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_ Introduction

As the theoretical analysis of the experimental data
shows, the eikonal representation of the scatteringampli-
" tude with smooth effective quasipotential correctly repro-
duces the main features of the high energy particle scat-
tering at small angles.

In this connection the study of the local qua51potent1al
qualities and the foundation of eikonal representation /m
the quantum field theory modelsare of greatinterest /1,2

Studying the eikonal problem the Dubna gro }) h}s
formulated the ’’straight line path approximation’’

The essence of this method is in the assumption that the
large momentum transfers are suppressed in each act
of high energy particle interaction. So large momenta,
carried by the particles in the collision process, have
a conservation tendency (’’inertia’’ of large momenta).

The type of the particles transferring large momenta
may change during the interaction processaccording to the
empirical regularities observed inthe inclusive reactions.
Thus, for example, in the collision of fast nucleons it is
necessary to take into account the possibility of radiation
of hard mesons which take away the greatest part of the
initial nucleon momenta.

Generally to obtain the eikonal formula by summation
of the perturbation theory series one takes the initial
particles as the leading ones transferring large momenta.
The results thus obtained are in essence equivalent to
those of the ”” k;k;=0 approximation’” /4:5/



However the existence of virtual processes with the
alteration of the ’’leading’’ particle type must lead,
generally speaking, to the violation of the orthodox
eikonal representation.

The possibility that such extra- terms in the asympto-
tics of some diagrams can-
in the paper

In our paper we study a structure of the *’noneikonal’’’

contribution to the two nucleon scattering amplitude
described by a ladder-type diagram sum without taking
into account radiative corrections and vacuum polarization
effects in the scalar model.

It will be shown in particular that there exist in
the sum of all ladder-type graphs of the eighth order
the terms which violate the orthodox eikonal formula but
disappear in the limit £—- - 0 where ¢ and m are
meson and nucleon masses, respectively. These terms
are associated with the contrlbutlon to the effective
quasipotential corresponding to the nucleon-antinucleon
pair exchange. :

1. High Energy Asymptotlcs of Feynman
Graphs and Modification of .the Particle
Propagators 4

Now we c¢hoose to study the scatterlng amflltude of
two scalar nucleons in the model £;,i=g: ¢ ¢ ¢
neglecting the radiative corrections and closed nucleon
loops. This amplitude is represented as the sum of the
following diagrams

P, o X . %'ql

f,; , el — ],

where p, and P, are the in-particle’ momenta and
9, »9, are the out-particle ones. If the number of
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appear was first noted

integration momenta is ¢{

and the. number of internal
lines is T (for the diagrams of Fig. 1 type 1=3f +1)

I
= [dk ..d L, :
f dkyeedicy T ——3 1.1

i —m’ +1 €
where r. are linear combinations of integration momenta
k, - '

Using the Feynman parametrization we have

F= (1—1)'fda1 .da a(z—za,)f LRI 1.2)

[¥ (&, ars, )}

where

4

b
?:_Ia” kt k,+22 k;+c. (1.3)

T
¥y 3 a,(r,z-m.z+:i-c)
i=1 1 1 1

After this procedure it is possible to o?taln a repre-

sentation for F in the Chisholm form integrating
.over k, in eq. (1.2)
¢ 1 I 1-20 -2
Pa(in) (20 ~1)! fda, . da; 5(1~3a )[C(")] 7~ (1.4)
0 = Days,)1 72
In the formula (1.4)
1 bl
a, ' .
C=detla,l|l, D=det N_Zi_ 2 by | (1.5)
bl... 2 c

and the Chisholm determinant © can be represented
in the following form

Deays,t)=f(a)s +g(ax)t+h(a). ‘ . ; (1.6)



.Now "we shall give a-brief account of the resul?s
obtained in/8/  which we’ll use to study the asymptotic.
behaviour of the expression (1.4) *.

Definition

. A 't -path is a set of lines forminga continuous - arc,
such that ' , _

a) If we short-circuit all these lines, the entire
graph is split into two parts having no common lines and
only one common vertex (to which these lines have been
reduced). The p; and ¢, external lines of the graph
are attached to one of thetwopartsand p, and g, ones
to the other. _ '

b) None of its subsets has property (a). A t -path is
a t -path of minimum length (i.e. number of lines).

