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Usually dual models ' a r e studied in momentum 
space which is sufficient for the consideration of most 
of the interesting physical propert ies (asymptotic and 
;' -plane behaviour, construction of physical s tates, el imi
nation of ghost states and so on). Only recently in 
connection with the construction of dual amplitudes ' , 
some interest has been turned to space-t ime propert ies 
of dual models n - 4 ' . 

In the following we suppose that currents or fields 
a re determined from off-shell amplitudes on the basis 
of the classical S -matrix reduction formalism. In the 
foregoing p a p e r / 3 / this method has been applied to 
naturally extrapolated t ree amplitudes (Veneziano model). 
Here we will investigate a dual field t h e o r y / 5 / which has 
an explicit given off-shell extrapolation like ordinary 
Feynman field theories. This theory appears as a set of 
generalized Feynman amplitudes in momentum space 
which has to be understood as a perturbation se r i e s . 
Restricting our investigations to the s implest amplitudes, 
we study the self-energy parts ,of the ground state par
ticle, especially their discontinuities. 

As usual we take the asymptotic behaviour of spectral 
functions as a cri terion for local p r o p e r t i e s / 6 / - Our 
calculations done in the second order of perturbation thee-
ry announce a non-local behaviour of dual field theory. 
This is in accordance with the conclusions of previous 
investigations / 3 / reached by different methods. 
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2. 

The dual field theory in its standard for m/s' is 
iliven as a Feynman like theory constructed from vert ices 
and two types of propagators, twisted and untwisted, 
•A'hich a re operators in a Hilbert space which contains 
the states of an infinite set of harmonic osci l la tors . This 
c(;rresponds to the fact that there is an infinite number 
of stable particles with increasing spins. 

As the simplest case we consider the self-energy 
parts of the lowest mass state. 

The diagrams and the corresponding expressions are : 
a; the self-energy part without twists 
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b) The self-energy part with one twist -o-
2 
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8 ': Jacobi's 0 function (3) 

®; .• Jacobi 's © function. 
The parameter a is the intercept of the real input 
trajectory taken negative to avoid tachyon states . The 
counter t e rms f(x) and ifN (x) guarantee finite expres
sions for 2 ( s) and 1T(s) respectively (for s in the 
left half-plane). This represents one possible renormal i -
zation procedure / 5 / . As usual this ambiguity does not 
influence the discontinuity. The expression for 2TT(s) 
exists for Re s <-4/3 and needs no counter te rm. The 
latter restr ict ion corresponds to a cut at s=~*/swhich is 
not a consequence of two-particle uniiarity. Note that all 
expressions exist in the left half s -plane only and have 
to be continued analytically to determine the discontinuiti
es along the positive axis. 

The analytical continuation can be done by introducing 
the integration variables 

f = - log CO 0 < f < oc 

а - l°t* 0<e <i ( 5 ) 

log со 

and choosing a suitable integration path in the tj, plane. 
Because we a re interested in the discontinuities only 

we a re allowed to simplify the original expiessions. Let 
us begin with 1 T T which has the s t ructure (see Ap
pendix) 

S (s)= fde idt6(»,€)e

 F ( - ' a ) . ( 6 ) 

0 0 v ' 

Contributions to disci.TT a r i se from the regions where 
F (£, e) -> ~ that is in our case f = о and £ = ~ . Thus we 

have, to study the discontinuity for integrals of the type 

•i(s,A)~ f do °[dtg({,e;esF(te> 

о A 
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= J ав \ dy e e 
0 6 F^d.e) (-J) 

y = F(£,0)-F(A,$ ) . 

A similar consideration of the region £ = 0 leads to an 
identical resul t for the asymptotics. 
Rotating the integration path about ihe angle Ф (or <p- ) 
and performing the limit <£-»-L we get 

1 sF(A,e)+ioc £(£,$) 
disc 2(s,A) = /rffle f dy _ l l l ' _ i — e s y 

0 -lo° Fg(£,e) (8) 

y=F(£,0)-F(A,6). 

in the right у naif plane. By choosing A sufficient large 
we avoid poles of 1/ F * .The Jimit ф -> -̂ - exists for 
all finite s . For the evaluation of the integral (8) we 
translate the integration path to the left across the 
nearest singularit ies of б/F/f (stationary points), which 
determine the leading terms for s -> + «. . 

