# ОБЪЕАИНЕННЫЙ <br> ИНСТИТУТ <br> ЯАEPHЫX <br> ИСС^ЕАОВАНИЙ 

AУБHA
A.D.Donkov, V.G.Kadyshevsky, M.D.Mateev, R.M.Mir-Kasimov

EXTENSION OF THE S -MATRIX OFF THE MASS SHELL AND MOMENTUM SPACE OF CONSTANT CURVATURE

# 1975 

ААБОРАТОРИR

# A.D.Donkov, V.G.Kadyshevsky, M.D.Mateev, R.M.Mir-Kasimov 

EXTENSION OF THE S -MATRIX OFF THE MASS SHELL<br>AND MOMENTUM SPACE OF CONSTANT CURVATURE

> Submitted to Proceedings of the International Conference on Mathematical Problems of Field Theory and Quantum Statistics, Moscow, December, 1972 .

In the framework of Bogolubov's axiomatic approach problems connected with the extension of the scattering matrix off the mass shell are considered. In the method of extended $S$ matrix the concepts of elementary particle interactions acoepted in quantum field theory are reflected to most complete extent. A specific point for the standard extension procedure is the assumption that the 4 momentum matrix coefficient functions, natrix coeficient functions, eto. are erined ls a linkotry space. the hyothesis that such a responstble for the known difficuities of the theory connec rewth functions with coinctatng singularites As an alternative it is proposed to use in the extended $\dot{S}-$ matrix formalism a 4 -nomentum space of constant curvature (De-Sitter space) with curvature radius of $\hbar / e_{0}$, whentant curvature (De-Sitter space) With curvature radius $\pi / \ell_{0}$, where $e_{0}$ is a fundamen with De proglie wave lengths $\leqslant l_{0}$ must be oompletely different in the new scheme, in comparis on with those prescribed by the usual local field theory.

It is demonstrated that the off mass shell $S$-matrix extension in the spirit of De-sitter $p$-spaoe geometry can be made consistent with the requirements of relativistic invariance, unitarity, spectrality, completeness of the system of asymptotic states, With the help of a. speoific Fourier transform in moment um space of constant curvature a new configuration $)^{5}$, space is introduced, whose geometry for small distances $\leq l_{0}$ is essentially different from the pseudoeuclidean one. The causality oondition on the $S$ matrix, which is direct generalization of Bogolubov's causality condition, going to it in the limit $\quad l_{0} \rightarrow 0$, is formulated in terms of this $\boldsymbol{\xi}$-space. on several examples 1t is demonstrated that in the developed theory the problem of genaralized singular function products loses its acuteness. In partioular the commutation functions and propagators. in the new scheme can be interpreted as usual (not generalized) functions and there is no arbitrariness in any their powers and products.

## 1. Extended Scattering Matrix in Bogolubov:s Axiomatic Approach

Let $S$ be the scattering matrix in a theory of neutral scalar field $\varphi$, describing particles of mass $m$. We shall consider $S$ in the framework of Bogolubov's axiomatic approach to the quantum field theory $[1-4]$. Let us write down in $p$-representation the standard decomposition of this operator in terms of normal products of free out-fields:

$$
\begin{equation*}
S=\sum_{n} \int d^{4} p_{1} \ldots d^{4} p_{n} S_{n}\left(p_{1}, \ldots, p_{n}\right): \varphi\left(p_{1}\right) \ldots \varphi\left(p_{n}\right): \tag{1.1}
\end{equation*}
$$

By definition:

$$
\begin{align*}
& \varphi^{\circ u t}(x)=\frac{1}{(2 \pi)^{2 / 2}} \int e^{i p x} \varphi(p) d^{y} p  \tag{1.2a}\\
& \varphi(p)=\frac{1}{(2 \pi)^{5 / 2}} \int e^{-i p x} \varphi^{\text {out }}(x) d^{y} x  \tag{1.2b}\\
& (\varphi(p))^{+}=\varphi(-p) . \tag{1.20}
\end{align*}
$$

From here

$$
\begin{gather*}
\left(m^{2}-p^{2}\right) \varphi(p)=0  \tag{1.3}\\
\varphi(p)=\delta\left(m^{2}-p^{2}\right) \stackrel{\varphi}{\varphi}(p) . \tag{1.4}
\end{gather*}
$$

Owing to eq. (1.4) the coefficient functions (c.f.)
$S_{n}\left(p_{1}, \ldots, p_{n}\right)$ in (1.1) are defined only on the mass-shell $p^{2}=m^{2} \quad:$

$$
S_{n}\left(p_{1}, \ldots, p_{n}\right)=\left.S_{n}\left(p_{1}, \ldots, p_{n}\right)\right|_{p_{n}^{2}=\ldots=p_{n}^{2}=m^{2}}
$$

However for formulation of a dynamical theory it is necessary to extend the $S$ matrix off the mass shell (see for instance
[4] and the report by Medvedev, Pavlov, Polivanov and Sukhanor submitted to this conference.)

When one extends the scattering matrix"with respect to the fieldn; 1.e. Then the quantized out-fields get olassical additions and do not more satisfy the free equation (1.3), it is supposed that the extended $S$ matrix is still given by the decomposition (1.1). From here, taking into account the stability of the vacuum state, the following expression for the extended off the mass shell c.f. is obtained;

$$
\begin{equation*}
S_{n}\left(p_{1}, \ldots, p_{n}\right)=\frac{1}{n!}\langle 0| \frac{\delta^{n} S}{\delta \varphi\left(p_{2}\right) \ldots \delta \varphi\left(p_{n}\right)} S^{+}|0\rangle \tag{1.6}
\end{equation*}
$$

The quantity

$$
\begin{equation*}
S^{(n)}\left(p_{1} \ldots p_{n}\right)=\frac{\delta^{n} S}{\delta \varphi\left(p_{1}\right) \ldots \delta \varphi\left(p_{n}\right)} S^{+} \tag{1.7}
\end{equation*}
$$

is called $n$-th order radiation operator. The operator $i S^{(1)}(-p)$ isidentified with the Heisenberg current operator in $p$-representation

$$
\begin{equation*}
i S^{(1)}(-p)=i \frac{\delta S}{\delta \varphi(-p)} S^{+}=j(p) \tag{1.8}
\end{equation*}
$$

In coordinate space we have correspondingly:

$$
\begin{align*}
& j(x)=i S^{(1)}(x)=i \frac{\delta S}{\delta \varphi^{0 u t}(x)} S^{+}  \tag{1.9}\\
& j(x)=\frac{1}{(2 \pi)^{5 / 2}} \int e^{i p x} j(p) d^{4} p \tag{1.10}
\end{align*}
$$

One of the conditions imposed on the extended objects (S - matrix, field operators, etc.) is conservation of the
former covariance properties with respect to Poincaré group transformations. For instance under translations:

$$
\begin{equation*}
x^{\prime}=x+a \tag{1.11}
\end{equation*}
$$

tne extended operator transforms as

$$
\begin{equation*}
e^{i \hat{P} a} \varphi(p) e^{-i \hat{P}_{a}}=e^{i p a} \varphi(p) \tag{1.12}
\end{equation*}
$$

$(\hat{P}$
13 the energy-momentum of the system) and the extended scattering matrix remains invariant

$$
\begin{equation*}
e^{i \hat{P}_{a}} S e^{-i \hat{P}_{a}}=S \text {. } \tag{1.13}
\end{equation*}
$$

From (1.8), (1.12) and (1.13) it follows that the transformation law of the current $j(p)$ coincides with (1.12):

$$
\begin{equation*}
e^{i \hat{P}_{a}} j(p) e^{-i \hat{P}_{a}}=e^{i p a} j(p) \tag{1.14}
\end{equation*}
$$

In terms of extended c.f. (1.6) the translation invariance condition (1.13) means that any such a function has to contain as a factor a four-dimensional $\delta$-function:

$$
\begin{equation*}
S_{n}=\delta\left(p_{1}+\cdots+p_{n}\right) S_{n}^{\prime} \tag{1.15}
\end{equation*}
$$

Let us express $S_{n}^{\prime}$ in terms of the original c.f. $S_{n}$. To do this let us consider in the decomposition (1.1) the term:

$$
\begin{equation*}
\int d^{4} p_{1} \ldots d^{4} p_{n} S_{n}\left(p_{1}, \ldots p_{n}\right): \varphi\left(p_{1}\right) \ldots \varphi\left(p_{n}\right): \tag{1.16}
\end{equation*}
$$

Because of eq.(1.15) the expression (1.16) is identical to the following:
$\int d^{4} p_{1} \ldots d^{4} p_{n} S_{n}\left(p_{1} \ldots p_{n}\right): \varphi\left(p_{1}-\frac{p_{1}+\cdots+p_{n}}{n}\right) \ldots \varphi\left(p_{n}-\frac{p_{2}+\cdots+p_{n}}{n}\right):(1.17)$

$$
\begin{align*}
& \text { Let us make in }(1.17) \text { the substitution: } \\
& \qquad p_{i}=q_{i}+k, \\
& \sum q_{i}=0, k=\frac{p_{1}+\cdots+p_{n}}{n} \equiv U\left(p_{1} \cdots p_{n}\right) \tag{1.18}
\end{align*}
$$

It is easy to see that:

$$
\begin{equation*}
d^{4} p_{1} \cdots d^{4} p_{n}=d^{4} q_{1} \ldots d^{4} q_{n} \delta\left(U^{\left(q_{1} \cdots q_{n}\right)}\right) d^{4} k \tag{1.19}
\end{equation*}
$$

uki therefore instead of (1.17)we have:

$$
\begin{equation*}
\int d^{4} q_{1} \ldots d^{4} q_{n} \delta\left(U^{\left(q_{1}-q_{n}\right)}\right) \int d^{k} S_{n}\left(q_{1}+k \ldots q_{n}+k\right): \varphi\left(q_{1}\right) \ldots \varphi\left(q_{n}\right): \tag{1.20}
\end{equation*}
$$

Comparing (1.20) with (1.16) we get the final result $[5,6]$ :

$$
\begin{align*}
S_{n}\left(p_{1} \cdots p_{n}\right) & =\delta\left(\frac{p_{1}+\cdots+p_{n}}{n}\right) \int d^{4} k S_{n}\left(q_{1}+k \ldots q_{n}+k\right) \equiv \\
& \equiv \delta\left(J^{\left(p_{1} \cdots p_{n}\right)}\right) \widetilde{S}_{n}\left(p_{1}, \ldots p_{n}\right) . \tag{1.21}
\end{align*}
$$

Hence the function $S_{r}^{\prime}$ in (1.15) is given by the relation:

$$
\begin{equation*}
S_{n}^{\prime}=n^{4} \widehat{S}_{n}\left(p_{1} \ldots p_{n}\right) \tag{1.22}
\end{equation*}
$$

Let us note that the dependence of the right-hand side of the identitJ (1.21) on the 4.momenta $p_{1} \ldots p_{n}$ has a specific character with respect to translations

$$
\begin{equation*}
p^{\prime}=p+b \tag{1.23}
\end{equation*}
$$

In the $p$-space. Actually the integral:

$$
\begin{equation*}
\tilde{S}_{n}\left(p_{1} \ldots p_{n}\right)=\int S_{n}\left(p_{1}+k \ldots p_{n}+k\right) d^{4} k \tag{1.24}
\end{equation*}
$$

is invariant under displacements (1.23):

$$
\begin{equation*}
S_{n}\left(p_{1}+b \ldots p_{n}+b\right)=\widetilde{S}_{n}\left(p_{1} \ldots p_{n}\right) \tag{1.25}
\end{equation*}
$$

and the $\quad \delta \quad$ function argume $n t \frac{p_{1}+\cdots+p_{n}}{n}=U^{\left(p_{1} \cdots p_{n}\right)}$ transforms according to the sane law (1.23) as any of the 4 -momenta $p_{i}:$

$$
\begin{equation*}
U^{\left(p_{2}^{\prime} \cdots p_{n}^{\prime}\right)}=U^{\left(p_{1} \cdots p_{n}\right)}+b . \tag{1.26}
\end{equation*}
$$

Owing to (1.25) the function $\widetilde{S}_{\mu}\left(p_{1} \ldots p_{n}\right)$ depends only on the momenta differences $p_{i}-p_{j}(i, j=1, \ldots, n)$. Let us agree to call the difference $\frac{p_{i}-p_{i}}{2}$ relative $4-$ momentum. Evidently, similarly to the quantities $p_{i}$, they are vectors in the four dimensional pseudoeuclidean space or winkowski space.

Identities of the type (1.21) which express the translation invariance of the $S$-matrix in momentum space, have a number of simple propertios following directly from relations (1.25); (1.26). In particular if we apply the identity to the function $S_{n}\left(p_{1}+k \ldots p_{n}+k\right) \quad$ under the integral sign in eq. (1.21) then we again cone to (1.21) ("irreducibility" property).

Of special interest is the case when the o.f. $S_{n}\left(p_{2} \ldots p_{n}\right)$ is disconnected, i.e. contains for instance additive terms of the form:

$$
\begin{equation*}
S_{m}\left(p_{1} \ldots p_{m}\right) S_{n-m}\left(p_{m+1} \cdots p_{n}\right) \tag{1.27}
\end{equation*}
$$

where $S_{m}$ and $S_{n-m}$ are lower order c.f. satisfying by themselves identities of the type (1.21):

$$
\begin{aligned}
& S_{m}\left(p_{1} \cdots p_{m}\right)=\delta\left(U^{(m)}\right) \tilde{S}_{m}\left(p_{1} \cdots p_{m}\right) \\
& S_{n-m}\left(p_{m+1} \cdots p_{n}\right)=\delta\left(U^{(n-m)}\right) \tilde{S}_{n-m}\left(p_{m+1} \cdots p_{m}\right)
\end{aligned}
$$

(for brevity we have put $U^{\left(p_{1} \cdots p_{m}\right)} \equiv U^{(m)}$ ).
Let us demonstrate that if the relations (1.28) are furlfilled the product ( 1.27 ) automatically obeys the identify (1.21):

$$
\begin{gather*}
S_{n}\left(p_{1} \cdots p_{m}\right) S_{n-m}\left(p_{m+4}, \ldots, p_{n}\right)= \\
=\delta\left(U^{(n)}\right) \frac{S_{n}\left(p_{1} \ldots p_{m}\right) S_{n-m}\left(p_{m+1} \cdots p_{n}\right)}{} \tag{1.29}
\end{gather*}
$$

We note that:

$$
\begin{equation*}
\delta\left(U^{(n)}\right) \delta\left(U^{(n-m)}\right)=\delta\left(U^{(n)}\right) \delta\left(U^{(n)}-U^{(n-m)}\right) \tag{1.30}
\end{equation*}
$$

or

$$
\begin{equation*}
\delta\left(U^{(m)}\right) \delta\left(U^{(n-m)}\right)=\delta\left(U^{(n)}\right) \int \delta\left(U^{(n)} k\right) \delta\left(U^{(n-m)}+k\right) d^{4} k \tag{1.31}
\end{equation*}
$$

$\sim$ Now multiplying both parts of the relation (1.31) by $\tilde{S}_{m}\left(p_{n} \ldots p_{m}\right) \tilde{S}_{n-m}\left(p_{m A} \cdots p_{n}\right)$ and taking into account the invariance of the functions with tilde with respect to displacements (1.23) we obtain:

$$
\begin{gathered}
S_{m}\left(p_{1} \cdots p_{m}\right) S_{n-m}\left(p_{m+1} \cdots p_{n}\right)=\delta\left(U^{(n)}\right) \\
\cdot \int \delta\left(U^{(n)}+k\right) \tilde{S}_{m}\left(p_{1}+k \ldots p_{m}+k\right) \delta\left(U^{(n-m)}+k\right) \tilde{S}_{n-m}\left(p_{m+1}+k \ldots p_{n}+k\right) d^{4} k
\end{gathered}
$$

From here, using property (1.26) of the and relation (1.28) we get (1.29).

Let us emphasize that from the invariance of the functions $S_{n}$ under translations (1.23) and their obvious relativistic invariance it follows that they are invariant under arbitrary transformations of the 10 -parametric motion group of the momentum space (Poincaré group):

$$
\begin{equation*}
p_{\mu}^{\prime}=\Lambda_{\mu}^{\nu} p_{\nu}+b_{\mu}(\mu=0,1,2,3) \tag{1.32}
\end{equation*}
$$ ( $\left\|\Lambda_{\mu}{ }^{\nu}\right\|$ is the Lorentz transformation matrix). Therefore, functions $\tilde{S}_{n}$ actually depend on the squares of the "relative" 4 -momenta $\left(p_{i}-p_{j}\right)^{2} / 4 \quad(i, j=1, \ldots, n)$

$$
\begin{equation*}
\tilde{S}_{n}=\bar{S}_{n}\left(\cdots \frac{\left(p_{i}-p_{j}\right)^{2}}{4} \cdots\right) \tag{1.33}
\end{equation*}
$$

In view of the importance of this result for future construetrons let us formulate it -once more:
if one imposes the translation invariance condition on the extended off the mass shell scattering matrix written in $p$ --representation, then from any connected of. $S_{n}\left(p_{1} \ldots p_{n}\right)$ it can be picked out a function $\widetilde{S}_{n}\left(p_{2} \ldots p_{n}\right)$ which is invariant under the poincare group (1.32) of the pseudoeuclidean momentum space.

In the extended $S$-matrix formalism the Bogolubov's causality condition plays the role of dynamical equation from
which the c.f. $S_{n}\left(p_{1} \ldots p_{n}\right)$ are determined. This
condition can be written either in differential form

$$
\begin{align*}
& \frac{\delta j\left(x_{1}\right)}{\delta \varphi^{\text {out }}\left(x_{2}\right)}=0, \\
& \left.11^{+}\right)\left(x_{1}-x_{2}\right)=\xi \geqslant 0, \tag{1.34}
\end{align*}
$$

or in integral form $[1-4]$ :

$$
\begin{align*}
& \frac{\delta S}{\delta \varphi_{\left(x_{1}\right)}^{0 ⿲ \zh9} \varphi^{0\left(k_{1}\right)}} S^{+}=-j\left(x_{1}\right) j\left(x_{2}\right)+ \\
& +\theta\left(x_{2}^{0}-x_{1}^{0}\right)\left[j\left(x_{1}\right), j\left(x_{2}\right)\right] \quad \text { +quasilocal terms }= \\
& =-T\left(j\left(x_{1}\right) j\left(x_{2}\right)\right) \quad \text { +quasilocal terms } \tag{1.35}
\end{align*}
$$

the current commutat or satisfying the condition

$$
\begin{align*}
& \quad\left[j\left(x_{1}\right), j\left(x_{2}\right)\right]=0  \tag{1.36}\\
& \text { if }\left(x_{1}-x_{2}\right)^{2} \equiv \xi^{2}<0
\end{align*}
$$

Rel.(1.36) is called "locallty condition" for the current operator $j(x)$.