Rule

If the.graph F 1is such that there exist M ¥ jpaths
of length p its asymptotics is ' :

pa (in? 0220 ~1=p) ol s Lo .
= (M—1)! sP (g'ot +bo)z—2ﬂ—p ‘[‘g
ﬁla(g a® -1)8(3 a,-1){da}. ‘(1.7)-
j=t wv=t vV wp ¥
In the formula (1.7) o ,
g,t +hy =D(ass, 1)] @0t | (1.8)

v

Co(a) =C (a )] ‘ a(li)=0

“:‘—f{;-sa—lt_s“_s-ir-n-i—lz;;“t:)p}_hose of ref.‘ /8/ have been

obtained also in papers /
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a,f’) are parameters of those lines which belong to the
j -th path; ¢ (vZp) are the remaining parameters
and the quanﬁty fo is obtained from f (see.(1.6)) as
follows: Let us perform the replacement

a(j) - A, a(i)
v ] v

, (1.92)
then
fa QA e Ay, f (X) and fo'“"[]/\j:o (1.9b)

Now after having written out the formulae we need,
we can give further account.

In case of the momentum transfers in-the graphs 1
being a zero, i.e. p,=q, and p,=9, , we shall call
a set of lines, whose propagators depend on the momentum
Pisa p -path.

. Thus in the graphs F- there are two p -paths each
forming a continuous arc. Note that each p -path is
a t -path according to the Definition. However the
configurations of the p -paths depend on the concrete
arrangement of the integration momenta while the ¢ -paths
are the topological characteristics of the given graph.
In the studied graphs the integration momenta can be
chosen so that the p-paths will coincide with any pair
of ¢ -paths not forming a closed loop.

Statement 1

Let the given graph be such that the contribution
to the leading asymptotics is due to the pair of f -path
having no common line. Then the asymptotics of this
graph will not be changed if the integration momenta
are placed so that the p -paths coincide with ¢ -paths
and the following modification of the propagators depend-
ing on external momenta P is performed

! bt (1.10)

(Ek,.)2+ 2p Eki ~m2yie 2p Ek';'-i-!ie‘




i.e. we neglect masses and products of integration momen-.
ta.

‘Proof

The propagator modification (1.10) results in the
following alterations of determinants C and 9. In the
determinant C parameters corresponding to the t—paths
become equal to zero, i.e. C turns into Co. In the
determinant P the quantity ¢ in which the same para-
meters become equal to zero also is changed. As a result
the quantity f(a) I|(see (l1.6))conserves its ‘main properties
which determine the asymptotic dependenceon . Deter-
minants Co, §,t + h, and f,, calculated according
to egs. (1.8) and (1.9) are also not changed. Thus we make
sure that whenever the propagator modification (1.10) is
performed. the expression (1.7) is the correct asymptotic
form of our Feynman integral.

Statiement 2

Let the given graph be such that the contribution to
the -leading asymptotics' is due to a pair of t -paths
having a common line. Let also the integration momenta
be placed so that p -paths coincide with f -paths.
Then the asymptotics of the graph is equal to the factor
(x %) multiplied by the asymptotics of the reduced
graph obtained when we short-circuit the common line.
We choose the plus sign when. the external momenta in
this line have the same direction, if not we choose the
minus sign. Dealing with the ‘reduced graph we can use
Statement 1. : : v

Proof

Let a parameter 8 be associated with the common
line to which there corresponds the propagator

8~.

; .

- . (L.11)
(£k,)*+2(pft p,) (3k, J=M>t syie

It is sufficient to show that the propagator (1.11) can
be replaced by (* %)- Really,quantities C, and g, + h
aren’t changed because of the arguments used in pro(c))f
of the Statement 1. The quantity f has a structure

c
f=pC+|| ------ - 1.12)

1 .
where «a@and « @ are sets of parameters corresponding

to the two f -path. It is evident now that instead of
f we can use the quantity

.fm=BC(B=0)+" _‘C_(.’?ff)j ) " 1)

()

which proves our statement.

