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Summarz 

In the framework of Bogolubov's axiomatic approach 
problems connected with.the extension of the scattering mat­
rix off the mass shell are considered. In the method of 
extended · • S -matrix the concepts of elementary particle 
interactions accepted in quantum field theory are reflected 
to most complete extent. A specific point for the standard 
extension procedure is the assumption that the ~-momentum 
space in which the extended objects (fields, currents, S -
matrix coefficient functions, etc.) are defined is a flat 
l.linkowski space. The hypothesis that such a choic_e_, of the 
geometry "falls 11 is ·put forward and this choice is actually 
responsible for the known difficulties of the theory connec­
ted-with the problem of multiplying of generalized singular 
functions with coinciding singularities. As an alternative 
it is proposed to use in the extended $ -matrix formalism 
a 4 -momentum space of constant curvature (De-Sitter space) 
v,ith curvature radius ti/to , where eo is a fundamental 
length. The interaction laws of the elementary particles 
with De Broglie wave lengths ~ lo must be completely 
different in the new scheme, in comparison with those prescri­
bed by the usual ;Local· field theory. · 

It is danonstrated that the of~ mass shell;$ -matrix· 
extension in the spirit of De-Sitter · ~ -space geometry 
can be made consistent with -the requirements -of relativistic 
invariance, unitarity, spectrality, completeness of the 
system of asymptot:1,c states·. W:l,th · the· help of a. specific 
Fourier transform in momentum space of constant curvature 
a new configuration 1t -space is introduced, whose geometry 
for small distances ~ • is essentially different from the 
pseudo euclidean one. The causality oondi tion on the S -
matrix, which is direct generalization of Bogolubov's causa-

. lity com:1.tio~, going to _it .in the limit, t0 ➔ 0 , is 
formulated in terms of -this· ·· s -space. on several examples 
it is deroonstra~ed that 1n the developed theory the problem 
,of generalized singular fuµction, products loses.i~s acute­
ness. In particular· the commutation functions am propagators 
in the new scheme can be interpreted as usual (not generalized) 
functions and there is no arbitrariness in any their powers 
am products. 
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1, Extended Scattering Matrix in Bogolubov•s Axiomatic Approach 

Let S be the scattering matrix in·a theory of neutral 

scalar field 'e , describing particles of mass 'Y\'I, • We 

shall consider S in the framework of Bogolubov's axiomatic 

approach to the quantum field theory [1-4] . Let us write 

down in f -representation the standard decomposition of 

this operator in terms of normal products of free out-fields: 

s = L \th-·•d.p,.._ S'h.(P:1,••·•P•):'e(p1.)···'t(p .. ):. 
1'\. 

By definition: 

'f ,J;( ") = d;f;i. \ / 1> X' '-e ( t) c;l y 1> 

1 \- •t>X o'l<d; '<'(t) = -st e. 'f (x) r.lyx 
(21r) 1 

('f?(,p))°" = 'E'(--t). 
From here 

("W'l'\.2.-,r")'E'(?)= o, 

,.., 
't'(-p) = 'b ( 'WI,.,_ f.,) \f (--p), 

owing to eq.(1.4) the coefficient functions (c,f,) 

$" (Psi··· 1 p .. ) in (1,1) are defined only on the mass-shell 

1>'=-rn.J. 

skcf,,--·,1'•) • sk <,., ... ,f,)I ,,. •..• t!. ~· 

(1.1) 

(1,2a) 

(1.2b) 

(1,2c) 

(l.J) 

(I.4) 

(1.5) 

However for formulation of a dynamical theory it is necessary 

to extend the S -matrix off the ma~s shell (see for instance 
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[4] and the. report by Medvedev, Pavlov, Polivanov and 
. . 

SUk:hanov submitted to this conference.) 

When one extends the "scattering matrix"with respect to 

the field", i.e. when the quantized out-fields get classical 

additions and do not more satisfy the free equation (1.J), 

it is supposed. that the extended S -matrix is still given 

by the decomposition (l.l). From here, taking into account 

the stabilit7 of tne vacuum state, the following expression 

for the extended of{ °the mass shell c.f. is obtained·: 

S"S · S+l 0)· .S"'(p,_, ... ,t> .. )= i! (oj S''e(~) ... b't'(p,.) . 

The quantity 

ct<"-) ~"'S 
iJ ( ,,,. ... i> ... ) = ----

6 '('(f,)···b 't'(t .. ) 
s+ 

is called 'Y\. -th order radiation operator. The operator 

(1.6) 

(1.7) 

S(1)( 
..i. -,p) 1s:!:dent1fied with the Heisenberg current operator 

in f -representation 

• c:."(l}( \ • bS s+ • 
-c. ~ -1>," ,\.- =- j(f). 

& 'f(-11) 
In coordinate space we have correspondingly: 

cCl) · £'$ ·s ♦ 
J'(,c)- ;., ~ '1') = ,i. !t . - \' S'fO\,\; (,c) 

j(x)"' ~ ( e .-.-px J; (.t:1) lo 
(211)% l . l "r • 

One of the conditions imposed on the extended objects 

(S - ·matrix, field ·operators, etc.) is conservati.on of the 
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(1.8) 

(1.9) 

(1.10) 

! 

i 

,. 
' 

I 

former covariance properties with respect Jo Poincar: group 

transformations. For instance under translations: 

><'-= )(➔ O. (1.11) 

tne ext~nded operator transforms as ,. ,. 

t Po.. 't'(-?) e :i.. Po..= e.A-fa. '<' ( p) (1.12) 

,. 
( P is the energy-momentum of the system) and the extended 

scattering matrix remains invariant .. .. 
... Po. $ _..;..pa. 

e e · = s. (l~lJ) 

From (1.8), (1.12) and (1.13) it follows that the trans­

formation law of the current j(-p) coincides with (1.12): . .. 
.. Po. -.i.H~. "'f" . 

e 1(.r) e == e, J(,r) 
(1.14) 

In terms of extended c.f. (1.6) .the translation invariance 

condition (1.13) means that any such a function has to contain 

as a factor a four-dimensional 0 -function: 

S"'= b(f1.+··· +-p .. )S:. (1.15) 

Let us express s: in terms of the original c.f. $..,._ 
To do this let us consider in the decomposition (1.1) the term: 

\ d."f1· .. cl? ... s ... (f1.i··· p"): ~ (1>1)··· 'f (f._): (1.16) 

Because of eq.(1.15) the expression (1.16) is identical 

to the following: 

\elf,-:· d.~n, s ... (1>1···? .. ); ~( i>1- ?,+~+-f") ... ~ (,,,.- .P1•~· '"'): . (1.17) 
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Let us make in (1,17) the substitution: 

,1> ... -= q,. ... + k • 
~ 0 i>J.+· .... p... u (~:s.··· j> ... ) 

L. q, .. -= 0 ' 1( = ~ = . 

It is easy to see that: 

d.\. ... d,'l.t, _/I J'I ('I (u ('ft·" q,.,.)) ti 
IL fl\.• °'C\-£ ... "'-'f,"'- 0 cal X , 

,wi therefore instead of (l.17)we have: 

(1.18) 

(1.19) 

\&\ca\,. b(u<ci,--fl,.)) ~ i~ S,J11+~ •··9,11-+ f<):\f(ct,)- .. 'f(<t, .. ): • 
(1.20) 

Comparing (1.20) with (1,16) we get the final result [ 5,6 J : 
5 .. C?s·--t .. )= ~(ti+::~)~d."~ S~(~+k ... 1 ... + ~) 1= 

= ~ (u< fs.··· f .. )) s"'" ( fi., ... 1> .. ). 
(1.21) 

Hence the function s: in (1,15) is given by the relation: 

s I : 'Y\. &j 's" ( .b.f. ... f~) • 
...., "' T· 

Let us note that the dependence of the right-hand 

the identity (1.21) on the Lf. -momenta 'Pi.•• .. f>"-
specific character with respect to translations 

,, .. f-+ t 
in the f -space. Actually the integral: 

s.,Jf)1 ... 1>--) = \ SJ1>1+t .. f"+Pc)cJ."f< 
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(1. 22) 

side of 

has a 

(1,2)) 

/ (1.24) 

' I-

L 

is invariant under displacements (1,2J): 

S'II,( ,Ps. + t ... 't'---"" t) ==- SJ '?s. ... f,.) (1.25) 

c- 'P +--.. p.. u<t .. ---r .. ) 
and the o -function argument 1 = transforms 

)'\, 

according to the s:i.me law (1.2J) as any of the 4 -momenta 

f,i.: 
u (f; ... ..,~) = lJ (,Pi.·--f--) + t . 

(1.26) 

~ 
OWing to (1. 25) the function S.., (.1>r· ,p.._) depends only 

on the momenta differences ,r ... -,pj ( ... ij'"' -1, .. , '\'\-) • Let us 

_agree to call the difference .P.t~1>j relative 4 -
momentum. Evidently, similarly to the quantities -f4 

they are vectors in the four dimensional pseudoeuclidean 

space or Minkowslci space. 

Identities of the type (1,21) which express the trans­

lation invariance of the S -matrix in momentum space, 

have a number of simple properties following directly from 

relations (1.25), (1.26), In particular if we apply the 

identity to the function S ... (-\':1.-+ t • • • '\>ll+ t.) under 

the integral sign in eq,(1.21) then we again come to (1,21) 

( 11 irreducibility11 property), 

Of special interest is the case when the c,f • .$,.(fl···'\'") 
is disconnected, i.e. contains for instance additive terms 

of the form: 

Sm C'\>1···'\'m) S"_.,.., (-r ..... "···-P~) , (1,27) 
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where ff 'YI'\. and S ..,,_""" are lower order c.f. satisfying 

by themselves identities of.the type (1.21): 

S""' (1>,···1>-)"' b (V',..>) 5_ (r~---1'-) 
(1. 28) 

s"-__ (-rl\'l ♦ S."""f> .. )=&(u<'I\--)) {, __ (,p,..+,···1>.) 

(for brevity we have put U (f,···1>-) ii V <""'-) ). 

Let us demonstrate that if the relations (1.28) are ful­

filled the product (1.27) automatically obeys the identi~y 

(1.21): 

Sr,, (1>t···1>-} S"' __ (1>,..u, ... , -p ... ) = 

= b' (u< .. ,) S~ (-1>,···1>-) S
11 
__ ( p ...... ··· -\1,.) • (1.29) 

We note that: 

b(v<-,b(VC"--"'-l)= S'(u<~,s-(u<"!.. V ,..,, __ ,), 
(l.JO) 

or 

b(u<-1b(u<"~-,J .s s(v<'j~b(u<1~) S(u<"·"t-tc)llt.. 
(l.Jl) 

Now multiplying both parts of the relation (l.Jl) by ~ ~ 
$"'(1',···t.,.) Sl\."M(p .. ..-.~ .. ) and taking into account the invariance 

of the functions with tilde with 

(l.2J) we obtain: 
respect to displacements 

S"' ( fs···,, ... ) S,. __ (1> ... •i·-- i> .. ) = & (u'">J. 

. ~ ~(u''it) s_c~+L.r.,.+lc)b (u<"'-:>l) 5
11
.M ( r .... •k .. t"+-lc)c1.",. 
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From here, using property (1.26) of the 

and relation (1.28) we get (1.29), 

u -vectors 

Let us emphasize that from the invariance of the functions 

$..., under translations (l,2J)° and their obvious relativistic 

invariance it follows that they are invariant under arbitrary 

transformations of the 10 -parametric motion group of the 

momentum space (Poincar: group): 

f (4 = /\r' -., f., -t t (4 ( (« "' 0 1 ~ 1 2, ~) (1.J2) 

c \\ A/'11 
fore, functions 

"relative" 

is the 1orentz transformation.matrix). There-

5',. . actually depend on the squares of the 

Lj -momenta (-t>.;.-1>1)/4 (-i.,j- -i,. .. ,""-) 

g" ~ 5~ (.-• (,t:>.;.-,p.;)~ 

" 
) . 

(l.JJ) 

In view of the importance of this result for future construc­

tions let us formulate it·once more: 

if one imposes the translation invariance condition on the 

extended off the mass shell scattering matrix written in .ip-

-representation, then from any connected c.f, S'.., (ft.··· f ... ) 
it can be picked out a fun.ction S.._ (ft•·· -,,.., ) 
invariant under the poincare' group (l.J2) of the 

dean momentum space. 

which is 

pseudoeucli-

In the extended S -matrix formalism the Bogolubov's 

causality condition plays the role of dymm1cal equation from 
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which the c.f. .5)\ Cr,. ... ,p .. ) are determine_d. This 

condition can be written either in differential form 

b:j(x~) = o, 
h'eo~(,c.t) 

if+) (x,--')(L):a'5 ~Q, 
(l.J4) 

or in integral form [ 1--4 ] 

ts 5+ . . 
ll'f ct) ~ '{'•~) =- - 1 (x,.)1 (x:a.) + 

+ e(ic;-)(';) L 1Cx1), 1 (X.i)] +quasilocal terms= 

= - I (,j(ll',.) 1 (x,.)) +quasilocal terms , 
- (1.35) 

the current commutator satisfying the condition 

[j(,c,),1(it,.)) = 0' 
(l.J6) 

,i.i (x,-><z.)ts- !,l < Q 

Rel.(l.J6) is called "locality condition" for the current 

operator 1(x) • 

+JThe symbol !PO means that either ! t> O 

and ; 0 "> 0 , or '! ' < O 
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In the present quantU111 field theory commutators of the 

type (l.J6) have always singularities on the surface+): 

.. 
"5 = 0 . (1.37) 

The product of such a commutator with step function 

9(!,•) = ~(xt- '1<:) , as it is well known [1--4] , can 

be defined only-up to arbitrary quasilocal operators (in the 

causality condition (l.JJ) this is taken into account). one 

has to notice, that in all the formulations of the quantum 

field theory we confront with analogous difficulties, which 

f~om mathematical point of view reduce to the problem of 

multiplying singular generalized functions with coinciding 

singularities. 

