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Introduction 

As the theoretical analysis of the experimental data 
shows, the eikonal representation of the scattering ampli
tude with smooth effective quasipotential correctly repro
duces the main features of the high energy particle scat
tering at small angles. 

In this connection the study of the local quasipotential 
qualities and the foundation of eikonal representation Jn 
the quantum field theory models are of great interest /r •2 • 

Studying the eikonal problem the Dubna grou,Pi hfs 
formulated the "straight line path approximation" 1 

•
3 

• 

The essence of this method is in the assumption that the 
large momentum transfers are suppressed in each act 
of high energy particle interaction. So large momenta, 
carried by the particles in the collision process, have 
a conservation tendency ("inertia" of large momenta). 

The type of the particles transferring large momenta 
may change during the interaction process according to the 
empirical regularities observed in the inclusive reactions. 
Thus, for example, in the collision of fast nucleons it is 
necessary to take into account the possibility of radiation 
of hard mesons which take away the greatest part of the 
initial nucleon momenta. 

Generally to obtain the eikonal formula by summation 
of the perturbation theory series one takes the initial 
particles, as the leading ones transferring large momenta. 
The results thus obtained are in essence

7 
equivalent to 

those of the " k1 k 1=0 approximation" 74
, 5 • 
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However the existence of virtual processes with the 
alteration of the "leading" particle type must lead, 
generally speaking, to the violation of the orthodox 
eikonal representation. 

The possibility that such extra-terms in the asympto
tics of some diagrams can · appear was first noted 
in the paper 161 . 

In our paper we study a structure of the "noneikonal" · 
contribution to the two nucleon scattering amplitude 
described by a ladder-type diagram sum without taking 
into account radiative corrections and vacuum polarization 
effects in the scalar model. 

It wilf be shown in particular that there exist in 
the sum of all ladder-type graphs of the eighth order 
the terms which violate the orthodox eikonal formula but 
disappear in the limit ¾- ➔ O wh~re µ and m are 
meson and nucleon masses, respectively. These terms 
are associated with the contribution to the effective 
quasipotential corresponding to the nucleon-antinucleon 
pair exchange. 

1. High Energy Asymptotics of Feynman 
µraphs and Modific-ation of.the Particle 
Propagators 

Now we ~hoose to study the. scattering amflitude of 
two scalar nucleons in the model f int= 11': !fr !fr ¢ ·: 
neglecting the radiative corrections and closed nucleon 
loops. This amplitude is represented as the sum of the 
following diagrams 

Pz qi 

=F 

p 
c..2 q2 

where v1 and •· v2 are the in..::particle momenta and 
q 1 , q 2 are the out.:.particle ones. If the number of 

4 

integration momenta is e and the number of internal 
lines is 1 (for the diagrams of Fig. 1 type 1 = 3e +1 ) 

I 1 
F = f dkl ... dke E1 r /-m/ +'.if 

(1.1) 

where r. are linear combinations of integration momenta 
k. I 

J 
Using the Feynman parametrization we have 

I . dk 1 ... dke . 
·

1
. l!a)J 

1
' 

F=(l-l)!fda1, .. da1o(-,=1 I ['l'(k,a,·s,t)] 0 
(1.2) 

where 

I 2 2 £ 
'I' = I a . ( r. -m . + ii f) = I a

1 
k. k. + 2 I b

1 
k . + c. 

i=l I I I i ,J=l j I J I (1.3) 

After this procedure it is possible tc~J°?tain a repre
sentation for F in the Chisholm form. 7 , integrating 

. over k 1 in eq. (1.2) 

n 1 I I-2e -2 
• r. [C(a)] 

F=(trr) (I-2e-l)!fda1 ... da1 o(l-_Ia
1

) . e .(1.4) 
o z=l ['.D(a,s,t)] I-2 

In the formula (1.4) 

C = det II a11 II, '.D= det 11- ~li_ J 
bl ... be 

be
1 

II (1.5) 

C 

and the Chisholm determinant g) can be represented 
in the following form 

~ ( a , s , t) = f (a) s + g ( a) t + h (a) , (1.6) 
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Now we shall give a·· brief account of the results 
obtained in /s/ which we'll use to study the asymptotic 
behaviour of the expression (1.4) *. 