2. Eikonal and Noneikonal Contributions
. to the Scattering Amplitude

As is known/?%, two scalar nucleon scattering

ﬂamplitude, can be represented in the form

f(p;, Py d,)=

_ig? @ -ix(p =4 ) ‘ 2.1
= [d4xD(x)e” (s -
2o ojl )\+'(q1 1,

if we neglect the radiative corrections and vacuum
polarization. In the formula (2.1) '

Sy =) 1w, 1716w, 1 T explig’s [dgdr D [-xs



0 . 0
+2&a ()-2ra,() ~2g v, (n)dn + 2__frv2 (j)dn], @.2)

‘a1_2(§) = p1!20(§) + le,2(?(—§)

In the expressions (2.1) and (2.2) the integration
momenta of each diagram are placed so'that:the p -paths
coincide with nucleon lines. - ~

Putting the variables ¥; and ¥, equal to zero,
i.e. neglecting the terms of k. k; -type in nucleon
propagators, we obtain according to the statement 1
a sum of contributions in each diagram of those ¢ -paths
which coincide with nucleon lines. Note that for the
present twisted graphs corresponding to the term (a, » a,)
in eq. (2.1) are not under discussion. ;

As a result we have the well known eikonal represen-
tation for the scattering amplitude ‘

152
2kl
= 4ms Ko(‘l L

: ' -3 A
fo IS fd2:? o Xl 'L(e ~1) 2.3)

- (2")4 1

when s=(p, +p2)2—'°° and t=(p,—>q,)2 is fixed. Accord-
ing to this we’ll call the contributions of the ¢ -paths,
coinciding with nucleon lines, the eikonal ones.

In the paper/“/ it was pointed to the fact that in
diagrams of higher orders (namely, beginning from the
8-th) in powers of coupling constant & it is necessary

to take into account other (¢ -paths whose contributions

may be comparable with those of the eikonal ¢ »—patl}s.
We begin our study of the noneikonal contributions with
a diagram shown in Fig. 2

: 1 2 3 4

" In this graph which we’ll call "’ xx -diagram’’ there
exist four 7 -paths of the same length three: (1234),
(1’°2°3’4%), (1’234’) and (12’3’4). A formal agcount of all the
f -paths lead us to the asymptotics g,, S However
that corresponds to the conversion into zero of all line
parameters and this is impossible due to the factor
o(l - zai). Use of any three paths should lead to the
) ) .
asymptotics —&-’:;—» ‘but in that case the coefficient

uncluding determinant C; also becomes equal to zero
so long as these three paths form a closed loop.
Then it is necessary to calculate a sum of contribu-
tions from the following pairs of ¢ -paths:
(1234; 1°2°3%4" ), (1234;1°234°), (1273°4;1°2 '3’4’),(2 2)
(12°3°4;1°234").

Pairsr (1234; 1273 *4 ) and (1°2°3°4%; 7°234") have
no influence upon the asymptotics since these ¢ -paths
formed a closed loop. All pairs of 7 -paths (2.4) lead
to the same asymptotic dependence on s ‘namely Jf
thus we’ll be interested in coefficients. .S

The contribution to the xx -diagram from the pair
(1234;1°2°3°4°) is included in formula (2.3) and
will be indicated

. (xx)
fas ¢ ). 2.5)

S

Now we’ll get the contribution from the ¢ -paths
(12°3°4) and (1°234°). Let us choose the integration
momenta so that these paths coincide with the p— paths.

Then according to the Statement 1 we can modify
propagators of lines forming the {- paths.

After that perform the substitution of integration
momenta

m. ‘ .
ki e -#— ki (2.6) |



which results in the réplacements of nucleon lines by
meson ones

: 1 p?
D (k—) = —— - 9,0 ,
# kzm_z_ —m2 +ie
i

@
n .
D, (py ~0,—k )= TI,:'E D Uojap) o fk] IR e

The propagators corresponding to the t -paths will
be multiplied by -£-. Thanks to this fact we may consider
all the lines of "' -paths as modified nucleon lines.
As a result we obtain a diagram of the same type (Fig. 2)
but the p -paths being directed along nucleon lines

1 3 .
P, P P ql
1) 2 3 4'

2

So the described contribution is of the form

F”: (t) ‘
s ‘nonefi ©(2.8)
2
(1) © (xx)
) fnoneik(t)=—n?-feik (t?)-

If the particle masses satisfy the condition

2

B ¢ . :
;17« 1, —;-2—«1 2.9)

the contribution of noneikonal f -paths will be less than
that of eikonal ones.