In the present quantum field theory commutators of the type (1.36) have always singularities on the surface ${ }^{+ \text {) }}$ :

$$
\begin{equation*}
5^{x}=0 \tag{1.37}
\end{equation*}
$$

The produot of such a oommutator with step funotion $\theta\left(\xi^{0}\right)=\theta\left(x_{1}^{0}-x_{2}^{0}\right)$, as it is well known $[1-4]$, can be defined only up to arbitrary quasilocal operators (in the causality condition (1.33) this is taken into account). one has to notioe, that in all the formulations of the quantum field theory we confront with analogous difficulties, which from mathematical point of viev reduce to the problem of multiplying singular generalized functions with coinciding singularities.

This originates, in particular, the famous ultraviolet divergences in the perturbation theory.

The existence of ultraviolet divergencies in quantum field theory have been exhibited at its earliest stages of development. Nowadays many physicists are convinced that this deffect is of principal oharacter and testifies for the 1napplicability of the theory to describe physical processes in small space-time regions, or, correspondingly at high energies and momenta.
$\mp)_{\text {This surface }}$ is the light cone in the pseudoeuclidean $\xi$ space $\left(\overline{3}_{\mu}=\left(x_{1}-x_{2}\right)_{\mu}, \mu=0,1,2,3\right)$. Obriously this spaoe is invariant under translations (1.11).
We shall call quantities of type $\boldsymbol{\xi}$ relative coordinates. They are canonically conjugated to the half-differences of
4 -momenta, or in our terminology, to the relative momenta.

There exist a large amount of papers devoted to the socalled "nonlocal" quantur field theories, in mhich from different physical reasons and using different mathematical means the interaction of the elementary particles is modified in the region of small De Broglie wave lengths ${ }^{+}$). A common feature of these investigations is introduction of a new universal constant in the theory the fundamental length $l_{0}$ defining the spaoe-time bound of the region in which some of the nold" concepts about particles and their interactions are not more valld.

In the present report we would like to discuss one possible way of generalization of the quantum field theory wh1ch naturally leads to an appearance in its framework of the fundamental length $l_{0}$. From a mathematioal point of view the formalizm we oonsider will reciall Snyder's scheme of quantized space-time $[8-13]$. However the basic idea and physical interpretation of the theory we construct are essentially different from those of refs. $[8-13]$.

[^0]2. Transition to Constant Curvature Momentum Space in the

## off Mass Shell Extension.

In the previous section we considered a number of conditions which are satisfied by the extended scattering matrix in Bogolubov's axiomatic approach. In a more complete form the set of requirements, in accordance with which the extension of the $\quad S$-matrix off the mass-shell is made looks as follows $[1,2,3,4]$ :
I. Relativistic invariance.
II. Translation Invariance.
III. Unitarity.
IV. Causality.
V. Completeness of the system of asymptotic states with positive energy and existence of unique vacuum state.
VI. Stability of the vacuum and one-particle states.

In the axiomatic construction of the scattering matrix the choice of a definite way of extension off the mass shell is essentially equivalent to acception of a definite way of description of quantized fields interactions. Therefore if we intend to modify the interaction laws of the elementary particles in the region of small De Broglie wave lenghts, comparable with some fundamental length $l_{0}$ (see the end of Section 1.), then obligatory this must be reflected in the way of extension of the scattering matrix off the mass shell. It is evident that the new extended objects (fields, c.f.,
currents, etc.) in the region of energies and momenta $\geqslant 1 / l_{0}$ will be considerably different from theirnclassical" analogues. At the same time the difficulties of the old theory, connected With badly defined products of generaiized singular functions with coinciding singularities have either to disappear or tobe essentially reduced. In other words the extension of the scattering matrix off the mass-shell, effectively taking into account the existence of a fundamental length $\ell_{0}$, has to be less singular, than the "classical" extension satisfying conditions [-VI. Then naturally arises the question: which of these conditions should be modified and in what direction ?

Presently we have no any arguments based on experimental grounds to drop the requirements of Lorentz and translation invariance (requirements I. and II.). The necessity of the unitarity condition on the $S$-matrix, do not evoke any doubt (requirement III):- The requirements $V$ and $V I$ seem to be also well grounded.

Let us consider now requirement IV- the "classical" Bogolubov's causality condition written for instance in the form (1.35). As the quasilocal terms contribute in the point $\xi=x_{1}-x_{2}=0$ then it is natural to suppose that the condition

[^1] quantities and relations in the limiting case $\ell_{0}=0$.
should be essentially changed in the region:
\[

$$
\begin{equation*}
|3| \leqslant l_{0} \tag{2.1}
\end{equation*}
$$

\]

Further our reasoning unavoidably has the character of a search. First of all let us notice that one has necessarily to add to requirements $I-V I$ in fact one more condition whose fulfilment in the extended off the mass shell $S$-matrix is considered usually like selfevident. We have in mind the pseudoeuclidean nature of the $\quad 4$-momentum space in which the mass shell hyperboloid

$$
\begin{equation*}
p^{2}-m^{2}=0 \tag{2.2}
\end{equation*}
$$

is embedded.

In other words in the usual theory it is silently supposed that when the extrapolation off the shell (2.2) is done any of the 4 -momenta $P_{\mu}$, on which the extended operators
$\varphi(p)$ and extended c.f. $S_{n}\left(p_{1}, \ldots p_{n}\right)$ depend, becomesarbitrary vector in Minkowski space ${ }^{+)}$. As a result because of ( $1.2 a$ ) the geometry of $X$-space and the geometry of $\quad \zeta$-space (see footnote on p. il) are also pseudoeuclidean.

However the general principles of the theory do not
+In perturbation theory 4 -momenta $p_{p}$ off the mass
shell (2.2) are usually called \#rtuel.
uniquely imply that momentum space should be necessarily flat Minkowski space. In particular the relativistic invariance condition does not fix the choice of a definite geometry in this space, but only requires that the quantities ( $p_{0}, p_{2}, p_{2}, p_{3}$ ) should be transformed under Lorentz transformations like 4 -vector.

It could seem, if we recall about identity (1.2I) and connected with it relations (1.25) and (1.26) that the pseudoeuclidean character of the $p$-space is a necessary oorollary of the translation imvariance of the $S$-matrix. However in order the translation invariance to be satisfied it is suffioient only the fulfilment of relations of type (1.15), and equations (1.21)-(1.22) are obtained from (1.15) and the acoepted a priori pseudoeuclidean character of momentum space ${ }^{+}$).

Taking into account all that let us now formulate the hypothesis which in all our further constructions will be of fumamental importance:

The new extension of the $\quad S$-matrix off the mass shell, which gives a consistent desoription of the elementary particle interaction with arbitrary $D e B_{r o g l e ~ w a v e ~ l e n g t h s, ~ s h o u l d ~ b e ~}^{\text {b }}$

+ The latter is reflected in the explicit form of the volume
element $d^{4} p=d p_{0} d \vec{p} \quad$, in the substitution (1.18)
and relation (1.19).
based not on a pseudoeuclidean momentum space, but on momentum space with constant curvature. The mathematical realisation of this space is the hypersphere:

$$
\begin{equation*}
p_{0}^{2}-p_{1}^{2}-p_{2}^{2}-p_{3}^{2}+\frac{1}{l_{0}^{2}} p_{4}^{2}=\frac{1}{l_{0}^{2}} \tag{2.3}
\end{equation*}
$$

In the pseudoeuclidean 5 -space of the variables $\left(p_{0}, p_{1}, p_{2}, p_{3}, p_{4}\right)$ - The constant $l_{0}$ defining the curvature of the surface (2.3) plays the role of a fundamental length ${ }^{+}$.

We suppose that the new extension is oonformed with the "classical" requirements I-III, V-VI and with causality condition modified in the spirit of the new $p$-space geometry.

The curved 4 -space, described by eq.(2.3) is called De-sitter space. It can be oonsidered as the closest to Minkowski space in the hierarchy of metric spaces. The motion. groups of these two spaces - Poincaré group (1.32) and DeSitter group (I.6) - depend on lo parameters.

Both contain the Lorenta group as a subgroup which realize homogeneous pseudoorthogonaltransformations in the space $\left(p_{0}, p_{4}, p_{2}, p_{3}\right) \quad($ see $(1.32)$ when $b=0$ and (I.7) ):

[^2]\[

$$
\begin{equation*}
p_{\mu}^{\prime}=\Lambda_{N}^{\nu} p_{\nu}(\mu, \nu=0,1,2,3) \tag{2.4}
\end{equation*}
$$

\]

The presence or absence of fundamental length $l_{0}$ in the theory does not affect at all equation (2.4). This means that both in the new scheme and in the "classical" theory, the requirement of relativistic invariance (req.I.) may be formulated in the same way and we shall not discuss this point anymore.

In the flat limit $\ell_{0} \rightarrow 0 \quad$ the relations of Desitter geometry go into its pseudoeuclidean analogues+). In this case, evidently, all field-theoretical quantities extended off the mass shell in the spirit of the De-Sitter space geometry (2.3), have to obtain their "classioal" form.

Later on it wil be convenient to use a system of units In which:

$$
\hbar=c=l_{0}=1
$$

In these terms "classicaln limit means that we consider region of momenta values:

$$
\begin{equation*}
|p| \ll 1 \tag{2.5}
\end{equation*}
$$

FI Let us note that there exists one more model of a space of constant curvatuce, which have a right pseudoeuolidean limit. It is connected $F i t h$ the surface $[5]: p_{0}^{2}-p^{2}-p_{4}^{2}=-\frac{1}{l_{0}^{2}}$. We shall not develop theory corresponding to this case, because of some physical reasons.

It can be easily seen that the mass shell (2.2) can be embedded in the space (2.3) only if the condition:

$$
\begin{equation*}
m^{2} \leq 1 \tag{2.6}
\end{equation*}
$$

## 1s.satisfied.

We shall suppose that the restriotion (2.6) is always fulfilled for the masses of the objects, which are described by quantized fields. Then eq. (2.2) is equivalent to the relation:

$$
\begin{equation*}
\left(p_{4}+m_{4}\right)\left(p_{4}-m_{4}\right)=0 \tag{2.7}
\end{equation*}
$$

Where by definition, $m_{4}=\sqrt{1-m^{2}} \geqslant 0$. Since on the surface (2.3) to any fixed value of $p$ there correspond two different by sign values of $p_{4}$, then each of the brackets in (2.7) can vanish:

$$
\begin{align*}
& p_{4}-m_{4}=0  \tag{2.8a}\\
& p_{4}+m_{4}=0 \tag{2.8b}
\end{align*}
$$

Let us make now a physioal assumption: for the free field $\varphi\left(p, p_{4}\right) \quad$ defined in the De-sitter $p$-space (2.3) only the condition (2.8a) is satisfied. In other words:

$$
\begin{equation*}
2\left(p_{4}-m_{4}\right) \varphi\left(p, p_{4}\right)=0 \tag{2.9}
\end{equation*}
$$

We introduced a factor of 2 in order eq. (2.9) to coincide exactly with (1.3) in the "olassicaln limit, $m,|p| \ll 1 \quad+$ ).

$$
\begin{align*}
& \text { From (2.9) it follows that: } \\
& \qquad \varphi\left(p, p_{4}\right)=\delta\left(2 p_{4}-2 m_{4}\right) \tilde{\varphi}\left(p, p_{4}\right), \tag{2.10}
\end{align*}
$$

Where $\varphi\left(p, p_{4}\right)$ is operator which does not possess singularities on the mass shell (2.8a).

Later we shall oonsider decompositions of different quantities of the theory in terms of $\varphi$-field products. When doing that each operator $\varphi\left(p, p_{4}\right)$ will appear in the corresponding integrals aooompanied by "its own" volume element (I.5):

$$
\begin{equation*}
\int \ldots d \Omega_{p} \varphi\left(p, p_{4}\right) \ldots \tag{2.11}
\end{equation*}
$$

(the dots substitute the o.f., all other P-operators and volume eleqents). on the mass shell taking into account (2.10) and (I.5), we can write eq.(2.11) in the form:

[^3] negative energies in Dirao's theory of the electron.
$\int \ldots d \Omega_{p} \varphi\left(p, p_{4}\right) \ldots=\int \ldots 2 \delta\left(p_{L}-1\right) d^{5} p \delta\left(2 p_{4}-2 m_{4}\right) \tilde{\varphi}\left(p, m_{4}\right) \ldots=$
$=\int \ldots d^{4} p \delta\left(p^{2}-m^{2}\right) \tilde{\varphi}\left(p, m_{4}\right) \ldots$
In the "classical" case instead we would have taking into account (1.4):
\[

$$
\begin{equation*}
\int \ldots d^{y} p \varphi(p) \ldots=\int \ldots d^{y} p \delta\left(p^{2}-m^{2}\right) \tilde{\varphi}(p) \ldots \tag{2.13}
\end{equation*}
$$

\]

Comparing (2.12) and (2.13) we conclude that on the mass shell the equality should be satisfied:

$$
\begin{equation*}
\tilde{\varphi}\left(p, m_{4}\right)=\tilde{\varphi}(p) . \tag{2.14}
\end{equation*}
$$

Let us stress that between the extended off the mass shell operators $\varphi(p)$ and $\varphi\left(p, p_{4}\right)$ there is no more any
connection because to each extension a different geometry in the $p$-space corresponds. In particular the classical field $\varphi(p)$ is defined for all values of $P_{\mu}$, but the field $\varphi\left(p, p_{4}\right)$, because of $(2.3)$, only in the domain

$$
\begin{equation*}
p^{2} \leq 1 \tag{2.15}
\end{equation*}
$$

The relation (2.14) looks like a "correspondence principle". With its help the commutation relation whioh should be satisfied by the solutions of equation (2.9) can be determined.

Let us note first that directly from (2.14) it follows the
definition of creation and annihilation operators (see [1] )

$$
\begin{align*}
& \varphi^{(t)}(\vec{p})=\left.\frac{\tilde{\varphi}\left(p, m_{4}\right)}{\sqrt{2 p_{0}}}\right|_{p_{0}=\sqrt{p^{2}+m^{2}}}  \tag{2.16}\\
& \varphi^{(-)}(\vec{p})=\left.\frac{\tilde{\varphi}\left(-p, m_{4}\right)}{\sqrt{2 p_{0}}}\right|_{p_{0}=\sqrt{\vec{p}^{2}+m^{2}}}
\end{align*}
$$

Further we evidently have:

$$
\begin{equation*}
\left[\varphi^{(-)}\left(\vec{p}_{1}\right), \varphi^{(+)}\left(\vec{p}_{2}\right)\right]=\delta^{(3)}\left(\vec{p}_{1}-\vec{p}_{2}\right) \tag{2.17}
\end{equation*}
$$

From here, taking into account (2.16), (2.10) and (1.17) we obtain [6] :

$$
\begin{equation*}
\left[\varphi\left(p_{1}, p_{14}\right), \varphi\left(p_{2}, p_{24}\right)\right]=\delta\left(p_{1},-p_{2}\right) \varepsilon\left(p_{2}^{0}\right) \delta\left(2 p_{24}-2 m_{4}\right) \tag{2.18}
\end{equation*}
$$

Passing to coordinates ( $\omega, \vec{p}$ ) (see I.13) and putting by definition ${ }^{+}$:

$$
\varphi(p, p 4) \equiv \varphi(\omega, \vec{p}),|\omega| \leq \frac{\pi}{2}
$$

+) Reduction of the range of variation of $\omega$ here is connected with vanishing of the operator $\varphi\left(p, p_{4}\right)$ for $p_{4}<0 \quad(\sec (2.10))$.
we shall have instead (2.18):

$$
\begin{equation*}
\left[\varphi\left(\omega_{1}, \vec{p}_{2}\right), \varphi\left(\omega_{2}, p_{2}\right)\right]=\delta\left(\omega_{1}+\omega_{2}\right) \delta\left(\vec{p}_{1}+\vec{p}_{2}\right) \varepsilon\left(\omega_{2}\right) \delta\left(2 \cos \omega_{2} \sqrt{1+\vec{p}_{2}^{2}}-2 m_{4}\right) \tag{2.19}
\end{equation*}
$$

The neutrality condition of the free field $\varphi\left(p, p_{4}\right)$ in the new scheme because of (2.14) is written in form equivalent to (1.2c):

$$
\begin{equation*}
\varphi^{+}\left(p, p_{4}\right)=\varphi\left(-p, p_{4}\right)=\varphi(-\omega,-\vec{p}) \tag{2.20}
\end{equation*}
$$

We shall suppose that the relation (220) holds also for the extended $\varphi$-operators.

In De-sitter $p$-space (2.3) the components of the 4vector $P_{\mu}$, as in the flat space, evidently commute identically with each other:

$$
\begin{equation*}
\left[p_{r}, p_{\nu}\right]=0,(\mu, \nu=0,1,2,3) \tag{2.21}
\end{equation*}
$$

From here and (2.17) we conclude that the operator

$$
\begin{equation*}
\hat{P}_{\mu}=\int d \vec{k} k_{\mu} \varphi^{(t)}(\vec{k}) \varphi^{(-)}(\vec{k}), k_{0}=\sqrt{\vec{k}^{2}+m^{2}} \tag{2.22}
\end{equation*}
$$

has all standard properties of the field energy-momentum operator. In particular:

$$
\begin{align*}
& {\left[\hat{P}_{\mu}, \hat{P}_{v}\right]=0}  \tag{2.23}\\
& {\left[\hat{P}_{\mu}, P\left(p, p_{4}\right)\right]=p_{\mu} \varphi\left(p, p_{4}\right)} \tag{2.24}
\end{align*}
$$

In this way Fe have all Which is needed to formulate condition $V$ in the new sohome. We can introduce the vacuun state $|0\rangle$ with the condition $\varphi^{(-)}(\vec{k})|0\rangle=0 \quad$, supposing that this state is unique. We can construct complete system of state vectors ${ }^{+}$)

$$
\begin{equation*}
\left.\left|\varphi^{(t)}\left(\overrightarrow{k_{1}}\right) \ldots \varphi^{(t)}\left(\overrightarrow{k_{n}}\right)\right| 0\right\rangle \tag{2.25}
\end{equation*}
$$

and in each of them the spectrum of the oparators $\hat{P}_{0}$ and $\hat{P}^{2}$ is positive. The only nev feature in oomparison with the usual theory is the ilmitation (2.6) on the mass of one-partiole states.