This originates, in particular, the famous· ultraviolet 

divergences in the perturbation theory. 

The existence of ultraviolet divergencies in quantum field 

theory have been exhibited at its earliest stages of dcvelop­

mant. Nowadays many physicists are convinced that this deffect 

is of principal character am testifies for the inapplicability' 
of the theory to describe physical processes in small space-time 

regions, or, correspondingly at high -energies and momenta. 

+)Thi~;;;-;:;-;; light cone in the. pseudoeuclidean J-
epace (!,r ::- (lC,-"lC .. )(4 1 f ~ 0,:1.,2, 3) • -Obviously this space is 

invariant under translations (1.11). 

We shall call quantities of type~ relative coordinates. 

They are canonically conjugated to the half-differences of 

~ -momenta, or in our terminology, to the relative 

momenta. 
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There exist a large· amount o{ papers devoted to the so­

called "nonlocal" quantum :field- the·orie·s, · in which from 

different physical ~easons and using different mathematical 

means the interaction of the elementary particles is modified 

in the region of. small De Broglie wave lengths+). A common 

featur~· of these investigations is introduction of a new 

uni~e:rsai ~onstant' 1n' the theory- the fundamental iength fo 
defining the· spaoe~time bounds of the region'in which some of 

the "old" concepts.about pa.rt:Lcles and their interactions 

are riot more valid. 

In -the. present report we would. like to discuss one 

poss:1.ble way_ .of. genera.lization of th~ quantum field theory 

which naturally leads to an appearance in its framework of the 

fundamental length fo . From a mathematical point of 

view the formalizm we· consider w111 ··reoa.ll Snyder's scheme of 

quantized space-time [e-131'' • However the basic idea and 

physical interpretation of_. the .theory we_ construct are 

ess.eAtiall;r .different from. tho_se pf_.'f.e_fs. fa - l~ 1 

+J;"~h·e;;;:ve r;;;:;;-;f ma~ attempts to· construct a · . . . - - ,_. . 

no4oo¥: field. ·~~eories is _;Ten in the. monograph .. [J] 
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2. Transition to Constant Curvature Momentum Space in the 

off Mass Shell Extension. 

In the previous section we considered a number of conditions 

which are satisfied by the extended scattering matrix in 

Bogolubov's axiomatic approach. In a more complete form the 

set of requirements, in accordance with which the extension 

of the S -matrix off the mass-shell is made looks as 

follows &,2,J,4] . 
I. Relativistic invariance. 

II. Translation invariance. 

III. Unitarity. 

IV. Causality. 

V. Completeness of the system of asymptotic states 

with positive energy arrl existence of unique.vacuum state. 

VI. Stability of the vacuum and one-particle states. 

In the axiomatic construction of the scattering matrix 

thechoice of a definite way of extension off the mass 5hell is 

essentially equivalent to acception of a definite way of 

description of quantized fields interactions. Therefore if 

we intend to modify the interaction laws of the elementary 

particles in the region of small De Broglie wave lenghts, 

comparable with some fundamental length e0 (see the end 

of section 1.), then obligatory this must be reflected i~ the 

way of extension of the scattering matrix off the mass shell. 

It is evident that the new extended objects (fields, c.f., 
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currents, etc.) in the region of enargie~ and momenta 9 ~/.1,0 
+) 

will be considerably different from theit'classical" analogues. 

At the same time the difficulties of the old theory, connected 

with badly defined products of generalized singular functions 

with coinciding singularities hav~ either to disappear or toG~ 
essentially reduced. In other words the extension of the scatte­

ring matrix off the mass-shell, effectively talcing into account 

the existence of a fundamental length to ,has to be~ 

singular, than· the "classical" extension satisfying conditions 

r-VI. Then naturally arises the question: which of these 

conditions should be modified and in what direction? 

Presently we have no any arguments based on experimental 

grounds to drop the requirements of Lorentz and translation 

invariance(requirements I. and II.).The necessity of the 

unitarity condition on the . S -matrix, do not evoke any 

doubt (requirement III).-The requirements V and VI seem to be 

also well grounded. 

Let us consider now requirement IV- the 11 classical 11 

Bogolubov's causality condition written for instance in the 

form (1.35). As the quasilocal terms contribute in the point 

5=><1-)(c.=O then it is natural to suppose that the condition 

½ater on th~;;;;;;:= "classical" will be applied to 

quantities and relations in the limiting case t 0 = 0 

14 

should be essentially changed in the region: 

I~ \ ~ to• (2.1) 

Further our reasoning unavoidably has the character of a 

search. First of all let us notice that one has necessarily 

to add to requirements I-VI in fact one more condition whose 

.fulfilment in the extended off the mass shell S -matrix 

is considered usually like selfevident. We have in mind the 

pseudoeuclidean nature of the ~ -momentum space in which 

the mass shell hyperboloid 

f z. - 'YVL,... 0 (2.2) 

is embedded. 

In other words in the usual theory it is silently supposed 

that when the extrapolation off the shell (2.2) is dona any 

of the ~ -momenta fr , on which the extended operators 

\f(f) and extended c.f • .Sn("",··· i>n.) depend, 

becomes arbitrary vector in Minkowski space+). As a result 

because of (1.2a) the geometry of X -space and the geometry 

of , -space (see footnote on p. 11) are also pseudo-

euclidean. 

However the general principles of the theory do not 

+Ji;-;-;;~b~~-;-;ory 4 -momenta fr off the mass 

shell (2.2) are usually called nrtual. , 
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uniquely imply that momentum space should be necessarily flat 

IUnkowski space. In particular the relativistic invar:ia.nce 

condition does not fix the choice of a definite geometry in 

this space, but only requires that the quantities (f•>f-s.,1'a,'f.t) 
should be transformed under Lorentz transformations like 

lf -vector. 

It could seem, if we recall about identity (1.21) and 

connected with it relations (1.25) and (1.26) that the pseudo-

euclidean character of the f -space is a necessary corollary 

of the translation invariance of the S -matrix. However 

in order the translation invariance to be satisfied it is 

sufficient only the fulfilment of relations of type (1.15), 

and equations (1.21)-(1.22) are obtained from (1.15) and the 

~ccepted a priori pseudoeuclidean character of momentum 

space+). 

Taking into account all that let us now formulate the 

hypothesis which in all our further constructions will be of 

fumamental importance: 

The new extension of the S --matrix off the mass shell, 

which gives a consistent description of the elementary particle 

interaction with arbitrary De Broglie wave lengths, should be 

+)The l;tt;;;""7~~ted 1n the explicit form of the volume 

element cl" f = d.-p0 df 
and relation (1.19). 

16 

, in the substitution (1.18) 

l 
1 

based not on a pseudoeuclidean momentum space, but on momentum 

space with constant curvature. The mathematical realisation 

of this space is the hypersphere: 

2 l t. 2. ~ 1. .f f0 -fi-,Pi.-fs + 01.flf = ti 
1.o o 

(2.J) 

in the pseudoeuclidean 5 -space of the variables 

(fo
1
f~,'f>u1'1,f11) . The constant e0 defining the 

curvature of the surface (2.J) plays the role of a fundamental 

length+). 

We suppose that the new extension is conformed with the 

"classical" requirements I-III, V-VI and with causality 

condition modified in the spirit of the new f -space geometry. 

The curved ~ -space, described by eq.(2.J) is called 

De-Sitter space. It can be considered as the closest to 

Minkowski space in the hierarchy of metric spaces. The motion 

groups of these two spaces - Poincarl group (1.J2) and De­

Sitter group (r.6) - depend on lo parameters. 

Both contain the Lorentz group as a subgroup which 

realize homogeneous pseudoorthoF,onaltransformations 1n the 

space (,t>•, f,,fa.,,Pi) 
(1.7) ): 

(see (l.J2) when t • 0 and 

+)some ~~=,-~hema.tical information about the constant 

curvature space (2.J) is collected 1n Appendix I. 
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I /\ 'II fr-= r f" <r,Y• 0 ,.i, 2 ,3 ). (2.4) 

The presence or absence of fundamental length e0 · in the 

theory does not affect at all equation (2.4). This means that 

both in the new scheme and in the "classical" theory, the 

requirement of relativistic invariance (req.I.) may be 

fomulated in the same way and we shall not discuss this 

point anymore. 

In the nat limit l 0 - 0 the relations of De..Sitter 

geometry go into its pseudoeuclidean analogues+). In 'this 

case, evidently,all field-theoretical quantities extended off 

the mass shell in the spirit of the De-Sitter space geometry 

(2.J), have to obtain their "classical" form. 

Later on it will be convenient to use a system of units 

in which: 

-l= c., e.s i. 
In these terms "classical" limit means that we consider 

region of momenta values: 

\,r \ {.C: i . (2.5) 

+)Let us note that there exists one more model of a space 

of constant curvature, which have a right pseudoeuolidean 

limit. It is connected with the surface [ S] : f!-t-1>:-=_- :a· 
We shall not develop theory correspoming to this case, 

because of some physical reasons. 
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It can be easily seen that the mass shell (2.2) can be 

embedded in the space (2.J) only if the oondition: 

,w..'- 6- 1 (2.6) 

is.satisfied. 

We shall suppose that the restriotion (2.6) 1s always 

fulfilled for the masses of t'he obje eta, which are described 

by quantized fields. Then eq.(2.2) is equivalent to the re-

lation: 

(f,.+"l'\1.q)(fii--mi,) ""O , (2. 7) 

where by definition, '\'\'\..,a ✓-'i-m&? 0 • Since on the 

surface (2.J) to any fixed value of 

different by sign values of f'f 
'f there: correspond two 

, then each of the brackets 

in (2.7) can vanish: 

,,,-im,,== 0 

fit -+ 'Wl.., = 0 • 

(2.Ba) 

(2.Bb) 

Let us make now a ph,y_sical assumption: for the free field 

'f (f,,p,,) defined in the De-Sitter ,f> -space (2. J) 

only the condition (2.Ba) is satisfied. In other words: 

2 (f,,- "M.,) 'f (f,-p.,) = 0. (2.9) 
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We introduced a factor of 2 in order eq.(2.9) to coincide 

exactly with (1 • .3) in tlie "classical"· limit, 'WL,' \fl(.( i +) • 

From ·(2.9) it follows that: 

'f(f,f.;) == b (21',.-2 m.,)~ ( 1>,f.,), (2.lo) 

where 'f (,P,fi,) _1s operEJ,tor wh1ch does ~ot possess singula­

rities on_ the mass shell (2_.8a). 

Later we shall oonaider'decompositions of different quan­

tities of the theory in terms of 'f -field products. When · 

doing that each operator 'f (,p,.p,,) will appear in the corres­

ponding integrals acoompanied by •its own" volume element 

(I.5): 

~ .•. o.flf~(,t>,,p .. ). ~. (2.ll) 

(the dots substitute the o,f., all other If-operators and 

volume elements). On the mass shell taking into account (2.10) 

and (r,5), we can write eq.(2,11) in the form:-

+J;h~;;tto;i;ased on re~ (2,8b) has no formally 

correot "classioal" limit, 1et us note, however, that from. 

an optimistical point of view on the theory developed here, 

we have not to exclude the possibility, that particle 

states with flf < 0 can have for the new theory such 

a fundamental meaning as, for instance, the states with· 

negative energies in Dirac's theory of the electron. 
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\ ... d.Uf 'f(f,f,,) ... = \· •• 2c(fi-1)d~ ~ (2f~-2m,,)'e(,p,m~ ... = 

=- \ ... cf'-r b ( f"--m~) 'f (.p, 111,,) ••• (2.12) 

In the "classical" case instead we would have taking into 

account (1.4): 

\ ... cA."f'f{f) ••• = \··· cl1,p 6'(t-'1"1.~)ie(,p)--· (2.1.3) 

Comparing (2,12) and (2,1.3) we conclude that on the mass 

shell the equality should be satisfied: 

~ ~ 'f ( ,r, -m.;) = 'f Ct) - (2.14) 

Let us stress that between the extended off the mass shell 

operators \f (f) and 'f (-p,-f',) there is no more am: 

connection because to each extension a different geometry in 

the tp-spage corresponds. In particular the classical field 

'e(f) is defined for all values of fr , but the field 

'e(f,f-t) , becau·se of (2 • .3), only in the domain 

-f~ i. (2.15) 

The relation (2,14) locks like a "corresponaence principle". 