12

Now we have nothing to consider but the contribution
to the asymptotics of xx -diagram from the pair of
f -paths (1°2°3°4°) and (12 °3°4 ). The other remaining
pair (1234) and (1°234°) (see (2.4)) evidently lead to the
same contribution. The 7 -paths (1°2°3°¢’) and (12’34 )
being short-circuited we obtain the reduced graph

P
1 qt

Fig. 4

P, 9,

Then it follows that the contribution of these f -paths
does not depend on momentum transfers, i.e. can be
represented in the form

i ) 2
s -lf7¢(;1‘-‘5-)- (2.10)

'S

2
Let us find the form of function d)(ﬁ—-) 1f the condition

2. 9) is satisfied. For this purpose choose the integration
momenta in xx -d1agram so that the p— paths coincide
with the ¢ -paths (1°2°3°4°) and (12 '3°4). Then using
the Statement 2 we obtain that the desired contribution
will be equal to the reduced graph (Fig. 5) asymptotics
multiplied by

(ab5) (“6) (a 7 )

k, kl+k2k,+k2+k3
Pl«ap R e @_Jill

p ~k, (a,) "t )
ky (ag) (ag)
-~k k
P2 2% Fig. 5
(aa) (a4)

13



When s+ o« the asymptotics of F’
formula (1.7) will be of the form

according to the

fn's
F’~ const [da ,...da 6 (I-a, - 6(l-a_ - .

= onst [ 1 a, ( a, az)( a; -~a, )

c (2.1)
-8(1—a5—a6—‘a7—a8 —a9) o--——-z—;
' (6yt +ho)dy

where

go=0;

y »
h =—#2[E-2-(a5+a6 +a7)+(a8+.a9)']co ‘ (2.12)

From eqs. (2.11) and (2.12) we get the expression
for the function ¢ defined by the relation (2.10).

qﬁ(-y—z) = const fidalx

x 18 (1- Z8a) 8(1“’5‘“6 277%s “9) . (2.13)

f [ ‘-7-(a +a +a7)+(a +a9)]

. 2
At large —
"

the main contribution comes from a do-
main a; +ag +a, =0

poulos method /%,
“5,6,7"'\‘15,5,7- As a result

and we can use again the Tikto-
performing the substitution

2
da5 da6 dz7 > A 8(1-a5—a6—a7)d15da6 da7d/\ y

6(1-25—a6 —a7-a8~a§)-»6 (1- aa—ag) (2.19)
fart,
from which follows
2 2
qb(f‘_)_ const f ———d;\—-— » deen P(H) = cénstﬂ—gi’n”—Z.
/\-’P—+I m? m
PE

(2.15)

14

under condition (2.9). Note that const in eq. (2.15) now

includes in itself all the integrals over g; Taking
into account the equality f _ (t=0) = <onst_ and
eik #2

egs. (2.5), (2.8), (2.10), (2.15) we obtain the asymptotics
of the xx -diagram

(xx), bns (xx) (xx)
Sy ST S OT! (2.16)
where o
(xx) (xx 2 2 2
nonetk (9= _f (t“'—')+ConStfek(t—O).7[7n___

- 2
when s » = ,t is fixed and ‘-;-2- <« 1,

3. Asymptotics of the Nucleon- Nucleon
Scattering Amplitude. Eighth Order

In the previous paragraph we have considered one of
the eighth order diagrams. Now turn to the remaining
diagrams except for the twisted graphs described by
the term (q;, -gq, ) in formula (2.1)._In these diagrams
there are three types of noneikonal ¢ -paths which can
give a contribution to the leading asymptotics. _

In the first type -we include noneikonal ¢ -paths
which have no common line. Except the xx -diagram
there is only one graph with such t -paths (see Fig. 6)
and two cross-symmetric diagrams.