It is easy to see that the notion of normal product of field operator's and the corresponding Wick's theoren can be introduced in the new scheme Fithout any principal ohanges. The normal product and pairing of two operators are defined by the relations (see $[1]$ ):

$$
\begin{equation*}
\varphi\left(p_{1}, p_{4}\right) \varphi\left(p_{2}, p_{p_{4}}\right)= \tag{2.26}
\end{equation*}
$$

$$
=: \varphi\left(p_{1}, p_{14}\right) \varphi\left(p_{1}, p_{24}\right):+\varphi\left(p_{1}, p_{24}\right) \varphi\left(p_{2}, p_{4}\right)
$$

[^4]$\varphi\left(p_{1}, p_{44}\right) \varphi\left(p_{2}, p_{2}\right)=\delta\left(p_{12}-p_{2}\right) \theta\left(-p_{1}^{0}\right) \delta\left(2 p_{14}-2 m_{4}\right) \equiv$
\[

$$
\begin{equation*}
\equiv \delta\left(p_{1},-p_{2}\right) D^{(-)}\left(p_{1}\right) \tag{2.27}
\end{equation*}
$$

\]

Now in complete analogy with the "classical" decomposition (1.1), we can write the new $\quad S$ matrix in the form of series in terms of normal products of $\varphi\left(p, p_{4}\right)$, defined in De-sitter momentum space ( 2.3 ):

$$
\begin{align*}
& S= \\
&=\left.\sum_{n} \int d \Omega_{p_{1}} \ldots d \Omega_{p_{2}} S_{n}\left(p_{11} p_{24} ; \ldots p_{n}, p_{n 4}\right)\right): \varphi\left(p_{1}, p_{24}\right) \ldots \varphi\left(p_{2,}, p_{14}\right): \tag{2,28}
\end{align*}
$$

Decomposition (2.28), by assumption, remains valid also after extension off the mass shell (2.8a), i.e. also in that case, when the operator $\varphi\left(p, p_{4}\right)$ aoes not more satisfy equation (2.9) and the 4 -vector pp becomes arbitrary vector of De-Sitter space (2.3).

Let us introduce into consideration the funotional derivative of the $S$ matrix with respect to the $\varphi$-fields:

$$
\begin{equation*}
\frac{\delta^{n} S}{\delta \varphi\left(p_{1}, p_{14}\right) \delta \varphi\left(p_{2}, p_{2}\right) \ldots \delta \varphi\left(p_{n}, p_{n 4}\right)}, \tag{2.29}
\end{equation*}
$$

setting by definition that:

$$
\begin{equation*}
\frac{\delta \varphi\left(p, p_{4}\right)}{\delta \varphi\left(p^{\prime}, p_{4}^{\prime}\right)}=\delta\left(p, p^{\prime}\right) \tag{2.30}
\end{equation*}
$$

(see (I.17) ). Recalling now, that the requirement VI is satisfied, we obtain from (2.28) with the help of (2.30) expression of the c.f. in terms of vacuum expectation values of the radiation operators (see (1.6))

$$
S_{n}\left(p_{1}, p_{14} ; \cdots ; p_{n}, p_{n 4}\right)=
$$

$$
\begin{equation*}
=\frac{1}{n!}\langle 0| \frac{\delta^{n} S}{\delta \varphi\left(p_{1,} p_{1 n}\right) \ldots \delta \varphi\left(p_{n}, p_{n n}\right)} S^{+}|0\rangle \tag{2.31}
\end{equation*}
$$

As the appropriate analysis shows the formulation of the present theory is simplified if extended off the mass shell $S$-matrix obeys the supplementary condition:

$$
\begin{equation*}
\frac{\delta S}{\delta \varphi\left(p_{2} p_{4}\right)}=0, \text { if } p_{4}<0 \tag{2.32}
\end{equation*}
$$

This condition has dynamical character since it is imposed on the $S$ matrix. It is consistent with our definition of the mass-shell-eq. $(2,8 \mathrm{a})$ and of the oholce of the free equation in the form (2.9).

Later we shall suppose condition (2.32) satisfied assuming that the theory obtained does not become too poor ${ }^{+ \text {). Then }}$ the extended off the mass shell c.f. (2.31) have to satisfy the relation:

[^5]\[

$$
\begin{equation*}
S_{n}\left(p_{1}, p_{14} ; \ldots ; p_{n}, p_{n 4}\right)=0, \tag{2.33a}
\end{equation*}
$$

\]

If even one of the forth omponents $p_{i 4}$. is negative:

$$
\begin{equation*}
p_{i 4}<0 \quad(i=1,2, \ldots, n) \tag{2.33b}
\end{equation*}
$$

Let us introduce the current oparator (see (1.8))

$$
\begin{equation*}
j\left(p, p_{4}\right)=i \frac{\delta S}{\delta \varphi\left(-p, p_{4}\right)} S^{+} \tag{2,34}
\end{equation*}
$$

From the unitarity of the extended $\quad S$ matrix (requirement III) we have:

$$
\begin{equation*}
\frac{\delta S}{\delta \varphi\left(-p, p_{4}\right)} S^{\dagger}+S \frac{\delta S^{\dagger}}{\delta \varphi\left(-p, p_{4}\right)}=0 \tag{2.35}
\end{equation*}
$$

From here and on base of (2.19) it can be ooncluded that the current operator (2.34) satisfies neutrality condition analogous to (2.20):

$$
\begin{equation*}
j\left(p, p_{4}\right)^{+}=j\left(-p, p_{4}\right) \tag{2.36}
\end{equation*}
$$

The variational derivatives of the $S$-matrix in terms of $\quad P$-fields commute by definition and therefore the current operator should obey "solvability oondition" $[2,3,4]$ :

$$
\begin{equation*}
\frac{\delta j\left(p_{1}, p_{4}\right)}{\delta \varphi\left(-p_{2}, p_{2}\right)}-\frac{\delta j\left(p_{2}, p_{2}\right)}{\delta\left(\left(p_{1}, p_{44}\right)\right.}=i\left[j\left(p_{1}, p_{14}\right), j\left(p_{2}, p_{24}\right)\right] . \tag{37}
\end{equation*}
$$

Let us turn now to the problem of formulating the translation invariance condition of the theory (requirement II). Taking into aooount eq. (2.23), we have the right to conserve the former interpretation of the operator $\hat{P}_{\mu}$ as generator of the translation group (1.11). Then from (2.24) it follows that the free field operators $\varphi\left(p, p_{4}\right)$ transform under displacements (1.11) by the usual rule:


As in the "olassical" theory we postulate this transformation law as well for the extended operators (see (1.12)).

Because of requirement II in the now sobeme the translation invariance condition for extended $S$-matrix (1.13) have to be oonserved. From hero it follows fmmediately that the c.f.
$S_{n}$ in the decomposition (2.28) must be represented in the 10 In (1.15):

$$
S_{n}\left(p_{1}, p_{14} ; p_{2}, p_{14} ; \ldots ; p_{n}, p_{n 4}\right)=
$$

$$
\begin{equation*}
=\delta\left(p_{1}+p_{2}+\cdots+p_{n}\right) S_{n}^{\prime}\left(p_{1}, p_{1+1} ; \ldots ; p_{n}, p_{n v}\right) \tag{2,39}
\end{equation*}
$$

It is remaricable that in the new formalism, as in the "olassicaln theory, the quantities $S_{n}^{\prime}$ may be expressed in terms of the original o.f. In result new identities whioh are direct generalization of the "olassical" ones (1.21) in the oase of De-81tter spao appear t)

[^6]From the translation invariance of the $S$-matrix and rel. (2.38) it follows also that the supplementary condition (2.32) is translation invariant and the current operator transforms in a standard way (see (1.14)):


## 3. Identitios for the Extended $S^{\prime}$-Matrix Coefficient Functions.

The derivation of the above mentioned identities almost literally repeats the correspondent procedure in the "classical" theory (see Section 1, eqs. (1.16) - (1.21) ).

First of all let us pick out the $n$ 'th order term from the decomposition (2,28) (see 1.16):

$$
\begin{equation*}
\int d \Omega_{p_{1}} d \Omega_{p_{n}} S\left(p_{1}, p_{14} ; \cdots ; p_{n}, p_{n 4}\right): \varphi\left(p_{1}, p_{14}\right) \ldots \varphi\left(p_{n}, p_{n 4}\right): . \tag{3.1}
\end{equation*}
$$

Now consider the expression (see(1.I7.))

$$
\begin{aligned}
& \int d \Omega_{p_{1}} \cdots \Omega_{p_{n}} S_{n}\left(p_{1}, p_{14} ; \ldots ; p_{n}, p_{n 4}\right) . \\
& \left.: \varphi\left(p_{1} \leftrightarrow\right) U^{\left(p_{1} \cdots p_{n}\right)},\left(p_{1} \leftrightarrow U^{\left(p_{1} \cdots p_{n}\right)}\right)_{4}\right) \cdots \\
& \left.\left.\ldots\left(p_{n} \in\right) U^{\left(p_{1} \cdots p_{n}\right)},\left(p_{1} \in\right) U^{\left(p_{1} \cdots p_{n}\right)}\right)_{4}\right):
\end{aligned}
$$

where $U\left(p_{1} \cdots p_{n}\right)$ is De-Sitter space vector, given by
rel. (I.2la).

Because of (2.39) the integrand in (3.2) is defined on the surface:

$$
\begin{equation*}
p_{1}+p_{2}+\cdots+p_{n}=0 \tag{3.3}
\end{equation*}
$$

Therefore we may put the $U$-veotor in (3.2) equal to zero ${ }^{+}$). That proves the equivalence of the expressions (3.1) and (3.2).

Further, proceeding again in oomplete analogy with the "classical" oase, (see (1.18) ) we substitute in (3.2)

$$
\begin{gathered}
p_{i}=q_{i}(+) k \quad(i=1,2, \ldots n) \\
k=U\left(p_{1} \cdots p_{n}\right)
\end{gathered} U^{\left(p_{1} \cdots p_{n}\right)} \text { is given by eq. (I.21a) and the vectors } q_{i} .
$$

$$
\begin{align*}
& \text { +In five dinensional form: } \\
& \qquad U_{L}=\left(O_{\lambda}, 1\right) \tag{3.4}
\end{align*}
$$

## Therefore:

$$
S_{n}\left(p_{1}, p_{24} ; \ldots p_{n}, p_{n 4}\right)=
$$

$$
\begin{equation*}
=\delta\left(p_{1}+\cdots+p_{n}\right)\left(\sqrt{\left(p_{1}+\cdots+p_{n}\right)_{M}^{2}}\right)^{4} \widetilde{S}_{n}\left(p_{1}, p_{2 v i} \cdots p_{n, p} p_{n v}\right) \tag{3.7b}
\end{equation*}
$$

It was our goal to prove the identity (3.7a)-
$(3.7 \mathrm{~b})^{+}$).
It should be olearly understood that validity of relations of the type (3.7) for the 0.f. of the decomposition (2.28) garantees the translation invariance of the scattering matrix when it is extended off the mass shell in the spirit of the constant curvature $p$-space geometry.

Between identities (1.21) and (3.7) one may display a far going analogy if Eroup theoretical considerations are involved. For instance under displacements (I.9) in ourred $p$-space the 4 -dimensional vector $U\left(p_{1} \ldots p_{x}\right)$, which is argument of the $\delta$-funotion in (3.7), transforms according to the Iaw ( 1.24 ) (soe ( 1.26 )), ani simultaneousiy the function $\widetilde{S}_{n}\left(p_{1}, p_{4} ; \ldots ; p_{n}, p_{n}\right)$ remains invariant (see (1.25)):
FIt is ovident that in the "olassical" domain the identity (3.7) transforms into (1.21). In partioular (see I. 20b),

$$
\begin{equation*}
\sqrt{\left(p_{1}+\cdots+p_{n}\right)_{M}^{2}} \rightarrow \sqrt{n^{2}}=n \tag{3.10}
\end{equation*}
$$

$$
\begin{align*}
& \tilde{S}_{n}\left(p_{1}(t) b,\left(p_{4}(t) b\right)_{4} ; \ldots ; p_{n}(t) b ;\left(p_{n}(t) b\right)_{4}\right)= \\
& =\tilde{S}_{n}\left(p_{1} ; p_{14} ; \ldots ; p_{n}, p_{n 4}\right) . \tag{3.11}
\end{align*}
$$

We shall prove relation (3.11). Let us first note, that from (I.11), for arbitrary 4 -veotors $p, k$ and $b$ the equality takes place:

$$
\begin{equation*}
\left(p(t b)_{(t)} k=\Lambda_{b, k}(p(t)(k(t) b)),\right. \tag{3.12}
\end{equation*}
$$

Where $\Lambda_{b, k}$ is a 工orentz transformation, Whioh parameters
depend on $\&$ and $k$
Then taking into account the relativistic invariance of the extended function $S_{n} \quad$ (requirement $I$ ) we can write:

$$
\begin{equation*}
S_{n}\left(p_{1}, p_{14} ; \ldots ; p_{n, p_{n 4}}\right)=S_{n}\left(\Lambda_{\left.p_{1}, p_{24} ; \ldots ; \Lambda_{n}, p_{n 4}\right)}\right) \tag{3.13}
\end{equation*}
$$

(here $\Lambda \quad 1 \mathrm{~s}$ an arbitrary Lorentz transformation).
Now, using (3.12) and (3.13), the left-hand side of eq.
(3.11) can be identically transformed:
$\tilde{S}_{n}\left(p_{i}(+) b,(p+1+b)_{4} ; \ldots ; p_{n}(+) b,\left(p_{n}(+) b\right)_{4}\right)=$




The substitution:

$$
\begin{equation*}
k(\theta) b \rightarrow k \tag{3.15}
\end{equation*}
$$

In the last integral, owing to (I.10) and (3.15) leads us to an expression, coinciding with the right hand side of (3.11).

From the relativistic invariance of the functions $\widetilde{S}_{n}$ and rel. (3.11) which we just proved, follows that quantities $\widetilde{S}_{n}$ are invariant under arbitrary transformations (I.6) of De-sitter group $S O(2,3)$ :

$$
\begin{equation*}
\tilde{S}_{n}\left(p_{1,}, p_{14} ; \cdots ; p_{n}, p_{n v}\right)=\widetilde{S}_{n}\left(\Lambda p_{1},\left(\Lambda p_{1}\right)_{4} ; \ldots ;\left(\Lambda p_{n}\right),\left(\Lambda p_{n}\right)_{y}\right) \tag{3.16}
\end{equation*}
$$

Therefore these functions depend on $\operatorname{SO}(2,3)$ Invariant scalar products of the type:

$$
\begin{align*}
& p_{i 0} p_{j 0}-\vec{p}_{i} \vec{p}_{j}+p_{i 4} p_{j 4} \equiv\left(p_{i}\right)_{L}\left(p_{j}\right)_{L} \quad(i, j=1,2, \ldots x): \\
& \tilde{S}_{n}=\tilde{S}_{n}\left(\ldots\left(p_{i}\right)_{L}\left(p_{j}\right)_{L} \cdots\right) \tag{3.17}
\end{align*}
$$

With the help of (I.9) it is easy to show that (c.f.I. 20b):

$$
\begin{equation*}
\left(p_{i}\right)_{L}\left(p_{j}\right)_{L}=\sqrt{1-\left(p_{i} \leftrightarrow p_{j}\right)^{2}} \tag{3.18}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\tilde{S}_{n}=\widetilde{S}_{n}\left(\cdots\left(p_{i}(-) p_{j}\right)^{2} \ldots\right) \tag{3.19}
\end{equation*}
$$

Substituting (3.19) and (I.20b) in the identity (3.7b), we have:

$$
\begin{aligned}
& S_{n}\left(p_{1}, p_{14} ; \ldots ; p_{n 1} p_{x y}\right)= \\
= & \delta\left(p_{1}+\cdots+p_{n}\right)\left[n+\sum_{\substack{k=1 \\
k \neq 1}}^{n} \sqrt{1-\left(p_{k}\left(-1 p_{l}\right)^{2}\right.}\right]^{2} \widetilde{S}_{n}\left(\cdots\left(p_{i}-\rightarrow p_{j}\right)^{2} \ldots\right)
\end{aligned}
$$

Let us recall (see section I), that the "classical" functions $\tilde{S}_{n}$ are invariant with respect to Poincare group (1.32) of Minkowski $p$-space and this fact is refleoted in eq. (1.33). comparing (1.33) with (3.19) and taking into account (3.20), we can interprets the extension accepted in the new scheme, as a transition ${ }^{+}$) to "curved" relative momenta with the condition that the conservation law of the total 4 -momentum has usual "classical" form [5,6] - As we shall be oonvinoed later in section 4 in such an approach

耳) If the "curved" relative momenta are defined in accordance with eq.(I.25a) - (I.25b), putting

$$
q_{i j}=\frac{\mu_{j} p_{i}-\mu_{i} p_{j}}{\mu_{i}+\mu_{j}}
$$

$$
\left(\mu_{i}=\frac{1}{2}\left(p_{i 4}+\frac{1}{2} \sqrt{\left(p_{i}+p_{j}\right)_{L}^{2}}\right), p_{j}=\frac{1}{2}\left(p_{j}+\frac{1}{2} \sqrt{\left(p_{i}+p_{j}\right)_{L}^{2}}\right)\right.
$$

then it is nat difficult to show that:

$$
\left(p_{c} H p_{j}\right)^{2}=\left(q_{i j}(t) q_{i j}\right)^{2}
$$

In "olassioal" limit this relation, evidently, goes into equation $\left(p_{i}-p_{j}\right)^{2}=4 q_{i j}^{2}$
also the relative coordinates $\mathcal{F}$ (see the footnote on p 45 ) which are canonically oonjugated to the relative momenta change in essential manner. Let us now continue discussing the properties of identity (3.7a).

First of all we notice that this relation is "irreducible" In the same sense as it $.1 s$ Mirreducible" identity (1.21) (see Section 1. p.7.). That is if the integrand $S_{n}\left(p_{p+1} k_{1}\left(p, p_{1} k\right)_{y} \cdots i p_{i+1} k,\left(p_{n}+k\right)_{y}\right)$ in (3.7a) is itself written in a form of an integral multiplied by a $\delta$-funotion using (3.7a) then we again obtain (3.7a). Indeed, because of ( 3.7 a ), ( 1.24 ) and (3.11) we have:

$$
\begin{align*}
& S_{n}\left(p_{1} k k,\left(p_{1}+k\right)_{4} ; \ldots ;\left(p_{n}+k\right)_{,}\left(p_{n}+k\right)_{4}\right)= \\
= & \delta\left(U^{\left(p_{1} \cdots p_{n}\right)}(t) k, 0\right) \widetilde{S}_{n}\left(p_{1}, p_{1 y} ; \cdots ; p_{n}, p_{n 4}\right) . \tag{3.21}
\end{align*}
$$

## Therefore,

$\left.\int d \Omega_{k} S_{n}\left(p_{1} *\right) k_{1}\left(p_{1} k\right)_{4} ; \cdots ; p_{n}+k_{9}\left(p_{n}+k\right)_{4}\right)=$
$=\tilde{S}_{n} \int d \Omega_{k} \delta\left(U\left(p_{1} \cdots p_{n}\right)(+) k, 0\right)$.

