-4}{n+1} \cdot \frac{\hat{J}_{n+2} S_{n-2}}{J_{n+1} \int_{n-1}} \\
& \text { the limiting case of generation }
\end{aligned}
$$

> (distribution (2.25))

$$
\begin{equation*}
\frac{(n+1) 5_{n+1}-5_{n}}{n 5_{n}-5_{n-1}}=\frac{n 5_{n}-5_{n-1}}{(n-1) 5_{n}-5_{n-2}} \tag{4.8}
\end{equation*}
$$

the combination of creation prooesses and one-particle generation

$$
\begin{equation*}
\frac{(n+1)}{n} \frac{J_{n+1}}{J_{n}}+\frac{(n-1)}{(n-2)} \frac{J_{n-1}}{J_{n-2}}=\frac{2 n}{(n-1)} \frac{5_{n}}{J_{n-1}} \tag{4.9}
\end{equation*}
$$

When oreation probability becomes small, the last rule turns into (4.6), when generation probability is small, it turns into the following

$$
\begin{equation*}
\frac{\left(n^{2}-1\right)}{n^{2}} \frac{\sigma_{n+1}}{\sigma_{n}}=\frac{n}{(n-1)} \frac{\sigma_{n}}{\sigma_{n-1}} \tag{4.10}
\end{equation*}
$$

where $\quad \sigma_{n}$ is any sort of n-particle production cross-seotion. Besides, the well known Regge sum rules ${ }^{/ 15 /}$ are fulfilled for all distributions:

$$
\begin{equation*}
\sigma(A A) \cdot \sigma(B B)=\sigma^{2}(A B) \tag{4.11}
\end{equation*}
$$

where A and B are initial particles. The rulfilment of this rule is connected with factorization of elementary process probabilities over different sorts of incident particles.

Short conclusions

1) The behaviour of the average nultiplicity for all distributions agrees with the experimentally observed one.
2) Regge sum rules are fulfilled for all distributions.
3) Some detailed calculations are needed to compare. multiplicity distributions with experiment anu to choose the most adequate one.

V. Conclusions

In the present paper we used some results, obtained in previous studies /l7/ (where some statements are concretized and some models for certain sorts of interactions are studied, e.E. NN- interactions with consideration. of concrete types of elenentary processes).

In the given paper we wanted to show the possibilities of the jet approach (1.e. the random process approximation) but these possibilities are much wider.

It would be interesting to research the possibility to use conditional multiplicity distribution for the description of inclusive processes, $1 . e$. such functions, which will simultaneousl ${ }^{\prime \prime}$ Cescribe the distributions of two or more
aifferent sorts of particles. The possibility to research the correlations between particles of different sorts (though the usual distribution functions, which were used in the given neper, are available for oorrelation research between one sort of particles only is very important. The first steps along suoh a research have been already made (a model of $\bar{N} N$ annihilation into pions, kaons and hyperons has been obtained where the distribution of charged and neutral pions is described by the same function) $/ 17 /$.

The second approach is the utilization of the random vector, but not scalar distribution function. In this case the elementary process probability is a random quantity. So the multiplicity distribution can be represented as the Veneziano amplitude./17/

1. W.Heisenber, Zeits.f.Phys., 101,553 (1936); 113, 61 (1939). E.Fermi, Progr.Theor.Phys., 5, 570 (1950)
L.D.Lemdau, Izv.Akad.Nauk SSSR, 27,57 (1953).
2. C.F.Powell, Proc. 9th Conf on High Energy Phys., Kiev;1959. E.L.Feinberg, Proc. 9th Conf. on High Energy Phys., Kiev, 1959.
G. Cocconi, Proc.Int.Conf. on High Energy Phys., CERN, 1962. S.I.Iindenbaum, Proc. 12th Conf, on Elgh Energy Phys., Dubna, 1964.
E.I. Felnberg, Proo. 12th Conf. on Elgh Energy Phys.; Dubna, 1964.
I. Van Hove, Proc. 13th Confe on High Energy Phys., Berkeley, 1966.
0.Czyzewski, Proo, 14th Conf. on High Energy Phys., Fienna, 1968.
3. A.Hroblewski, Proo. 15th Conf. on High Energy Phys, सiev, 1970.
4. A.Bjalas, K.Zalewski, Nucl. Phys., B42, 325 (1972). A.Bjalas, K.F1alkowski, R.W1t, Nucl.Phys., B43, 413 (1972).
5. W.E.EIttel, Proo.Int, Colloquium on Many Body Dunamios, Helst nkl (1971).
0.Czyzewski, Proc.Int. Colioquium on Many Body Dynamics, Helsinki (1971).
6. A.H.Mueller, Phys.Rero, D4, 150 (1971).
Z.Kobs, H. B.N1elsen, P. Olesen. Phys.Lett.', B28, 25 (1972).
7. W.Furry. Phys.Rev., 52, 569 (1937).
8. M. Blann, Preprint Univ. of Roohester UR-3591-20 (1971).
9. K.Fujiwara, T.Kitazoe. Progr.Theor『Phs ., 43, 1244 (1970).
10. K.Wilson. Preprint CLNS-131 (November 1970).
R.E.Arnold, Phys.Rev., D5; 1724 (1972).

MoLe Bellac. Phys.Letto, B37, 413 (1971).
11. O.Czyzewski, K.Rybicki. Proc. 15th Int.Conf. on High Energy Phys., Kiev, (1970).
12. I.Ellis, I.Finkelstein, R.D.Peccei, Preprint SLAC/PUB-1020 (1972).
A. Ballestrero, RoNulman, E.Predazz1, Nuovo Cime, A10, 311 (1972).
13. M.Froissart ${ }_{q}$ Phys.Rev., 123, 1053 (1961).
14. A.A.Logunot, M.A.Mestririshivili, Theor. and Math.Phys., 11, 203, (1972).
15. HoM.Chan, Preprint CERN 67-16 (June 1967).
16. M.Good, W.WaIker, Phys.Rer., 120, 1857 (1967).
H.Satz, K.Schilling, Proo.Int.Colloquium on Many Body Dynaics, Helsinki (1971). .
17. NoK. Dushutin, T.M.Maltset, JIMR, P2-5829, Dubna (1971); P2-6932, Dubna (1973), P2-7090 Dubna (1973).
V.M.Maltset, N.K.Dushutin, JINR, P2-6500, P2-6502, Dubns, (1972), E2-7122 Dubna (1973).
M.K.Dushutin, V.M.Matset, V.I.Shept1y, JINR, P2-6501, Dubna (1972).
18. N.A.Chernikov, Proc.Int.Winter School on Theor.Phys., T. 3 , p.151, Dubna, (1965).

[^0]: ${ }^{+}$Rapidity for the first time was used by Chernikov $/ 18 /$ for the analysis of events in the momentum space.