Fig. 6

15



The contribution to the asymptotics of the diagram 6
can be written down in the same form as (2.8)

2
(2) _Ins 42 @k :
[noneik (t)= 3 = crossfeik ( —2—). (3.1

m m

If add the eikonal contribution of diagrams xx and 6

to those of cross-symmetric ones, then f¢ns cancelland
we obtain the total eikonal contribution
1
5 £ () (3.2)

Then according to eqs. (2.8) and (3.1) the noneikonal
F-path contribution to the same sum has the form

2
_ 1 n2 4
noneik -(t)* 3 m2? eik (t mz). (3-3)

In the eighth order there aren’t any other noneikonal
contributions depending on the momentum transfers.

We attribute the noneikonal f -paths, having a common
nucleon line, to the second type. Its contribution does
not depend on the momentum transfers and have been
considered above for the xx -diagram (see egs. (2.10)-
(2.16)). However the similar contributions are cancelled
in the sum of all diagrams with such 7 -paths.

Consider, for example, the -diagram

16

whose paths (1°2°3°4¢‘) and (13°4°4)  belongto the seco.nd
type. Its contributions may be taken into account w_1th
the help of Statement 2. Namely, this diagram asymptotics
may be graphically represented in the form

. ' 3
_i_ * ‘ : ’ 3.4)

3 - s

The asymptotics of the graph which appears as
a result of mirror reflection of 1 and 2 vertices relatively
to the vertex 4 may be represented as follows

~ : -

} (8.5)

- o

Now let us consider cross-symmetric graphs. Accord-
ing to the Statement 2 we have to replace the common
lines by the factors (- ). Then obtain

~

(3.6)

The first term in eq. (3.6) corresponds tq the non-
eikonal contribution to .the diagram which is cross-
symmetric to the graph shown in Fig. 7.

17



Summing the expressions (3.4), (3.5) and (3.6) we
convince ourselves of the cancellation of the noneikonal
second type { -paths contributions.

Evidently the same arguments are faithful for the
other similar diagrams. To the third type we attribute
those of ¢ -paths which- have common meson line.
Its contribution to the leading asymptotics also does
not depend on the momentum transfers. In the eighth
order there are the same diagrams with the third type
f -paths. As an example we consider only one of these
graphs (see Fig. 8), keeping in mind the validity of all
the results for other similar diagrams.

Fig. 8

In this diagram the ?'lpaths (1°434°) and (12°14 ) are
noneikonal and belong to the third type. Its contribution
may be written down in the form (2.10).

fn 1 2 | .
- - F@(ﬁhz). , . (3.7)

We’ll search the behaviour of function ® under
condition (2.9). Let us choose the integration momenta
so that the p -paths coincide with ¢ -paths (1°434°) and
(12°1°4) (see Fig. 8). According to .the Statement 2
the desired contribution will be equal to the reduced
graph (Fig. 9) asymptotics multiplied by  1/s.

(¢ l\

.
.

Fig. 9

- 19



Using eq. (1.7) when s -«

,, Ins
F ==y const | dal... da98 (1—'a1-—a2)3 (1~ qa—a4)

we get the asymptotics

c (3.8)
§(l-a_ -a_-a ~a, -a, )-——"D2
5 6 7 8 9 : 72
(8yt +Izo)fb
where
, , .
_ _ 2,
gO_O, bo-——p Co[ %(u5+a6 +a, +a8)+a9]. (3.9

From egs. (3.8) and (3.9) we obtain the expressioh

for the function (p(_:?_), defined by relation (3.7)
2 .

) (ﬁ?-) = const [l da}x
m . (3.10)
xIkd (1-Za) 0 (I~a5s —ag —ay -ag-ay) .