But from (I.18) and (I.17)

$$
\begin{equation*}
\int \delta\left(U^{\left(p_{1} \cdots p_{n}\right)}(+) k, 0\right) d \Omega_{k}=\int \delta\left(U^{(n \cdots p)},-k\right) d \Omega_{k}=1 \tag{3.23}
\end{equation*}
$$

Which proves the "irreduoibility" of (3.7a).

Let us now oonsider the oase, when the o.f.
$S_{n}\left(p_{1}, p_{14} ; \cdots ; p_{n}, p_{n v}\right)$ contains disconneoted components of the type (c.f. (1.27)):

$$
\begin{equation*}
S_{m}\left(p_{1}, p_{14} ; \ldots ; p_{m}, p_{m 4}\right) S_{n-m}\left(p_{m+1}, p_{m+14} ; \ldots ; p_{n}, p_{n 4}\right) \tag{3.24}
\end{equation*}
$$

and each of the c.f. $S_{m}$ and $S_{n-m}$ satisfies identits of the type (3.7a):

$$
\begin{align*}
& S_{m}\left(p_{1}, p_{14} ; \ldots ; p_{m}, p_{m 4}\right)= \\
& =\delta\left(U\left(p_{1}, \ldots p_{m}\right), 0\right) \tilde{S}_{m}\left(p_{1}, p_{14} ; \ldots ; p_{m}, p_{m y}\right) \tag{3.25}
\end{align*}
$$

$S_{n-m}\left(p_{m+1}, p_{m+4} ; \ldots ; p_{n}, p_{n n}\right)=$

$$
=\delta\left(U\left(p_{m+1}, \cdots, p_{n}\right), 0\right) \tilde{S}_{n-m}\left(p_{m+1}, p_{m+1} ; \ldots ; p_{n}, p_{n r}\right)
$$

It happens, that it is sufficient the relations (3.25) to hold in order the disconnected oomponent (3.24) also to obey the identity (3.7a):
$S_{n}\left(p_{1}, p_{14} ;-; p_{m}, p_{m 4}\right) S_{n-m}\left(p_{m+1}, p_{m+14} ; \ldots ; p_{n} p_{n y}\right)=$ $=\delta\left(V^{\left(p_{1} \cdots p_{n}\right)}, 0\right) S_{m}\left(p_{1} p_{1 y} ; \cdots p_{m} p_{m y}\right) S_{n-m}\left(p_{m+1,} p_{m+14 y-\cdots ;} p_{n} p_{n y}\right)$.

It is clear that eq. (3.26) is a direct generalization to the oase of De-sitter $p$-space of the "classical" formula (1.24). The derivation of (3.26) goes over the same pattern
as the correspondent reasoning in Section 1 ,
First from (3.8) and (I.17) it is.reasy to obtain that (see (1.30))

$$
\begin{align*}
& \delta\left(U^{\left(p_{1} \cdots p_{m}\right)}, 0\right) \delta\left(U^{\left(p_{m+1}, \ldots, p_{n}\right)}, 0\right)= \\
= & \delta\left(U^{\left(p_{1} \cdots p_{n}\right)}, 0\right) \delta\left(U^{\left(p_{1} \cdots p_{m}\right)}, U^{\left(p_{m+1}, \cdots, p_{n}\right)}\right) \tag{3.27}
\end{align*}
$$

Further, using (I.18) we write (3.27) In a form analogous to (1.31):

$$
\begin{aligned}
& \delta\left(U^{\left(p_{1} \cdots p_{m}\right)}, 0\right) \delta\left(U^{\left(p_{m+1}, \ldots, p_{n}\right)}, 0\right)= \\
= & \left.\delta\left(U^{\left(p_{1} \cdots p_{n}\right)}, 0\right) \int d \Omega_{k} \delta\left(U^{\left(p_{1} \cdots p_{m}\right)}++\right) k, 0\right) \delta\left(U^{\left(p_{m+1} \cdots p_{n}\right)}, 0\right) .
\end{aligned}
$$

Finally, multiplying both sides of (3.28) by
$\widetilde{S}_{m}\left(p_{u} p_{1 y} ; \cdots ; p_{m} p_{m y}\right) \tilde{S}_{n-m}\left(p_{m+1,} p_{m+1} ; \ldots ; p_{n}, p_{n y}\right)$
and taking into account (3.21) and (3.25) we obtain eq. (3.26).

## 4. Configuration Representation. Locality and Causality

Condition.

Let us make a Fourier transformation of the f1eld $\varphi(p, p)$ defined in De-sitter spaoe (2.3), using the basis function (I.33)-(I.34). If we introduce $\langle\zeta \mid p\rangle$ as universal notation for the se functions, where $\xi$ Is one of the sets

$$
(L, n, l, m) \quad,(\Lambda, n, l, m) \quad,(L, N) \quad \text { and }(\Lambda, N)
$$

we shall have:

$$
\begin{equation*}
\frac{1}{(2 \pi)^{3 / 2}} \int\langle\xi \mid, p\rangle d \Omega_{p} \varphi\left(p, p_{4}\right) \equiv \varphi(\xi) \tag{4.1}
\end{equation*}
$$

If $\varphi\left(p, p_{4}\right)$ satisfies the free equation (2.9) then in the right-hand side of (4.1) we shall write $\varphi^{\text {out }}(\xi)$. Therefore, taking into account (2.10) and (I.5),
$\varphi^{\text {out }}(\xi)=\frac{1}{(2 \pi)^{3 / 2}}\left\langle\langle\xi \mid p\rangle \delta\left(p_{2}^{2}-1\right) \delta\left(p_{4}-m_{4}\right) \tilde{\varphi}\left(p, m_{4}\right) d^{5} p\right.$. (4.2)
In the oase when as basis funotions $\langle\overline{3} \mid p\rangle$ the "plane waves" (I.34) are ohosen the operator $\varphi^{\text {out }}(\xi)$ oring to (I.35)-(I.36) satisfies differential-differenoe equation of "KIein-Gordon" form:

$$
2\left(K_{L}-m_{4}\right) \varphi\left(\xi_{L}\right)=0 \quad(L \text {-series, } \xi=(L, N))
$$

$$
\begin{equation*}
2\left(K_{L}-m_{4}\right) \varphi\left(\xi_{\Lambda}\right)=0(\Lambda \text {-series, } \xi=(\Lambda, N)) \tag{4.3}
\end{equation*}
$$

Now applying to the free operator $\varphi\left(p, p_{4}\right)$ simultaneously two operations - Fourier transform (4.1) with "plane-
waves" (I.34) and translation transformation with parameter
$x \quad$ we have:
$\frac{1}{(2 \pi)^{\frac{1}{2}}} \int\langle\xi \mid p\rangle e^{i \hat{P}_{x}} \varphi\left(p, p_{4}\right) e^{-i \hat{P}_{x}} d \Omega_{p}=$
$=\frac{1}{(2 \pi)^{3 / 2}} \int\langle\xi \mid p\rangle e^{i p x} \varphi(p, p \psi) d \Omega_{p}=\varphi_{x}^{\text {out }}(\xi)$
Here the operator $\varphi_{x}^{\text {out }}(\xi)$ depends essentially on two variables $x$ and $\xi$ as far as the functions $\langle\xi \mid p\rangle$ and $e^{\dot{d} p x}$ are different mathematical objects. This phenomenon has no analogue in the "classical" theory. The point is that in the usual formalism both moment um space and the space of the parameters of the translation group (1.11) are pseudoeuclidean. For this reason the plane waves in $p-$ spaoe, the quantities $\langle\xi \mid p\rangle$ and the plane waves $e^{i p a}$ Which realize representation of the group (1.11) have the same form:

$$
\begin{equation*}
\langle\xi \mid p\rangle=e^{i p \xi} \tag{4.5}
\end{equation*}
$$

As a result, instead of eq. (4.4) we get ${ }^{+}$):

$$
\begin{equation*}
\varphi_{x}^{\text {out }}(\xi)=\frac{1}{(3 \pi)^{2 / 2}} \int e^{i \xi p} e^{i p x} \varphi(p) d^{y} p=\varphi^{\text {out }}(\xi+x) \tag{4.6}
\end{equation*}
$$

It is useful to keep in mind that the plane wave in "olassical" $p$-space, can be considered either like simultaneous elgenfunotion of the generators $\xi_{\mu}=i \frac{\partial}{\partial p_{\mu}}$ (4.7)

[^7]of the transformation (1.23), or as solution of the eigenvalue problem for the operat or of the " 4 -interval squared":
\[

$$
\begin{equation*}
\xi^{2}=-\left(\frac{\partial}{\partial p}\right)^{2} \tag{4.8}
\end{equation*}
$$

\]

which plays the role of Casimir's operator of the motion group of the flat $p$-space. In the latter case

$$
\begin{equation*}
-\left(\frac{\partial}{\partial p}\right)^{2}\langle\xi \mid p\rangle=\lambda\langle\xi \mid p\rangle \tag{4.9}
\end{equation*}
$$

Where the necessary type of the spectrum:

$$
\lambda= \begin{cases}\xi^{2}>0 & \text {-timelike region } \\ \xi^{2}=0 & \text {-light cone } \\ \xi^{2}<0 & \text {-spacelike region }\end{cases}
$$

is obtained if unitarity of the considered representation of the Poincaré group (1.32) is required.

Let us also recall, that the representations of the group (1.32) which correspond to intervals $\xi^{2} \geqslant 0$, are labelled by one more invariant eigenvalue of the time operator

$$
\begin{align*}
\xi_{0}=-i \frac{\partial}{\partial p_{0}} & : \\
& \frac{\xi_{0}}{\left|\xi_{0}\right|}=\text { invar. } \tag{4.11}
\end{align*}
$$

When one goes to De-sitter $p$-space the "degeneration" of the filane waves, fixed in rel. (4.5), is removed. As a result,
there appear two Fourier transformations: one of them like before is conneoted with decomposition in terms of matrix elements of the translation group. (1.11) - usual plane waves, and the other uses as basic functions the quantities $\langle\boldsymbol{\xi} \mid p\rangle$ (see I.34) closely connected with the matrix elements of the unitary irreducible representations of De-sitter group $\mathrm{SO}(2,3)$. If we apply a translation with parameter $a$, to the operator (4.4), which is obtained as a result of simultaneous action of the two mentioned Pourier transformations, then the obtained result oan be rëpresented as "displacement" to a quantity $a_{0}$ of the "index" $X$, keeping 3 constant:

$$
e^{i \hat{P} a} \varphi_{x}^{\text {out }}(\xi) e^{-i \hat{P} a}=\varphi_{x+a}^{\text {out }}(\xi)
$$

The invariance of $\xi$ under displacement transformation in rel. (4.12) gives a hint that this variable can be used in the new apparatus as analogue of the "classical" relative coordinate $\xi=x_{1}-x_{2}$.

Let us consider like an example commutation relations of the type ${ }^{+}$:

$$
\begin{align*}
& \text { a) }\left[\varphi_{x}^{\text {out }}(\xi), \varphi_{x}^{\text {out }}(0)\right] \\
& \text { b) }\left[\varphi_{x}^{\text {out }}(\xi), \varphi_{x}^{\text {out }}(-\xi)\right], \tag{4.14}
\end{align*}
$$

[^8]Where by definition ${ }^{+}$.

$$
\begin{align*}
& \text { by definition+) } \varphi_{x}^{\text {out }}(0)=e^{i P_{x}} \varphi^{\text {out }}(0) e^{-i \dot{P}_{x}} \\
& \varphi^{\text {out }}(0)=\frac{1}{(2 \pi)^{3 / 2}} \int \varphi\left(p, p_{4}\right) d \Omega_{P} . \tag{4.15}
\end{align*}
$$

Simple calculations using (4.4), (4.15) and (2.18a) demonstrate that both commutators do not depend on $x$, i.e. because of $(4,12)$ are translation invariant. They can be expressed by the following integrals ${ }^{++}$):

$$
\begin{aligned}
& {\left[\varphi_{x}^{\text {out }}(\xi), \varphi_{x}^{\text {out }}(0)\right] \equiv} \\
& \equiv \\
& \frac{1}{i} D(\xi, 0)=\frac{-1}{(2 \pi)^{3}} \int\langle\xi \mid p\rangle \varepsilon\left(p_{0}\right) \delta\left(2 p_{y}-2 m_{y}\right) d \Omega_{p} \\
& {\left[\varphi_{x}^{\text {out }}(\xi), \varphi_{x}^{\text {out }}(-\xi)\right] \equiv} \\
& \equiv \\
& \left.\frac{1}{i} \lambda(\xi, \xi)=\frac{-1}{(2 \pi)^{3}}\right)(\langle\xi \mid p\rangle)^{\varepsilon} \varepsilon\left(p_{0}\right) \delta\left(2 p_{4}-2 m_{y}\right) d \Omega_{p} \\
& \quad \text { comparing }(4.16) \text { with the "classical" oommutator }
\end{aligned}
$$ relation

$$
\begin{equation*}
\left[\varphi^{\text {out }}\left(x_{1}\right), \varphi^{\text {out }}\left(x_{2}\right)\right]=\frac{1}{i} D\left(x_{1}-x_{2}\right) \tag{4.18a}
\end{equation*}
$$

[^9]It can be concluded, that quantity $\xi$ in (4.16) plays the same role as the relative coordinate $x_{1}-x_{2}$ in eq.(4.18a). Actually, substituting in (4.18a), $\quad x_{2}=x \quad, \quad x_{1}-x_{2}=3$ and taking into acoount (4.6) we get:

$$
\begin{equation*}
\left[\varphi_{x}^{\text {out }}(\xi), \varphi_{x}^{\alpha u t}(0)\right]=\frac{1}{i} \otimes(\xi) \tag{4.18b}
\end{equation*}
$$

Obviously the "classical" analogue of the relation (4.17) is the equality:

$$
\begin{equation*}
\left[\varphi_{x}^{\text {out }}(\xi), \varphi_{x}^{\text {out }}(-\xi)\right]=\left[\varphi_{\left.(x+\xi), \varphi^{\text {out }}(x-\xi)\right]=\frac{1}{i} D(2 \xi) . . . ~ . ~ . ~}^{\text {out }}(2)\right. \tag{4.19}
\end{equation*}
$$

Therefore in (4.17) we hava to interprate $\mathbf{3}$ as "half" of the relative coordinate.
the
What istnature of the new ooordinate $5 ?$ The appearanoe of $\xi$ in our formalism is direotly conneoted with the solution of the eigenvalue problem for the Casimir's operator of the group $S O(2,3)\left(\right.$ see (I.30)-(I.34)) ${ }^{+}$). If one compares ( $I .30$ ) and ( 4.8 ) it is easy to notice that this operator is a direct geometrical generalization of the operator of the 4 -interval squared $\left(-\frac{\partial}{\partial p}\right)^{2}$. Moreover, as the quantity $\left(-\frac{\partial}{\partial p}\right)^{2} \quad$ is Casimir's operator of themotion group of Minkowaci's $p-s p a 0 e$, then its substitution with the Casimir's operator (I.30) in the transition to De-Sitter

[^10]$p-s p a c e$ is.a natural step from group-theoretioal point of view too. In the "classioal" limit evidently:
$-\frac{1}{\sqrt{g}} \frac{\partial}{\partial p_{\mu}}\left(g_{\mu \nu}^{-1} \sqrt{|g|} \frac{\partial}{\partial p_{4}}\right) \rightarrow-\left(\frac{\partial}{\partial p}\right)^{2}$.
Comparing spectra (I.32) and (4.10) we see that $L$-series (I.32a) goes into the timelike region $3^{2}>0$, and $\Lambda$ series ( $I .32 b$ ) into the spaoelike region $\mathcal{3}^{2}<0$ of the pseudoeuclidean $\xi$-spaoe (see also (I.37)).

We would like to emphasize that for "distances" $\sim 1$. (in normal units $\sim l_{0}$ ) the structure of the new $\bar{\xi}$-space is essentially different from the geometry of the $\mathcal{F}$-space in the usual theory. In particular, as it is seen from (I.32), the boundary between the "timelike" $L$-series and the "spaceliken $\Lambda$-series ${ }^{+}$) can not be more described by equation of type ( 1.36 ). So the light oone is "smeared".

A remarkable property of the representetions, corresponding L-series, is the existence in these representations of a

F/ We have the right to call the discrete $L$-series "timelike" not only for reasons of "classioal" correspondenoe, but also beoause the speotrum of the time coordinate $\xi$ o in our case, is always disorete (see (I.29b)). In this context the word "spaoeliken applied to the oontinuous $\boldsymbol{\Lambda}$-series can be connected with the continuity of an arbitrary component of the coordinate operator $\xi_{\lambda}$ (I.26).
supplementary $S O(2,3)$-invariant - the sign of the discrete eigenvalue of the time operator $\xi_{0}$ (see (I.28) and (I.29)) [16]:

$$
\begin{equation*}
\frac{n}{|n|}=\quad \text { invar. } \tag{4.20a}
\end{equation*}
$$

Relation (4.20a) is a direct generalization of eq.(4.11) and evidently have to be taken into account when the causality principle is formulated in the new scheme.