With its help the commutation relation which should be satisfied 

by the solutions of equation (2.9) can be determined, 

Let us note first that directly from (2.14) it follows the 
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definition of creation and annihilation operators (see [ i) ) 

'f (+) (1) = 'f(f1'nt1t) 

~2fo L-fF' 
(-) ➔ ~f 1>,'Y)t.,) I 

'f C-r)~ b ~◄• _; 
fo fo:: f ~ ... 

Further we evidently have: 

) C"' (J) 
[ 'f(-)( ... ) 'f(+ (➔ )1 = 0 (➔ - ➔) 

,P-1 ' fa 'f I f2. 

(2.16) 

(2.17) 

From here, taking into account (2.16), (2.10) and (I.17) we 

obtain [ 6] 

[ 't'(1>s1f1.J, 'f (ti,~.,)] .. b (-rs,-'l'a) e ( ,p:) b (2 r.i,-2-m.,). 
. . 

(2~18) 

Passing to coordinates (w, f) 
by definition+): 

(see I,lJ) and putting 

'-E'(,r,f,,) a 'f (t.u,,p) , lc.ll ~ 1!:. 
2. 

here is +)'Reduction of the range of variation of w 
connected with vanishing of the operator 'E'(1'1f,) 

1''1 <. 0 (see (2.10) )· 
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we shall have instead (2.18): 

['f(t.>s,~s),'f(tJ,.1fa)] = b(i.,'.l1-f W.1)b(-p,+fa.J~(c.>a,) b (1.~c.,.t~ltp;~ .2nty), (2.19) 

The neutrality condition of the free field 'f(f,f~) 
in the new scheme because of (2.14) is written in form 

equivalent to (1.2c): 

+ . 
'f ( 1>,f11) == '(lff,fy)-=- 'E'(-w,-:p) • .(2.20) 

We shall suppose that the relation (220') holds also for the 

extended -'f -operators. 

In De-sitter f -space (2,J) the components of the 4 -
vector fr , as in the flat space, evidently commute 

identically with each other: 

[ fr ) f..,] = o ,( r· )I -= o, d' 2, '3) ~· (2.21) 

From here and (2.17) we conclude that the operator 

A ( ➔ {♦} ➔ ➔ ~ 
~ ... )d.~ tr: c.fc)'fc->c~),~=\Jkt-' (2.22) 

has all standard properties of the field energy-momentum 

operator. In particular: 
,. ,. 

f.Pr,P..,] = o (2. 2J) 

( Pr . \f (f,p .. )] = fr'<' (f,f~ · (2.24) 
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In this way we have all whioh is -needed to formu1ate con­

dition V in the new ,sohJl!lJ. We can introduce the vacuum state 
C,) ➔ 

\o). with the coDdition 'f - (-f<) \o),,. O , supposing 

that this state is un11ue. We can construct complete -system 

of state vectors+) 

<+) .... (-t) . f ) \ ., l'f (t) ... 'f (1<,. 0/ , (2.25) 

.. 
aDd in each of them the spectrum of the operators P0 and 

"l 
P is positive. The only new feature in 00111parison with the 

usual theory is the limitation (2.6) on the mass of one-particle 

states. 

I 

It is easy to see that the notion of normal product of 

field operator's and the oorrespoDding Wick's theorem can be 

introduced in the new scheme without any principal changes. 

The normal product and pairing of two operators are defined 

by the relations (see [ l ] ): 

'f (fttf.,.) 'f(fa.,f111): 
(2.a6) 

: :'f (fs,T11t) 'f (fa,-p,.,): -t "1{ f,,f•~ '(' ( 't-,f.~ ' 
I I 

+)By construction quantities 'f (-,,,, .. ) are B.Dalogues of 

out-operators. Therefore, vectors (2.25) describe out-states 

of the free particles. 
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'e(fs,f,.;)~(f£,f,0: b(f.1.,-f ... ) 8(-i't) b (1f~ .. -1-m,) = 

== b(fs,-f~) 2)'-)(,i,.1.)· 
(2.27) 

Now in complete analogy with the "classicaln decomposition 

(1.1), we can write the new S -matrix in the form of series 

in terms of normal products of '('( '\','l11t) 
De-sitter momentum space (2.J):_ 

g =. 

, defined in 

( . . (2.28) 

=~ yH1r,···c,(.flf
1 
SJt11f1.,i···f,.,f,..,;): ~(f,,fsv}--'t'(f',.,f&,): 

Decomposition (2.28), by assumption, remains valid also 

after extension off the mass shell (2.8a), i.e. also in that 

case, when the operator 'f(f,f11) 
equation (2.9) am the l.f -vector 

vector of De-Sitter space (2.J). 

does not ·more satisfy 

fr becomes arbitrary 

Let us introduce into consideration the functional deri­

vative of the $ -matrix with respect to the 'f -fields: 

t~S 

' S'E'(p,,f111) b 'f (,t\,f2 .,) • • • I> 'f (f"• i'ii") (2.29) 

setting by definition that: 

t> 'f( f,f,) <"( . ') 
::: O f,f . 

S '<'(f',~) 
(2.Jo) 
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(see (I.17) ). Recalling now, that the requirement VI 

is satisfied, we obtain from (2.28) with the help of (2.JO) 

expression of the c.f. in terms of vacuum expectation values 

of the radiation operators (see (1.6)) 

s~ (f11f"'"j••·i-P .. ,r .... )= 

= .1. <(o\ s~S st lo> 
')\! ~'t'(f.,f,i..,) ... b~(f .. ,,P .. ,) 

(2.Jl) 

As the appropriate analysis shows the formulation of the 

present theory is simplified if extended off the mass shell 

S -matrix obeys the suppl.ementary condition; 

ss 
S''f(frf•) 

= 0 ' "t f ~ < 0 • (2.J2) 

This condition has dynamical character since it is imposed 

on the S -matrix. rt is consistent with our definition of 

the mass-shell-eq.(2.8a) and of the ohoice of the free equation 

in the fo:rm (2,9). 

Later we shall suppose condition (2.J2) satisfied assuming· 

that the theory obtained does not become too poor+). Then 

the extended off the mass shell c.f. (2.Jl) have to satisfy 

the relation; 

----------
+)However confer the footnote on page 20, 
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.S'IO. (f~1f1., i ··· ~ f ... ,,p .. .,) = 0 , (2.JJa) 

if even one of the forth components ,p ... ,. . is negative: 

f~.,<0 ( ... :- -1,2, .•. , ""-) • (2.JJb) 

Let us introduce the current operator ( su. (1.8) ) 

• S'S ST, 
j (,r, f>t) = A, S''f(-p,p,,) 

From the unitarity·of the extended 

ment III) we have: 

(2.J4) 

S -matrix (require-

bS st -f S bSt = 0. (2.J5) 
t:lf(-f,f•) S'f(-,P,f11) 

From here and on base of (2.19) it can be ooncluded that 

the current operator (2.J4) satisfies neutrality condition 

analogous to (2.20): 

j (f,f't)-t = j (-f ,.p.,) (2.J6) 

1 
The variational derivatives of the 

of '(' -fields commute by definition and-therefore the 

current operator should obey "solvability condition" [2,3,~] 

S -matrix in terms 

b ~(?,,.._~ _ b j(p~,faJ = l [j (f.,1'~,.) ,j (fa,f,..,)] • 
o'ffti,ta1 b~t, P1,) . 

(2.137) 
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Let us turn now to the problem of formulating the trans­

lation invariance condition of the theory (requirement II)• 

Taking into account eq.(2.2.J), we have the right to conserve 
. A , 

the former interpretation of the operator pr as generator 

ar the translation group (1.11). Then from (2.24) it follows 

that the free field operators 'f (,P,-p11) 
displacements (1.11) by the usual rule: 

transform under 

A A 

\ 
.., Pe1. - ~ Pa. . fQ. 

e. 'f(f,1'11) e = e· ~ (f,f,,) · (2 • .JS) 

As in the "olassical".theory we postulate this transforma­

tion law as well for the extended operators (see (1.12) ). 

Because of requirement II in the new scheme the translation 

invariance condition for extended $ -matrix (1.1.J) have to 

be conserved. From here it follows immediately that the ·c.f. 

.St\. 1n the decomposition (2.28) must be represented in the 

form (1.15): 

~(f.1,f.1,.ifa.afalfi•·· :f,.,f...,)= 

=- 6'Cf1•fL+·•·+_-t ... ) s~ <1 .. ,1>~ .. :••· if ... _,1 .. .,) 
(2 • .J9) 

It is reme.rlc&ble that 1n the new formalism, as in the 

••classical" theory, the quantities $~ ma7 be expressed 

1n terms of the origina.l. o.f. In result new ident~ties which 

are direct generalization of the "classical" ones (1.21) in 

th~ case of De-Sitter spaoe a;pear ~) 

+JThe proof is g:1.ven_in the next section. 
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From the translation invariance of the $ -matrix am 

rel.(2 • .J8) it follows also that the supplementary condition 

(2 • .J2) is translation invariant and the current operator 

transforms in a standard way (see (1.14) ): 

A A 

..tPa. _.i.Pc,. ~fa... 
e. 1<1>,f11)e = e 1(f,f11) . (2.40) 

,J. Identities for the Extended $ _:-!-.l_atrix Coefficient 

Functions. 

The derivation of the above mentioned identities almost 

literally repeats the correspondent procedure in the 

"classical" theory (see Section l, eqs. (1.16) - (1.21) ). 

First of all let us pick out the "',tf.. order term from 

the decomposition (2.~3) (see 1.16): 

sc(Jlfi"il1lf .. s ( f,,fn,··· j-f> .. ,t,,.)~ 'f(fs,f111}••lf (f .. ,f .. .,)~. (J,l) 
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Now consider the expression (see(i,17)): 

\ c;(, .af•··· r:1.Qf 11. s l'\ ( fs.,,P:1.11 j · · • j f ... ,.,, .... ) • 
(J.2) 

~ <r•···H)\_ __ ( 11c,. ... ,. (1 ... ,u 1,1 ... ,~ .,, •... ,.) \. 
. : 'f f,<--) ' ~1. ,u'' (r,e,u· •/•, 

... '\f> .. E- , 

where V (f ... -r .. ) 
is De-Sitter space vector, given by 

rel, (I.2la), 

Because of (2,J9) the integrand in (J,2) is defined on 

the surface: 

f,+1>.a.-+··· +,r ... =- 0. (J,J) 

Therefore we may put the U' -veotor in (J, 2) equal to zero+). 

That proves the equivalence of the expressions (J,l) and (J.2), 

Further, proceeding again in complete analogy with the 

"classical II oase, (see (1.18) ) we substitute in (J. 2) 

t,. = 9,4, (+) -k ( .i.,. -i,'2,. .. ""-) 

{c., 1J(1'1···f .. ) 
(J.5) 

' 
where 

u<r•···P-) 
is given by eq, (I,2la) and the vectors 't,t 

satisfy the suppleroontary condition (I,20..),Taking into account 

+Jrn five dimensioml form: 

UL = ( 0>-, 1_) - (J.4) 
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(I,22), we obtain the following result (c,f,(1,20) ): 

<c1.J1 1J1. b'(u'"•···"")o'. ) '{1·-- °' ,.... , ') 

) cJ.Jl IC ~ ... ( q4~t>f<, ('{l+) ~),, j .•. 9.,.Et>~,(q,.CtJ l<),,) • 
(J,6) 

' :lf(qllqtlf) •• • ~(q .. ,C\ ... v)! • 

As eq,(J,6) identically coincides with (J.l), the rela­

tion holds (see (1.21) ): 

S.,. ( fs,fs.'li ···; f .. 1f .. .:) = 

= b ( u<,,--,,,.)o) ~c:t.Ui S ... (1>1<+) t, < fpj ~).,; ... ; p,.+tc, (p .. ~t)v) = · 

== o(u''···r•~ o) s ... (J. 7a) 

From (I,17) and (I.2la) we get: 

~(u<,,--1>-~ o) = ( ~(ti+• .. ♦ p .. )~)" 0 (f~ +··· + -p,.). c,.a) 

From here and from (2.39) and (J.7a) we obtain the analogue 

of eq. (1.22): 

I ( I )~ s S.,. = ~(p1+···+f .. )M "' (J.9) 
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Therefore: 

. S""(-t>1.,f1..,i··· p ... ,f.._") = 

-,) If ..... 
:. S'( f1.+·-·+ f .. )(~(t1+···+ r•t s ... (-r~,fni···if .. ,,p .. .,) • 

(.J.7b) 

It was our 

(.J.7b)+). 

goal to prove the identity (.J.7a)-

It should be clearly understood that validity of relations 

of tre type (.J. 7) for the c.f. of the decomposition (2. 28) 

garantees the translation invariance of the scattering matrix 

when it is extended off the mass shell in the spirit of the 

constant curvature f. -spaoe geometry. 

Between identities (1.21) and (J.7) one may display a far 

going analogy if group theoretical considerations are involved. 