Definition 

A t -,path is a set of lines forming a co~tinuous . arc, 
such that · 

a) If we short-circuit all these lines, the entire 
graph is split into two parts having no common lines and 
only one common vertex (to which these lines have been 
reduced). The p1 and q 1 external lines of the graph 
are attached to one of the two parts and p 

2 
and q2 ones 

to the other. 
b) None of its subsets has property (a). A T -pa,th .is 

a t -path of minimum length (i.e. number of lines). 

Rule 

If the. graph F is such that there exist M T -paths 
of length p its asymptotics is 

F: (ir,2/ (l-2f -1-p)!p! (fnsl-1 ·[ C (aJJ1-2f-2 

( ---r-_;o~----
M-1) ! s p . e 

(got +hoJr2 -p f b 
M p 
Ilo(I a(J)-l)o(I av-l){dal. 

j=1 v=l V v(/.. p 

In the formula (1. 7) 

g t+h
0

=!D(a,s,t)I (i) , 
o a =0 

V 

Ccfa) =C(a)I (i) 
. · av =0 

* Results similar to
7 

}hose of ref. Isl 
obtained also in papers 9 • 
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(1. 7) 

(1.8) 

have been 

at> are parameters of those lines which belong to the 
j -th path; a (v f p ) are the remaining parameters 

and the quantity f O is obtained from f (see (1.6)) as 
follows: Let us perform the replacement 

then 

a(i) ,\ (i) 
v ➔ i av ' 

f ➔ ,\1,\2••• ,\Ml(,\) and f 0 = 1 I,\.= o 
J 

(1.9a) 

(1.9b) 

Now after having written out the formulae we need, 
we can give further account. 

In case of the momentum transfers in the graphs 1 
being a zero, i.e. p1 = q 1 and p 2=q2 , we shall call 
a set of lines, whose P.ropagators depend on the momentum 
P1; a p -path. 
. Thus in the graphs F there are two p -paths each 

forming a continuous arc. Note that each p -path is 
a t -path according to the Definition. However the 
configurations of the p -paths depend on the concrete 
arrangement of the integration momenta while the t -paths 
are the topological characteristics of the given graph. 
In · the studied graphs the integration momenta can be 
chosen so that the p -paths will coincide with any pair 
of t -paths not forming a closed loop. 

Statement 1 

Let the given graph be such that the contribution 
to the leading asymptotics is due to the pair of f" -path 
having no common line. Then the asymptotics of this 
graph will not be changed if the integration momenta 
are placed so that the p -paths coincide with f -paths 
and the following modification of the propagators depend
ing on external momenta P is performed 

1 1 
➔ 

(Ik; /+ 2p Ik; -iii 2+ic 
(1.10) 

2p Ik: -+'it 
l 
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i.e. we neglect masses and products of integration momen
ta. 

Proof 

The propagator modification (1.10) results in the 
following alterations of determinants c and ~ . In the 
determinant c parameters corresponding to the i:.paths 
become equal to zero, i.e. C turns into C0 ·• In the 
determinant ~ the quantity c in which the same para
meters become equal to zero also is changed. As a result 
the quantity f( a) !(see (1.6))conserves its main properties 
which determine the asymptotic dependence on s. Deter
minants C0 , g i + h

0 
and fo, calculated according 

to eqs. (1.8) and (1.9) are also not changed. Thus we make 
sure that whenever the propagator modification (1.10) is 
performed the expression (1. 7) is the correct asymptotic 
form of our Feynman integral. 

Statement 2 

Let the given graph be such that the contribution to 
the -leading asymptotics · is due to. a pair of t -paths 
having a common line. Let also the integration momenta 
be placed so that p -paths coincide with t -paths. 
Then the asymptotics of the graph is equal to the factor 
(± ~ ) multiplied by the asymptotics of the reduced 
graph obtained when we short-circuit the common line. 
We choose the plus sign when the external momenta in 
this line have the same direction, if not we choose the 
minus sign. Dealing with the Teduced graph we can use 
Statement 1. · ' 

Proof 

Let a parameter f3 be associated with the common 
line to which there corresponds the propagator 

8 

1 . 
("i.k

1
)