—~ 2 . -
m? Tol By (agrag+a, +ag)+a,]
At large PYa the main contribution is due to the region

a; +a _+a, +a o= 0. By the substitution
a A B
567,8 ° " %5,6,7,8
we get

5 :
da5 - da8 A0 (1 -0, —ay ~a,~ag )dag.. dagdA

5(1—(15 ~a, -a, —as—ag)—usi(l—ag)‘ (3.11)
[O s A iO

It follows then under condition (2.3) that

(3.12)

u? 1 N 2 2

0] (—-2)= const f dr- — , d.e. 0] (———" ) = const £
m 4] A m w1 m2 m2

p2

20

"The results of the second and third sections can be

expressed by a single formula in which the cancellation
of fIns in the cross-symmetric sum of diagrams is
taken into account. Really, at large s an asymptotic
behaviour of the nucleon-nucleon scattering amplitude in
the eighth order of the perturbation theory has the form

-

8 ) —-ig A : -
Pzt fd e K I D pgnend (3113)
where ) ) 2

(8) H [ const N
»[noneik(t)=jn'5_ f o (t7n3) +—————#2 D (mz)

The f,;(t) in eq. (3.13) denotes the ¢ -dependent
factor in the main asymptotic term of the sum of the
diagram- shown in Figs. 2 and 6 together with its Cross-
symmetric partners, when only the contributions of the
eikonal paths are taken into account. The function (IJ(-n/:‘-L,—)

2 2 )
£ at E5<«1. The first term in curly brac-
- ,

kets belor;ngs to the sum_ of the eikonal contributions
from all the graphs of the eighth order (compare with
eq. (2.3)). e B 2

Under condition of a smallness of the ratio £ one

goes as

m2

can neglect the dependénce on momentum transfers,
¢ o , .

if —m-2<<1 2
f o (t-";é-):ieik ©) =‘£?fzit" (1)
that gives the result: ’
[(8)] o 00 :-é-; ;—.-1—’——8x' .
g 7 T L
| _fdzx;e =198, KO(#|.X4|)+ CZ”; ES 1.

2]



In conclusion of this section it should be stressed that
only the contributions of various ¢ -paths corresponding
to zeroes of the function f(a) in eqs. (1.4)-(.1.7)were
taken into account. A ‘

4. The Asymptotics of the Nucleon-Nucleon
Scattering Amplitude. Higher Orders

In Sec. 3 we have considered the high-energy behaviour
of a scattering amplitude in the eighth order in powers
of 6. We have shown that in this order there exist graphs
which give the noneikonal contributions to the asymptotics

of the amplitude of the same order in s as the eikonal
one. : ‘

However, as it was shown in paper /6 /, in higher
»orders in powers of g there exist graphs in which the
noneikonal asymptotic term dominates the eikonal one.
The: typical example of these graphs with noneikonal
paths of the first type (see Sec. 3) is illustrated in
figure 10. :

e 7
= F { f+1 )
o 9,
Fig. 10
This diagram just as xx -diagram has two ¢ -paths
with length equal three: (12°3°4) and (1°234°). To study

its asymptotic behaviour we use the same method as in
Sec. 2, i.e. directing the p -paths along the ¢ -paths
and replacing the momenta as in (2.6). The asymptotics
of the graph with £ +! meson lines (of the 2f+2 order
in powers of ¢ ) shown in Fig. 10 coincides with the

22

P

asymptotics of the graph shown in Fig. 1l up to a factor
2 . .
@) t-2
m .

4
P, - 9,
P2 Lo e q2
l' 2 3 4, N
Fig. 11
. . ) _
Moreover, the substitution t-+,t%-2- in the graph

in Fig. 11 should be done (compare with eq. (2.7)).. The
dot-lines of this reduced graph correspond to the virtual

2 s
particles with the mass B2 These lines are dueto the

m
meson lines (see Fig. 10), which do not-belong to the
{ -paths :

? (k)P (kB)a——te oD 20, A1)
# " K EE _pliie ™ m
IJ-2 .

Undér the condition (2.3) one may put ¢=0 in the
asymptotics of this diagram. , o

Thus using eq. (1.7) for the main asymptotic term
of the graph of the 2¢{ +2 order considered above we get
the following expression: -

F(ﬂ+1):?ns; const . 5 da'”;dB Hdy} 1o (1_2),‘ ).