For instance under displacements (I.9) in curved -f -space 

the 'f -dimensional vector V (f-t-·· f' ... ) , which is argument 

of the O -function in (.J.7), tra.DBforms according to the 

lQw (I.24) (soe (1.26) ), am simultaneously the function 

S .... (ft,f,t.,;---;f .. ,,P...,) remains invariant (see (l..25) ): 

-1-)It is evident that 1n the "classical" domain the identity 

(.J.7) tramforms into (1.21). In particular (see I.20b), 

~(f1+·-·+f.)~ -+ ~•'YI. (J.lo) 
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S..., (f,~>t, (f~t+>f,)lf j · • •; ,p,.t+) t. (p11{tlfi),,).: 

= st\. c f1., f1. .. ; ... ; -f~,f..,) • 
(.J.11) 

We shall. prove relation (.J.11). Let us first note, that 

from (I.11), for arbitrary 4 -vectors 1' , -f< and l, 

the equality takes place: 

(f(l-)t )t+) t =- J\i,.fc (,t>tt){-f<ijt f,)), (.J.12) 

where At,~ 
t depend on 

is a Lorentz transformation, which para.~eters 

and ~ 

Then taking into ll.ccount the relativistic invariance of 

the extended function S.._ (requirement• 1) we can write: 

S"" (,r,,1>1-,i·•·i P.,,f .... )=- S ... (1\-p,,f • .,i-·· i Af> ... ,f .. ,;) (.J.l.J) 

(here /\ is an arbitrary Lorentz transformation). 

No~, using (.J.12) and (.J.l.J), the left-hand side of eq. 

(J.11) can be identically transfo:x,ned: 

$ ... ( p,.,.>L, (fit!~).,; ... ; f,.1+1t,(f,.l>lt)~): 

= ~ l.Qk S ... (<r,1tt&}ttik~ f,~t)<+>k,),; ... ;(p~i)<dk, ((p,.itt~}{ti\t).) = • (.J.14) 

:. ~lllKZ,.(A,} f,.(~l+)t}),lf,~k~ t ).,i··· j /\ ,,11. (f .. l•>llc(.>t)),(~ .. (t)(ltl41&)).,) : 

= \ctftk $~ (f,l♦l(ll-(ttt),(fil+(lrb-i t~fr··, p11lt\(IU+)f>), (-t'n~ (.«.a4t~). 
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The substitution: 

k&)t- k (J,15) 

in the last integral, owing to Cr.lo) and (J.15) leads ~s 

to an expression, coinciding with the right ham side of 

(J.11). 

-From the relativistic invariance of the functions Sk 

and rel.(J.11) which we just proved, follows that quantities 

~ \ are invariant under §Ibitrary tranafonnations (I.6) 

of De-sitter group SO (2,J): 

sJ ti,t•"i ···; p .. ,f .. ~ = s ... c"r•, (i\fi)., j ••• i ("p .. ). (t\r,.)~. (J.16) 

Therefore these functions depend on. S0(2,J) invariant 

scalar products of the type: 

f .. of3o- f .. f;+ -p.;;.,f1'1"= (,p.;)L(,f:j)L 

s"" = s~ c ... , f .. )L (fj )L ..• ). 

(.,i.)j = -1,2, •.. 'k_): 

(J,17) 

With the help of (I.9) it is easy to show that (c,f,I.20b): 

(,p.;,)L. (,p-:>\.:::. ~ 1- (,p~(-),p.j)'-.' 
(J.18) 

Therefore 

s~ ... s""( ... <t"'<->1l···) (J.19) 
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Substituting (J.19) am (I.20b) in the identity (J.7b), 

we have: 

S ... ( f1,f111: ... ~ f .... t .. ~ = 
""' I 1,.., (J,20) 

= b'C,i,+•·+f .. )L'Yl,""2 ~-<f1rE->'f>t)-z.] s"' ( ... (f..:Htj)"= .. ). 
k•t&I k♦ t . . 

Let us recal~ (see section r), that the "classical" 

functions 5"" are invariant with respect to Poincar; 

group (l.J2) of MinkOWSk:1. f -space and this fact is 

reflected in eq. (1.JJ). comparing·(l.JJ) with (J.19) and 

taking into account (J.20), we can 1nterprete the extension 

a~cepted in the new scheme, as a transition+) to 11 curved 11 

relative momenta with the condition that the conservation 

lClW of the total 11 -momentum _has usual nclassica1 11 form 

f 5,6] • As we shall be convinced later in Section 4 in 

such an approach 

+Jif the "curved" relative momenta are defined in accordance 

with eq.(I.25a) - (I,25b), putting 
. - t4),P,- ('lt,1>j 

C\LJ- C4<+(4j 

( ~..:.,. i ( f~• ~ ½ ~(fi-tf;t) , r) :J (fj + ½ ~(p, ... fjf L), 
then it is not difficult to show that: 

(f1.Hf.t • ( 9 •jl"") 'l,ij)~ • 

In "classical" limit this relation, evidently, goes into 

equation (f ... -f~ )2- = 1f '\\ • 
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·,·:-

also the relative coordinates 5 (see the footnote on 

p 45 ) which are canonically conjugated to the relative 

momenta change in essential manner. Let us now continue 

discussing the properties of·identity (J.7a). 

First of all we notice that this relation is "irreducible" 

in the same sense as it •-is "irreducible" identity (1. 21) 

(see· Section 1. p.7.). That is if _the integrand 

S11 Cti1t1k1 (til!k)yi··· i ~k,&,,.i-k).,) in (J. 7a) is itself written 

in a form of. an integral multiplied by a b -function 

using (J.7a) then we again obtain (J.7a). Indeed, because of 

(J. 7a), (I. 24) and (J.11) we have:. • 

51\, (,t>~k. (f1~k).,; ... ; (f11+k). (p11i- k)y) = 

= b' (u<,,---p .. )<t> k, o) S,J\>1,f .. ,i ---;1> ... ,,p ... ) (J.21) 

Therefore, 

~ ct!l1c S .. (.p1&1k,(t.&1k),; ... ; f .. wk ,(f11+kJ't) = 

- (J.22) 

= S"' ~d.Jlko(u<,1 
... ,~t+)k,0)-

But from (I.18) and (I.17) 

\r(u<•····r"l+>k,0)~14- \t;(tJC"-·':-k)ctn.k = ! 
(J.2J) 

which proves the "irreducibility" of (J.7a). 
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Let us now consider the case, when the c.f. 

·S,.c-r:,f•vi···i f .. ,f,w) contains disconnected components of 

the type (c.f.(1.27) ): 

S.,... (fi,f1..,; ... ; f ... ,.p ... ~) S,._""' <1>wi.,1f .... 1.,; ···; f .... , t-.."), (J.24) 

am each of the c.f. $._ and Sn_,,.._ 
identity of the type (J.7a): 

satisfies 

s_ C-r1.,i\ .. ~ ... ; ,t, ... ,,f>.,. .. ) = 

C"(u<,,-.. , .. ) :\-; ( ·< = o , o,;:,.,.,. f1,t1.,i···ii> ... ,-p ... ,1 (J.25) 

S "-""' ( p,..+ .. , .p,..~.,; · .. : ,p ... ,i>"~-= 

= s(u<t .... ,,. .. , t•\ o) s" __ ( f-,, 1>,,,♦4 .,; ... ; ,p,.,-f1,..,). 

It happens, that it is sufficient the relations (J~25) 

to hold in arder the disconnected component (J.24) also 

to obey the identity (J.7a): 

~Ct11,f • .,;- if .... ,t---.;'> s,. __ (p ........ , , ... -+4., ; ... ;11 .. -p .. 1) ,.. 

- --- (J.26) 
= b (v <r,-·r:) o) 5.n (M1,i ... f,. r ..... )S~_,...(f111•11P .... ,.,;-j p • .r,..;,. 

It is clear that eq.(J.26) is a direct generalization to 

the case of De-sitter 'f -space of the "classical" formula 

(1.24). The derivation cf (J.26) goes over the same pattern 
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as the correspondent reasoning in Section 1~ 

First from (J.8) and (I.17) it i~.~easy to obtain that 

(see (l.Jo) ) 

b(U(Pa·•·P-: o) s(v(r ... +<,••·) f ... \ o) =-

= S(u<P1···p ... ~o) b(1J(Pa···P-~ u(P ... +1,---,-p .. , (J.27) 

Further, using (I.18) we write (J.27) in a form analogous 

to (l.Jl): 

t (u Cp,--r ... \ o) S (uc, ..... ,. .. , ,p .. \ o) ~ · 

= b (u(P,··· r .. ),o) ~dJ1k b°(u(,, .. P-2~)ic,o) S(u(P ... +a·c:+r~ ,~)~8) 

Finally, multiplying bbth sides of (J~28) by 

- ~ S __ (f.,,p,.,;••·i p .... r-.0 S., __ (~*,f ... -u., i··· ;-f .... ,-p..,) 
and taking into account (J.21) and (J.25) we obtain eq.(J.26). 
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4. Configuration Representation. Locality and Causality 

Condition. 

Let us make a Fourier transformation of the field 'e(-t>,f,c) 
defined in ne-Sitter space (2.J), using the basis function 

(I.JJ)-(I.J4). If we introduce <'!\-y) as universal notation 

for these functions, where -; is one of tha sets 

(L,'"-,e.,-m..) , (A,'"-, t, 'l'K-) , (L,N) and (A,':) 
we shall have: 

t~f/& \ <:;l~>c1!21>~(1>,f.t).a\('('!.)· (4.1) 

If \(> ( ,p, 1''1) satisfies the free equation (2.9) then 
. vi'. 

in the right-hand side of (4.1) we shall write 'E' 0 (J) 
Therefore, taking into account (2.10) and (I.5), 

\f
0

is);~~ )(~lf>~(,p~~)8(f"-'\'rl")~(f7/nt.,)d~,p. (4.2) 
(.2tip . 

In the case when as basis functions -<'.!If) the "plane 
~ 

waves" (I.J4) are chosen the operator 'f (J) owing to 

(I.J5)-(I.J6) satisfies differential-difference equation of 

"Klein-Gordon" form: 

2 (KL.-'YVla,) 'f (-~L),. 0 ( L-H.-,o, J = (L,N)) 

(4.J) 

2 (l<l- --M") 'f {"5 .• .) = 0 ( I\- su·iu ,~-= ~,\
1 
N)). 

Now applying to the free operator 'f (.p,,r.,) simultane-

ously two operations - Fourier transfarm (4.1) with. "plane-
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waves" 

}( 

(I.J4) and translation transformation with parameter· 

we have: 

,t 

@te>"z 

" .. 
{ .... Px -"'"Px 
) {; 11>> e '€( t,1'")e ,L{lf' =-

-t c / I ..i.f>x ~ 
"" c_2

11
fa. l '-S f) e 'e ( f, 1'v) ct~ = 'ex ("!;) 

.-..i:t. 

(4.4) 

Here the .operato;r 'f x (!,) depends essentially on 

two variables 
.i..cx 

X. and !, as far as the functions <1lp) 
and <z.. r are different mathematical objects. This 

phenomenon has no analogue in the "classical" theory. The 

point is that in the usual formalism both momentum space and 

the space of the iarameters of the translation group (1.11) 

are pseudoeuclidean. For this reason the plane waves in -f -
space, the quantities <'"t l1>) and the plane waves e ..t,p"'-

which realize :representat.ion of the group (1.11) have the 

same form: 

<1 I --p> = e. ;.,p ~. 
( 4 • .5) 

As a result, instead of eq. (4.4) we geft): 

~,c..,J.-(~) = _L { t~~1> eA-,tX'f(,t>) d.;f s'f~;~x) (4.6) 
. (.-2.fa- ) 

It is useful to keep in mind that the plane wave in 

"classical" -f -spaoe, can be oons:1dered either like 

simultaneous eigenfunction of the gener~tors "!;(" • ...i. ·: ( 4 ,7) _J::':_______ Pr 
+ The operator (4.6) is, of course, "classical• limit of (4.4) 

(see (I,J7) )• 
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of the ·transformation (1. 2J), or as solution of the eigenvalue 

problem for the operator of the 11 ~ -interval squared 
11

: 

"!.f. = - ( 2- '\I. 
-a~)' 

(4.8) 

which plays the -role of Cas1m1r's operator of the motion 

group of the flat f -space. In the latter case 

.:.(;r)\~;lf) ="<'~It>, 

where the necessary type of the spectrum: 

A= 

l;,t > O _ -timelike region 

t 
~ = 0 -light cone 

f/ < Q -spacelike region 

(4.9) 

(4.10) 

is obtained if unitarity of the considered representation of 
. I 

the Poincare group (l.J2) is required. 