A direct calculation using eqs.(I.33a) and (I.34a) demonstratens that in $L$-series

$$
\frac{N_{0}}{\left|N_{0}\right|}=\frac{n}{|n|}
$$

Therefore, eq.(4.20a) is equivalent to the following:

$$
\begin{equation*}
\frac{N_{0}}{\left|W_{0}\right|}=\text { invar. } \tag{4.20b}
\end{equation*}
$$

Let us prove that the commutation functions $\mathscr{D}(3,0)$ and $\mathscr{D}(\xi,-\xi)$, defined by (4.16)-(4.17), vanish in the "spacelIke" region $\xi=\xi_{\wedge}$

Let us first calculate $\mathscr{D}\left(\xi_{\Lambda}, O\right)$. Because of (1.34b) and (1.5):

$$
\begin{align*}
& D\left(\xi_{n}, 0\right)= \\
&= \frac{1}{(2 \pi)^{i}}\left(\varepsilon\left(p_{0}\right) \delta\left(2 p_{4}-2 m_{4}\right) 2 \delta\left(p_{p^{2}}-1\right)\left(p_{4}+p-N\right)^{-3 / 2}+i \Lambda\right.  \tag{4.21}\\
& d^{5} p
\end{align*}
$$

where $N^{2}=N_{0}^{2}-\vec{N}^{2}=1$. . Taking into account the relativistic invariance of (4.21) and the fact that $\varepsilon\left(p_{0}\right)$ is odd function of $p_{0}$ we get the desired result:

$$
\begin{align*}
& D\left(\xi_{A}, 0\right)= \\
= & \frac{1}{(2 \pi)^{3} i} \int \varepsilon\left(p_{0}\right) \delta\left(2 p_{4}-2 m_{4}\right) 2 \delta\left(p_{L}^{2}-1\right) d p_{0} d \vec{p} d p_{4}\left(p_{4}-p_{3}\right)^{-3 / 2+i A}=0 . \tag{4.22}
\end{align*}
$$

Similarly it is proved that:

$$
\begin{equation*}
D\left(\xi_{n,}-\xi_{\Lambda}\right)=0 . \tag{4.23}
\end{equation*}
$$

Let us now demonstrate that there is another way to obtain the commutati on function $D(\xi, 0)$, defined by (4.16). Namely one can introduce the relative coordinate $\xi$ as a variable canonically conjugated to the "curved" relative momenta:

$$
\begin{gathered}
q=p_{1} \Theta U^{\left(p_{1} p_{2}\right)}=\frac{\mu_{2} p_{1}-\left(\mu_{1} p_{2}\right.}{\mu_{1}+\mu_{2}} \\
{\left[\mu_{1}=\frac{1}{2}\left(p_{14}+\frac{1}{2} \sqrt{\left(p_{1}+p_{2}\right)_{L}^{2}}\right), \mu_{2}=\frac{1}{2}\left(p_{24}+\frac{1}{2} \sqrt{\left(p_{1}+p_{2}\right)_{L}^{2}}\right)\right]}
\end{gathered}
$$

(see (I.25a) - (I.25b)), where $p_{1}$ and $p_{2}$ are the arguments of the $\varphi$-fields in the commutator (2.18). Let us consider. In connection with this the integral:

$$
\begin{align*}
& \frac{1}{(2 \pi)^{3}} \int e^{i\left(p_{1}+p_{2}\right) x}\langle\xi \mid q\rangle d \Omega_{p_{1}} d \Omega_{p_{2}}\left[\varphi\left(p_{11} p_{14}\right), \varphi\left(p_{2}, p_{24}\right)\right] .  \tag{4.25}\\
& \text { It is clear that in classical" 11m1t when }\langle\xi \mid q\rangle \rightarrow e^{i \xi \frac{p_{r} p_{2}}{2}}
\end{align*}
$$

this expression goes into the commatation relation:

$$
\begin{equation*}
\left[\varphi\left(x+\frac{3}{2}\right), \varphi\left(x-\frac{3}{2}\right)\right]=\frac{1}{i} \bar{D}(\xi) \tag{4.26}
\end{equation*}
$$

From the other hand, if we substitute in (4.25) the commutator (2.18) and integrate with the help of the $\delta$ function over $p_{2}$, and then taking also into aocount (4.24) and $(4.16)$ we obtain:

$$
\frac{1}{(2 \pi)} \int e^{i\left(p_{1}+p_{2}\right) x}\left\langle\zeta_{3} \mid q\right\rangle d S_{1} d S_{2}\left[\varphi\left(p_{1}, p_{1}\right) \varphi \varphi\left(p_{2}, p_{2}\right)\right]=
$$

$=-\frac{1}{(2 \pi)^{3}} \int\left\langle\xi \mid p_{1}\right\rangle d \Omega_{p_{1}} \varepsilon\left(p_{1}^{0}\right) \delta\left(2 p_{14}-2 m_{4}\right)=1 \Sigma(\xi, 0)$.
Thus the same commutation rel ation (2.18) for the free field operators in $p$-representation originates different in form but equivalent in their content ommutation relations in configuration space: $(4.16),(4.17)$ and (4.27).

All these commutators possess a specifio locality property - they vanish for $\xi$ from the "spaoelike" $\wedge$ series:

$$
\begin{align*}
& {\left[\varphi_{x}^{\text {att }}(\xi), \varphi_{x}^{\text {out }}(0)\right]=0,}  \tag{4.28}\\
& {\left[\varphi_{x}^{\text {nt }}(\xi), \varphi_{x}^{\text {unt }}(-\xi)\right]=0,} \tag{4.29}
\end{align*}
$$

$\frac{1}{\left(2_{0}^{\pi}\right)^{\top}} \int e^{i\left(p_{1}+\beta_{2}\right) x}\left\langle\xi \left\lvert\, \frac{\mu_{1} p_{1}-\mu_{1} p_{2}}{\beta_{1}+\beta_{2}}\right.\right\rangle d \Omega_{\left.p_{1} d \Omega_{p_{2}}\left[\varphi\left(p_{1} p_{1} p_{1}\right), \varphi\left(p_{1}, p_{2}\right)\right]\right]=(4.30)}=0$,
if $\boldsymbol{\xi}=\xi_{\wedge}$ and $X$ 1s arbitrary.

Let us recall that in the "classical" theory, both for the free operators and for operators, describing interacting systems, in particular for the current operator (1.9), the locality condition has the same form and is reduced to vanishing of the correspondent commutator out of the light cone (see for instance (1.36)). It is tempting to suppose that also in the now scheme one ${ }^{+}$) of the equalities (4.28)-(4.30) can be taken as a pattern when the locality condition on the ourrent operator (2.34) is formulated. If we prefer relation $(4.30)^{++}$, then the locality condition on the current operator in our formalism is written in the form:

$$
\begin{equation*}
\left.\int e^{i\left(p_{1}+p_{2}\right) x}<\xi \left\lvert\, \frac{\mu_{2} p_{1}-\mu_{1} p_{2}}{\mu_{1}+\mu_{2}}\right.\right) d \Omega_{p_{1}} d \Omega_{p_{2}}\left[j\left(p_{1}, p_{1 v}\right), j\left(p_{2}, p_{2 v}\right)\right]=0, \tag{4.31}
\end{equation*}
$$

If $\quad \xi=\xi_{n}$ and $x$ is arbitrary.

+ There is no any guarantee that the quivalence of the relations (4.28)-(4.30), which holds in the theory of the free $\varphi$-fields, is conserved after transition to more general operators.
++ hhe reasons for such a choice are mainly technical: there is in (4.30) a complete separation of the variables to "relative" and "absolute", both in configuration and momentum space, which is very convenient for calculations, taking into acoount the translation invariance of the theory.

Relation (4.31) is translation invariant since only the arbitrary parameter $x$ varies in it under transformation (2.40).

In "classical" limit we obtain from (4.31), in complete analogy with (4.26), the standard locality oondition for the current operator ( 1.10 ), equivalent to (1.36):

$$
\begin{equation*}
\left[j\left(x+\frac{\xi}{2}\right), j\left(x-\frac{3}{2}\right)\right]=0 \tag{4.32}
\end{equation*}
$$

if $\xi^{2}<0$ and $x$ is arbitrary.
As it is well known relation (4.32) in the usual theory is a corollary of the Bogolubov's causallty oondition (1.34) and the "solvability condition" [2,3,4]. As far as in this scheme we already postulated the localits condition in the form (4.31) and the "solvability condition" has the form (2.37) then naturally the question arises: how the new causality condition has to look like in order that from it the locality oondition (4.31) to follow, when eq. (2.37) is taken into aocount? Recalling that in the new $\overline{3}$-spaoe, for ntimeliken values $\xi_{L}=(L, N)$, the sign of the oomponent
$N_{0}$ (which coinoides with the sign of the disorete time) is relativistic invariant (see (4.20)) we oan put in oomplete analogy with (1.34) ${ }^{+}$):

FIt is easy to see that in "classical" limit eq. (4.33) goes in the causality oondition (1.34), written in terms of "relative" and "absolute" ooordinates:

$$
\frac{\delta j\left(x+\frac{\xi}{2}\right)}{\delta \varphi\left(x-\frac{3}{2}\right)}=0
$$

$$
\begin{aligned}
& \text { if } \xi \geqslant 0, \quad x \text { arbitrary } \\
& 50\left(x=\frac{x_{1}+x_{2}}{2}, \xi=x_{1}-x_{2}\right)
\end{aligned}
$$

$\int e^{i\left(p_{1}+p_{2}\right) x}\left\langle\xi \left\lvert\, \frac{\mu_{2} p_{1}-\mu_{1} p_{2}}{\mu_{1}+\mu_{2}}\right.\right\rangle \frac{\delta j\left(p_{1}, p_{1 y}\right)}{\delta \varphi\left(-p_{2}, p_{2 y}\right)} d \Omega_{p_{1}} d \Omega_{p_{2}}=0$,
if $\quad \zeta \geqslant 0 \quad X$ - arbitrary.
The symbol $\bar{z} \geqslant 0$ has the following sense in our context:

$$
\begin{aligned}
& \text { 1) e1ther } \xi=\xi_{L}=(L, N) \text { and } \operatorname{sign} N_{0}=\operatorname{sign} n>0 \\
& \text { 2) or } \xi=\xi_{n}=(\Lambda, N) \text {. }
\end{aligned}
$$

Later we shall consider relation (4.33) as causality condition in the developed field theory. We shall suppose that the extension of the $S^{\prime}$-matrix off the mass shell, based on Demsitter momentum space, should be consistent with (4.33) (the analogue of the "classical" requirement IV, see section 1).

Similarly to (4.31), equation (4.33) is translation invariant. If we substitute in (4.33) $\xi$ with $-\xi$ (see (4.13)), put $\xi=\xi_{n}$ in the original and thus obtained relations and subtraot them from each other then because of "solvability" condition" (2.37) we obtain the locality condition (4.31). With the help of a similar prooedure it is not difficult to demonstrate that:

$$
\begin{align*}
& \int e^{i\left(p_{1}+p_{2}\right) x}\left\langle\xi \left\lvert\, \frac{\mu_{2} p_{1}-\mu_{1} p_{2}}{\mu_{1}+\mu_{2}}\right.\right\rangle d \Omega_{p_{1}} d \Omega_{p_{2}} \frac{\delta^{2} S}{\delta \varphi\left(-p_{11} p_{14}\right) \delta \varphi\left(-p_{2} p_{24}\right)} S^{+}= \\
= & -\int e^{i\left(p_{1}+p_{2}\right) x}\left\langle\xi \left\lvert\, \frac{\mu_{2} p_{1}-\mu_{1} p_{2}}{\mu_{1}+\mu_{2}}\right.\right\rangle d \Omega_{p_{1}} d \Omega_{p_{2}} j\left(p_{11} p_{w}\right) j\left(p_{2}, p_{2 v}\right)+  \tag{4.34}\\
+ & \left.\theta_{1}-N_{0}\right) \int e^{i\left(p_{1}+p_{2}\right) x}\left\langle\xi \left\lvert\, \frac{\mu_{2} p_{1}-\mu_{1} p_{2}}{\mu_{1}+\mu_{2}}\right.\right\rangle d \Omega_{p_{1}} d \Omega_{p_{2}}\left[j\left(p_{11} p_{1 v}\right) j\left(p_{p_{1}, p_{2} y}\right)\right]+\cdots,
\end{align*}
$$

51
whers

$$
\theta\left(N_{0}\right)=\theta(n)= \begin{cases}1, & n>0  \tag{4.35}\\ 0, & n<0\end{cases}
$$

and.. the dots at the right hand side indicate that here in principle oould appear supplementary additive terms, which could be caused by a possible ununiqueness of the product of $\theta\left(N_{0}\right)$ and the ourrent oomutator (confer with the quasilooal terms in (1.35) ). It is clear that inrestigation of products of this type will allow to judge how singular is the new off-mass-shell extension, based on the infroduotion of fundamental length in the theory. We shall come back to discussion of this problem is Section 5.

Obrlously, relation (4.34) generalizes the "integral" causality oondition (1.35) of the usual theory. Comuting explioitly the currents and performing identical transformation we can write the right-hand side of (4.34) in a form of a speoifio chronologioal produots
$\int e^{i\left(p_{1}+p_{2}\right) x}\left\langle\xi \left\lvert\, \frac{\mu_{12} p_{1}-\mu_{1} p_{2}}{\mu_{1}+\mu_{2}}\right.\right\rangle d l_{p_{2}} d d_{p_{2}} \frac{\delta^{2} S}{\delta\left(-p_{2}, \beta_{2}\right) \delta\left(\varphi_{\left(-p_{1} p_{1}\right)}\right)} S^{+}=$ $=-\theta\left(N_{0}\right) \int e^{i\left(p_{1}+p_{2}\right) x}\left\langle\xi \left\lvert\, \frac{\mu_{1} p_{1}-\mu_{1}-p_{1} p_{2}}{p_{1}+\mu_{2}}\right.\right\rangle d \Omega_{p_{1}} d \Omega_{p_{2}} j\left(p_{1} p_{1}\right) j\left(p_{2}, p_{2}\right)-$

$\equiv-T_{\xi} \int e^{i\left(p_{1}+p_{2}\right) x}\left\langle\xi \left\lvert\, \frac{\mu_{1} p_{1}-\mu_{1} p_{2}}{\mu_{1} p_{1} p_{2}}\right.\right\rangle d \Omega_{p_{1}} d \Omega_{p_{2}} j\left(p_{1}, p_{4}\right) j\left(p_{2}, p_{2}\right)+\cdots$

Let us now consider as an illustration, the application of the $T_{3}$-operation, defined in $(4.36)$, to the free $\varphi-f i e l d s$. Notice first that the step $\theta-f u n c t i o n$ (4.35), which appears in relation (4.36), has the folloving Fourier decomposition:

$$
\begin{equation*}
\theta(n)=\frac{1}{4 \pi i} \int_{-\pi}^{\pi} e^{i \omega n} \frac{d \omega}{\operatorname{tg} \frac{\omega}{2}-i \varepsilon} \tag{4.37}
\end{equation*}
$$

Further, taking into account (2.26)-(2.27) we obtain: $\left.\left.T_{\xi}\left\{\frac{1}{(2 \pi)^{3}}\right\} e^{i\left(p_{1}+p_{2}\right) x}\left\langle\xi \left\lvert\, \frac{\dot{\mu}_{2} p_{1}-\mu_{1} p_{2}}{\mu_{1}+\mu_{2}}\right.\right\rangle d \Omega_{p_{1}} d \Omega_{p_{2}} \varphi\left(p_{1}\right) p_{44}\right) \varphi\left(p_{2}, p_{24}\right)\right\}=$ $=\frac{1}{(2)^{3}} \int^{i\left(p_{1}+p_{2}\right) x}\left\langle\xi \left\lvert\, \frac{\mu_{2} p_{1}-\mu_{1} p_{2}}{\mu_{1}+\mu_{2}}\right.\right\rangle d \Omega_{p_{1}} d \Omega_{p_{2}}: \varphi\left(p_{11} p_{1 v}\right) \varphi\left(p_{2}, p_{2 i}\right):+\cdots(4.38)$ $+\frac{1}{(2 \pi)^{3}} \int^{i\left(p_{1}+p_{2}\right) x} d \Omega_{p_{1}} d \Omega_{p_{2}} \delta\left(p_{1}-p_{2}\right) \theta\left(p_{2}^{0}\right) \delta\left(2 p_{2 \varphi}-2 m_{4}\right)$
$\cdot\left[\theta(n)\left\langle\xi \left\lvert\, \frac{\mu_{2} p_{1}-\mu_{1} p_{2}}{\mu_{1}+\mu_{2}}\right.\right\rangle+\theta(-n)\left\langle\xi \left\lvert\, \frac{\mu_{2} p_{1}-\mu_{1} p_{2}}{\mu_{1}+\mu_{2}}\right.\right\rangle\right]$.

The last integral in the right-hand side of (4.38) can be written in the form:
$\frac{1}{(2 \pi)^{3}} \int d \Omega_{p} \theta\left(-p_{0}\right) \delta\left(2 p_{4}-2 m_{4}\right)[\theta(n)\langle\xi \mid p\rangle+\theta(-n)\langle\xi \mid p\rangle]=$ $=\frac{1}{i}\left[\theta(n) D^{(-)}(5,0)-\theta(-n) D^{(1)}(5,0)\right] \equiv \frac{1}{i} D^{(c)}(5,0)$,
where $D^{( \pm)}(\xi, 0)$ are the positive and negative
frequency parts of the commutation function (4.16) which
define the normal pairings of fields in configuration space:

$$
\begin{align*}
\chi^{(-)}(\xi, 0) & =\frac{i}{(2 \pi)^{3}} \int\langle\xi \mid p\rangle \theta(-p) \delta\left(2 p_{y}-2 m_{4}\right) d \Omega_{p}= \\
& =i \varphi_{x}^{0 u t}(\xi) \varphi_{x}^{o u t}(0)
\end{align*}
$$

$$
D^{(t)}(\xi, 0)=-D^{(-)}(-\xi, 0)=\frac{1}{(2 \pi)^{i}} \int\langle\xi \mid p\rangle \theta\left(p_{0}\right) \delta\left(2 p_{4}-2 m_{y}\right) d \Omega_{p}=
$$

$$
=-i \varphi_{x}^{o u t}(0) \varphi_{x}^{o u t}(\xi) .
$$

As the quantity $D^{c}(\xi, 0)$ in (4.39) is even funotion af $\xi$, we can use the "spherical" basis (I.33) for its calculation. As a result we shall have:

$$
\begin{gather*}
\boldsymbol{D}^{c}(\xi, 0)=\frac{1}{(2 \pi)^{\gamma}}\left\langle\langle\lambda, n, l, m \mid p\rangle d \Omega_{p}\right.  \tag{4.41}\\
\left\{\vec{\theta}(\omega) * D^{(-)}(\omega, \vec{p})+\left.\left[\tilde{\theta}(\omega) * D^{(-)}(\omega, \vec{p})\right]\right|_{\omega=-\omega}\right\}
\end{gather*}
$$

$$
\text { where } \quad \lambda=\left\{\begin{array}{l}
L \\
\Lambda
\end{array} \text {, and with } * \quad\right. \text { we denote the }
$$

convolution operation of the function $\theta(\omega)=\frac{1}{2} \frac{1}{\operatorname{tg} \frac{\omega}{2}-i \varepsilon}$ and $D^{(-)}(\omega, \vec{p})=\theta(-\omega) \delta\left(2 \cos \omega \sqrt{1+\vec{p}^{2}}-2 m_{4}\right)$

$$
\begin{aligned}
& \text { on the circle }|\omega| \leqslant \pi \\
& \tilde{\theta}(\omega) * D^{(-2}(\omega, \vec{p})=\frac{1}{2} \int_{-\pi}^{\pi} \frac{d \omega^{\prime}}{\frac{\omega-\omega^{\prime}}{2}-i \varepsilon} \mathcal{D}^{(-)}\left(\omega^{\prime}, \vec{p}\right) d \omega^{\prime}=
\end{aligned}
$$

$$
=\frac{1}{2 \sqrt{\vec{p}^{2}+m^{2}}} \frac{1}{\operatorname{tg} \frac{\Omega+w-i \varepsilon}{2}} ; \cos \Omega \equiv \cos \sqrt{\frac{1-m^{2}}{1+\vec{p}^{2}}}
$$

Now, with the help of (4.42) we finally get:

$$
\begin{align*}
X^{(c)}(\xi, 0) & =\frac{1}{(2 \pi)^{4}} \int\langle\xi \mid p\rangle \frac{d \Omega_{p}}{2 \cos \omega \sqrt{1+p^{2}}-2 m_{4}-i \varepsilon}=  \tag{4.43}\\
& =\frac{1}{(2 \pi)^{4}} \int\langle\xi \mid p\rangle \frac{d \Omega_{p}}{2\left(p_{4}-m_{4}-i \varepsilon\right)},
\end{align*}
$$

where $\langle\xi \mid p\rangle$, because of the already mentioned symetry property $D^{(\mathrm{e})}(5,0)=D^{(c)}(-5,0)$ can be considered again as the "plane wave" (I.34).