2
+2(pJ p

2
)("i.k

1 
)-M

2
±s+'fr 

(1.11) 

It is sufficient to show that the propagator (1.11) can 
be replaced by (± .; ). Really,quantities C0 and gi + h0 
aren't changed because of the arguments used in proof 
of the Statement 1. The quantity f has a structure 

.• ( (1) {3) C , a + 
_____ _! II 

l=f3C+II (1.12) 

( a (2li- f3) 0 

where a (l > and a (2> are sets of parameters corresponding 
to the two t -path. It is evident now that .instead of 
I we can use the quantity 

(1) '· 
f =f3C(f3 = 0) +II _c_r!:r:!_: (a (1)) II 

( a (2)) . 0 

which proves our statement. 

2. Eikonal and Noneikonal Contributions 
to the Scattering Amplitude_ 

(1.13) 

As is known /io/. two scalar nucleon 
amplitude can be represented in the form 

scattering 

/(pl ,p2;q1, q2) = 
·i g2 . -ix(PJ -q1 )J = _ J d4x j)(x)e. J d\S +(q ➔ q) 
(2 11)4 0 ,\ l 

(2.1) 

if we neglect the radiative corrections and vacuum 
polarization. In the formula (2.1) 

00 00 2 .00 

S ,\ = J (ovl l_jov2 ]-00 exp {:ig ,\ L d~ dr ~ [- x+ 
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0 0 
+2,fa/.f)-2ra 2 (r)-2_j v1 (11)d71 +2~v2 (:)d71L 

(2.2) 
8 1,iif) = P1}(.fJ + q1,/(-.f) 

In the expressions (2.1) and (2.2) the integration 
momenta of each diagram are-placed so' that the p -paths 
coincide with nucleon lines. 

Putting the variables v 1 and v2 equal to zero, 
i.e. neglecting the terms of k; k j -type in nucleon 
propagators, we obtain according to the statement 1 
a sum of contributions in each diagram of those t -paths 
which coincide with nucleon lines. Note that for the 
present twisted graphs corresponding to the term (q 1 ➔ q J 
in eq. (2.1) are not under discussion. 

2 

As a result we have the well known eikonal represen
tation for the scattering amplitude 

ig2. 

➔ ➔ --Ko(µl~I> 
· -ixJ i\l 4TTs 

t-~ J a2 ; e re -1J 
- (2rr) 4 (2.3) 

when s = ( p1 + p 2;2 ➔ 00 and t= ( p1 - q1/ is fixed. Accord
ing to this we'll call the contributions of the t -paths, 
coinciding with nucleon lines, the eikonal ones. 

In the paper/ 61 it was pointed to the fact that in 
diagrams of higher orders (namely, beginning from the 
8-th) in powers of coupling constant g it is necessary 
to take into account other t -paths whose contributions 
may be comparable with those of the eikonal t -paths. 
We beg.in our study of the noneikonal contributions with 
a diagram shown in Fig. 2 

1 2 3 4 
P1 qi 

Fig. 2 

p2 q2 

1' 2' 3' 4' 

10 

In this graph ·which we'll call "xx -diagram" there 
exist four 7 -paths of the same length three: (1234), 
(1'2'3'4'), (1'234') and (12'3'4). A formal ~count of all the 
F -paths lead us to the asymptotics ~s • However 
that corresponds to the conversion into zero of all line 
parameters and this is impossible due to the factor 
o (1 - I a1 ) • Use of any three paths should lead to the 

fu 2s 
asymptotics --:-r, but in that case the coefficient 

s 

uncluding determinant Co also becomes equal to zero 
so long as these three paths form a closed loop. 

Then it is necessary to calculate a sum of contribu
tions from the following pairs of t -paths: 

(1234; 1'2'3'q.'), (1~34,·1'234'), (12'3'4;1'?'3'4'\2.4) 

(12 '3 '4; 1 '234 '). 

