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Summary_ 

3 Determination Df the coupling constants 
H dn, H

3
H 

3
rr and He 3He

3
rr from the existing 

data on the differential cross sections of 
the nH 

3 and nHe 
3 elastic scattering has 

oeen -carried out. The method is based on 
. da 

the extrapolation of dQ to the deuteron 

and pion poles exploiting the conformal 
mapping techniques. , . , . . .. 

Calcuiations resurt in .the value ·of 
the H 3 dn coupling constant which is ~ 20% 
smaller than the dispersion relation predic
tions. Th,e: conipar ison of., the obtained, ·value 
with predictions based on nuclear models 
allows to discriminate ·between different 
potentials. ~- , : _, - "'' 

.·- The- r.esidue ?t. the pion pole_ turns out 
to be too weak and -the: cohcltfs;io·n -is drawn 
that it is impossible ·to determine tl1e coup
ling constants H 3H 3 rr and He 3 He 317 on the· - - ' , . 
basis of the existing data. 

'· Copyright © 1973 
Joint Institute for Nuclear Research 
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1. Introduction 

The practical exploitation of analyticity, one of the 
fundamental principles of contemporary particle physics, 
is pe!]etrating persistently the nuclear physic~. This is 
of great importance because the new. aspect emerges 
he.re. Nam~ly, it is po_ssible to compare the values of 
the_ same quantities. obtained in completely different 
ways. So, for example, the quantities called the particle_._ 
nucleus coupling constants can be found. 'JD the one hand, 
on the basis of data on particle-nucleus scattering by means 
of analyticity, when a nucleus is considered as-a•structure
less object with a definite set of quantum numbers. On 
the other hand, the same quantities, known as spectro
scopic factors, can be found in nuclear physics on the 
basis of spt?cific nuclear mod!'!ls. 

Speaking about the exploitation of analyticity in nuclear 
physics one should mention first of all the use of the 
forward dispersion relations of the particle nucleus 
scattering. An excellent review on this subject is avail
able already for several years111 . Some later develop
ments can be found in 12- 51 . Other familiar consequences 
of analyticity in energy plane, e.g. sum rules, different 
bounds on the amplitudes, etc., are hardly to be expected 
to benefit very much in the near future due to the lack 
of sufficiently accurate and complete experimental data. 

However, there is one immediate possibility of exploi
tation of hypothesis of analyticity of the elastic scatter
ing amplitude in the cos0 plane. It has been known 
already for a long time 16 • 7! that one can make· use 
of this • hypothesis by extracting the values of coupl~ng -
constants by extrapolation of the differential cross sec-
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tion from physical region to the poles of scattering 
amplitude in the cos 0 plane. The first applications 
of this idea to nuclear physics are due to 18 •91 . 

·In the present paper we try to determine in such a way 
the coupling constants H 3dn, H 3H 3rr and He 3 He 3

" 

on the basis of the experimental data on the nH
3 and 

H 3 1 t· tt . 110 111 n e e as 1c sea ermg ' · . 

2. Singularities for the nH
3 

Elastic Scattering· in · the 
cos0 Plane for Fixed Energy 

The_ singularities of the elastic nH 
3 scattering 'ampli

tude· in the cos0 plane· for fixed T, found ·by ineans of 
the investigation of the analytic properties of the formally 
written Feynman diagrams, are shown in fi-g. 1. The 
positions of the singularities are determined according 
to the following formulas * ' · 

2 
·(mn+m 8 3} (m 2_m 2. )2 

n 8 3 
x_ 3=-[l+ 2 

riH 2 k 2 k 2s , ], 

r 2 2 2 2 
1 m + m ) ( m - m 8 3 ) 

X =-[1 + n p - n . . ], 
n P 2 k 2 2 k 4s 

2 ( 2 2 2 
x d = _ [J + m d - m n - ma3) 

2k 2 2 k 2s ], 

2 
m" 

X =1+--2, 
rr 2k 

. (1) 

(2) 

(3) 

(4) 

-------------------------------3 --- .. 
. * In the case of the nHe scattering. the d -pole 

is absent and in formulas (1)-(7) m
8

3 must be replaced 
by m 

3 
and m ➔ m 

He n P 

4 

•. 

r 
I 
l 

f 

m
2

F 
x =1+ U. (5) 

anom. 2k 2 
thr. 