Coming back to the initial relation (4.38), we can write:
$\left.T_{\xi}\left\{\frac{1}{(2 \pi)^{3}} \int e^{i\left(p_{1}+p_{2}\right) x}\langle\xi| \frac{\mu_{2} p_{1}-\mu_{1} p_{2}}{\mu_{1}+\mu_{2}}\right) d \Omega_{p_{1}} d \Omega_{p_{2}} \varphi\left(p_{1,} p_{14}\right) \varphi\left(p_{2}, p_{2 v}\right)\right\}=$ $=:\left\{\frac{1}{(2 \pi)^{3}} \int e^{i\left(p_{1}+p_{2}\right) x}\left\langle\xi \left\lvert\, \frac{p_{2} p_{1}-\mu_{1} p_{2}}{\mu_{1}+\mu_{2}}\right.\right\rangle d \Omega_{p_{1}} d \Omega_{p_{2}} \varphi\left(p_{11}, p_{1}\right) \varphi\left(p_{2}, p_{21}\right)\right\}:+(4.44)$ $+\frac{1}{i} D^{(c)}(\xi, 0)$

For comparison let us Frite the corresponiding "olassical ${ }^{n}$ formula:

$$
T_{\xi}\left[\varphi^{\text {out }}\left(x+\frac{\xi}{2}\right) \varphi^{\text {out }}\left(x-\frac{\xi}{2}\right)\right]=: \varphi^{\text {out }}\left(x+\frac{\xi}{2}\right) \varphi^{\text {out }}\left(x-\frac{\xi}{2}\right):+\frac{1}{i} D^{(c)}(\xi)
$$

where

$$
D^{c}(\xi)=\theta\left(\xi_{0}\right) D^{(-)}(\xi)-\theta\left(-\xi_{0}\right) D^{(+)}(\xi)=\frac{1}{(2 \pi)^{4}} \int e^{i p \xi} \frac{d^{4} p}{m^{2}-p^{2}-i \varepsilon} \cdot(4.46)
$$

Therefore we are convinoed that the quantity we obtained:

$$
\begin{equation*}
\mathcal{D}^{(c)}(\xi, 0)=\theta\left(N_{0}\right) D^{(-)}(\xi, 0)-\theta\left(-N_{0}\right) D^{(+\rangle}(\xi, 0)=\frac{1}{(2 \pi)^{4}} \int \frac{\langle\xi \mid p\rangle d \Omega_{p}}{2\left(p_{4}-m_{4}-i \varepsilon\right)} \tag{4.47}
\end{equation*}
$$

is closely analogous to the causal Green function (propagator) of the "olassical" the ory.

From (4.39) and (4.40) it is easy to demonstrate that:

$$
\begin{equation*}
T_{\xi}\left\{\varphi_{x}(\xi) \varphi_{x}(0)\right\}=\theta\left(N_{0}\right) \varphi_{x}(\xi) \varphi_{x}(0)+\theta\left(-N_{0}\right) \varphi_{x}(0) \varphi_{x}(\xi)= \tag{4.48}
\end{equation*}
$$

$$
=: \varphi_{x}(\xi) \varphi_{x}(0):+\frac{1}{i} D^{(c)}(\xi, 0)
$$

A slight modification of the calculations which leads us to (4.39) and (4.41) gives one more formula with the $T_{\xi}-$ product (see (4.17)):

$$
\begin{equation*}
T_{\xi}\left\{\varphi_{x}(\xi) \varphi_{x}(-\xi)\right\}=\theta\left(N_{0}\right) \varphi_{x}(\xi) \varphi_{x}(-\xi)-\theta\left(N_{0}\right) \varphi_{x}(-\xi) \varphi_{x}(\xi)= \tag{4.49}
\end{equation*}
$$

$$
=: \varphi_{x}(\xi) \varphi_{x}(-\xi):+\frac{1}{i} D^{(0)}(\xi,-\xi),
$$

where

$$
\begin{equation*}
D^{(c)}(\xi,-\xi)=\frac{1}{(2 \pi)^{4}} \int(\langle\xi \mid p\rangle)^{2} \frac{d \Omega_{p}}{2\left(p_{4}-m_{4}-i \varepsilon\right)} \tag{4.50}
\end{equation*}
$$

We would like to emphasize that the relativistic invariance
of all considered $T_{5}$-products is guaranteed,first by eqs.(4.20a)-(4.20b) (1n the "timelike" $L$-region) and second by the locality condition (4.28)-(4.30) (1n the spacelike $\wedge$-region).

The "Integral" causality condition together with the recurrent relation for the radiation operators ${ }^{+}$)
$\frac{\delta^{n+1} S}{\delta \varphi\left(-p_{1}, p_{14}\right) \ldots \delta \varphi\left(-p_{n}, p_{n}\right) \delta \varphi\left(-p_{n+1}, p_{n+1,4}\right)} S^{+}=$
$=\left[\frac{\delta^{n} S}{\delta \varphi\left(-p_{1}, p_{14}\right) \ldots \delta \varphi\left(-p_{n}, p_{n+4}\right)} S^{+}\right]\left(\frac{\delta}{\delta \varphi\left(\left(p_{n+1}, p_{n+1,4}\right)\right.}-i j\left(p_{n+1}, p_{n+1,4}\right)\right)$
and the identities of type (3.7) may be used as a base to obtain a chain of connected integral equations for the c.f. (2.31). Doing that it is convenient to write (4.34) in $p$ representation:

[^11]\[

$$
\begin{aligned}
& \frac{\delta^{2} S}{\delta \varphi\left(-p_{1}, p_{12}\right)} \delta \varphi\left(\left(p_{2}, p_{4}\right)\right. \\
& S^{+}=-j\left(p_{1}, p_{14}\right) j\left(p_{2}, p_{24}\right)+ \\
& +\frac{p_{14}+p_{24}}{\sqrt{\left(p_{1}+p_{2}\right)^{2}} \frac{1}{(2 \pi)^{4}}}\left(\delta^{(n)}\left(p_{1}+p_{2}-p_{1}^{\prime}-p_{2}^{\prime}\right)\left\langle\xi \left\lvert\, \frac{\mu_{2} p_{1}-\mu_{1} p_{2}}{\mu_{1}+\mu_{2}}\right.\right\rangle \theta\left(-N_{0}\right) d \Omega_{\xi} .\right. \\
& \cdot\left\langle\xi \left\lvert\, \frac{\mu_{2}^{\prime} p_{1}^{\prime}-\mu_{1}^{\prime} p_{2}^{\prime}}{\mu_{1}^{\prime}+\mu_{2}^{\prime}}\right.\right\rangle d \Omega_{p_{1}^{\prime}} d \Omega_{p_{2}^{\prime}}\left[j\left(p_{1}^{\prime}, p_{14}^{\prime}\right), j\left(p_{2}^{\prime}, p_{24}^{\prime}\right)\right]+\cdots,
\end{aligned}
$$
\]

where $\mu_{1}, \mu_{2}, \mu_{1}^{\prime}$ and $\mu_{2}^{\prime}$ are given by eq. (I.25b), the volume element $d \Omega_{\xi}$ in $\xi$-space has the form: ${ }^{+}$

$$
d \Omega_{\xi}=\left\{\begin{array}{l}
2(L+1)(L+2)\left(L+\frac{3}{2}\right) \delta\left(N^{2}-1\right) d^{4} N, \text { if } \xi=\xi_{L}=(L, N)  \tag{4.53}\\
2 \Lambda\left(\Lambda^{2}+\frac{1}{4}\right) \text { th } \pi \Lambda \delta\left(N^{2}+1\right) d^{4} N, \text { if } \xi=\xi_{\Lambda}=(\Lambda, N)
\end{array}\right.
$$

and by definition:

$$
\begin{equation*}
\frac{1}{(2 \pi)^{4}} \int \overline{\left\langle\xi \mid q^{\prime}\right\rangle} d \Omega_{\xi}\langle\xi \mid q\rangle=\delta\left(q^{\prime}, q\right) \tag{4.54}
\end{equation*}
$$

$\left.{ }^{+}\right)_{\text {See the }}$ footnote on p. 45.
(the integral in (4.54) denotes summation over : L -series and integration over $\Lambda$-series).

Let us calculate with the help of (4.52) as example the oof. $S_{2}\left(p_{1}, p_{14} ; p_{2}, p_{24}\right)$. Taking into acoount (2.31) and using the oompletenessof the system of states (2.52), we shall have ${ }^{+}$):

$$
\begin{align*}
& S_{2}\left(-p_{1}, p_{14} ;-p_{2}, p_{24}\right)= \\
= & \frac{1}{2!} \frac{p_{14}+p_{24}}{\sqrt{\left(p_{1}+p_{2}\right)_{L}^{2}}} \frac{1}{\left(2 \pi^{4}\right.} \int \delta^{4}\left(p_{1}+p_{2}-p_{1}^{\prime}-p_{2}^{\prime}\right) d \Omega_{\xi} d \Omega_{p^{\prime}} d \Omega_{p_{1}^{\prime}} \overline{\left\langle\xi \left\lvert\, \frac{\mu_{2} p_{1}-\mu_{1}, p_{2}}{\mu_{1}+\mu_{2}}\right.\right\rangle} \\
\cdot & \left\{\theta\left(N_{0}\right)\left\langle\xi \left\lvert\, \frac{\mu_{2}^{\prime} p_{1}^{\prime}-\mu_{1}^{\prime} p_{2}^{\prime}}{\mu_{1}^{\prime}+\mu_{2}^{\prime}}\right.\right\rangle \sum_{n}\langle 0| j\left(p_{1,}^{\prime}, p_{14}^{\prime}\right)|n\rangle\langle n| j\left(p_{2}^{\prime}, p_{24}^{\prime}\right)|0\rangle+\right. \\
+ & \left.\theta\left(-N_{0}\right)\left\langle\xi \left\lvert\, \frac{\mu_{2}^{\prime} p_{1}^{\prime}--_{1}^{\prime} p_{2}^{\prime}}{\mu_{1}^{\prime}+\mu_{2}^{\prime}}\right.\right\rangle \sum_{n}\left\langle 01 j\left(p_{2}^{\prime}, p_{21}^{\prime}\right) \mid n\right\rangle\langle n| j\left(p_{1}^{\prime}, p_{14}^{\prime}\right)|0\rangle\right\}, \tag{4.55}
\end{align*}
$$

where

$$
\begin{equation*}
\left\langle 01 j\left(p_{1}^{\prime}, p_{14}^{\prime}\right) \mid n\right\rangle=\langle 0| j\left(p_{1}^{\prime}, p_{14}^{\prime}\right)\left|\vec{k}_{1}, \ldots, \vec{k}_{n}\right\rangle \tag{4.56}
\end{equation*}
$$

and $\sum_{n}$ denotes summation and integration over all intermediate states. then, using relations (2.40) and (2.32) It is easy to obtain (compare with [6] ) that:
$+\bar{\zeta}_{\text {For simplicity here we do not take into account the }}$ hypothetical additive terms, denoted by dots in the oausality condition (4.52).

$$
\begin{align*}
& \langle 0| j\left(p, p_{4}\right)\left|\vec{k}_{1}, \ldots \vec{k}_{n}\right\rangle=\left|p_{4}\right| \delta\left(p+p_{(n)}\right)\langle 0|\left(d \Omega_{q} j\left(q, q_{4}\right)\left|\vec{k}_{1}, \ldots \vec{k}_{n}\right\rangle,\right. \\
& \left.\left\langle\vec{k}_{1}, \ldots \vec{k}_{n}\right| j\left(p, p_{4}\right)|0\rangle=\left|p_{4}\right| \delta\left(p+p_{(n)}\right)\left\langle\vec{k}_{1}, \ldots, \vec{k}_{n}\right|\left|d \Omega_{q} j\left(q, q_{4}\right)\right| 0\right\rangle, \tag{4.57}
\end{align*}
$$

There

$$
\begin{equation*}
k_{1}+\cdots+k_{n}=P_{(n)} \tag{4.58}
\end{equation*}
$$

Since $\quad P_{\mu} \quad$ is a 4 -rector in De -Sitter space (2.3), its 4 -square is obligatory bounded: $p^{2} \leq 1$. Therefore, owing to (4.57) and (4.58) only such intermediate states contribute to the right-hand side of (4.55), which invariant mass obeys analogous limitation:

$$
\begin{equation*}
P_{(n)}^{2} \leq 1 \tag{4.59}
\end{equation*}
$$

Substituting the matrix elements (4.57) in (4.56), taking into account (2.36), the spectral condition, the requirement (4.59) and integrating over $p_{1}^{\prime}$ and $p_{2}^{\prime}$ with the help of the $\delta$-functions we get:

$$
\begin{aligned}
& S_{2}\left(-p_{1}, p_{24} ;-p_{2}, p_{24}\right)=-\frac{1}{2!} \frac{\delta\left(p_{1}+p_{2}\right)}{(2 \pi)^{4}} \int \overline{\left\langle\xi \mid p_{1}\right\rangle} d \Omega_{\xi} \\
& \left\{\theta\left(N_{0}\right)\langle\xi \mid-p\rangle \theta\left(1-p^{2}\right) \theta\left(p_{0}\right) \theta\left(p^{2}\right)+\right. \\
& \left.+\theta\left(-N_{0}\right)\langle\xi \mid p\rangle \theta\left(1-p^{2}\right) \theta\left(p_{0}\right) \theta\left(p^{2}\right)\right\} \rho\left(p^{2}\right) d^{4} p,
\end{aligned}
$$

Where the spectral function is introduced, in a standard way:

$$
\begin{equation*}
\left.\rho\left(p^{2}\right)=\sum^{\prime}\left|\int\langle 0| j\left(q, q_{4}\right) d \Omega_{q}\right| \vec{k}_{1}, \ldots \vec{k}_{n}\right\rangle\left.\right|^{2} \tag{4.61}
\end{equation*}
$$

(the summation in this formula is performed only over intermediate states with total 4 -momentum $p$.).

If we notice now that:

$$
\begin{aligned}
& \theta\left(1-p^{2}\right) \theta\left(p^{2}\right) d^{4} p=\int_{0}^{1} d \mu^{2} \delta\left(2 \sqrt{1-p^{2}}-2 \mu_{4}\right) \frac{d^{4} p}{\sqrt{1-p^{2}}}= \\
= & \int_{0}^{1} d \mu \delta\left(2 p_{4}-2 \mu_{4}\right) d \Omega_{p},\left(\mu_{4}=\sqrt{1-\mu^{2}}\right),
\end{aligned}
$$

and using (4.47) and (4.54) we can write equation (4.60)
in the form:

$$
\begin{align*}
& S_{2}\left(-p_{1}, p_{14} ;-p_{2}, p_{2 v}\right)=\frac{-1}{2!} \frac{\delta\left(p_{1}+p_{2}\right)}{2 \pi i} \int_{0}^{1} d \mu^{2} \rho\left(\mu^{2}\right)\left\langle\xi \mid p_{1}\right\rangle d \Omega_{\xi} \\
& \frac{1}{(2 i)^{y}} \int \frac{\langle\xi \mid p\rangle d \Omega_{p}}{2\left(p_{4}-\mu_{4}-i \varepsilon\right)}=-\frac{1}{2!} \frac{\delta\left(p_{1}+p_{2}\right)}{2 \pi i} \int_{0}^{1} \rho\left(\mu^{2}\right) \frac{d \mu^{2}}{2\left(p_{14}-\left(\mu_{4}-i \varepsilon\right)\right.} \tag{4.62}
\end{align*}
$$

Hence we proved, that in the new scheme there exist an analogue of the Kalen-Lehmannn spectral representation for the oof. $S_{n}$. The most interesting feature of the new representation is the cutoff of the spectral integral or the finiteness of the spectral function. As far as in the "olassical" theory the integration over $\mu^{2}$ is carried up to infinity and usually the integral is divergent
on its upper limit ${ }^{+}$), the result me obtained should be considered as an indication for a possible softening of the diffioulties connected with the ultraviolet divergencies In the present approaoh (see also section 5.).
5. The Problem of Generalized Singular Function Product in the New Scheme.

It was mentioned in Section 2 that one of the goals of our approach is to obtain a satisfaotory solution of the problem of multiplying generalized singuiar functions with coinciding singularities. We shall report some of the results obtained in attempts to investigate this problem. A detailed discussion of this question will be given in a separate paper.

Let us begin with one-dimensional example from the usual theory - the product of the step function $\theta\left(\xi^{\circ}\right)$ and $\delta\left(\bar{\xi}^{\circ}\right)$ which is a good illustration of the discussed difficulties [3].

As far as:

[^12]\[

$$
\begin{equation*}
\theta\left(\xi^{\circ}\right)=\frac{1}{2 \pi i} \int_{-\infty}^{+\infty} \frac{e^{i E \xi^{\circ}}}{E-i \varepsilon} d E, \tag{5.1}
\end{equation*}
$$

\]

then formally we have
$\theta\left(\xi^{0}\right) \delta\left(\xi^{0}\right)=\left\{\frac{1}{2 \pi i} \int_{-\infty}^{+\infty} \frac{d E}{E-i \varepsilon}\right\} \delta\left(\xi^{0}\right)=\infty \delta\left(\xi^{*}\right)$.