Pairs (1234;12'3'4) and (1'2'3'4'; i'234') have 
no influence upon the asymptotics since these t -paths 
formed a closed loo~. All pairs of t -p~ths (2.,V, lead 
to the same asymptotic dependence on s namely n

3
s 

thus we'll be interested in coefficients. s 

The contribution to the xx -diagram from the pair 
(1234; 1 '2 '3 • 4 •) is included in formula (2.3) and 
will be indicated 

f'ns f (xx) 
s 3 efk (t). (2.5) 

-Now we'll get the contribution from the t -paths 
(12 '3 '4 J and (1 '234 '). Let us choose the integration 

momenta so that these paths coincide with· the p-paths. 
Then according to the Statement 1 we can modify 

propagators of lines forming the t- paths. 
After that perform the substitution of integration 

momenta 

k ➔ ~ k 
i µ i (2.6) 

II 



which results in the replacements of nucleon lines by 
meson ones 

m 1 µ
2 

9) (k-) = ------ = _9) (k) 
m µ 2 m2 2 . m2 µ 

k ---z- - m +·1 t 
µ 

µ2 µ µ2 

(2.7) 

9)m(Pi-q2-k) ➔ m2 9)µ[(prq1)m -k] ', ·i.e. t ➔ t;;;T. 

The propagators corresponding to the t -paths will 
be multiplied by .JL. Thanks to this fact we may consider 
all the lines of m f -paths as modified nucleon lines. 
As a result we obtain a diagram of the same type (Fig. 2) 
but the p -paths being directed along nucleon lines 

1 2' 3' 4 

P1 
q 

I 

p2 q2 

1' 2 3 4' 

So the described contribution is of the form 

&rn f (1) ( t) 
•s3 noneik ' 

(I) µ2 (xx) µ2 
f . (t)= __. f "k (t-z)• 
nonezk m~ ez m 

If the particle masses satisfy the condition 

µ2 
-<<1, 
m2 

t 
m2 <<1 

Fig. 3 

.(2.8) 

(2.9) 

the contribution of noneikonal t -paths will be less than 
that of eikonal ones. 

12 

Now we have nothing to consider but the contribution 
to the asymptotics of xx -diagram from the pair of 
r -paths (1 '2 '3 '4 ') and (12 '3 ~4 j. The other remaining 

pair (1234) and (1 '234') (see (2.4)) evidently lead to the 
same contribution. The 7 -paths (1 '2'3'4') and (12'3'4 j 
being short-circuited we obtain the reduced graph 

Pr ..._ - qt 

Fig. 4 

P2 q2 

-
Then it follows that the contribution of these t -paths 
does not depend on µiomentum transfers, i.e. can be 
represented in the form · 

2 

~ ..1-¢,(..!:_). (2.10) 
s3 µ2 m2 

2 

Let us find the form of function ¢, ( ~) if the condition 
m 

(2.9) is satisfied. For this purpose choose the integration 
momenta in xx -diagram so that the p- paths coincide 
with the t- -paths (1'2 '3 '4 ') and (12 '3'4). Then using 
the. Statement 2 we· obtain that the d~sired contribution 
will be equal _to the reduced graph (Fig. 5) asymptotics 
~ultiplied by f . 

(a5) ( a6) ( a 7) 

kr k1+k2k1+k2+k3 
.. i\l Bi: > !lilJ (: 11111 '.J, ,,. _q 1 Pr 

p
1
-k

1 
(a

1
) 

k2 (as) 

P2 
P2-k2 

(a3) 

q2 + k3 

(a,) 

q -le -k -le (a )-
I t 2 3 2 

=F' 

k3 ( a 9) 

q2 

Fig. 5 
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When ·s ➔ 00 the asymptotics of f'' according to the 
formula (1. 7) will be of the form 

f'n·s . 
F' = -;r const J ch 

1 
... da/> (1-a

1 
- a

2
)8 (1- a

3 
-a

4
) • 

Co 
a _ a -a9 ) ✓-2 • 

0 
(1 - as - a6 - 7 8 ( g

0 

t +h
0

) 

0 

where 

g = o, 
0 . 2 

ho = -µ2 [ T (as +a6 +a7)+(a8 +.a9J]Co 
µ 

(2.ll) 

(2.12) 

From eqs. (2.ll) and (2.12) we get the expression 
for the function ¢ defined by the relation (2.10). 