2ml 
X =1 + -, . (6)· 

2n k 2 

where 

x =cos0 and 
F =..I_[. 2 (m ;;.-.m

2
d-m 2 )2 

2 .4m - P. 
m P ] 

1T md . 

(7) 

s is c.m.s. energy squared and k is c.m.s. momentum. 
One now could use the expansion /1 I 

. N 
2 2 da ' n 

( x- x d ) ( x- x ) - = I. an ·x 
1T . an n=o (8) 

fo1 determination of the coupling constants H 3an · and · 
H H 

3 
rr. After fitting the sum on the· right hand side 

of eq. (8) to the experimental data one could carry out 
continuation to the deuteron and pion ·poles bf the scaf
tering amplitude and to determine the values· of· the 

· , 3 3 3 · · 
coupling constants H dn and H H "·respectively.However, 
it is well known 112 •131 , . that. this procedure is not .the 
optimal one from the point of viewofinaxlmal exploitation 
of· analytic properties tinder consideration. To,. achieve 
the latter we apply the technique of conformal rriappings. 

3. The Conformal Mapping Method:· 

We map the entire cut x -plane onto an unifocal 
ellipse in the z·-plane 1121 ~ In figs. 2a,b,c the optimal 
mappings are shown for determination of the coupling 
constants H3dn, H 3H3

rr and He 3He 3rr, respec~iv~ly. 

* In our Gas.e. the ellipses coincide practically with the 
circles. ·· ' · · · · .· · · 
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These mappings are known to accelerate _maximally 
the rate of convergence of the expansions of the type (8) 
and to make it possible to take into account the analytic 
nature of the data when estimating the errors of the 
coupHng constants. 

4. The Parametrization 

To determine the coupling constant H
3 

dn 
search of the form 

2 M 
(z-z) da(z) = IAnBnTn(zj, 

d dil n=l 

we use a 

. (9) 

where Tn (z) are Tschebyscheff polynomials ( T1 ==1 , 

T2 ==z, Tm+l =2zT n - Tn_1),Bn=(R~n-l>+R-2('i~on-l,O)-~ 
R is the sum of the semi-axis· of the ellipse and An 
are coefficients to be found from a fit. 

. _ An_alogous expres_sions are used}~ the case of deter
mmation of the couplmg constants H H 1r and He 3He 3

1r · ·• 

Various definitions of coupgng constants and their exact 
relations· to the quantity I A 'B T (z . ) are given 
. A ct· n=l n n n pole m. ppen 1x. · 

The specific form of the right-hand side of eq. (9) 
is designed to take into account the analytic nature of the 
data. For this purpose one defines the quantities 

2 
An+l 

t = n , (l<n<M-1) 
n 2 - -

I A k 
k=l 

and evaluates the integrals 

n+l t 
r(--) n 

H = 
2 f 

n rr}Jr(fJ 0 

dx 
½ m:r' 

X (1 +x)-Z-

(10) 

(11) 

where r ( y) is the Gamma function. After finding the 
quantities p n from the equation 
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t 
l 

r 

y~ 
_2_ f 2 e -x2 dx=H (12) 
. r:.- n 
V 17 0 

one can calculate the Cutkosky's convergence test 
function <I> defined as 1141 

M-1 
<l>=Ip. 

n=l n 

,13) 

This function -controls the goodness of the conver
gence of the expansion (9). One now can combine it with 
the x 2

, which controls the goodness of the fit, and 
define the new quantity 

X = X 2 +<I> (14) 

which is merging the statistic and analytic nature of the 
data. Now the rule is to stop in th,· fitting procedure 
at the M which minimizes X instead of that mini
mizing x 2