Let us consider the contribution of a stationary point 
£ =^ (0) corresponding to an expansion 

F(€,e)~F(£0,e)+b(e)(£-€0)2 + ... (9) 

(This case with Ь(в)> 0 is real ised for 2 Г Г ) we 
get 

g(е,в) _ й((0(в),в) 
Fj£ (£,в) 2 V 6C0J V У -F,(£o(0), e)+F(A,6) 

(10) 
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Therefore the contribution from the c" integration is 

+;dy jzdL.-'.i* &™ л . ( 1 I ) 

Insertion of this leading term into expression (8) gives 

disc^(s,A)= Л^-Ыв **0(0)'в}.е ° . ' ( 1 2 ) 

Vs ° У/Ь(в) 

One can show that the function р(£0(в), в ) takes its 
absolute maximum at 6= 1/2, so that the leading con
tribution a r i s e s from the neighbourhood of в=1/2. Using 

F({0(e),e) = F(€0(l/2),l/2) - c(в -1/2 f + ... ( 1 3 ) 

we get 

* sr л> *• *(Ш2>>"2> /($><1/2)'1/2)° 
disc 2,(s,A)s-- . / j4j 

у/Ь(1/2)с s 

Applying this method to I T T we have to take into 
account that the functionFf e(£,6) is periodic with respect 
to S for в=1/2 (compare-eqs. (lc), (2c), (3c)): 

F,g (£+ 47rmi, 0=1/2) = F ({ ,0=1/2) (15) 

( m integer). 
That means that the stationary points occur in infinite 
sets ft +4umi. So we obtain finally 

2 2 ,. 4n g -A , a+l °° -nf n -4 
ШасХ x-iu—JL-d-e 6 0 ) П(1-е °) х 

s/b(l/2)c №> 

sF(£n ,1/2) t , . s , . . , . 'S . 
" „ e; cos(4a+—7r)nm + 4nmain(4a+.-x-)ma 

x - . i-f-.+ 2 2 ' L _ { 
C 0 +(4um) 



In the appendix it is shown that there is at least one 
stationary point £ 0 with F(£0 ,1/2) > 0. (A factor 2 
a r i ses because of the contributions from f = 0 ). 

Let us now turn back to the other par ts 2 and 1 T 

At first it should be remarked that the integration in the 
expression for 2 r has the same range by introducing 
the variables x = V ~ , У = u V ~ . Therefore both functions 
may be treated in the same manner. Instead of the 
variables x,y i t is more appropriate to use the var i 
ables 

log x 0= 
tog и (17) 

п = -в(1-в) logm . 

The typical expression is 

2(s) = fdejdvg(r),0)le - e l. ( l g ) 

The presence of the counter term is necessary for 
convergence at -q=0. Note that the part 

I dd Jdrj g\ e - e ( П9) 
0 0 v ' 

exists for all values of s and therefore does not 
contribute to the discontinuity (Appendix). The same is 
true for the counter term in the remaining part , so that 
we have to discuss 

1 °° sF(n,e) 
discl( s) = disc J dd fdrj g(ri ,в )e . (20) 

0 A 

which has the same s t ructure as the already discussed 
expressions. By this way we get 

disc2,(s)=4in 1 С 1-е ) e 
V* d/2)c 
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sR<,F({0,l/2> 

(21) 

„ Re£0 cos(4na+-2—)l +4n I sin (4a+-2)trt 

t-HA/a (Ret0)2

+(4n ) 2 

with 
(g=-2log (0.107) ± 2ni 

F((0,l/2) = 0.25± if-
(22) 

This resul t has been derived in the same manner as that 
for -7-7- • 

The self energy parts in the second order have an 
exponential growing discontinuity eventually multiplied 
by an oscillating function. The failure of positive defini-
teness of the discontunuity may be traced back to the well 
known ghost difficulty in the dual theory. Remark that 
the double twisted self-energy part contains an exponen
tially growing discontinuity. This is in contrast to the 
behaviour of the double twisted box amplitude (dual 
"Pomeron g raph") which is polynomially bounded / ' / 