<p (.is-) = const _( I da I x 
m 

X Ilo(l-Ioa) o(l-aCa6-aJ~-°92, - (2.13) 
-2 m2 ] 

2 i o [ µ2 (as +a6 +a7J+(a8+a~ 

At large ;- the main contribution comes from a do-
µ 

main as + a6 +a7 . = 0 
poulos method 181, 
aS!6,7➔ Aas,6,7· As a result 

and we can use again the Tikto
performing the substitution 

2 
das da6 da7 ➔ A o (1- as-a 6-a.,) dasda

6 
da

7
dA, 

8 (1- as - a6 -a 7 - a 8 -a9 ) ➔ 8 0- a8 -a
9

) (2.14) 

- -t ➔~ t
0 

, 

from which follows 

2 1 
cf, ( L) = Const J 

m2 o 

14 

dA 
. 2 
A!!!._+ 1 

µ2 

• 2 . µ2 µ2 
•i.e. cp ( LJ == const ~f'n-

2 m2 m m 

(2.15) 

I, 
1· 
·r 

{ 
\ 
'1 
I 

/ 
1: 
',', 

I 
ti 
111 

i 
! 

' 11, 
t . 
'\ 

! 

under condition (2. 9). Note that const in eq. (2.15) now 
includes in itself all the integrals over a; • Taking 

into account the equality f . (t =0) = conSi and 
e1k µ2 

eqs. (2.5), (2.8), (2.10), (2.15) we obtain the asymptotics 
of the xx -diagram 

f (xxltJ- en s ~If (xx) (t)+ f (xx) (t) I, 
- s3 efk noneik 

(2.16) 

where . 
(xx) µ2 (xx) µ2 ( xx) µ 2 µ 2 

f . (t)= - f . (t-) + Const f .k (t=O)--:'\° fn --2 none1k m2 e,k m2 e, m4 m 

when s ➔ "" , t is fixed and 
2 

µ « 1. -;;T· 

3. Asymptotics of the Nucleon- Nucleon. 
Scattering Amplitude. Eighth Order 

In the previous paragraph we have considered one of 
the eighth order diagrams. Now turn to the remaining 
diagrams except for the twisted graphs described by 
the term ( q1 ➔ q 2 ) in formula (2.1). In these diagrams 
there are three types of noneikonal 7 -paths which can 
give a contribution to the leading asymptotics. _ 

In the first type · we include noneikonal t -paths 
which have no common line. Except the xx -diagram 
there is only one graph with such t- -paths (see Fig. 6) 
and two cross-symmetric diagrams. 

2 3 4 
p I q I 

Fig. 6 

Pi q2 
1 , 2' J' 4' 
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The contribution to the asymptotics of the diagram 6 
can be written down in the same form as (2.8) 

(2) f'n 2 (2) µ 2 
f (t)= _s_ L cross! (t-). 
nonelk ·s3 m2 elk m2 (3.1) 

If add the eikonal contribution of diagrams xx and 6 · 
to those of cross-symmetric ones, then f'ns cancelland 
we obtain the total eikonal contribution 

~ feik(t). 
·s (3.2) 

Then according to eqs. (2.8) and (3.1) the noneikonal 
r~path contribution to the same sum has the form 

f 
non elk 

l µ2 µ2 
(t)=- - f lk (t-). 
. ·s3 m2 e m2 (3.3) 

In the eighth order there aren't any other noneikonal 
contributions depending on the momentum transfers. 

We attribute the noneikonal t-paths, having a common 
nucleon line, to the second type. Its contribution does 
not depend on the momentum transfers and have been 
considered above for the xx -diagram (see eqs. (2.10)
(2.16)). However the similar contributions are cancelled 
in the sum of all diagrams with such T -paths. 

Consider, for example, the ,diagram 

1 2 3 4 
pl .q 1 

P2 1111 I A I .. q 2 

J' 2' 3' 4' 

Fig. 7 

16 

' 
l 
l 

whose paths (1'2 '3'4') and (13'4~4) belong to the second 
type. Its contributions may be taken into account with 
the help of Statement 2. Namely, this diagram asymptotics 
may be graphically represented in the form 

1 
·s 

(3.4) 

The asymptotics of the graph which appears as 
a result of mirror reflection of I and 2 vertices relatively 
to the vertex 4 may be represented as follows 

1 
·s (3.5) 

Now let us consider cross-symmetric graphs. Accord
ing to the Statement 2 we have to replace the common 
lines by the factors ( - ; ). Then obtain .· 

-d m + 

,l 
(3.6) 

The first term in eq. (3.6) corresponds to the non-
eikonal contribution to . the diagram which is cross-
symmetric to the graph showq in Fig. 7. 
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·i 

Summing the expressions (3.4), (3.5) and (3.6) we 
convince ourselves of the cancellation of the noneikonal 
second type f -paths contributions. 