• 

5. The Results of the Fit 

. . d a(0) 
We have fitted the experimental data on the dQ of 

3 
the elastic nH scattering at I MeV, 2 MeV, 3.5 MeV, 

- 1101 :· da(O) 3 
6 MeV and on the ~ of the elastic nHe scatter-

. . /10/ • /11 I /10/ 
ing at 1 MeV, 2 MeV , 2.67 MeV , 3.5 MeV , 
5 MeV 1111 , 6 MeVllO/, 8.07 MeV,17.5 MeV

1111 

The results are presented in Tables 1,2,3. 
From Table 1 one can see that according to the cri terium 

of minimizing the quantity X one should keep three terms 
in the expansion (9) for the 1 and 2 MeV data and four 
terms for other energies .. This provides, whithi11theerrors, 
consistent values of the coupling constant H dn for the 
first three energies. The data at 6 MeV give significantly 
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smaller value for this coupling constant. The reason for 
this is not clear for us .Anyway, one should mention that 
the experimental data at 6MeV differ· significantly (have 
larger dip at medium angles and flatter slope at back
ward angles) both from the data at lower energies and 
from the correspondiD,g theoretical predictions·/15/, at•· 
larger, angles es.recially. · 

Examination of Tables 2 and 3 shows that the values of 
the coupling constants JI

3
H

3
rr and He

3 
1Ie

3 
rr exhibit violent 

jumps when changing the number of parameters in the 
expansion (9). Therefore we conclude that the corresponding 
residues at the pion pole are too weak to be determined 
from the existing data. 

6. Conclusions 

The confrontation of our averaged value of r H 3dn = 0.3 
over the first three energies with that obtained from the 
forward dispersion relations of the n d scattering 121 

( r 3 = 0.382 ± 0.040) leads to the conclusion that it is 
H ;!_n 20% smaller. 

On the other hand, it is very interesting to compare 
our value CH2 3., :: 2.8 with those obtained by means of 

un * . methods of nuclear physics. · 
In /l6/ the nuclear reactions (p,d) and (d,t) have 

been compared within the framework of the peripheral 
moqel and the value 0. 73 :SC J 3 dn :S 4. 66 has be~n 
deduced. The modified phase-shift analysis for the pHe 
elastic scattering has been carried out in 1171 and the 
value 1.50 ::;; C 2 

3d < 2.52 has been:· found. With a wave 
function of He1Je c1a.l;ulated using the Faddeev equations 
and some special potential the value C~e3ap 2.86' ± 0.03 
was found in the work 1181. Similar calculations 1191 of 
a wave function of H 3 using the Faddeev equations and 

* We are indebted.to Prof. Y. E. Kim for discussion 
of1 these methods. 
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other potentials resulted in the estimation 0.28 < 
2 2 2 .. · -?- Sj 3dn S. 5.32. The values CHe3dif 3.0 and CH3dn= 3.4 

have been derived in 1201 from the data of the two body 
photodisintegration and eiectrodisintegration of He 3

; from 
realistic H 3 wave functions utilized in· transfer reaction 
and from three-body elastic scattering data. 

Thus if one considers our values as being model-inde- . 
pendent estimations,then one can give preference to some 
potentials.It seems that we have manifested the reasonable,· 
accuracy of this particular method of determination of co
upling constants .Having in mind that the spectros·copic fac·
tors must be given the sa~e statu~ as other nuclear para
meters such as the binding energy charge radius and form-
factors 116

- 201 , ~e ·think that the vast program of deter
mination o'f different ,spectroscopic factors can be carried 
out by means of this method in those cases when the methods· 
of works /l-S/ or 117- 2 o1 cannot be applied~ First' of 
all this refers to the spectroscopic factors 2 A~AN-l * 
owing to the availability of large amount of good data 
on differential cross sections of elastic neutron scattering 
on different nuclei. The same can be said· about the 
spectroscopic factors zAf_1A Np. However, in this case the 
Coulomb corrections should be taken into account properly. 
Apart from that, we urge experimenters to meas_ure diffe
rential cross sections ·of elastic scattering of kaons of 
different nuclei. This would provide the opportunity to 
determine some more exotic spectroscopic factors involv
ing hypernuclei. 

We express our deep gratitude to Dr. V.B.Belyaev for 
valuable discussions. 