Let us also recall, that the representations of the group 

(1.J2) which correspond t_o intervals ~t -3-0 , are labelled 

by one more invariant 

- ~ . '3 ~o=·"""' -'?>fo 

~= 
. l~ol 

eigenvalue of the time operator 

"'tt\l'O..Y". (4.11) 

When one -goes to De-Sitter f -space the "degeneration" 

of the J•lane waves, fixed in rcl.(4 • .5), is removed, As a result, 
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,there appear two Fourier transformations: one of them like 

before is connected with decomposition in terms of matrix 

elements of the translation group.(1.11) - usual plane waves, 

and the other uses as basic functions the quantities <'-;\,p) 
(see I.J4) closely connected with the matrix elements of the 

unitary irreducible representations of De-sitter group 50(2,J). 

rf we apply a translation w1 th parameter GL , to the ope-

ra.tor (4.4), which is obtained a.s a. result· of simultaneous 

notion of the two mentioned Fourier transformations, then 

the obtained result oan be rj,jpresented as "displacement" to 

n ,1ua.ntity Q. of the "index" X , keeping !, constant: 
A A 

;. p(l. <S'\.IX - .(. Po. cn-vt 
e 'e;c (-;) ~ = 'e X+Cl (~)• (4.12) 

The invariance of !. under displacement transformation 

in rel. (4.12) gives a hint that this -variable can be used 1n 

the new apparatus as analogue of the "classical" relative 

coordinate :; = X1-".(. • 

Let us consider like an example commutation relations of 

the type+): 

a) [ '('><
0

~(~), ~(\/'>A.t( o)] 

~ n..t 
b) ['ex (;),~x (-;)], 

+½he ;;.;u~ !-- is determined by the equality 

-~i:_-= (L,-N),-~,..= (/\,-N). 
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(4.14) 

(4.lJ) 

t 

where by definition+)~ ~ 
a...k( '- .,4'Px <r-4( -~Px 

~X Or= e ~ o)e_ 
(4.15) 

\fd(o) = __L ( l('(f,~;'_) iASl,. • 
8trl~ ) -

Simple calculations using (4.4), (4.15) and (2.18a) 

demonstrate that both commutators do not depend on X 

i.e. because of (4.12) are translation invariant. They can 

be expressed by the fo~lowing integrals*): 

~ <NL . :, 
['<'.x (~), l(')( ( o) J = 
. . .• (4.16) 

s ; 2)(J,o)-=- .::..!. ( c(~jb)E(fo}0(2p.,-2'h1.'f)J..slp 
1, ('2.tr)'5 ) I 

a.d ~ :, 
('ex (~), ~,. f!,)J = 

(4.17) 

= 1 ~(~,~) = ~!)1 )(<~ \,p))£(tJ b(.2f,,-2nt.,)~~. 

Comparing (4.16) with the "classical" commutator 

relation 

[ ind. -.t ]',f If (X-.1), \(> (~) -= -:[ 2) (><1- Xa) , 

+J 1n11 01assioal 11 limit ~ 'e ;:;a(o) = 'e~(~) \ !,=O 

(4.18a) 

++)Let us notice that the function .2)(~1 0) 'obeys the 

differential~ifference Klein-Gordon equation (4.J). 

q 
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it can be concluded, that quantity ~ -in (4.16) plays 

the same role as the relative coordinate x"-Xa. in eq.(4.18a). 

Actually,substituting in (4.18a), x~-x , x,-Xz = ! 
and taking into account (4.6) we get: 

(cexcnd;(;), ~,.<M±(o)] ~- 1 2>(~) • 
(4.18b) 

Obviously the "classical" analogue of the relation (4.17) 

is the equality: 

-.t ....:.t :-1 [ -~ ...J. l ~ llfx (;),fx (-;)y 'e(rtJ),'f(x-!.)j= :[ 2>(2!,)• 

Therefore in (4.17) we have to interprete ~ 

of the relative coordinate. 

the 

(4.19) 

as 11half" 

What is-Y-nature of the new coordinate ~? The appearance 

of ! in our formalism is directly connected with the 

solution of the eigenvalue problem for the Casimir's operator 

of the group SO (2,J) (see (I.JO) - (I.:34) )+). If one 

compares (I.JO) and (4.8) it is easy to notice that this 

operator is a direct geometrigl:J. generalization of the operator 

of the ¼ -interval squared (- :.,. )L . Moreover, as the 

quantity (- !,, )& is Casimir' s operator of the motion 

group of Minkowsld.'s 1> -space, then its substitution with 

the casimir's operator (I.JO) in the transitim to De-Sitter 

--------
+)s1m11ar_-mathematical origin has the three dimensional relati-

vistic ooordi:ca. te [ 14] . , introduced in the framework of 

the quasipotential approch. (See a1s o [ 15] ). 
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1' -space is.a natural step from group-theoretical point 

of view too. In the "classical" limit evidently: 

- i- ~r (~~" ✓\~\ ;fct) ~ - ( :f)'" · 
Comparing spectra (I.J2) and (4.lo) we see that L-series 

(I.J2a) .goe.s into the,timelike region jl>O , and /\­

series (I.J2b) int_o the spaoelike region l2. <O of the 

pseudoeuclidean "!, -space (see also (I.:37) ). 

we would like.to e~phasize that.for "distances" ~ 1. 
(in normal units ~ t0 ) the structure of the new !, -space 

is essentially different from the geometry of the "S-spaoe 

in the usual theory. In particular,: as it is seen from (I.:32), 

the boundary between the "t1melike 11 L -series and the 

11 spaoelike 11 I\ -series+) can not be more.described by 

equation of type (LJ6). So the light cone is "smeared". 

A remarkable property of the representations, corresponding 

to L-series,is the· existence in these representations of a 

+>we ha--;;;-the right to -;;-all the discrete L -series 11 timelike 11 

not only for reasons of "classical" correspondenoe, but also 

because the spectrum of the time coordinate ~. in our 

case, is always discrete (see (I.29b) ). In this context 

the word •spaoelike" applied to the oontinuous /\ -series 

can be connected with_.the continuity of an arbitrary oompo-

nent of the coordinate operator "5,- (I. 26). 
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supplementary SO(2,.'.3)-invariant - the sign of the discrete 

eigenvalue of the time operator ~. (see (I.28) and (I.29) ) 

[ 16] 

I\'\, ,~ \ = invar. (4.2oa) 

Relation (4.20a) is a direct generalization of eq.(4.11) 

an,! evidently nave to be taken into account when the causality 

rrlnciple is formulated in the new· scheme.• 

A direct calculation using eqs.(I.JJa) and (I.J4a) demonstra­

te:; that in L -series 

N~ - ,....,_ ml - N. 
Therefore, eq. ( 4. 20a) is equivalent to the following: 

~= 
\Nol 

invar. 

Let us prove that the commutation functions 

(4.2ob) 

~(;1 0) and 

.:~{s,-~) , defined by (4.16) - (4.17), vanish in the "space-

~" region ; -:= ~/\ • 

Let us first calculate 2)(~">.0) 
am (I.5): 

.:c>(~,_,o)= 

• Because of (1.J4b) 

( _J~ +.ii\ 
\~lEC-p~s(2r.,-2.\'lt.;,io(f~-i)(p'l+.p-N) o5f' (4.21) 

t. l .,.1 .. . 
wrere N = N

0 
- N = 1. · . Taking into account the relativistic 

invariance of (4.21) and the fact that E(fo) is odd function 

of -fo we get the desired result: 
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~ (~"',o) = 

_ -l4t-4.A 
= _1 <ic-r.)0(2r~-2l'>l.,)2&(p~.i)ctp.r.f.ptl.f,.(1'.,--Ps) = o.c

4 22
) 

8trJ.i.) • 

Similarly it is proved that: 

2)(~",-~")= 0. (4.2J) 

Let us now demonstrate tlla.t there is another way to 

obtain the commutation function 2>(!10) , defined by 

(4.16). Namely one oan introduce the relative coordinate~ 

as a variable canonically conjugated to the "curved" 

relative momenta: 

1J (f1ft.) ('42.11-1-ft,f& 
1=f1f-> = -r,-1-r-a. (4.24) 

[ri= ½_ (f1'1+ ! ~(f.t+f~)~), r1 = ½ { fz~T ½~(f,+f&t~)] 

(see (I.25a) - (r.25b) ), where f 1 and fz are.the 

arguments of the \{' -fields in the commutator (2.18). Let 

us consider. in connection with this the integral: 

~ ( "'(f,+fa)X 
(21Jj ) e_ <''t \q)df4ic;Cllr~ (\f(p,,f,.,),'f(fa,i>a't)] • (4.25) 

It is clear that 1n nclassical" limit when 
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this expression goes into the commutation relation: 

[ 'f(x-t-½), 'e(x-J)]= ! :t>(~). (4.26) 

From the other hand, if we substitute in (4.25) the 

commutator (2.18) am integrate with the help of the S' -
furx:tion over ,Y.t. , and then taking also into account 

(4.24) and (4.16) we obtain: 

..J._ ( ... (,r,+-f'a)>C - -
(2tr)1 f (~ \9)d~,dJ2t,JI(( f•1f1.,),'f (fz,~.,)] = 

(4.27) 

=-~1 \<:'!,lf1) <¼J2,," t(f;) b(2..p1.,-2m1t)= "t ~(~10). 
Thus the same commutation relation (2.18) for the free 

field operators in f -representation originates different 

in form but equivalent in their content commutation relations 

in configuration space: (4.16), (4.17) and (4.27). 

All these commutators possess a specific localitz 

property - they vanish for J from the "spaoelike" 

series: 

/\-

-.t ....:it] 
[ '(')C (~), 'e,c ( o) = O , (4.28) 

~ -J:. [~J< (~), 'ex (-~)] = 0, (4.29) 

_L ( /Ct,t~)( I (laPi-(i1f,.>~11r.d~J'<'(p,,p,1), ~(r,,P•v~: (4 • .'.30) 
@if J -; r, ... ra. = o , 

.,:-' . 

if ~==-~I\ and X is arbitrary. 
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Let us recall that in the "classical" theory, both for the 

free operators and for operators, describing interacting 

systems, in particular for the current operator (1.9), the 

locality condition has the same form and is reduced to 

vanishing of the correspondent commutator out of the light 

cone (see for instance (1. J6)). It is tempting to suppose 

that also in the new scheme one+) of the equalities (4.28)-(4.JO) 

can be taken as a pattern when·the locality condition on the 

current operator (2.J4) is f~rmulated. rf we prefer relation 

(4.Jo)++), then the locality condition on the current operator 

in our formalism is written in the form: 

-( i(1v,p..)ir 
)e. <~ I t .. f,-t,fz1.tnr,c!%[Hr11f111),1(rz,fiz.,)] = o, r,:ri. - (4.Jl) 

if !="5,.. and X is arbitrary. 

+JThere is no any guarantee that the aiuivalence of the relations 

(4.28)-(4.Jo),which holds in the theory of the free 'f -fields, 

is conserved_ after transition to more general operators. 

++~he reasons for such a choice are mainly technical: there 

1s in (4.Jo) a complete aeparatipn of the variables to 11 rela­

tiv_en and -"~bsoluten, both in configuration an~ momentum 

space, which is very convenient for calculations, taking 

into account the translation invariance of the theory. 
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Relation (4.Jl) is translation invariant since only 

the arbitrary parameter X varies in it under transformation 

(2.40). 

In "classical" limit we obtain from (4.Jl), in complete 

analogy with (4.26), the standard locality oondition for the 

current operator (1.10), equivalent to (l.J6): 

[1(x+l),j(x-!)]=O 1 (4.J2) 

if ~'<'O anl X is arbitrary. 

As it ~swell knaNn relation (4.J2) in the usual theory 

is a corollary of .the Bogolubov's causality condition 

(l.J1) and the "solvab1lity condition" [2,J,4 J • .As far as 

in this scheme we already postulat·ed the locality condition 

in the form (4.Jl) and the "solvab1lity condition° has the 

form (2.J7) then naturally the question arises: how the new 

causality condition has. to look like in order that from it 

the locality oondition (4.Jl) to follow, when eq.(2.J7) is 

taken into aocount? Recalling that in the new _!; -spa.oe, for 

ntimelike n values ~ L = ( L J N) , the sign of the oomponent 

N
0 

(which coincides with the sign of the discrete time) 

is relativistic invariant (see (4.20)) we oan put in complete 

analogy with (l.J4)+): 

+Jrt is easy to see that in •classical" limit eq.(4.JJ) goes 

1n tre causality condition (l.J4), written in terms of 

"relativen and "absolute" ooordinates: 

~j(x+{)=O 

S'f (x- }) ' 
if ; ~o , 

50 ( )(: 
')(1+ X.z 

~ 

)(;. arbitrary, 

, ; :: x,-x2.) • 

;\ 

\ 
c ..i.(r1+r~)x / I rar•-('I• 1>&. ~ 
~e ,~ ~•+f2. l 

'( · \ ('\ In - 0 f b J f
1

,:f""' dJLr,c;\J'p.i.- (4.JJ) 
6'ef fa,f2.,) 

if ~~o X- arbitrary. 

The symbol 

context: 
~>ro has the. following sense in our 

1) either -; = ~i_=-( L, N) and si9'1'\. N0 : $,d..,,'\'1.)O 

2) or "!:. !;/\ ... (l\,N). 

Later we shall consider relation (4.JJ) as causality con­

dition in the developed field theorl• we shall suppose that 

the extension of the S -matrix off the. mass shell, based on 

De.:.Sitter momentum space, should be consistent with (4.JJ) 

( the amlogue of the "classical n requirement IV;~-see section l). 

Similarly to (4.Jl), equation (4.JJ) is translation invari­

ant. If we substitute in (4.JJ) '!; with -~ (see (4.D) ), 

put -; = $A in the original and thus obtained relations 

and subtract them from each other then -because of 11solvab1lity·· 

condition" (2.J7) we obtain the locality condition (4.Jl). 