Evidently the. same arguments are faithful for the 
other similar diagrams. To the third type we attribute 
those of t -paths which have common meson line. 
Its contribution to the leading asymptotics also does 
not depend on the momentum transfers. In the eighth 
order there are the same diagrams with the third type 
r -paths. As an example we consider only one of these 

graphs (see Fig. 8), keeping in mind the validity of all 
the results for other similar diagrams. 

1 2 J 4 
P1 q 1 

P2 q2 
' l' 2· J' 4, 

Fig. 8 

In this diagram the t '.:.paths ( 1 '434 ') and (12 'l4 J are 
noneikonal and belong to the third type. Its contribution 
may be written down in the form (2.10). 

2 
f'n s .L cf) ( JL:...J. 

3 2 m 2 s µ 
(3.7) 

We'll search the behaviour of function <I> under 
condition (2.9). Let us choose the integration momenta 
so that the p -paths coincide with t -paths (1 '434') and 
(12' r4) (see Fig. 8). According to ,the Statement 2 

the desired contribution will be equal to the reduced 
graph (Fig. 9) asymptotics multiplied by 1/s. 
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:1 

I; 
'' 

Using eq. (1. 7) when s ➔ "" we get the asymptotics 

f'n·s 
F ":::: -;r- const f da

1 
••• da

9 
o (1-·ai - a

2
) o (1- a 

3
-a 

4 
) 

Co 
-a -a ) . ;72 ' o (1- as - a6 -a7 B 9 ( got + ho i) 

where 

2 [ m 2 
] go =0, ho=-µ Co 2 (as +a 6 +a7 +aB) + a9 • 

µ 

(3.8) 

(3.9) 

From eqs. (3.8) and (3.9) we obtain the expression 
for the function <I> ( "5- ), defined by relation (3. 7) 

<I> ( ~) = con st {I d a I x 
m 

2 . 
(3 .10) 

o (1- a5 - a6 -a 7 - a8 -a9) 
x Ilo (1- Ia) __ .......;__-=---'---~----. 

~2 m2 ] 
2 . Io [ -:-:-2° (a5+a6+a7 +a8)+a9 

At large m2 the ma'.in contribution is due to the region 
µ 

a +a + a ·+a = 0. 
5 6 . 7 8 By the substitution 

a ➔ ,\a 
5,6,7.,8 5,6,7,8 

we get 

das ••• da 8 ➔lo (1 -as -a6 -a7:..a8 )das ~-- d aB d,\ 

o(l- a5 -a 6 -a7 -a 8 -a9 ) ➔ o(l-a 9 ) (3.11) 

- -
1

0 
➔ A~ • 

It follows then under condition (2.3) that 

(3.12) 
2 1 ,\ 

<I> ( .1:...iY = const f d,\ 
2 

, ·i.e. 
m o ,\~+ 1 

µ2 

µ2 µ2 
<I>(-)= const-. 

m2 m2 

20 

· The results of the second and third sections can be 
expressed by a single formula in which the cancellation 
of £ns in the cross-symmetric sum of diagrams is 
taken into account. Really, at large s an asymptotic 
behaviour of the nucleon-nucleon scattering amplitude in 
the eighth order of the perturbation theory has the form 

8 :-t ➔ 
/ 8>. g I 1 2 ➔ -iXJ.l'U 4 (8) =~ 8 • .4!(2rr)Bfd x.l.e Ko(µlx.11)+/noneikl, (3.13) 

where 
2 2 2 

I (8) (t)=L I. (tL)+ const <I> r..±1--). 
noneik m2. ezk m2 µ2 m2 

The I eik(t) in eq. (3.13) denotes the t -dependent 
factor in the main asymptotic term of the sum of the 
diagram shown in Figs. 2 and 6 together with its cross
symmetric partners, when only the contributions of the 
eikonal paths are taken into account. The function <I> r 4 J 

m 
2 2 

goes as ~ at L« 1. The first term _in curly brac-
m m2 

kets belongs to the sum. of _the eikonal contributions 
from all the graphs· of the eighth order (compare with 
eq. (2.3)). , . .· 2 