* The special care should be taken for the excited 
states ,.of the nuclei. They must be considered as the 
extra poles. 
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Appendix 

The squared residue of the scattering amplitude at 
the pion pole, defined through the expression 

lim 
Z➔Z 

2 da(z) 2 N 
[z(x)-z(x )] -----= (Res ) = I A B T (z ) 

TT dil TT n=l n n . n TT 
(1) 

TT:. 
2 

is related to the coupling constant g 3 3 in the following 
way*. H H " 

2 2 
. 2 ·2 . 2 (l -x17) 10(/icJ . dz 2 

( Res) = g _3_3 g NN ----- (-d) , (II) 
TT Ir Ir 1T 17 4·s X x=x 

1T 

where g fiN1r is the rationalized, renormalized, pseudoscalar 
1r NN coupling constant, giN1r ::: 14. 6, and the factor 10( 'lie) 2 

( h c "" 0.1973 ,fm GeV) is introduced to match the units 

when <h( OJ is measured in mb/ sterad. The formula (II) 
dil . 

can be derived from the differential cross section 

+1/2 2 
·da,_ 1 I IM(s,t)I 
dO - l61r 2s s; ,s t=-t/2 

(III) 

substituting for M( s,t) the pion pole contribution to the 
invariant nH 3 scattering amplitude 

417 g 3 3 g 
H H TT NN 1T 

M (s, t) = -m m 3 
17 n H 

X u(ql)u(p2 )yS u(pl) 

2 t- m 17 
u(q2)ys x 

(IV) 

* In the case of the nHe 3 scattering H
3 should be 

replaced by He3 • 
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l 
'II' 

l 
! 
I 
'1 
,' 

calculated by means of the Feynman rules from the 
diagram shown in fig. 3a. Then we can write 

2 2 2 
gH3ErrP N NTT (1- X17) da(x) I 

dil TT 4s (x-x J2 
1T 

and the limit 

z(x)-z(x 17 ) 2 2 da(x) I 
lim [ -----] (x- x") dil TT 

x-x 
X ➔ X 1T 

1T 

2 
gives exactly the relation (II) for the (Res 17 ) • 

(V) 

(VI) 

Inste_ad of g ~ 3 
8

3 17 we prefer to use an analogue of the 
pseudovector coupling constant f 2 defined by 

f 
2 2 -g 

H3n 317 - H
3

H 31r 

m2 
1T 

4 m2 
a3 

(VII) 

The squared residue at the deuteron pole, defined by 

. da(z) 2 N 
l1m (z -zd) -- = (Resd) = I AB T (zd) 

dil n=l n n n 
Z➔ Zd 

(VIII) 

2 
is related to the coupling constant g n3 dn in the following 
way 

2 4 
(Resd ) = gH3 dn 

1i 2 2 2 2 22 
10( c) l2[(y'(k2 +mn)(k +mJ •+k ) + 
.4sk 4 

+[m 2 +k 2 (1-x >Hm\+k
2 

(1-xd)] 
.n ~ H 

.I 2 2 2 2 2 2 2 ] - 2 m m 3 ( v ( k +m )( k +m 3) + k x d ) + 2 m m 3 -
n H n H n H 
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m 
3

- m • _______ _ 
H n 2 2 2 2 2 2 · 

-2(----) [2m m 3 (-.j(k +m )(k +m 3 )+k ) + 
md n H n H 

2 2 2 2 ·2 
+ ( m n +9:I 3 ) k ( 1 - x j + 2 mn m H 3 ] + 

m H3 - m 4 - 2 2 2 2 .;2 
+ ( n ) [ y ( k +m )(k 2 + m 

3
) + k x d +m m 3 J l x 

m n H n H 
d 

2 
dz ) 

X ( -;rx- x =Xd (IX) 

which can be derived in the same way as formula (11) from 
the differential cross section (III) but . substituting for 
M (s,t) the deuteron pole contribution to the invariant 
nH 3 scattering amplitude 

2 
411gH3dn - - . 