A more rigorous approach based on generalized function the ory arguments gives:

$$
\begin{equation*}
\theta\left(\xi^{d}\right) \delta\left(\xi^{\circ}\right)=c \delta\left(\xi^{\circ}\right) \tag{5.3}
\end{equation*}
$$

where $C$ is an arbitrary oonstant.
The analogue of $\theta\left(\xi^{\circ}\right) \delta\left(\xi^{\circ}\right)$ in the new scheme is the expression $\theta(n) \delta_{n, 0}$ where $\theta(n)$ is the step function (4.35) With Fourier deoomposition (4.37), and $\delta_{n, m}$ is the Kroneoker symbol. Therefore

$$
\theta(n) \delta_{n, 0}=\left\{\frac{1}{4 \pi i} \int_{-\pi}^{\pi} \frac{\alpha \omega}{\operatorname{tg} \frac{\omega}{2}-i \varepsilon}\right\} \delta_{n, 0}=
$$

$$
\begin{equation*}
=\left\{\frac{1}{2 \pi i} \int_{-\infty}^{+\infty} \frac{d E}{E-i \varepsilon} \frac{1}{1+E^{2}}\right\} \delta_{n, 0}=\frac{1}{2} \delta_{n, 0} \tag{5.4}
\end{equation*}
$$

$\left(\operatorname{tg} \frac{\omega}{2} \equiv E\right.$
is the new integration variable).

The conclusion which oan be drown by considered example is that the functions $\theta(n)$ and $\delta_{n, 0}$ are, contrary to their continuous analogues, ordinary (not generalized) functions and their product is defined uniquely.

It turns out that a similar situation holds in more general case. For instanoe the commutator (4.16) for zero mass particles is given by the expression:

$$
\begin{gathered}
\left.D(5,0)\right|_{m=0}=\frac{1}{2 \pi} \varepsilon(n) \frac{1}{L+2} \delta_{L,-1} \\
|n| \geqslant L+3 \\
L=-1,0,1, \ldots,
\end{gathered}
$$

where

$$
\varepsilon(n)=\theta(n)-\theta(-n)=\left\{\begin{array}{l}
1, \text { if } n>0  \tag{5.6}\\
-1, \text { if } n<0
\end{array}\right.
$$

In the "olassioal" case we oould have correspondingly ${ }^{+}$):

$$
\begin{equation*}
\left.\mathcal{D}(\xi)\right|_{m=0}=\frac{4}{2 \pi} \varepsilon\left(\xi^{0}\right) \delta\left(\xi^{2}\right) \tag{5.7}
\end{equation*}
$$

[^13]A comparis on of formulae (5.5) and (5.7) demonstrates that the first one has a completely well defined mathematical sense and can be interpreted as an ordinary produot of ordinary funotions ${ }^{+ \text {) }}$ and in the same time the seoond formula is a typioal for the "classical" field theory example of multiplying of singular generalized funotions with coinciding singularities.

It should be clearly understood that the appearance in our formalism of discrete (quantized) variables $n$ and
L. is direotly conneoted with the boundedness of the new $p$-space in timelike direction in the sense of De-Sitter metrics. owing to the same reason the "plane wares" (I.34a), corresponding to the timelike $L$-series are square integrable funotions (see the footnote on p. 79). The last oircumstance will play an important role in the example ${ }^{++}$, which we oonsider below.

[^14]\[

$$
\begin{equation*}
j_{x}(\xi)=: \varphi_{x}{ }^{\text {ant }}(\xi)^{n}: \tag{5.8}
\end{equation*}
$$

\]

is a "bilocal" operator, constructed of the fields (4.4). From (4.29) it is obvious that:

$$
\begin{array}{r}
{\left[j_{x}(\xi), j_{x}(-\xi)\right]=0 ; \quad \text { if } \xi=\xi \wedge \text { and }}  \tag{5.9}\\
x \text { arbitrary } .
\end{array}
$$

It is clear also that:

$$
\begin{equation*}
\langle 0|\left[j_{x}(\xi), j_{x}(-\xi)\right]|0\rangle=\langle 0|[j(\xi), j(-\xi)]|0\rangle, \tag{5.10}
\end{equation*}
$$

## where

$$
j(\xi)=j_{0}(\xi)=: \varphi^{n}(\xi):
$$

Now let us consider the integral:

$$
\begin{align*}
& g(p)= \\
& =  \tag{5.11}\\
& i\left(\langle\xi \mid p\rangle \theta\left(N_{0}\right)\langle 0|[j(\xi), j(-\xi)]|0\rangle\langle\xi \mid p\rangle d \Omega_{\xi}\right.
\end{align*}
$$

where $d \Omega_{\xi} \quad$ is defined $\operatorname{in}(4.53)$.
In the "classical" limit this quantity coincides up to a constant factor with the real part of the one particle propagator, calculated in second order of the perturbation theory, in a model with $: \varphi^{n+L}(x):$ interaction $(n \geqslant 2) \quad$. As it is well known in this case
the oorrespondent integral is divergent. The reason is that the product of gene ralized functions $\theta\left(5^{\circ}\right)$ and

$$
\langle 0|[j(\xi), j(-5)]|0\rangle
$$

is not integrable because of coincidence of their singularities in the point $\bar{\xi}=0$.

Let us investigate the oonvergence of the integral (5.11). Notioe first that owing to the locality oondition (5.9) the continuous $\Lambda$-series do not oontribute to the integral:

$$
\begin{align*}
g(p)= & i \sum_{L=-1}^{\infty} \int 2(L+1)(L+2)\left(L+\frac{3}{2}\right) \delta\left(N^{2}-1\right) d^{4} N .  \tag{5.12}\\
& \cdot\left\langle\xi_{L} \mid p\right\rangle \theta\left(N_{0}\right)\langle 0|\left[j\left(\xi_{L}\right), j\left(-\xi_{L}\right)\right]|0\rangle\left\langle\xi_{L} \mid p\right\rangle
\end{align*}
$$

Using the Wiok's theorem we easily obtain:
$\langle 0|\left[j\left(\xi_{L}\right), j\left(-\xi_{L}\right)\right]|0\rangle=\langle 0|\left[\varphi^{\circ u t^{n}}\left(\xi_{L}\right), \varphi^{\text {out }}\left(-\xi_{L}\right)\right]|0\rangle=$
$=n!\left(\frac{1}{l}\right)^{n}\left\{\left(D^{(-)}\left(\xi_{L},-\xi_{L}\right)\right)^{n}-\left(D^{(-)}\left(-\xi_{L}, \xi\right)\right)^{n}\right\}$,
where

$$
\begin{aligned}
& \frac{1}{i} D^{(-)}(\xi,-\xi)=\varphi^{\text {out }}(\xi) \varphi^{\text {out }}(-\xi)= \\
& =\frac{1}{(2 \pi)^{3}} \int((\xi \mid k))^{2} \theta\left(-k_{0}\right) \delta\left(2 k_{4}-2 m_{4}\right) d \Omega_{k},
\end{aligned}
$$

and (cf. (4.17))

$$
\begin{equation*}
D^{(-)}\left(\xi,-\overline{)}-D^{(-)}(-\overline{5}, 5)=D(\xi,-\overline{)}) .\right. \tag{5.15}
\end{equation*}
$$

Let us now estimate the modulus of the function (5.12), assuming for definiteness that $p^{2}>0$ and making obvious majorizations in the integrand (compare with (II.2)):

$$
\begin{aligned}
& |g(p)| \leqslant \\
\leqslant & \left.\sum_{L=-1}^{\infty}(L+1)(L+2)\left(L+\frac{3}{2}\right)\left|\langle 0|\left[j\left(\xi_{L}\right), j\left(-\xi_{L}\right)\right]\right| 0\right\rangle \left\lvert\, \int \frac{d \vec{N}}{N_{0}}\left(p_{4}^{2}+(p N)^{2}\right)^{-L-3}\right.
\end{aligned}
$$

The integral over $d \vec{N}$ can be calculated explicitly:

$$
\begin{gathered}
\left.\int \frac{d \vec{N}}{N_{0}}\left(p_{4}^{2}+(p \cdot N)^{2}\right)^{-L-3} \equiv-\frac{4 \pi}{p^{2}}\left[J_{L+3}\left(p^{2}\right)-\right]_{L+2}\left(p^{2}\right)\right] \equiv \\
\\
\equiv-\frac{4 \pi}{p^{2}} \Delta_{L} J_{L+2}\left(p^{2}\right)
\end{gathered}
$$

where [17]

$$
\begin{align*}
& J_{L+2}\left(p^{2}\right)=  \tag{5.18}\\
& \int_{0}^{\infty} \frac{d X}{\left(p_{4}^{2}+p^{2} c h^{2} X\right)^{L+2}}= \\
&= \frac{\sqrt{\pi}}{2} \frac{\Gamma(L+2)}{\Gamma\left(L+\frac{5}{2}\right)}{ }_{2} F_{1}\left(L+2, \frac{1}{2} ; L+\frac{5}{2} ; p_{4}^{2}\right)
\end{align*}
$$

and $\quad \Delta_{L} \quad$ is the finite difference symbol. It is easy to see that expression (5.17) as a function of $L$ has no singularities for $L=-1,0,1, \ldots$.
In the region $L \gg 1$

$$
\begin{equation*}
\left|J_{L+2}\left(p^{2}\right)\right| \leqslant \frac{\sqrt{\pi}}{2} L^{-1 / 2}\left(p^{2}\right)^{-1 / 2} \tag{5.19}
\end{equation*}
$$

Taking into account (II.7) and (5.17) we obtain from (5.16) the following inequality:

$$
\begin{gather*}
|g(p)| \leqslant \frac{C}{p^{2}} \sum_{L=-1}^{\infty}(L+1)(L+2)\left(L+\frac{3}{2}\right)\left|\Delta_{L} J_{L+2}\left(p^{2}\right)\right| . \\
\cdot\left(\frac{\Gamma(L+2)}{\Gamma\left(L+\frac{3}{2}\right)}\right)^{n}\left[{ }_{2} F_{1}\left(L+3, \frac{3}{2} ; L+\frac{7}{2} ; m_{4}^{2}\right)\right]^{n}, \tag{5.20}
\end{gather*}
$$

where Collects all constant factors. It is easy to see that series ( 5.20 ) are absolutely convergent. Indeed, let us choose sufficiently large number $\widetilde{L}$, such that when $L>L$ we can substitute the expression under the sign of summation in (5.20) by its asymptotic value. Then, introducing the notation $M\left(p^{2}, \tilde{L}\right)$ for the finite sum from $L=-1$ to $L=\tilde{L}$ and taking into account (5.19) and (II.8) we obtain:

$$
|g(p)| \leqslant \frac{c}{p^{2}} M\left(p_{1}^{2} \tilde{L}\right)+\frac{\text { const. }}{\left(p^{2}\right)^{3 / 2}} \sum_{L / L}^{\infty} L^{-3\left(\frac{n}{2}-1\right)}\left|\Delta_{L} L^{-1 / 2}\right| \cdot(5.21)
$$

The infinite number series in the right-hand side of (5.21) are convergent $f(x) \quad n \geqslant 2$ because:

$$
\begin{align*}
& \int_{\tau}^{\infty} d x x^{-3\left(\frac{n}{2}-1\right)}\left|\frac{d}{d x}\left(\frac{1}{\sqrt{x}}\right)\right|=  \tag{5.22}\\
= & \frac{1}{2} \int_{L}^{\infty} x^{-\frac{3}{2}(n-1)} d x<\infty
\end{align*}
$$

(Cauchy criterion). Therefore, the function
is bounded and the initial integral (5.11) is absolutely convergent.

The considered examples testify, apparently, that the constant curvature $\quad p$-space extension of the $S$ matrix off the mass shell is really "less singular" than the "classical" extension, using flat minkowski momentum space (compare section 2 ). It can be expected also that in the nasality condition (4.34) the number of hypothetioal additive terms, denoted by dots in the right-hand side, will be reduced to a minimum ${ }^{+}$. A great success of the theory would be a unique, selfoonsistent determination of the mentioned terms because this would allow to answer the question: which kind of interactions among the quantized fields is realized in the Nature?

[^15]
## 6. Conclusion

In this seotion we would like to formulate a program for future investigations in the framework of the approach we proposed here.

1) A detailed analysis of the generalized causality condition (4.34) (including the question of the arbitrary additional terms) should be carried and on its base the macrooausality condition on the scattering matrix should be obtained.
2) Construction of perturbation theory and developing appropriate diagram techniques.
3) Three-dimensional formulation of the two-body problem In the spirit of the quasipotential approach $[18,19,20]$ and development on its base a phenomenologioal theory of interaction of hadrons with De Broglie wave lengths $\lesssim l_{0}$
4) Obtaining of different qualitative predictions in the given scheme, based on the fact, that the. 4 -momentum of arbitrary virtual particle obeys the restriction

$$
p^{2} \leqslant 1 \quad \text { In particular this is related to }
$$ the onc-photon pair $\left(e^{+} e^{-}\right)$annihilation, lepton pair production, deep inelastic processes, etc.

## $p$-Space Formalism

1) The hypersphere equation (2.3) in units $\hbar=c=\ell_{0}=1$ :

$$
\begin{equation*}
p_{0}^{2}-p_{1}^{2}-p_{2}^{2}-p_{3}^{2}+p_{4}^{2}=1 \tag{I.1}
\end{equation*}
$$

In five-dimensional form:

$$
\begin{gather*}
g^{L M} p_{L} P_{M}=1  \tag{I.2}\\
\left(g^{00}=g^{44}=-g^{11}=-g^{22}=-g^{33}=1, g^{L M}=0 \text { for } L \neq M\right),
\end{gather*}
$$

or simply

$$
\begin{equation*}
p_{L}^{2}=1 . \tag{1.3}
\end{equation*}
$$

The line element:

$$
d s^{2}=d p^{2}+\frac{(p d p)^{2}}{1-p^{2}}
$$

$\left(d p^{2}=d p_{0}-d \vec{p}^{2}, p d p=p_{0} d p_{0}-\vec{p} \cdot d \vec{p}\right)$.
The volume element:

$$
\begin{equation*}
d \Omega_{p}=2 \delta\left(p_{L}^{2}-1\right) d^{5} p \tag{I.5}
\end{equation*}
$$

2) The motion group ${ }^{+)}$(De-sitter group $S O(2,3)$ ):

$$
\begin{array}{ll}
P_{L}^{\prime}=\Lambda_{L}^{M} P_{M} & (L, M=0,1,2,3,4) \\
g^{L N}=g^{M K} \Lambda_{M}^{L} \Lambda_{K}^{N} \tag{I.6}
\end{array}
$$

Lorentz transformations ( 5 -rotations around the $p_{4}-$ axis):

$$
\begin{align*}
& p_{4}^{\prime}=p_{4} \\
& p_{\mu}=\Lambda_{\mu}^{\nu} p_{\nu}(\mu, \nu=0,1,2,3) . \tag{I,7}
\end{align*}
$$

"Translations" to a 4 -vector $b_{\mu} \quad(5$-rotations in the plane $(\mu 4)$ ):

$$
\begin{align*}
& p_{\mu}^{\prime}=\Lambda_{\mu}^{\nu}(b) p_{\nu}+\Lambda_{\mu}^{4}(b) p_{4}  \tag{I.8}\\
& p_{4}^{\prime}=\Lambda_{4}^{\nu}(b) p_{\nu}+\Lambda_{4}^{4}(b) p_{4}
\end{align*}
$$

In explicit form:

$$
\begin{align*}
& p_{\mu}^{\prime} \equiv(p(t) b)_{\mu}=p_{\mu}+b_{\mu}\left(p_{y}-\frac{p \cdot b}{1+b_{4}}\right) \\
& p_{Y}^{\prime} \equiv(p(t) b)_{Y}=-p \cdot b+p_{4} b_{Y} . \tag{IT.}
\end{align*}
$$

By definition:

$$
p(-) \equiv p(+)(-b)
$$

Obviously,

$$
\begin{equation*}
d \Omega_{p}=d \Omega_{p(t) b} . \tag{1.10}
\end{equation*}
$$

Properties of the "translation" operation (I.8)-(I.9):

$$
\begin{align*}
& p( \pm) O=p  \tag{I.11}\\
& p(-) p=0 \\
& \Lambda\left(b_{1}\right) \Lambda\left(b_{2}\right) \Lambda^{-1}\left(b_{1}(t) b_{2}\right)=\text { Lorentz rotation }
\end{align*}
$$

${ }^{+}$The representations of reflections are not considered.
3) "Spherical" coordinates $(\omega, X, \theta, \varphi)$ :

$$
\begin{align*}
& p_{0}=\sin \omega \operatorname{ch} x \\
& p_{4}=\cos \omega \operatorname{ch} x \\
& p_{1}=\operatorname{sh} x \sin \theta \cos \varphi, p_{2}=\operatorname{sh} x \sin \theta \sin \varphi, p_{3}=\operatorname{sh} x \cos \theta  \tag{I.12}\\
&(|\omega| \leq \pi, 0 \leq x<\infty, 0 \leq \theta \leq \pi, 0 \leq \varphi \leq 2 \pi)
\end{align*}
$$

"Semispherical" coordinates
$(\omega, \vec{p})$

$$
\begin{aligned}
& p_{0}=\sqrt{1+\vec{p}^{2}} \sin \omega \\
& p_{4}=\sqrt{1+\vec{p}^{2}} \cos \omega \\
& \vec{p}=\vec{p} \\
&(|\omega| \leq \pi, \quad 0 \leq p<\infty) .
\end{aligned}
$$

The volume el ament in coordinates (I.13):

$$
\begin{equation*}
d \Omega_{p}=d \omega d \vec{p} \tag{I.14}
\end{equation*}
$$

Group-theoretioal sense of the coordinate (I.13):

$$
\begin{equation*}
p=q^{\perp}(t) k^{\prime \prime} \tag{I.15}
\end{equation*}
$$

where

$$
\begin{align*}
& p_{L}=\left(p_{0}, \vec{p}, p_{4}\right)=\left(\sqrt{1+\vec{p}^{2}} \sin \omega, \vec{p}, \sqrt{1+\vec{p}^{2}} \omega \operatorname{sos} \omega\right) \\
& q_{L}^{+}=\left(0, \vec{p}, \sqrt{1+\vec{p}^{2}}\right)  \tag{I.16}\\
& k_{L}^{\prime \prime}=(\sin \omega, \overrightarrow{0}, \cos \omega)
\end{align*}
$$

4) The function $\delta\left(p^{\prime}, p\right)$ :

$$
\begin{align*}
& f\left(p^{\prime}\right)=\int f(p) \delta\left(p^{\prime}, p\right) d \Omega_{p} \\
& \delta\left(p^{\prime} p\right)=\left|p_{4}\right| \theta\left(p_{4}^{\prime} p_{4}\right) \delta^{\prime}\left(p^{\prime}-p\right)=\delta\left(\omega^{\prime}-\omega\right) \delta^{(3)}\left(\vec{p}^{\prime}-\vec{p}\right)  \tag{I.17}\\
& \delta\left(p^{\prime}(1) k, p(t) k\right)=\delta\left(p^{\prime}, p\right)  \tag{1.I8}\\
& 75
\end{align*}
$$