With the help of a similar procedure it is not difficult t~ 

demonstrate that: 

\ e..i.(frtf.i.)X< I ("•f1-(41f.') c:t.Dr,cl.12 .1. S'".S s T:: 
~ r,+r2. ~ &'ff-t,, p,.J olff-p .. ,p,,1-,) 

- < i(r,+Nx r2.r,-r,rz. . . 
-- le <;I r,+r,. >c1.0,..~2.J(p.,pN)J{r1,fa.,)+ (4.J4) 

Al ) ( ..i{ri+f..).>r r1r,-r 1f1 :.f). I fl [ ] 
t"\-No Jt <;l r•+~ >d r,ClJLf£ j(r,,p,.,),j(r,,f11)j t···' 
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where 

e(N.) = e(~) = { : , 
')\. '> 0 

'Y\.<0 
(4 • .35) 

and-- tre dots at the right hand side indicate that here in 

principle could appear supplementary- additive terms, which 

could be caused by a possible ununiqueness of the product of 

9(No) and the current commutator (confer with the 

quasilooal terms in (1 • .35) ). It is clear that investigation 

of products of this type will allow to judge how singular 

15 the new off-mass-shell extension, based on the introduction 

of funl.amental length in the theory. We shall come back .to 

discussion of tliis problem 1B Section 5. 

Obviously-, rel a ti on (4 • .34) generalizes the "integral 11 

causality condition (1 • .35) of the usual theory. Commuting 

explioi tl;r the· currents and performing ide.ntical transformation 

we can write the right-hand side of (4 • .34) in a form of a 

specific chronological products 

~e4(f1+f.a)X<~I raf,-(41f,)ctil,,.J.%. ~z.g s-t: 
(4•+(4~ s 'ef.fi.,f.i.,)~ff,,f1.,) 

f .A{p,tp.))C ·. . 
=- t:,(No) f · (;\tf,-t4•flz)4.U.,,Jl2r2j(f1,f1v)1(f.,fn)-

~,t~2. · (4 • .36) 

r,lCPi+wx "' . . -e(-No) }e. <1 l~ar,-r•rv>A-Dr,clOr,j(fa,f''l)j(f,,f,.,)+ .. ·=1 

r,+r~ r ( 4r,+f&)1 . . . . . 
a- ~ )e. <';l~ri-e,ra.)~,JJlpL 1(f1,f,-,)j(f&,fav)+·" r, ... r2. -
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Let us now·cons:l.der as an illustration, the application 

of the '5-operation, defined in (4 • .:36) 1 to the free 

'f -fields •. N.otice first that the step 8- function 

(4 • .35), which appears in relation (4 • .36) 1 has· the follovline 

Fourier decomposition: 

'JI" 

0(-n.) = 
.. ( ... w-
-;;; } e 

-Ti 

otw 

½-~ _;.(. (4 • .37) 

Further, taking into account (2:26)-(2.27) we obtain: 

1j {(~ \ ;<ri•f,)•<~ I ('. ~:~;") •Hl11,'JJ\,. 1'(11,,11,~ 'f (f,,r, .~ • 

◄ ~ •(i\+,P.)x( l('l&f1-(41{>c.) 1Jl · , n "'( '\ ·( \ . 
::, """J £ ~ ........ ~- "- :r ~u-r .. : '\ fi1f1-,i '( f.i1'Pav/: + 

(2WJ ~•+r<~ 1 _ ·· ( 4. JS) 

.. 
+ ¾ ( t.i.(fs+'i.)x J. Jl,O .-Anb \; (ts,-f~ e<t:) b(2tu-2my). 

l2ir1 ) ,1 , .. 

• [ 8(-n) (~ \ t4af1-fftf9 + 8(-n)~ ~\ (4&f,-t41i'a)] • 
('1+((-i. tt,+ t41. 

The last integral in the right-ham side of (4.J8) can 

be written in the fonn: 

<
2
:)1 }&.a, 8(-r.)0(2f~-2 m~ [ e(n)(5 l1>) + 8(-n)<s \,p)] = 

<>, C->c, :\ (+) ~] -1 Cc) ,\ = ~[e("'-).U . J,OJ- 0(-n)2) (1,0, = T.2) (~,o,, ... 
(4 • .39) 

where 2><±>(~,o) are the positive and negative 

frequency parts of the commutation function (4.16) which 
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define the normal pairings of fields in configuration 

space: 

<-) . \ r. .a 2S rso)-=~-s <Jl.o)eC:-p)b,2,p,-2n1~d. -e= 
, (2v) r r 

-~t .... -t 
= ~ 'e,c (~) 't',c (o) , 

I I 

ffi H A ( (: 

(4.4o~ 

2i (~
1
0)-=-l>(-~,o)=~ fll,P) e(.p.)'b 2f.,-2my)a121' = 

t 
(4.40b) 

. .... ~t ) 
::. -"'- 'fx (O) 'f X (~ • 

I I 

As the quantity ' 2J (~p) in (4 • .J9) is even function 

af s , we can use the "spherical" basis (:C.JJ) for 

its calculation. As a result we shall have:· 

_z'(~ o)= ..!. ( (.>.,~,l,-vn.lf) clfl,p · (4.41) 
I (2w)" .) 

{ 8(tJ).* 2)<\w,°f) ... ( e{w) * ~c->cw,f) 1 \ } , 
w=-w 

L 
where .>. = lA , and with * we d_enote the 

"' convolution operation of the function 8(c.>):. .! - and 

2>c-}(w,¥) ~ 8(-w)~(2.~w~~-tfa., -2.rn,,) 
2 

~~-•t. 
on the oirole lw I ~ '31' : 

y 

&(w) * .2)->('4>,i) = .i,{ J.w' .2)C-)(1J~-t\dw'= . 
l 2. ) ia c..,-Co)' . TJ 

-:J ·c:r-r- --1.E. (4.42) 

- ,t i 
- 2 ~f+""-.. ~-.Il---+-w--i~-

2. 

-~ ~.a=~,~-
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Now, with the help of. (4.42) we finally get: 

( ~nf = 
21'.·h;o)= ~l' )<!l'f) 2 ... w~<•f•~2-,-'-< . (uJJ 

where 

- ,4 ( 
- (2-rr)" } <tl,p> ,u1., 

<'~11>> 2(1',-""•-'•) ' 
, because of the already mentioned 

C?\Cc.) cc) 
symmetry property £J (-s,o) = 2) (-~, o) can be considered again 

as the "plane wave, (1.J4). 

Coming back to the initial relation (4.JB), we can 

write: 

TT' { ~ ) ,..('Pt-t-f>.a)X ('4a'Pi'-tf•f.i._'\ n_ n ui( '\ r )~ -
I 'f 3 e (J \ . 1/ c;I. 1>,J.ufa. '- f1,f1y/ 'f\~1fl, -
) (211) (Ii+ (42. 

~ ·c +fa>ll' . l (4.44) : :{-' e fl <s \ ~f•:f•f>-)dilfiJllfJ. 'f(t1,f.c,)'f(t\,f1Y)f +. 
c2,>' r••rl. 

.. (<)( :'\ 
+ :rl> ,,o,. 

For comparison let us write the oorresporiding "classi­

cal" formula: 

.Mt -t 11 e...t i ..... t i ,4 9,. (')( ) r, [ 'f (IC+f )'t' (x-} )J :: \0 (X-t- .2) 'f (X- .z): + :f .U ~ 7 ( 4.45) 

where 

~Ys)=8(5.~<ls)-ef~.)2tti)= ~ (;n ~y-P .(4.46) 
(2n) J -n,2._f•--4-~ 
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Therefore we are convinoed that the quantity we obtained: 

2'r~,o):e(N,).i"l~,o)-8fN.):lf?~,o)= -J,; ( <'J l,p) "'~t 
· (2v) )2(f.,-m't-4l) 

(4.47) 

is closely analogous to the causal Green function (propagator) 

of the "classical" theory. 

From (4.J9)' and (4.40) it is easy to demonstrate that: 

'T'"{'fi~)'fJ((o)l = 8(N.)'fx(~)'(',iCo)+ 8(-N.)'f,c (~'fl((-s;)= 
::> j (4.48) 

,1 C•) 
=: 'f,c(~)'fic(o)~ -t- ~2) (~ 10). 

-'\, 

A slight modification of the calculations which leads 

us to (4.J9) and (4.41) gives one more-formula with 

the 1j -product (see .(4.17) ): 

,.1 \'f11{1)'f.(-J)}.:: 8(N.)'f,c(~)'f,k~)-8(N.)'('J((-J)'f,i("~)= 
(4.49) 

A M ·\ 
= : 'fic<"~)'eic(-'~): -t- :r .2) (~,-"~/, 

where 

<~) -t ( l ~2. ..tfl-, • 
~ (f,-"S)= ~ )'<~lt?,, 2(f,,-'l'I'\.-~£) (4.50) 

We would like to emphasize that the relativistic invariance 
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of all considered ~-products is guaranteed,:f'irst by 

eqs.(4.20a)-(4.20b) (in the 11 tiinel1ke 11 L -region) and . / 

second by the locality condition (4.28)-(4.JO) (in the space­

like A -region). 

The 11 integral 11 causality condition together with the 

recurrent relation for the radiation operators+) 

b-nu.S 

~ 'f(•f11,P-, .. }" b 'f(-1>,.,,p .... )~'effM11f .. -.,.,) 
S+= 

·c4.51) 

f"s =[-- s•]( b .. \ 
!i'fff1,f1~ -- -~'«-v .. ,f .. ~) \ 'i> 'ft=1> .. t,,f .... ,,.,) - -4 j( fM+11 -,, .... ,,,,V 

_ __,,·· 

and the identities of type (J.7) maT be used as a base to 

obtain a chain of connected integral equations for the o.f. 

(2.Jl). Doing that it is convenient to write (4.J4) in f 
representation: 

+)Eq.(4.51) (see eq.(2.J) in ( 4) ) is a corollary of the 

unitarity condition for the extended $ .:.matrix and is 

obtained after "Y\, -fold variation of eq.(2.)5). The 

arrow under the symbol .!.. shows that the operation 
~'f 

is performed from right to left. 
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h"S 
S'eff1,tiv)b'ffr

1
,i\.) S+ = - ff1•i'1~)j(tuf,.,) + 

f4,+ t.v I \c- r ... ) + - - 0 I I f'1f1-C'44'PA. ~f o'i (211)\ (-f,tf2-f4-f.i)(~\----____;...) 0(-N.)dfl.T. · (4.52) 
~lf,1-f,t ('411-r42. · :> 

. <s I rlf4'-r:f: , c!Il1), d.G.,: [ j(-r:.-r:.,), j(,p;,.p;~)] + · .. , r; ... ri "/ l"t . 

I 

where r1 1 c,i .. / C41 

(I.25b), the volume element 

the form:+) 

I and (', 

c:H2
3 

are given by eq. 

in S - space has 

_ {2(L+1XL-t2)(L+½ )t(N~{) d'W, ~¼!=IL= (L,N) 
d.fr = 

!. 21\V\\t)fkTA S'(N~i)(t/1 , "!°S=~I\ = (A,N) 

and by definition: 

t c-
(2tr)" ) <~ \cv> • .n.\ <s 19,'> =- s c <i-', "'') 

+J 
See tm footnote on P• 45. 
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(4.5J) 

(4.54) 

\ 

( the integral in (4. 54) denotes summation over · L -series 

and integration ewer A -se~ies). 

Let us calculate with the help of (4.52) as example the 

o.f. S1 (f-1,,t>,0 ;.p;a.,f2 .,) • Taking into account (2.Jl) and 

using the oompletenessof the system of states (2.52), we shall 

have+): 

S,_ tf1,,P1.,j-f;uf1~= 

:- .!. fi,,:tfa'I j_ ( st,tHf;-A>;.f;)Jfl JJl ,J.G. I (t; \ ("a1'1-('411'll )• 
2!~( ? ('J:i)'I ) '11 . 1 I ! fi ti (414:-r1 

:f-1t-f._JL 

··{ 8(tJJ(s \ ti~f:-(4,:f{) \ <o\j(,r:,,:.,) \n)('Y\lj(fa',f;~)\o)+ r,+ra f 
. _.-"" 

-t (}fNo)<~\r!-r:'-r•'rl / L,. <'o\j(f!,f;.,)\-n)('l\\j(f;,f~.,)\o)}' (4.5!i) r,1-r,. ~ 

where 

< o\ j (f.',f[.,)IY\> = <01 j (f:,rt .. )1 k,, ... ;t) (4.56) 

'and L d!notes summation a:al integration over all 
'\,> 

intermediate states. Then, using relations (2.40) and 

(2.32) it is easy to obtain ( compare W:lth (6] ) that: 

+)For simplicity here we do not talce into account the 

hypothetical additive tezms, denoted by dots in the causality 

condition (4.52). 
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_, ... b ( ... <0 \j(f,flf)lk,, ... ,k,)= \-p,.\ (,r+Pc,.))<ol )0fl,j~,CJ")r( .. k ... >, 
➔ .... ➔ .... ( 

· <~, ... k.., lj(t,t,) lo)=· lfit\ S'(t-t Pc .. ))< k,,...,\t-._ \ )r1n, j(~,~.) lo), 

(4.57) 

where 

k, +··· + k" = ~ .... > 
(4.58) 

Since -Pr is a 4 -vector in ne..Sitter space 

(2.J), its ~ -square is obligatory bounded: ,t> 2
~ i 

Therefore, owing to (4.57) and (4.58) only suoh intermediate 

states contribute to the right-hand side of (4.55), which 

invariant mass obeys analogous limitation: 

1 
Pc .. ) ~ i . (4.59) 

Substituting the matrix elements (4.57) in (4.56), taking 

into account (2.36), the spectral condition, the requirement 

(4.59) aal integrating over ;pl and -'fl.a' with 

tbe help of the b -functions we get: 

s ( · '\ ,1 b(-f1+,f..) ( <-,' dJl 
1\-ft,fn ;-,Pu1>1.•J = - 2! (.2w)'1 ) \ f11 ~ 

{ 8 (N~~~ \-1>> 8(◄-,r1) 8(,r0) e(,r) + 
(4.60) 

+ 8(-NJ<~ \1) 9('1-f) 8(,Po) e(,p")J~(-f1'),(Yf, 

60 Ir -

where tbe spectral function is introduced, in.a standard 

wa;r: 

~(f'")= L1 I~ <0 1 j( 9,q,,)d.!21 lk11 .•• -(.>lz. (4.61) 

(the summation in this formula is performed only over inter­

mediate states with total 4--momentum f ). 