Md(s,t)=-mnm 3 
2 

l u(p2 )Y. u(q1)u(q2 )y u(q )-
H u-m µ µ 

d 

-( 
m 3-m 2 

Hm n ) u(p2)u(ql)u(q2)u(pl) 

d (X) 

calculated by means of the Feynman rules from the 
diagram shown in fig. 3b. 

On the other hand, in the dispersion relations for the 
forward nd scattering amplitude itis common 121 to use the 
residue r HJdn of spin-averaged amplitude which is related 
to g ! 3 dn ._ by means of the expression 

2 1 [-4 . 2. 
r 3 =15 3 ----======;:::;===- . m nm 3 - m -. 
H dn H dn : 2 2 2 H n 

4m 3 y 2mn +2m H3-md 
H 2 2 2 2 
(mH3 -mn ) (mn +m 8 s-md) 

A'll 2 
d 

2 2 
-m H3+md 

12 

2 
mm 3 (mH3-m) 

n H n ] 

m2 
d 

The last relation is obatined through_ limit 

r = lim (w- w
0 
)f (w, 0) 

H 3 dn W➔ (J)O d · 

(XI) 

(XII) 

where w is the incident neutron laboratory total energy, 
w 0 corresponds to the deuteron pole . 

(j) = 
0 

2 2 2 
m n + mH3 -md 

2m.H3 

. , (XIII) 

1 
f ( (j)' 0)=--;::: 

d . :811ys· 

+½ 
I M js ,0), 

s i's f=-½ 
(XIV) 

where 

M (s, 0) =M (s, t) 
0

, 
d d t= 

(XV) 

For nuclear physicists it is more convenient to use 
the normalization constant c 2 (the spectroscopic factor) 
of the asymptotic wave function of H 3 which is related 
in a simple way ·/2 ,181 to the residue. rH3 dn 

2 4 
C 3 = - Rµr 3 

H dn 3 H dn (XVI) 

where R=(2µB) -~ µ:-o 
mri md and B -=. 6.26 MeV is the 
mn+md 

binding energy of the deuteron and neutron in H 
3 

• 
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Table I 
The results of the fit and the values of the coupling 
constant H 3 dn ~ 

rlrdn ±&H3cm 
2 2 

Energy M x2 <I> X c~cm ± ~Cu3cfu (MeV) 

1.0 2 34.72 4.99 39.71 0.123±0.003 1.16!0.03 

3 7.75 13.81 21.56 . 0305+0.024 
• -0.026 2 01•0• 2' • -0,25 

4 6,32 27~43. 33.75 O 733+0.220 
• -0,326 

6 93+2,09 
• -3,07 

2,0 2 320.4_0 4,26 324,67 0.102.!o.002 0,96±0,03 . 
·3 2,56 15,86 18,42 0~311!0,008 2,92!0,08 

4 2.16 17,11 19,28 0 364+0.072 
' -0,090 3 43+0,68 

' -0.86 

5 1,68 33,85 35,52 0 865+0.413 
' -0.865 

8 16+3,91 
• -8~16 

3,5 2 849. 75 1,58 851,35 0,053±0,002 0,55±0.03 

3 4.66 12.59 17,25 0,269:!:0.004 2.55±0.05 

4 3.88 13,11 16.99 0 234+0,039 
• -0,048 

2 22+0,38 
• -0.45 

5 3,37 26,74 30,10 0 438+0.11:ll 
' -0,419 

4 13+1, 71 
.• ~3,96 

. 
6,0 2 1280.08 0,58 1280,66 0.011!0.003 0,15:!:o.03 

3 28,44 9.46 37-90 0,178!0.003 1,69±0.03 
. 

0 054+0,039 0 50+0,38 4 2,09 12.46 14,55 ' -0,054 ' -0,50 

5 1.98 13,65 15.63 imaginary imaginary 

* 2 g
3 

::::600r
3 H dn H dn 
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Table 2 
The results of the fit and the values of the coupling 3 3 constant H H rr .-

Energy 
II x2 <I> X fd,ITT W1rn1z . (MeV) 

1.0 2 103-.95 6.06 110.00 -11~0.4 

3 11.49 · 16.66 28.15 51 .:t 6 

4 6.17 -32.20 38.37 -206 :t 112 

2.0 2 792.03 5.25 797.28 -8 ± 0.3 . , . ; 
3 54.29 15·.n 10.0.2 50 -:t 2 

4 3.57 - 27.90 31.47 .'.-s2 ± 19 

5 1.77 43 .• 67 · ;45.44 192 ± 206 
. 