5) Transition to the variables $q_{i}(i=1, \ldots, n)$ and $U\left(p_{1}, \ldots, p_{n}\right)$ :

$$
\begin{align*}
& p_{1}=q_{1}+1 U^{\left(p_{1} \cdots p_{n}\right)} \\
& p_{2}=q_{2}(+) U^{\left(p_{1} \cdots p_{n}\right)}  \tag{I.19}\\
& \cdots \cdots \cdots \cdots \cdots \cdot \\
& p_{1}=q_{n}(+) U^{\left(p_{1} \cdots p_{n}\right)}
\end{align*}
$$

The re

$$
\begin{align*}
& \left(q_{1}+q_{2}+\cdots+q_{n}\right)_{L}=\left(\left(q_{1}+\cdots+q_{n}\right)_{\lambda}, q_{14}+\cdots+q_{n y}\right)= \\
& =\left(O_{\lambda}, \sqrt{\left(p_{1}+\cdots+p_{n}\right)_{M}^{2}}\right)_{1}  \tag{I.20a}\\
& \left(p_{1}+\cdots+p_{n}\right)_{M}^{2}=n+\sum_{i \neq 1}^{n} \sqrt{1-\left(p_{i}(-) p_{j}\right)^{2}}  \tag{I.20b}\\
& \left(\frac{\left(p_{1}+\cdots+p_{n}\right)}{\sqrt{\left(p_{1}+\cdots+p_{n}\right)_{M}^{2}}}, \frac{p_{14}+\cdots+p_{n 4}}{\sqrt{\left(p_{1}+\cdots+p_{n}\right)_{M}^{2}}}\right) \equiv\left(U_{\lambda}, U_{4}\right)=U_{L}^{\left(p_{1} \cdots p_{n}\right)}  \tag{I.21a}\\
& \left(U_{L}^{\left(n \cdots p_{n}\right)}\right)^{2}=U^{2}+U_{4}^{2}=1 \tag{I.21b}
\end{align*}
$$

and

$$
\begin{align*}
& d \Omega_{p_{1}} \ldots . d \Omega_{p_{n}}= \\
& =\delta\left(U^{\left(q_{1} \cdots q_{n}\right)}, 0\right) d \Omega_{q_{1}} . d \Omega_{q_{n}} d \Omega_{U}\left(p_{1} \cdots p_{n}\right) \tag{1.22}
\end{align*}
$$

If:

$$
\begin{aligned}
& p_{1}(t) b=p_{1}^{\prime} \\
& \cdots \cdots \\
& p_{n}(t) b=p_{n}^{\prime}
\end{aligned}
$$

then

$$
\begin{equation*}
U\left(p_{1}^{\prime} \cdots p_{n}^{\prime}\right)=U^{\left(p_{1} \cdots p_{n}\right)}(+) b \tag{I.24}
\end{equation*}
$$

In the case of $n=2$ :

$$
\begin{align*}
& q_{1}=p_{1}(-) U^{\left(p_{1} p_{2}\right)}=\frac{\mu_{2} p_{1}-\mu_{1} p_{2}}{\mu_{1}+\mu_{2}}  \tag{1.25a}\\
& q_{2}=p_{2}(-) U^{\left(p_{1} p_{2}\right)}=\frac{\mu_{1} p_{2}-\mu_{2} p_{1}}{\mu_{1}+\mu_{2}}
\end{align*}
$$

where

$$
\begin{align*}
& \mu_{1}=\frac{1}{2}\left(p_{14}+\frac{1}{2} \sqrt{\left(p_{1}+p_{2}\right)_{M}^{2}}\right) \\
& \mu_{2}=\frac{1}{2}\left(p_{24}+\frac{1}{2} \sqrt{\left(p_{1}+p_{2}\right)_{M}^{2}}\right) \tag{I.25b}
\end{align*}
$$

The eq.(I.22) when $\dot{n}=2$ :

$$
\begin{align*}
d \Omega_{p_{1}} d \Omega_{p_{2}} & =\delta\left(U^{\left(q_{1} q_{2}\right)}, 0\right) d \Omega_{q_{1}} d \Omega_{q_{2}} d \Omega_{U}\left(p_{1} p_{2}\right)=  \tag{I.25c}\\
& =d \Omega_{q} \frac{d^{4} P}{\sqrt{1-q^{2}-P^{2} / 4}} \theta\left(1-q^{2}-\frac{p^{2}}{4}\right)
\end{align*}
$$

where $P=p_{1}+p_{2}, q=q_{1}$ (see (I.25a)). The appearance of $\theta\left(1-q^{2}-\frac{p^{2}}{4}\right)$ is connected with the condition $\left(U_{4}^{\left(p, p_{2}\right)}\right)^{2}=1-\left(U^{\left(p, p_{4}\right.}\right)^{2} \geqslant 0$.
6) Generators of the group $\mathrm{SO}(2,3)$ :

$$
\begin{gather*}
M^{K L}=-M^{L K}=\left(M^{+\lambda}, M^{\lambda 4}\right) \\
(K, L=0,1,2,3,4 ; \infty, \lambda=0,1,2,3) \tag{I.26}
\end{gather*}
$$

$$
\begin{aligned}
& M^{x \lambda}=i\left(p^{\alpha e} \frac{\partial}{\partial p_{\lambda}}-p^{\lambda} \frac{\partial}{\partial p_{x e}}\right) \\
& M^{\lambda 4}=i p_{4} \frac{\partial}{\partial p_{\lambda}} \equiv-\xi^{\lambda} \quad \text { (Snyder's } 4-\text { coordi- }
\end{aligned}
$$

We have also:

$$
\begin{equation*}
\left[\xi^{x}, \xi^{\lambda}\right]=i M^{x \lambda} \tag{I.27}
\end{equation*}
$$

The time operator $\xi^{0}$ in "semispherical" coordinates (I.13):

$$
\begin{equation*}
\xi^{0}=-i \frac{\partial}{\partial \omega} \tag{I.28}
\end{equation*}
$$

The eigenfunctions of the operator $\xi^{0}$, periodical on the segment $-\pi \leqslant \omega \leqslant \pi$ :

$$
\begin{equation*}
\langle n \mid \omega\rangle=e^{i n \omega}, n=0, \pm 1, \pm 2, \ldots \tag{I.29a}
\end{equation*}
$$

This corresponds to the spectrum:

$$
\begin{equation*}
\xi^{\circ}=n \tag{I.29b}
\end{equation*}
$$

7) Casimir's operat or :

$$
\begin{equation*}
\frac{1}{2} M^{k L} M_{k L}=\frac{1}{2} M^{k \lambda \lambda} M_{x \lambda}+\xi^{2}= \tag{1.30}
\end{equation*}
$$

$=-\frac{1}{\sqrt{|g|}} \frac{\partial}{\partial p^{\mu}}\left(g_{\mu_{\nu}}^{-1} \sqrt{|g|} \frac{\partial}{\partial p_{\nu}}\right)$,
where $\left\|g_{\mu_{\nu}}\right\|$ is the metric tensor, calculated with

L -series:

$$
\begin{align*}
& \langle L, n, l, m \mid p\rangle=\langle L, n, l, m \mid \omega, x, \theta, \varphi\rangle= \\
& =e^{i n \omega} Y_{l m}(\theta, \varphi)(t+x)\left((d h)_{2}^{l-3} F_{1}\left(\frac{l+3+l+n}{2}, \frac{l+3+l-n}{2} ; l+\frac{3}{2} ; t^{2} x\right) .\right. \tag{1.33a}
\end{align*}
$$

with

$$
\begin{equation*}
|n| \geqslant L+3 \tag{I.33b}
\end{equation*}
$$

^-series:

$$
\begin{align*}
& \langle\Lambda, n, l, m \mid p\rangle=e^{i n \omega} Y_{l m}(\theta, \varphi)(t h x)^{l}(h X)^{i \lambda-\frac{3}{2}} \\
& { }_{2} F_{1}\left(\frac{-i \Lambda+\frac{3}{2}+l+n}{2}, \frac{-i \Lambda+\frac{3}{2}+l-n}{2} ; l+\frac{3}{2} ; t^{2} x\right) . \tag{I.33c}
\end{align*}
$$

plane mares"
$L$-series:

$$
\begin{align*}
& \langle L, N \mid p\rangle=\left(p_{4}-i p \cdot N\right)^{-L-3}  \tag{I.34a}\\
& N=\left(N_{0} \vec{N}\right) ; N^{2}=N_{0}^{2}-\vec{N}^{2}=1
\end{align*}
$$

$\wedge$-series:

$$
\begin{align*}
& \langle\Lambda, N \mid p\rangle=\left(p_{Y}+p \cdot N\right)^{-\frac{3}{2}+i \Lambda}  \tag{I.34b}\\
& N=\left(N_{0}, \vec{N}\right) ; N^{2}=N_{0}^{2}-\vec{N}^{2}=-1
\end{align*}
$$

Functions (I.34) satisfy the following differential-difference equations in the variables $(L, N)$ and $(\Lambda, N)$ :

L -series:

$$
\begin{gather*}
2\left(K_{L}-p_{4}\right)\langle L, N \mid p\rangle=0, \\
K_{L}=2 \operatorname{ch} \frac{\partial}{\partial L}+\frac{3}{L+\frac{3}{2}} \operatorname{sh} \frac{\partial}{\partial L}-\frac{e^{-\frac{\partial}{\partial L}}}{\left(L+\frac{3}{2}\right)(L+2)} \Delta_{(N)}, \tag{1.35}
\end{gather*}
$$

where $\Delta_{(N)}$ is the Laplace operator on the hyperboloid and $N_{0}^{2}-\vec{N}^{2}=1 . \quad$.
$\wedge$-series:

$$
\begin{gather*}
2\left(K_{\Lambda}-p_{4}\right)\langle\Lambda \Lambda N \mid p\rangle=0,  \tag{I.36}\\
\left.K_{\Lambda}=2 \operatorname{ch} i \frac{\partial}{\partial \Lambda}-\frac{3}{i \Lambda} \operatorname{shi} \frac{\partial}{\partial \Lambda}-\frac{e^{-i \frac{\partial}{\partial \Lambda}}}{i \Lambda\left(i \Lambda-\frac{1}{2}\right)} \Delta_{(N)}\right)
\end{gather*}
$$

where $\Delta_{(N)}$ is the Laplace operator on the hyperboloid and $N_{0}^{2}-\vec{N}^{2}=-1$

In the "classical limit"

$$
\begin{align*}
& \langle L, N \mid p\rangle \rightarrow e^{i \sqrt{\xi^{2}} N \cdot p}=e^{i \xi \cdot p}\left(\xi_{\mu}=\sqrt{\xi^{2}} N_{\mu}\right)  \tag{1.37}\\
& \langle\Lambda, N \mid p\rangle \rightarrow e^{i \sqrt{-\xi^{2}} N \cdot p}=e^{i \xi \cdot p}\left(\xi_{\mu}=\sqrt{-\xi^{2}} N_{\mu}\right) \tag{1.38}
\end{align*}
$$

Appendix II
Absolute Value Estimate of the $D^{(-)}$- Function

Consider the function (see (5.14)):

$$
\begin{equation*}
D^{(-)}(\xi,-\xi)=\frac{i}{(2 \pi)^{3}} \int(\langle\xi \mid k\rangle)^{2} \theta\left(-k^{0}\right) \delta\left(2 k_{4}-2 m_{4}\right) d \Omega_{k} \tag{II.1}
\end{equation*}
$$

and let us estimate its modulus in the timeline region

$$
\begin{align*}
& \xi=\xi_{L} \cdot A^{s:} \\
& \left|\left\langle\xi_{L} \mid k\right\rangle\right|^{2}=\left(k_{4}^{2}+(k \cdot N)^{2}\right)^{-L-3} \\
& \quad\left(N^{2}=N_{0}^{2}-\vec{N}^{2}=1\right) \tag{III}
\end{align*}
$$

(see (I.34a)), then

$$
\begin{align*}
& \left|D^{(-)}\left(\xi_{L}-\xi_{L}\right)\right| \leqslant  \tag{III}\\
& \leqslant \frac{1}{(2 \pi)^{3}} \int\left(k_{y}^{2}+(k \cdot N)^{2}\right)^{-L-3} \theta\left(-k_{0}\right) \delta\left(2 k_{y}-2 m_{4}\right) d \Omega_{k}
\end{align*}
$$

Taking into account the relativistic invariance of this line quality we can write the right-hand side in the form [17]:

$$
\begin{align*}
& \frac{1}{(2 \pi)^{3}} \int\left(k_{4}^{2}+k_{0}^{2}\right)^{-1-3} \theta\left(-k_{0}\right) \delta\left(2 k_{4}-2 m_{4}\right) d \Omega_{k}=  \tag{III}\\
= & \frac{1}{(2 \pi)^{3}} \int_{2 \sqrt{m^{2}+\vec{k}^{2}}\left(1+\vec{k}^{2}\right)^{2+3}} \frac{d \vec{k}}{(2 \pi)^{2}} \int_{0}^{\infty} \frac{\vec{k}^{2} d|\vec{k}|}{\sqrt{m^{2}+\vec{k}^{2}}\left(1+\vec{k}^{2}\right)^{2+3}}=
\end{align*}
$$

## References

[1] Bogolubov, N.N., shirkov, D.V., Introduction in Quantum Field Theory, Mosoow, Gostechizdat, 1957.
[2] Bogolubov, N.N., Medvedev, B.V., Polivanov, M. $\mathrm{K} \cdot$, Problems in the Theory of Dispersion Relations, Mosoow, Fizmatgiz, 1958.
[3] Bogolubov, N.N., Logunov., A.A. Todorov, I.T., Axiomatic Approach to Quantum Field Theory, mosoow, nauka, 1969.
[4] Medredev, B.V., pavlov, V.P., Polivanov, M.K., Sukhanov, A.D., Theoretical and Mathematioal Physics, 13, 3, 1972.
[5] Kadyshevsky, V.G., JINR, P2-5717, Dubna, 1971.
[6] Kadyshevsky, V.G., Quantum Field Theory and Momentum Space of Constant Curvature, in Problems of Theoretical Physics, dedioated to the memory of I.E. Tamm, Moscon, Nauka, 1972.
[7] Blokhintsev, D.I., Spaoe and Time in Microworld, Moscow, Nauka, 1970.
[8] Snyder, H.; Phys.Rev. 71, 38, 1947; 72, 68, 1947.
[9] Yang, C.N., Phys.Rev. 72, 874, 1947.
[10] G01'Pand, Yu.A., JETP; 37, 504, 1959; 43, 256, 1962; 44, 1248, 1963.
[11] Kadyshersky, V.G., JETP 41, 1885, 1961; Sov,Ac.Sc. Doklady 147, 588, 1336, 1962.
[12] Mir-Kasimov, R.M., JETP 49, $905,1161,1965 ; \frac{52}{\sqrt{533}}, 1967$.
[13] Kirzhnits, D.A., Chechin, V.A., Soviet rucl. Phys. Z. 431, 1968.
[14] Kadyshevsky, V.G., Mir-Kasimov; R.M., Skachkov N.B., Nuovo cimento, 55A, 233, 1968.
[15] Cicogna, G., Nuovo Cimento, 42A, 656, 1966.
[16] Limic, N., Niederle, J., Raczka, R.; J.Math. Phys., 8, 1079, 1967.
[17] Gradshtein, I.S., Hyzhik, I.M., Tables of Integrals, Summs, Series and Products, Moscow, Fizmatgiz, 1962.
[18] Logunor, A.A., Tavkhelidze, A.N., Nuovo Cimento 29, 380, 1963.
[19] Kadyshevsky, V.G., Nuclear Physics, B6, 125, (1968).
[20] Kadyshevsky V. G.and Tavkhelidze A.No, In"Problems of Theoretical Physics", essays dedicated to the 60 th birthday of N.N. Bogolubov, Moscow, Nauka, 1969.

## Received by Publishing Department

 on March 12, 1973.
[^0]:    +I A oomprehensive review of many attempts to construot a nonlooal fleld theories is given in the monograph $[7]$.

[^1]:    +) Later on the terminus "classical" will be applied to

[^2]:    +5 Some necessary mathematical information about the constant curvature space (2.3) is collected in Appendix I.

[^3]:    +The equation based on relation ( 2.8 b ) has no formally correot "classical" limit. Let us note, however, that from an optimistical point of view on the theory developed here, We have not to exclude the possibility, that particle states with $p_{4}<0$ can have for the new theory such a fundamental meaning as, for instance, the states with

[^4]:    $+)_{B y}$ construotion quentities $\varphi\left(p, p_{4}\right)$ are analogues of out-operators. Therefore, vectors $(2,25)$ desoribe out-states of the free particles.

[^5]:    $+)_{\text {However confer the footnote on page } 20 .}$

[^6]:    ${ }^{+}$The proof is given in the next seotion.

[^7]:    F $\boldsymbol{T}_{\text {The operat or }}(4.6) 1 \mathrm{~s}$, of course, "classical" limit of (4.4) (see (I.37) ).

[^8]:    FThe quantity $-\xi$ is determined by the equality
    $-\xi_{i}=(L,-N),-\xi_{\Lambda}=(\Lambda,-N)$.

[^9]:    $\bar{T}_{\text {In"classical" } 1 \text { lmit }} \varphi^{\text {out }}(0)=\left.\varphi^{\text {out }}(\xi)\right|_{\xi=0}$
    ++ Let us notice that the funotion $D(\xi, 0) \quad$ obeys the differential-difference Klein-Gordon equation (4.3).

[^10]:    +) Similar mathematical origin has the three dimensional relatiFistic ooordinate [14], introduced in the eramework of the quasipotential approch. (See also [15]).

[^11]:    ${ }^{+ \text {) }}$ Eq. $(4.51$ ) (see eq.(2.3) in [4]) is a corollary of the unitarity condition for the extended $S$-matrix and is obtained after $n$-fold variation of eq.(2.35). The arrow under the symbol $\frac{\delta}{\delta \varphi}$ shows that the operation is performed from right to left.

[^12]:    + ${ }_{\text {As }}$ it is well known this is directly connected with the ultraviolet divergencies.

[^13]:    +The oondition $m=0$ picks out the most singular part of the "classioal" $D$-function (4.18).

[^14]:    $+)_{A}$ similar statement is true for the funotion $\left.D(\xi, 0)\right|_{m \neq 0}$ eq. (4.16), for all above considered oommatation functions and propagators and also for arbitrary powers and products of these quantities.
    ${ }^{++)}$In the present report this example has only methodical meaning.

[^15]:    + This additions cannot disappear completely, for this would imply a trivial unit $S$-matrix $[4]$ •

