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Summary

~ In the framework of Bogolubov’s axlomatic approach

problems connected with the extenslon of the scattering mat-
rix off the mass shell are considered. In the method of )
~extended - § —matrlx the concepts of elementary particle
interactions acoepted in quantum fileld theory are reflected
to most complete extent. A specific point for the standard
extension procedure is the assumption that the 4 —momentum
space in which the extended objects (fields, currents, S -
matrix coefficient functions, eto.) are defined 1s a flat
tlinkowskl space. The hypothesis that such a choice of the
geometry "faills" is -put forward and this choice 15 actually
responsible for the known difficulties of the theory connec-
ted-with the problem of multiplying of generalilzéd singular
functilons with coinclding singularities. As an alternative

1t 1s proposed to use in the extended -matrix formalism

a Y4 —momentum space of constant curvature (De-Sitter space)
with curvature radius K/€, , where &, is a fundamental
length. The interactlion laws of the elementary particles
with De proglie wave lengths - € €, must be oompletely
different 1n the new scheme, in comparison with those prescri—
bed by the usual local field theory. :

It is demonstrated that the off mass shell ;S -matrix
extension 1n the spirit of De-gitter ° 4 -space geometry’
can be made consistent with the requlrements-of relativistic
invariance, unitarity, spectrality, completeness of the
system of asymptotic states, With the help of a speoific
Fourler transform 1n momentum sSpace of constant curvature
a new configuration %, -space is introduced, whose geometry
for small distances £ Co 1s essentlally different from the
pseudoeuclidean one. The causality oonditlon on the § -
matrix, which is direct generalizatlon of Bogolubov’s causa-
. 1ity comdition, going to it 1n the 1limit, {,—0 . , 1is
formulated in ‘terms of -this' —~space. On several examples
~ 1t '‘1s demonstrated that in the developed theory. the .problem
.0f gemsrallzed singular function, products loses 1its acute-
ness, In partioular’ the commutation functions andpropagators
in the new scheme can be interpreted as usual (not generalized)
functions and there is no arbitrariness in any thelr powers
aml products,

1. Extended Scattering Matrix in Bogolhbov*s Axiomatic Approach

Let f; be the scattering matrix in a theory of neutral
scalar field ¥ s describing particles of mass ™M . We
shall consider fg

approach to the quantum field theory [1—4] ‘

in the framework of Bogolubov’s axiomatic
» Let us write
down 1n JP -representation the standard decomposition of

thls operator in terms of normal products of free out-fields:

S=) S«l"rcn"-'bu SnlparP):€lpa)e(puys, (D)
" ) .
'By definition:
\eudi')=11_‘ ébpx\é( ) o
(2 ’zg ¥ P (1.0 20)
SAPX st
NOE _:;3”1 A NOLE S (1.20)
Ce(pd) = €4 | (1.20)
From here '
(“W\.l_‘ ?1) ‘e(?): (o] N (1.3)
(1.4)

o
€lp) = B (m™ 1) e (p).
owing to eq.(l.4) the coefficient functions (c.f.)
S“ (p,,...,p..‘) in (1.1) are defined only on the mass-shell
1>'= m? :

Sn (par- ,p) ow (?u »f) 't
taz pRam

However for formulation of a dynamical theory it 1s necegsary

(1.5)

to extend the E; -matrix off the mass shell (see for instance



[ 4-]_vand>the‘:eport-by Me§vedev, Pavlov, Polivanov and
Sukhanov submitted to this conference.)

When one extends the *scattering matrix"with respect to
the field"; i.e. when the quantized out-field§ get classical
additions and do not-more satisfy the free equation (1.3),
i1t 1s supposed that thé extended E; —matrix is stiil given
by the decomposition (1.1). From here, taking into account
the‘stability 9f the Yagugm statg, the foliowing'expression

for the extended offﬁthe mass sheil c.f. 1s obtained:

Sopde el St a

() S¥(p)
The quantity .
() . o™ : V
S (71...9.,):———3_‘-5—-—'- s* _ @a.m

5'€(pe)-S € 0pn)

is c%ﬁled M -th order radiation operatbr. The opefator
A S (;TD isfdentified with the Heisenberg current operator

in ? ~representation

® BS o :
‘S (— =4.—s—;-(--)s =3(P)’ | (1.8)

In coordinate space we have correspondingly:

j00s 18001 £5 8"

J(X)— % ge F“J(f) A" b .

One of the conditions 1mposed on the extended obJects

(S - matrix, field operators, etc.) is conservation of the .

S\(O\A.'t( A ¢ ; (ll 9)

(1.10)

former covariance prbperties with respect to Poincaré group

transformations. For instance under translations:

x'= X+ @ (1.11)
tne extended operator transforms as
»
LPG. : ,A,Pa. iba '
L e e = T (1.12)

» .
( F) is the energy-momentum of the system) and the extended

scattering matrix remains invariant

LF%L -&Fax
Se .= S.

From (1.8), (1.12) and (1.13) it follows that the trans-
coincides with (1.12):

(1;13)

formation law of\the current J(fﬂ
4@@ . —Lﬁa ipa |
€ we =

In terms of extended c.f. (1.6) the translation invariance

(1.14)

" condition (1.13) means that any such a function bhas to contain

as a factor a four-dimensiomnal 8 —function:

n= S (?11'--' +P,‘) S:"

[
S,. in terms of the original c.f. S-,\ .