Under condition of a smallness of the ratio ~ one 
m 

can neglect the dependence on momentum transfers, 

t 
if ~ «1 

m 
2 

I 'k (t L) ~ I (0) 
ez m2 - elk 

that gives the result: 

const 

µ2 

8 
I (B)I - L I 1 X 

t.:Jtxed - s 3 8 • 4 ! (2rr) 8 
µ2/m2<<1 ➔ 

f d 2x➔., e -ixj_ ~ .l K 4 (µI; IJ+ const .J!:.:._ I • 
'T o • .J. µ2 m2 

(3.14) 

(3.15) 
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In conclusion of this section it should be stressed that 
only the contributions of various t -paths corresponding 
to zeroes of the function f(a) in eqs. (l.4)-(.l.7)were 
taken into account. 

4. The Asymptotics of the Nucleon-Nucleon 
Scattering Amplitude. Higher Orders 

In Sec. 3 we have considered the high-energy behaviour 
of a scattering amplitude in the eighth order in powers 
of g. We have shown that in this order there exist graphs 
which give the noneikonal contributions to the asymptotics 
of the amplitude of the same order in s as the eikonal 
one. 

However, as it was shown in paper 16 1, in higher 
, orders in powers of g there exist graphs in which the 

noneikonal asymptotic term dominates the eikonal one. 
The typical example of these graphs with noneikonal 
paths of the first type (see Sec. 3) is illustrated in 
figure 10. 

I 2 3 4 
P1 qi 

=Frf+t) 

P2 q2 

I' 2' 3' 4' 

Fig. 10 

This diagram just as xx -diagram has two f -paths 
with length equal three: (12'3'4) and (1'234'). To study 
its asymptotic behaviour we use the same method as in 
Sec. 2, i.e. directing the p -paths along the 7 -paths 
and replacing the momenta as in (2.6). The asymptotics 
of the graph with e +1 meson lines (of the 2 f +2 order 
in powers of g ) shown in Fig. 10 coin_cides with the 
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l 
I 
J 

I 
I 

asymptotics · of the ·graph shown in Fig. 11 up to a factor 

rE3.. J e -2 
m2 

I 2' J' 4 •, 

P1 
qi 

P2 q2 

I, 2 3 4_' 

Fig. 11 

Moreover, the substitution t ... t 1!:...:. 
m2 

in the graph 

in .Fig. 11 should be done (compare with eq. (2. 7)). The 
dot-lines of this reduced graph correspond to the virtual 

. 2 

particles with the mass L These lines are due to the 
m 

meson lines (see Fig. 10), which do not belong to the 
f -paths 

2 
T, (k) ➔ '.i) ( k .!E...) == l == .!.:_ T, 2(k), (4.1) 

µ µ µ k2 m 2 2 . m2 I!::.. 
- - µ +I( m 
µ2 ' 

Under the condition (2.3) one may put t == o in the 
asymptotics of this diagram. 

Thus using eq. (1. 7) for the main asymptotic term 
of the graph of the 2 e +2 order considered above we get 
the following expression: 

Frt'+tl_ f'ns. conS( __ fld 11·a1.Jj(d ITio(l-I. )· 
.- s3 µ2(e-2) . a P Y Y1 

(4.2) 

J e -2 t-(J - I.a. -I/31 _ 3 __ m2 ~ .. + I,[3. ] 
•u l f [ - k a, . l 

O µ Z 

Co e •>3 
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In formula (4.2) the parameters a I correspond to 
the wave meson lines, f3 1 to the dot-lines and y 1 . to 
the nucleon lines. Apparently the region I a 1 =0 does 
not give the essential contribution to the integral (4.2) 

m2 
at 2 » 1 *. 