3.5 2 1277.88 3.48 1281.36 -3 t 0.2 , 161·. 29 15.03 176.32 38 ± l 

4 9.20 26.49 35.70 -55 ± 7 

5 3.64 38.69 42.32 62! 50 .· -

6.0 2 1207.23 o.63 1207.85 l _±0.2 

3 258.48 14.95 273.43 - .20 ±1 

4 6.80 24.66 31.46 -23 ± 3 

5 1.90 31.86 33. 79 4 !13 
. 

6 1.7' 43.27 45.00 27 :t 57 

16 

·Table 3 
The results of the fit and the values of the coupling 
constant He 3 He3 rr. 

Energy M x2 (MeV) <I> X I 
2 
e1HJ :!Af: itf 3 H TT He err 

1.0 2 65.44 5.18 70.63 •V -4 :t 0.5 ., 4.60 18.69 23.29 56% 8 
4 4.32 28.75 33.01 1:,0 ± 140 

2.0 2 1148.90 2.42 1151.32 -0.05 :t 0.2 ' 
3 58.37 19.08 77.45 58 :j; 2 
4 8.96 :n.50 40.47 .-77 * 19. 

2.6 2 1500.45 4.26 1504.71 -3 ± o. 2 
3 17.10 19.34 36.44 54 t 1 
4 8.94 27.61 36.55 2 :t 18 
5 8.94 29.61 38.55 12 :t: 17 
6 8.55- 63.35 71.90 -953 ± 1561 

}. 5 2 1398.46 0.20 1398.66 1.5 ± 0.1 
3 134.87 18.79 153.66 33 t 1 
4 9.10 30.89 39.99 -42 ± 7 
5 , 7.82. 39.81 47.62 12 t 48 

',':. 

5.0 2- 775.33 5.38 780.71 -3t:0.2 
3 63.01 15:57 78.59 34 t: l 
4 17.29 29.75 47.04 · -30±10 
5 5.72 36.03 41.75 ·. 187 ± 65 
6 4.86 59·.12 62.97 ""."191 ± 412 

6.0 2 397.42 2.55 399.97 3 .t o. 2 
3 122.44 16.15 138.59 15 :t 1 
4 10.40 29.64 40.04 -25 :t 4 
5 7.95 38.14 46.09 4 ± 19 
6 7.03 56.34 63.37 10 ± 99 

8.0 2 1723.29 0.32 1723.61 1 t 0.1 
3 114.12 14.51 128.63 16 :t 1 
4 33.26 25.49 58.76 -5 ! 3 
5 22.73 38.81 61.54 32 :t 11 
6 21.87 53.18 75.05 -19 t: 56 

17.5 2 114.25 0.01 114.32 0.8 ± 0.05 
3 19-72 10.35 30.07 6:tl 
4 7.94 22.12 30.66 -2 ± 2 
5 7.21 29.18 36.38 6t9 
6 4.23 50.,4 54.57 -47 ± 32 
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Fig. 1. The analytic structure, of amplitude for the nH3 

elastic scattering in the cos 0. plane. The scale corresponds 
toT=6MeV. 
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Fig. 2a: _The optim'al ~apping fo,r the determination of 
,the .-couphng constant H · dn . The scale corresponds to 
·r = · 6 MeV. - · 

Fig. 2b. The optimal mapping for the determination of the 
coupling constant H 3 H3 rr. The scale corresponds to 
T = 6 MeV. . ....... 
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Fig. 2c. The optimal mapping for the determination of the 
coupling constant He 3 He 3 rr. The scale corresponds to 
T = 17.5MeV. 
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Fig. 3a,b. The pion and deuteron pole contributions to 
the scattering amplitude of the process nH3 ... nH 3 • 
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