If we notice now that: 
~ ~v 

ec1-,,)ecf1),.f'f = ~ar:i. f>(2v-1-r2.-.2r.,) f.1 ::e I, = ' ~ ... _, 
,t • 

:: \de4 S'(2f,i-2(i.,) c{ .Qf , ( ~" = ~-t-e42. ) , 
0 

and using (4.47) and (4.54) we can write equation (4.60) 

in the fo:rm: 
. . ( 

S/f1,f,,.i-f.1,f.10= -•1 b(f,t_f ... ) ~clrt~crt) <s \f1) clJl~. 
2. 2,a 

O 
. 

J4 i e,( I. (4.62) 
• ..!..., ) <~ \1>'> a = - .! 'ii(f,+?,.) ( Y(~') C4 

, t2-) 2(, .. -tt..-~r.) 2 ! 2iri. ~ Q(r,.,-~'1.,..9 
Hence we proved, that in the new scheme there exist 

an analogue.of the Kalen-Lehmannn spectral representation 

for the c.f. SI'\, . The most interesting feature of the 

new representation is the cut-off of the spectral integral 

or the finiteness of the spectral function. As far as in 
:. the "classical" theory the integration over r is 

carried up to infinity and usually the integral is divergent 
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on its upper limit+~ the result we obtained should be 

considered as an indication for a possible softening of the 

difficulties connected with the ultraviolet divergencies 

in the present approach (see also Section 5•)• 

5. The Problem of Generalized Singular Function Product in 

the New Scheme. 

It was mentioned in Section 2 that one of the goals of 

our approach is to obtain a satisfactory solution of the 

problem of multiplying generalized singular functions with 

coinciding singularities. we shall report some of the results 

obtained in attempts to investigate this problem. A detailed 

discussion of this question will be given in a separate paper. 

Let us begin with one-dimensional example from the usual 

theory - the product of the step function 9 (~ •) and S (~•) 

which is a good illustration of the discussed difficulties 

[ J ) 

As far as: 

+JAs it""l;weli known this is directly connected with the 

ultraviolet divergencies. 
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,t-00 

8(~?= -~ ( 
.2,ri. ) --

then formally we have 
.. .,., 

..,E.~• 
e 

E-""t:. 
c:LE, 

e(~•)&(~:) ={3-: ( ~ 1 E;(~•) = oo 6(~•). 
211"' ) E-"'L } --

(5.1) 

(5.2) 

A more rigorous approach 

theory argUIOOnt s gives: 

based on generalized function 

e(-~j b (~·) = C b(r)' (5.J) 

where C is an arbitrary oonstant. 

The analogue of e(~ 0
) S(~•) in the new scheme is 

tre expression 0(n) On,o where e(')1.) is the 

step .function (4.35) with Fourier decomposition (4.37), 

and SI'\,')'\,\, is the Kronecker symbol. Therefore 
'Jr 

a(~)btt,o = li ~ t ~~~i, ) 8\,,o = 
-Jr J 2. 

-f "° 

= {2~i \ E~~t 
-o-

,1 1 - ~ - A 
-1 ➔ e2 l7,o - 2 8'\'1,o (5.4) 

C~~=E is the new integration variabl_e). 
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The conclusion which can be drown by considered example 

is that the functions ' 0(-n.) and s'l'l,o are, 

contrary to their continuous analogues, ordinary (not 

gereralized) functions and their product is defined uniquely. 

rt turns out that a s1milar situation holds in more 

general case. For instance the ·commutator (4.16) for zero 

mass particles is given by the expression: 

ZJ(~,o)i = -1 ~ C"' 
- E(~)- OL -i.' 

2,r L+2.. 1 

'h'l:O 

l')'\.1). L+3, 

L =-1.,0,1, ... , 

where 

{ 
:i J .i.t '1'1.) 0 

£ (,n.) = 0(Y1..)- 8(-n.) = -i, ..i,t 'Y\...(. 0 

(5.5) 

(5.6) 

In the "classical" case we could have correspondingly+): 

~(~)r = 
Wl•O 

.. 
2,r E.(~o)S'(~:l) (5.7) 

+)'The condition -m = 0 picks out the most singular part 

of the "classical 11 2) -function (4.18). 
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A comparison of formulae (5.5) and (5.7) demonstrates that 

the first one has a completely.wel.l defined mathematical sense 

and can be interpreted as an ordinar1 product. of ordinary 

functions+) and in the same t1me the second formula is a 

typical for- the "classical" field theory example of multiply­

i~ of singular generalized functions with coinciding singu­

larities. 

It should be clearly understood that the appearance in 

our formalism of discrete (quantized) variables """"' am 
L is direotly·col'}Ilected with the boundedness of the 

new f. -space in t1mel1ke direction in the sense of 

De-Sitter metrics. owing to the same reason the "plane 

waves" (l • .34a), corresponding to the t1mel1ke L -series 

are square integrable funotions (see the footno~e on P· 79). 

The last circumstance will play an important role in the­

example++), which we consider below. 

+J A similar st;eme~1=7rue for the function .:O{I, o) I , .... .,.o 
eq.(4.16), for all above considered commutation functions 

am propagators am also for arbitrary powers and products 

of these quantities. 

++)In the present report this example has only methodical 

meaning. 
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Let 

• • .,,..1; 1'\, 

Jx Ct)= : ~)( C;): (5.8) 

is a "bilocal 11 operator, constructed of the fields (4.4). 

From (4.29) it is obvious that: 

[jx (~), jx (-3)] = 0 if :5 = 5 I\ o:nc! (5.9) 

X arbitrary . 

rt is clear also that: 

<0 \(jic(~),jx(-~)]I?)= (o\[j(~),j(-5)]\o), (5.10) 

where 

j ( ~) = jo ( ~) : : 'f 1'1. ( ~) : • 

Now let us consider the integral~ 

_9t(f) = 

= A, ~<~l,r)S(No)(o\(j(~),j(-s)]\o)<~lf)cA.fls I 

(5.11) 

where cl. fl 5 is defined in (4.53). 

In the "classical" limit this quantity coincides up to 

a constant factor with the real inrt of the one particle 

pr~pagator, calculated in second order of the perturbation 
•+L 

theory, in a model with : 'f' (x): interaction 

(11.~2) • As it is well known in this case 
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the oorrespondent integral is divergent. The reason is that 

the product of generalized functions 8(J•) and 

· <('o\ [j(1),j(-~)]lo) 

is not integrable because of coincidence of their singulari­

ties 1n the point 5 = 0 

Let us investigate the oonvergence of the integral (5.11) 

Noiioe first that owing to the locality condition (5~9) 

the continuous /\ -series do not contribute to the 

integral: 

~(f) = .i.l_ \2(L+i)(L+2)(L+ ~)S'(N~i)"-''N . 
L=-i 

· <~df )8(H~(0l[j(IL),j(-~i.)]\o)(~L\f) · 

Using the Wiok's theorem we easily obtain: 

<0 \[j{~a.),j(-~1-)Jlo) = <0 l['e·ct3', ~('-~L.)]16>= 

= ~,(!f{cir>cJL,-~L.))~- c~'t-~a.,~~~}, 

where 

_i_ 2) (-)( - o'IAJt ..d. 

(5.12) 

(5.13) 

4 ~, ~)= 'f (~) ~ f-~) = 
(5.14) 

=- c
2
'w, ) ~lk~~ 8(-k.) b(2k.,-2m~ J.Qk , 
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and ( cl ( 1/. If)) 

:t) (-) (5,-::~) - 2) (-){-t;, ~) = .,25 (~,-~). (5.15) 

Let us now estimate the modulus of the function (5.12), 

assuming for definiteness that f~)O and making 

obvious majorizations in the integrand (compare with (II.2) ): 

I ~ Cr)I t: 
oo . ( ➔ (5.16) 

~2 (L+1){L+2)(L-1-])k0 1[j(t;1.),j(-~L)]lo)\ )~ (f;-1-(rNYT,L-
3 

L=-1 

The integral over J.N can be calculated explicitly: 

.... . 

) ~ (f,i'"-1-{r-N)fL-l=-;[Ju3 (f)-JL+/1'1]= 

(5.17) 

: -7 £1L JL+2 (,p~, 

where [HJ C 
0 

J,., (.y) = ~ (11'•1" - (5.18) 

- (i' r(L+2) r·(L•2,..!.;L+2.5 :,r:) 
- r( 6) .z." 2. ~ L+-

2. 
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and fj,L is the finite difference symbol. It is 

easy to see that expression (5.17) as a :t'unotion of L 
. has no singularities for L= -i ,.O, f, . ... 
In the region L >> 1 

I JL•2 (,r)I ~ f cY.t<11.r¼. (5.19) 

Taking into account (II.7) and (5.17) we obtain from 

(5.16) the following inequality: _ 
' . 00 

\~(f)\f c&,L(L+1)(L+2)(L+¾) l6LJL+.ir~l­
f L=-i 

.(r(L➔2)\'Kr·· l .1 1:. a. ~ 
r(L+.½)/ z~(L+3,z,L+ 2 ,m,;)], (5.20) 

where C collects all constant factors. rt is easy 

to see that s.eries (5.20) are absolutely convergent. Indeed, ,.._ 
let us choose sufficiently large number L , suoh 

that when L > L .we can substitute the expression 

under the sign of summation in (5.20) by its asymptotic 

value. Then, introducing the notation M (,i:, 2
, L) for 

the finite sum from L = - 1 to L = L and taking 

into account (5.19) and (II.8) we obtain: 

\ I C . oo -3(?1-i) -Y. 
Q(f) .f -; M(f~L)+ ' 0"\! L L. 

2

. l6L L z.} •· (5.21) 
~ f (f) .t.L>t. 
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The infinite number series in the right-hand side of (5.21) 

are convergent far ""- 9 2 because: 

°'" -!(;-1) \~(_i._)I == \~x ctx ~ 
t (5.22) 

- l (n-i) 
~ ( - :a. elx < oo - - )x - 2,,.. 

L 

( Cauchy criterion). Therefore, the function \~(~)\ 

ls bounded and the ini-tia.l integral (5.11) is absolutely 

convergent. 

The considered examples testify, apparently, that the 

constant curvature ,f -space extension of the s -
matrix off the mass shell is really "less singular" than 

the "classical" extension, using flat Minkowski momentum 

space (compare section 2 ). It can be expected also that 

in the aa.usality condition (4.J4) the number of hypothetical 

additive terms, denoted by dots in the right-hand side, 

will be reduced to a m±nimum+i A great success of the 

theory would be a unique, selfconsistent determination of 

the mentioned terms because this would allow to answer 

the question: which kind of interactions among the quantized 

fields is realized in the Nature? 

+)This additions cannot disappear completely, for this 

would imply a trivial unit S -matrix [ 4) 
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~.2!!!sion 

In this section we would like to formulate a program 

for future investigations in the framework of the approach 

we proposed here. 

1) A detailed analysis of the generalized causality con­

dition (4.J4) (including the question of the arbitrary 

additional terms) should be carried and on its base the 

mcrooausality condition on the scattering matrix 

should be ·obtained. 

2) Construction of perturbation theory and developing 

appropriate diagram techniques. 

J) Three-dimens:l.onal fonnulation of the tw_o-body problem . 

' in the spirit af the q~sipotential approach [ 18,19, 20] 

a.ni development on its base a phenomenological.theory of 

interaction of ha~rons with De Broglie wave lengths 

~ lo 

4) Obtaining of different qualitative predictions in the 

given scheme, based on the fact, that the . ~-momentum 

of arbitrary virtual particle obeys the restriction 

f'2:!:. 1. . In particular this is related to 

the one~photon pair (e+ e-) annihilation, lepton 

pair production, deep inelastic processes,etc. 

/ 
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Appenlli..l• 

Some Relations Used_tn the co·nstant CurvaturEl 

~ace Formalism 

1) The hypersphere equation (2,J) in units t .. C = i 0 = i 

,Oz._ 2. Z 2 '2. .A 
Io 'f'1 -fz. --p3 + f4 = 'J. 

(J,l) 

In five-dimensional form: 

Lt-1 % f1.,PM:. 1. (I,2) 

( 
oo 't't 1.~ 2 2. 3 3 L ~ "\ 
~=~ =-~ =-~ =-~ =.1,s =-OforL=t:M;, 

or simply 

f~= 1 . 