Furthermore we should compare our resul t with the 
investigations of the second order correct ions to the 
Regge trajectory orginating from a dual box d i a g r a m / 8 / . 
Despite of some structural s imi lar i t ies between the 
self-energy part 'S.(s) and the .trajectory correct ions 
the latter has been shown to be polynomially bounded in 
the whole s plane. Apparently the on-shell amplitudes 
investigated up to now behave better than the off-shell 
amplitudes. 
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The discontinuities considered above are related 
to the Lehrr.iann spectral function of the ground state 
propagator by 

» (*> = 77- , 1 •, , ! disc l(s) f 2 disc 2 Is) ,-discl (s) ! (23 
21 (s-w.-)2 T TT 

(in 2 order) . 
Consequently we get an exponentially growing <>(*) 

which announces non-local propert ies of dual field theo
r ies . 

We gratefully acknowledge discussions withH. J. Kaiser. 

Appendix 

I. Further expressions for the self-energy p a r t s " 
a) Self-energy part witi.out twist 

2 2 ~ ' e"€ -в£ -«-№ '-'• 
Z(s) = 4nU2 (d{) d6-— [(1-е )(l-e )]x 

0 0 t; 
*{'" (ф)\[ф(х)\* - [ф~(х)]° \ 

Ф(х)={ J.—i =_•«,„<?п J-J3-^lili3 Л 
®;(o i Щ-) • ' (i-g2n ) 2 

1 с 

Ф(х)=^ао1тгв 

q = e , c j = e 

b) Self-energy part with one twist 
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l(s)=8n2g2 Jd{Sd6-Z (l + e-£ ) 2 Г* (-<*)* 
т о о f 

-2в£ -2(1-в£ a-l a _ 
xUl-e ' )(l-e )] K l f r V j ] - E l K O l " ! 
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2n а 4п 
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N 
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N 

c) Double twisted self-energy part 

~, 1 й с 
2 2 ш P B±l —4 * 

2 (s)=4n g fdtfdd Z - d - c ? > f f<o>[\fr fx>] 
' О О С Г 

%'(0 | - i l l ; 

2n-t 4n-2 
I ,. _y« ^ l - 2 q cos2 пв+ q 

• T $ 9 П ' ^ 2 n , 2 

, " * , i J/6 , 2 -1/3, ~4 , , 
' fu>;=-r-2-<u log со q / (<?,). 
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II. Asymptotic behaviour of UIP functions f'-

F(e,0) = 1о£ф ~ 

0(1-в){ -J)£ 
-i- log [1-е 

rl-fh£ 
1 , Re <; 

log ( f ,0 

'(1-2в)б£, Re £ - . » , 0<в<1/2 

r({,0')-i 1ойф ~J (3в-2в -!)£, Яе£*«, 1/2<в<1 

/<gf £ - > 0 

*тг(£,в)*кхФт 

в(1-0)Ё -в( -а-в£ 
+ /o||[i +е + е J, Ле f-> < 

,г 2 

2Г 
, f->0 

III. Existence of stationary points and tho i r 
0 dependence. 

The existence of at least one stationary point for 
1 T T follows from an inspection of formula (3c). It is 
easily seen that FTT is infinite in the points x=y = o and 
x=y=i and has a minimum along each curve 0= const. 
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A straight-forward calculations shows tha.tFTT (f0 (в),в ) 
takes its maximum value at 0 = 1/2. This follows from 

2n+l 
д!ойф ~ 4 

-I =4'n sw2n6 2 
°o 1 -2 q c o s 2 770 + q 

р = * — - = [ 8JTJCOS27T6 + 4nsin2пв l x 
>ee дв2 дв 

2„+l 

x 1 < 0 . 
, ., 2n+I 4n+2 
1 - 2q со s 2 7ГР + q 

Turning to 1(s) we may repeat the foregoing considera
tions for F which again show the importance of the line 
0=1/2. It is therefore worthwile to s tar t the search 

for stationary points with respect to f taking 0 = 1/2 from 
the beginning. In the case of F(£,l/2) the existence of two 
zeros of F, £ with /m£=± 2ni can directly be 
shown by studying the limits of for Re£ _, { ° along 
Jrr,^=±2ni. 
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