# СООБЩЕНИЯ <br> ОБЪЕАИНЕННОГО <br> ИНСТИТУТА <br> ЯАЕРНЫX <br> ИССАЕАОВАНИЙ 

## 6323.5 <br> M-22

E2 - 7122
V.M.Maltsev, N.K.Dushutin

DUAL MODELS
IN FORMALISM OF RANDOM PROCESSES

## 1973

へАБОРАТОРИА ТЕОРЕТИЧЕСНОЙ

## E2

# V.M.Maltsev, N.K.Dushutin 

DUAL MODELS<br>IN FORMALISM OF RANDOM PROCESSES


 CHSMOTERA

In previous studies, in which high-energy hadron interactions were analyzed on the basis of the random process approximation, it was presumed that the production probability for particles of one sort is the same. In this case the definite particle production probability remains a scalar. It is possible, however, to generalize this statement, presuming, that the generation process of one particle appears to be random, in some respect. Then, the production probability becomes a vector. The dimensionality of this vector coincides in the limit with the number of particles, produced in the reaction.

We can characterize the exclusive reaction

$$
\begin{equation*}
a+b \rightarrow c_{1}+c_{2}+\ldots+c_{n} \tag{1}
\end{equation*}
$$

of any $n$-particle formation in the final state by the probability $P\left(x_{i}, \ldots, x_{n}\right)$; where the $i$-th particle production probability $x_{i}$, is a random quantity, assuming the values in the interval $[0,1]$.

The quantity $P\left(x_{1}, \ldots x_{n}\right)$ can be represented as follows:

$$
\begin{align*}
& P\left(x_{1}, \ldots, x_{n}\right)=p\left(x_{1}\right) \ldots p\left(x_{n}\right) p\left(x_{1} \mid x_{2}\right) \ldots p\left(x_{1} \mid x_{n}\right) p\left(x_{2} \mid x_{3}\right) \ldots \\
& \ldots p\left(x_{n-1} \mid x_{n}\right) p\left(x_{1} \mid x_{2} x_{3}\right) \ldots p\left(x_{1} \mid x_{2} \ldots x_{n}\right) \ldots \tag{2}
\end{align*}
$$

where conditional probabilities $p\left(x_{i} \mid x_{i+l} \ldots x_{k}\right)$ characterize $i$-th particle correlation with particles $i+l, \ldots, k$.

We will obtain the shape of distribution for the absolute density $p\left(x_{i}\right)$. If we divide the whole process of $i$-th particle formation into a number of intervals, in each of which the generation of a particle either occurs or
not, then the particle production probability in $m$-interval will be equal to

$$
\begin{equation*}
P_{m}\left(x_{i}\right)=x_{i}\left(1-x_{i}\right)^{m-1} \tag{3}
\end{equation*}
$$

For the probability density in the limit of an infinitesimal interval length we have

$$
\begin{equation*}
\frac{d p\left(x_{i}\right)}{d x_{i}}=\left(l-x_{i}\right)^{b_{i}} x_{i} . \tag{4}
\end{equation*}
$$

Then we presume that only pair-correlations exist, i.e. there is short-range interaction as in Feynman-gas $/ 2 /$. So only conditional probabilities $p\left(x_{i} \mid x_{j}\right)$ will differ from zero, moreover, their quantity is, apparently, proportional to the difference ( $x_{i}-x_{j}$ ). Hence, we obtain the following equation for density probability

$$
\begin{equation*}
\frac{\partial^{n} P\left(x_{1}, \ldots, x_{n}\right)}{\partial x_{1} \ldots \partial x_{n}}=\left\{\prod_{i=1}^{n} x_{i}\left(l-x_{i}\right)^{b_{i}}\right\}_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right) \tag{5}
\end{equation*}
$$

and $n$-particle production probability is equal to

$$
P\left(x_{1}, \ldots, x_{n}\right)=\int_{0}^{1}\left\{\prod_{i=1}^{n} d x_{i}\left(1-x_{i}\right)^{b_{i}} x_{i}\right\}_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right) \cdot(6)
$$

Then we will come to the following equation for $P\left(x_{1}, \ldots x_{n}\right)$ if we consider cross-channel contribution, in which it is advisable to replace the $x_{i}$-creation by ( $1-x_{i}$ ) annihilation probabilities:

$$
\begin{equation*}
P\left(x_{1}, \ldots, x_{n}\right)=\int_{0}^{1}\left\{\prod_{i=1}^{n} d x_{i}\left(l-x_{i}\right)^{b_{i}+1} x_{i}^{a_{i}+1}\right\}_{1 \leq i<i \leq n}^{I I}\left(x_{i}-x_{j}\right) \tag{7}
\end{equation*}
$$

which coincides with the distribution, obtained in the Veneziano model $/ 3 /$. If we presume that there exists
the correlation between $i$-th and all other particles and that the processes in the elementary intervals do not correlate, then for such a conditional probability we get

$$
\begin{equation*}
p\left(x_{i} \mid x_{i+1} \ldots x_{n}\right)=x_{i} x_{i+1} \ldots x_{n}\left(1-x_{i} x_{i+1} \ldots x_{n}\right)^{c}{ }^{c}{ }_{i n} . \tag{8}
\end{equation*}
$$

Hence, accounting cross-channel contribution, we have the equation for the exclusive reaction (l) probability as follows

$$
\begin{align*}
& P\left(x_{l}, \ldots, x_{n}\right)=\int_{o}^{l}\left\{\prod_{i=1}^{n} d x_{i}\left(l-x_{i}\right)^{b_{i}+1} x_{i}{ }^{a_{i}+1+n-i}\right\}  \tag{9}\\
& \prod_{1 \leq i<j \leq n}\left(l-x_{i j}\right)^{c_{i j}+1},
\end{align*}
$$

where $x_{i j}=\prod_{\ell=i}^{j} x_{\ell}$ which coincides with the distribution, obtained in the Reggeized dual model ${ }^{\ell / 4 /}$.

## References

1. N.K.Dushutin, V.M.Maltsev. JINR, P2-5829 (1971); P2-6500, P2-6501, P2-6502 (1972); P2-6932 (1973) Dubna.
2. K.Wilson. CLNS-131 (1971)
3. A.C.T.Wu. J.Math.Phys., 12, 2035 (1971).
4. K.Bardakci, H.Ruegg. Phys.Rev., 181, 1844 (1969).

Received by Publishing Department on April 27, 1973.