µ 

Hence 

<f+t) E'ns const 
F -- o , 

..;. s3 (m2y-2 
£ > :3. (4.3) 

In the considered case of the order 2 £ +2 in powers of 
g there exist the graphs with noneikonal f -paths• 

of the third type, which have the form: 

P1 

1 2 J 
•q 

11111 I I i J ► IIIL I 

Fig. 12 

P2 
q 

2 
1' 2' J' 

In the diagram in Fig. 12 there exist two t -paths of 
the length three: (12 '1 '3) and (1'323 '), which lead to the · 

asymptotics ·ens . The method used above in Sec. 3 for 
s3 

the eighth order graphs gives here the formula similar 
to the eq. (4.3). 

The noneikonal t -paths of the second type, whose 
contributions have cancelled in the sum ·of the eighth 
order graphs, give here nonleading asymptotic terms. 

--------------------* 1This can be shown by calculating the power of A , 
appearing in the nominator when the substitution is 
performed (compare with eqs. (3.11), (3.12)). 
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All the graphs of the given 2 £ +2 order belong 
either to the type described in this section and lead 
to the asymptotics of the form (4.3), or have the t -paths 
of the length more· than three and consequently do not 
dominate in asymptotic region s ➔ oo. 

Taking into account the cancellation of E'ns when 
graphs with its cross-symm~tric partners are being 
su~med, we get the following asymptotic expression 
for the amplitude f (2 £+2J in 2£+2 order in power of g : 

f (2£+.Vl 
S ➔ 00 

t-fixed 

1 
- ·s3 

const . £ > 3 , -
(m2)£ -2 

".1!-.:_«1 
m2 

Note, that the eikonal formula (2.3) when t =0 
same order of g gives the following result: 

const (~+
2(t =0) = ----ri 

f efk s µ 

(4.4) 

in the 

(4.5) 

Thus if one neglects twisted graphs orie gets for 
the ratio of the noneikonal and the eikonal contributions 
to the amplitude of the given order the result: 

(2 £ +2) 

f noneik 

f 
(2 e +2> 
efk 

Is ➔ oo 
t-ffxed 

L«1 
m2 

2 £-3 
µ ·s 

:const -(-) , £ >3, 
- . m2 m2 -

From eq. (4.6) it follows that in the region 

·s ➔ oo, 
2 

L« 1, 
m2 

s - m 2 
, "t = 0 

I (4.6) 

(4.7) 
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I. i 

the eikonal part of scattering amplitude dominates over 
the non-eikonal one, and the eq. (2.3) gives the main 
asymptotic terms in each order in powers of g 2 , On the 
contrary, in the region (4.7)when s » m2 the noneikonal 
contributions dominate as it follows from eq. (4.6) over 
the eikonal one. 

Conclusion 

So the investigation of the ladder type graphs in the 
scalar model demonstrates that the eikonal formula 
corresponds to the account of the t -paths, coinciding 
with nucleon lines. The "leading" particles, carrying 
large momenta, are nucleons in that case and do not 
change their type in virtual processes. 

The noneikonal contributions to the amplitude are due 
to the processes with alteration of the leading particle 
type, .i.e. with the large momenta transfer from nucleons 
to mesons and vice versa. Then the important question 
arises about the significance of twisted graphs in which 
the final momenta q1 and q 2 are exchanged (compare 
Fig~ I and eq. (2.1)). 

The possibility of large momentum carried by meson 
brings to the fact, that the corresponding contribution may 
dominate over the eikonal one in the same order of coupling 
constant. For example, in the fourth order the twisted 
graph has the asymptotics ~ s •• 

P1 qi 

P2 q2 

Fig. 13 

Note that while orthodox eikonal formula corresponds 
to the scattering on Yukawa quasipotential (i.e. one 
meson exchange), the account of the graph shown in 
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Fig. 13 leads to the quasipotential correction of non
Yukawa type. The derived correction corresponds to the 
nucleon-antinucleon pair exchange and has an effective 

radius . - _.!!__ • At small distances this correction has 
. 2m · 

a singularity &i r • 
r 

-This -example illustrates thffimporfance of investigating 
the sy_stem of g_orrections to the effective quasipotential 
at high energies and gives the argument in favour of 
quasipotential interpretation of eikonal representation in 
quantum field .theory. · 

The authors express their deep gratitude to N.N.Bo-
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