The lire .element: 

ol.~i. = dfz + 
~2. 

1-1'2. 

(c{f·= <i,r.-o.-pz., fol'\='= fo&-p,-?clp), 
The volume element: 

ctS2t = 2 ~(ft-1.)c:{ 51'. 
2) The motion group~) 

I M 
PL = ;\ L. P11 

(De-Sitter group .SO (2,J) 

( L, N:: b, I, 2, J, 'I) 

I.N HK ,1 I. I\N 7 =7 IIM K 
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(I,4) 

(I.5) 
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Lorentz transformations ( S -rotations around the ,r.,­
axis): 

I 
f'I == f't 
'Pc= /\r y 'fy ( r,Y= o)i, 2, 3). 

(I,7) 

"Translations" to a 4 -vector tC' ( 5 -rotations in 

the plane Cr Lf) ) : 

· fr'= "r ""(t)r11 + Ar "(€)f,, 
(I.8) 

1;-= /\" "(~)f11 + /\,, lf(~}pq. 

In explicit form: 

1t == \'\>l+) ~)r =, fe4 t ~r ( fy - !~~), 
f; = Ctft)t),,,. - i'·€i"' r.,'v· 

(I.9) 

By definition: 

4' (--) £ = f C+)(-t). 
Obviously, 

cJ.fl f ::, J_ _Q f C+} fi . (I.lo) 

Properties of the "translation" operation (I.8)-(I.9): 

f(±)O::: f I 

(1.11) 
-p(-)'f> = 0 ' 

t\(t,.)A(t.i)l\-
1
(e,tt)&.a)=Lorentz rotation. 

+JThe representations of reflect~ons are not considered. 
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J) "Spherical II coordinates ( W J J., Q J'f!) 

-fo-:: ~~ C.U ,kf 
f'f= ~wctx 
-f1 = s~Jvi~9U7)¼?, f1.= skf ~"~s;,.~, fl=s~(..1/)8 

(\c.olf1r 
1 

0fXLOO, 0.!:8.!:Jr, Ob 'eb2ir) 

11Semispherical 11 coordinates 

fo== ~'1-tf: ~~C.U 

fr,= ~1-tfa. ~w 

f == f 
(lw ,~ 1r , o ~ f' .L l>4) . 

(wJf) 

The volume element in coordinates (I.lJ): 

cl.Qt = c;( w Gl,? . 

Group-theoretical sense of the coordinate (I.lJ): 

where 

'f = q,-1t+) k" 
I 

fL =(fo,:P, 1'¥)-:: (~1-t-fa.~l(a} 1f, V1tf,_~c.il) 

~~= (0,f, -fii-·f) 
k~ =-(sh,~) o, c.o1w) 

4) The function b (,p',f) 
-5("')= \~Ct)1l(f,t)r.t52.r, (3l 

b(f~f)= lf11\e(~pt')tt11-,r)='E>(w'-w)& (f!.~) 

t(y'1t-)lt ,f£4-)'-') = g(f',f) 
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(I.lJ) 

(I.14) 

(1.15) 

(I.16) 

(I.17) 

(I.IS) 



5) Transition to the variables '}i(,~lqtt)and U(f◄r··Jt"') 

t1= C\t('tt U(i'•···f..) 

~ = '\ii+ilJC1'i··· f .. ) 

............ 
f\t=- CJ,i,H) u(f, .. ·f•) , 

where 

( ~1+q2+···-t q,..\.'= ((9,+•·•-+q-..)A, £ttv+··+ C(,..0 = 

: (o,-., ✓ (f.,t• .. •+~)~) I - ., 
Ct1+···+1>~):= 'Y\,i" 2- ~1-(f-'l-)fjY 

¼J:f I 

i-#:1° 

(<fi+"·i f .. ),. 
~(ft+···+ \\,)-;: 

f,,.+···+ P"" 1 = (U: U)- U <-r.···1'-) 
'~ 1. I - A, ,, - L I 

(f1+· .. + -\'"} M .. 

( uL<"·t•)J = U'+ v: = 1 

and 

JJ21'¼. ·· · dJlfn = 

= ~ (U('fr··CJ .. 1, 0) ot.n, .... &.O,)\ J .f2. u<r,···r .. ) 

If: 

f1l+) g = t: 
.......... 

f .. (+)t = f~' 
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(I.19) 

(J.20a) 

(I.20b) 

(I.2la) 

(I.21b) 

(I.22) 

(I• 2.J) 

f 

then 

V (f/ ... r~) _ u· -(11'.··r-..) -D 
. - (+) 0. 

(I.24) 

In the case of 'I'\. = 2 

'l,'I =- f1C-) U(f1fa) = - (4.af'1-('4•f.a. 
('fc+ f2. 

(1. 25a) 

~ ( U(f,fa) 
2: fz. -) - ('4, f.z. - (42f'1 - ' r•-+ r1. 

where 

~ 1 = ~ ( f1Jf -t- ~ ~ (,t,,+f&)~J 
(I.25b) 

~z. = ½ ( i>:tv -t ± ~ (,t,,+~)~) . 

The eq. (I. 22) when 'YL : 2 
~D.

11 
ctS21>z. .. ~(V c,,cr~ o) aSl'\

1
cJJ11J. J..D.11c,.,fa) =- -

. 'I _ ._. _ _ '2. (I• 25 c) 

: dQ, ~ p e(~-9~- J:.), -
. ~-1-qz- ?3/!f if 

where 'P= 'f1+fa. } 9-= ch (see ·c1.25a) ). The 

appearance o! 0(-i- q2._ E
2

) is connected with the 
''2 'i ~,. 

condition cu .. ''l'tf.a)) == 1- (ucr,r:, ~- 0. 

6) Generators of the group_ SO (2,J) : 

M l(L:: - M LK = (M1t'\ M>t.,) 

(K1l..=0}~12,3,4 j ~,>i= O,-:i,2,3) 

n 
(I.26) 



M ~>- = ,l,(f~ ..£.. - 1>-]_ ) 
'af>. o-p~ 

MA~ , c) _ "J:' >, (Snyder's = ,t..f'f- .=.-:, 
~f'" nate) 

4 -coordi-

We have also: 

[ s ~ , s x] = .., M ~~ (I.27) 

The time operator 

(I.lJ): 

50 in 11 semispherical 11 coordinates 

0 • 0 5 =-~~ 

0 
The eigenfunctions of the operator '15 

on the segment - 'Jr ~ W 6 Ji 

(I. 28) 

, periodical 

<''l'\lc.u) 
.A.l1W 

-= e 'l'\. = 0 J-± 1., :t 2 , .. , (I.29a) ' 

This corresponds to the spectrum: 

s .. = 'YI., 

7) Casimir' s operat or~ 

.1. M KLM - .! Mi.t,}IM ,_ -
2 li.L - 2. ~~ + S -

= - i o:r ( f ;v ~ 2- ) 
I ~f)I ' 

(I.29b) 

(I.Jo) 

where 113 r" II is the metric tensor, calculated with 
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t 
1 
l 
ig 

the help of (I.4) ; a-;.. c;(.a.t, ll3r»II 
The eigenvalue problem: 

,t o ( -1 .r. ) 
-~ 'i)fr ~r" ~1!1 ~ <~,-.. If>=>. <A, ... If>, (I.Jl) 

where the dots denote the variables which together with~ 

form the oorresponlent complete set of observables. 

For the unitary representations of the group SOc2,J) 

from the maximal degenerate series, the spectrum of ~ 

is of the form: 

L (L+3) 

A= 

L=-i,0,1., .... 
(discrete series)+) 

(I.J2a) 

-(tY-/\L' 0 = I\-" OO )(I.J2b) 
(continuous series)+ 

.++) • 
8) The eigenfunctions, corresponding to (I.J2). 

Spher:tc_£i.l basis (see I,12): 

+JFor brevity the discrete series we shall call L -series 
and the continuous oorrespondin~y /\ -series. 

++)we shall investigate the properties of these functions 
in a separate paper. Here we would like just to mention 
that the eigenfunctions in the L -spectrum are square 
integrable (I.5). 
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L -series: 

< L1n,e.,m lf)=<L,n,e,1')\1c.>,X,G,~) = 

= 4tlcJ Yn ( 'f){t:I, 1hc11t-l F(L-+3+fu1. ;L+l+e~ • t+! jti ~). 
e frttfJ, 'I'/ 2. l .2 2 1 2; (I.:3Ja) 

\Tith 

l~I ~ L+3. (I.JJb) 

/\ -series: 

"4l1£u t ii\-¾ 
<1',ti,t,tttl,p) = e Y,~ (e,lf)(~.x) C""X). 

s . l (I.JJc) 

. F r-4" t, t e + '" -"'"+ x t e- Tl • e .. 1 . tt_ 2.X" • 
2 i \" 2. t .2. I 2 I ') 

"l'lane wave!!." 

L -series: 
. . -L-3 

(L,Nlf) = ( -,,.,-.c.,.N) 

( 71) z. a. ➔1 N = No,N j ~ = N. - N = i 
(I.J4a) 

/\ -series: 
. -l+-i.,\ 

<A,Nlf>)= (f,-+ f·N) 
2 

. (I.J4b) 

N 
f ➔) · 2. · 2 ➔a 

... ,No}N; N=N.-N=-1. 
Functions (I.J4) satisfy the following differential-difference 

equations in the variables ( L J N) and (A 1 N) 

80 

'. t 

L -series: 

2 (KL-t.,J<L,N\,p)= o, 
0 

iai: 
I c) 3 Jvl_ - -~- · -

KL== 2c..h, E + L+ .3 oL (L-+f )(L+2) 
2. 

(I.J5) 

~(N)) 

where l (N) is the Laplace operator on the hyperboloid 
1. -2. 

cntd. N. -N == i 

/\ -series: 

2(K,..- f,,J<'A,Nl,r)= o, 
. 0 

-""-y; 

\( :: 2cl,_i - ~ shiL - . ~- 4) ~(N)J 
" UI\ -ii\ 'M A./\ """-i' 

(r.J6) 

where 

-cl 

l(N) is the Laplace operator 
,. --t.l 

on the hyperboloid 

N. -N =-i 

rn the "classical limit" 

..i.'-/F Np i~f 
<L,Nl1>) ~ e == e (~r4= ~~) cr . .37) 

1-fii" N.f -4S•f ) 
(A,1Jl1>)~e =e (-~t'=f~a.Nr . cr.,a) 
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Aimendix II: 

Absol~te Value Estimate of th~ 
Cj\(-) 
M - Function 

Consider the function (see (5,14) ): 

C-) • \t.: 2. L \ J2 
.2) (5,-s)::: (;)l }-<s \k~ef-k,b(2 l(,,-2m.,;J k (II,1) 

and let us estimate its modulus in the timelike region 

5:: 5L • AS: 

\ <~L lk)\'.: (k: +tk.N))-L-3 

( 

2. 2. _.a \ 
N = N0 -N = i; 

(see (I.J4a) ), then 

I 2>'-y~L,-~1..)I ~ 

~ ~ ~(k.,2.+(k.tJ/fL-~(-ko)b(2k.,-2~'1)e!flk • 

(II.2) 

(II,J) 

Taking into account the relativistic invariance of this 

inequality we can write the right~hand side in the form [ 1i]~ 

dJ \( k;-t-k:r-l ee-k.) b(2 k1-2~,}H21c = 
(II,4) 

~ ·oo ~ ➔ 

◄ ( c{ k - -1 ( k1 Jlkl 
=en'/ )2~\lt;(1+k;Ln -(?tI)~ l✓ ni2.Tt2.(/4-tk'LH =-
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.'• -J 

~ ..1.- ~2. B(~, L+2' F (L-t3 ..1 • L+i · m2.\ 
(2rrf 2 2. ) a. 1. ' 2. ' .2. ,, ") • 

Therefore: 

I .()<->(si.,-si..)I ~-

m2.. r(L+2) C"1 ( 3 • +. 2.\ (II,5) 
{----:;-; r(I =-1-) 2.r1. L+3, i', L-t 2 , m.,J, -16 ;rr..,:z L+ -

2. 

It is essential that for all possible values of L =-i,0,1/2.r·· 

the right-hand side of (II,5) ~o singularities, 

When L » 1 the inequality (II,5) is simplified: 

l (-) , I -¾. 
.z> (s1.,-s1..; ~ c:.c-n..bt. L . (II.6) 

Vlith the help of (II, 5) we get the following estimate for 

the matrix element (5,lJ): 

1<0 1 [ j(!1..),j(-s1.)] 1°) j f ~! 2 j 2> <->c~L ,-:.~L)f'\~ 

2 G . ~ 'l'\!-m.""' r(L+2) 3 1 L "" ~ 2 ""-tTi' f(L-t :r.) [J~. ( L +3, 2 ; L + 2 ; ni:)] . 
2. 

(II, 7) 

When L >> :t. we get: 

3>1. 

l<ol[j(s),j~sL)]lo>I ~ c.o~t. LT (II,8) 

+~Let us notice that the estimate (II,6) is valid, as it should 
be from the correspondence }lrinciple, also for the "classi-
cal 11 .2,<-> -function [ 1 J , 
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