L= Ts3 #2(2 =2)
- (4.2)
CO -
8(1~3a, ~2B; ) — - — £ >3
CPrEis e 438, :
0 l‘ 2 1 o i
23



In formula (4.2) the parameters g, correspond to
the wave meson lines, B; to the dot-linesand y; . to
the nqcleon lines. Apparently the region Xa, =0 does
not give the essential contribution to the integral (4.2)
. _
at —n% > 1%,
N .
Hence

(1) pps  const
F =5, 05, _
=S mafz :3' 4.3)

In the considered case of the order 2f +2 in powers of

8 ther.e exist the graphs with noneikonal ¢ -paths.
of the third type, which have the form: ’ ‘
1 2 3
P, & /#" H4 1
V"
‘ /.4 B ‘ Fig. 12
)
p2 P jﬁf oelpee

1' 2' 3,

In the diagram in Fig. 12 there exist two 7 -paths of

the length three: (12°1°3) and (I°323°), which lead to the-

asymptotics /-P"—;S—- . The method used ’above in Sec. 3 for

'S
the eighth order graphs gives here the formula similar
to the eq. (4.3). -
Tl}e qoneikonal t -paths of the second type, whose
contributions have cancelled in the sum of the eighth
order graphs, give here nonleading asymptotic terms.

appearing in the nominator when the substituti i
performed (compare with eqs. (3.11), (3.12)). lo.n e

24

All the graphs of the given 2¢ +2 order belong

‘either to the type described -in this section and lead

to the asymptotics of the form (4.3), or have the t -paths
of the length more than three and consequently do not
dominate in asymptotic region s- o. : : o
Taking into account the cancellation of fns when
graphs with its cross-symmetric partners are being
summed, we get theé following asymptotic expression
for the amplitude @ °*? in 2¢+2 order in power of ¢ :

f(Z’IZ+2{)_lSM6 :1_3%,:223
¢~ fixed sT @R 4.4)
'.Eé_«z

m

Note, that the eikonal formula (2.3) when t=0 in the
same order of g gives the following result:

(X+2 const ’ '
i 3‘=0)*7,;3—' o (4.5)

Thus if one neglects twisted graphs one gets - for
the ratio of the noneikonal and the eikonal contributions
to the amplitude of the given order the result:

2{+2)

noneik [ 2 5 t-3 ¢ >3
T lew w T COMSET(—) 2 P27
feik t—fixed. m (4.6)

2
_Lz @ 5

m

From eq. (4.6) it follows that in the region
- I 2
S—foo, m2 <L 1, 'S:'-' m ’t‘f—,o (4.7)
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the eikonal part of scatterin
ring amplitude dominates over
the non-gikonal one, and the eq. (2.3) gives the main
asymptotic terms in each order in powers of £ 2, On the
gggg?;'yt,i in th(;e 'reigion (4.7)when s > m2 the noneikonal
utions dominate as it f
contributions ollows from eq. (4.6) over

Conclusioh

So the investigation of the ladd |
er type graphs in th
scalar model demonstrates that the eikonaf formulz
cc;rresponds to the account of the ¢ -paths, coinciding
IVth nucleon lines. The ’’leading’’ particles, carrying
ailrge momenta, are nucleons in that case and do not
c ar';‘ie th_eir type in virtual processes.
e noneikonal contributions to the am
» ' plitude are due
:o the. processes with alteration of the leading particle
tgpe, i.e. with thg large momenta transfer from nucleons
1mesons and vice versa. Then the important question
ztxr:'esgs;l a&;bout the ta?,1gmf1cance of twisted graphs in which
momen g, and g
Flg. 1and oq 2.1, 1 , are exchanged (compare
. 1The possibility of large momentum carried by meson
dg ngs to the fact, that the corresponding contribution may
corrln;tr;a:ltte oner the eikonal one in the same order of coupling
. For example, in the fourth o
graph has the asymptotics fns . rder fhe twisted
' 3 s .

Py ' — g
1

Py, & . o 95
Fig. 13

Note that while orthodox eikonal formula corresponds

Fig. 13 leads to‘the quasipotential correction of non-
Yukawa type. The derived correction corresponds to the
nucleon-antinucleon pair exchange and has an effective

radius ~--é—}_"m——. At small distances this rcorrection has

tar

Py .

a sif\gﬁlariiy

This .example illustrates theimportance of investigating

the system of corrections to the effective quasipotential

at high energies and gives the argument in favour of
quasipotential interpretation of eikonal represent'a'tion in

~ quantum.field theory. -
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