(1.15)

Let us express

To do this let us consider in the decomposition'(l.l) the term:

( dpy-- b S (- Pr)t € (ps)-- € p): -

Because of eq.{(1.15) the expression (1.16) is identical

(1.16)

to the following:

%dqfi d“?.\_ S"-(f‘?") . ke(?,_— ?_‘t_'yf-ﬁ‘-) ..\ (PN- f’.*;’: Bn .. (1.17)



Let us make in (1.17) the substitution:

/?;: Cb,g,-l-k'.
29:i=0 , k= ﬁ:;fu:‘ PR VASTE SO N (1.18)

It is easy to see that:

Loy - o §(UHID)
e P ql %“‘ ( )dk ? (1.19)

uui therefore instead of (1.17)we have:

gdgf..dq,s(u‘**--4n>) (kS (k- que )04 04.):

(1.20)

Comparing (1.20) with (1.16) we get the final result [5,6] :

S“(p’...?“)= S(ﬁi_‘r’ﬁs) gdw( Sh(cw-‘f( o Gt &) =
= 501 5, (1), o

Hence the function S,., in (1.15) is given by the relatlon::

S oy, (1.2

Let us note that the dependence of the .right—hand side of

the identity (1.21) on the Y _nomenta Pr P has a

specific character with respect to translations

$'=p+ b | Qe

in the 1: . ~space. Actually the integral:

§”('P:"- P = SS“(,?‘&... ?,‘+?<)el"f( , (1.2‘47)

is invarlant under displacements (2.23):

Sw(pn%... ?.,J,%) = fg;sﬁ‘ PQ S (1.25)

and the S —~function argument —:E: U(?'m?“) trahsforms
according to the same law (1.23) as any of the L{ ~momenta
P
U(?‘IP'O _ U(P"m?“) N % . »
(1.26)
owing to (1.25) the function S,._(?,_ 1:,‘_) depends only
on the momenta differences $:i-¥; (44= 4,.,mn) . Let us

_agres to call the difference f_%'gi relative 4
momentum. Evidently, similarly to the quantities i ’

they are vectors in the four dimensional pseudoeuclidean

space or Minkowsk4 space.

Identities of the type (1.21) which express the trans-
lation invariance of the S —matrix in momentum space,’
have a number of simple properties following directly from
relations (1.25)",, (1.26), In particular if we apply the
identity to the function S,‘ ('?1"& ceo Pat ‘L) : uﬁdér
the integral sign in eq.(1.21) then we again come to (1.21)
("irreducibility™ property).

of special 1nterest is the case when the o.f. S (f, ’P-\)
is disconnected, i.e. contains for instance a.dditive terms

of the form:

gm(;&.'_.,?m)‘gh_m(1,““...?,\)’ e



where Sm and Sln-m are lower order c.f. satisfying
by themselves identities of .the type (1.21):

S (P ) = S (UG (... )

(2.28)
Sn-m (?mQL-.-P")=8(U(n-m) Sh-m ('P‘MM.'"'PM)

(for brevity we have put U(P"..?H)EU(M)

Let us demonstr_ate that if the relations (1.28) are ful-
filled the product (1.27) automatically obeys the ldentity
(1.21): ‘

'SW (?’-1"“) sn-w; ("P-mo-t; P ?ﬂv) =
- —— '
= S’(U'( )) Sn(f‘?’*) Sn-m (Pmu. ?h) . (1.29)

We note that:

$ U("‘) U"‘"“) _ ) ) (ﬁ-m)
(V)8 (™) s(u)s(uLy )y 0

or

SO - 50 (ST SOl

(1.31)

Now multiplying both partsof the relation (1.31) by

Ll

~
Sm(y,...?.,.) S”_m(p.,“-. p.‘) and taking into account the invariance
of the functions with tilde with
(1.23) we obtain:

sm (?3"' P"‘) Sl\-m_ (Pmu"' P-) = g (U‘“)) .
. SS (U"LR)S, (pok- &)S(Uc»-:o&)‘ g (pute bk’ |

respect to displacements:

S bt o PO o 1 Pl

" From here, using property (1.26) of the U -vectors
and relation (1.28) we get (1.29).

Let us emphasize that from the invarilance bf the functions

S.\, under translations (1.23) and their obv‘iéus relativistic
1n_vé.r1ance 1t follows that they are invariant under arbltrary
transformations of the '\O —parametric motion group of the

momentum space (Poincaré group):

'?(2:/\‘.."1:,. +.6(. ((1-0,4.,2,!-) o (1.32)

is the porentz transformation.matrix). There-—
2 A !

¢ WA
fore, functions S,‘ :
Y4 _momenta (p;—y,-)‘/q (4“‘ 4)_,.,1\.)

‘actually depend on the équares of the

"relative"

p = (pi-p3)"
Sh=sw(... q’ )

(1.33)

In view of the importance of this result for future conétruc-
tions let us formulate it-oncé more: -

1f one imposes the translation invariance con&ition on the
extended off the mass shell scattering matrix written in p-
-~representation, then from any coinected c.f. S'“ (?‘,,, pn)
it can be picked out a function S (/f; 'P“-) which 1s
invariant under the Poinca.re’ group (1.32) of the pseudoeucli-

dean momentum space.

In the extended S -matrix formalism the Bogolubov’s
causality condition plays the role of dynmamical equation from



which the c.f, Sn (‘Ps. ?“)

condition can be written elther in differential form

8500

By

1£9) (x,- ¥)=% >0,

are determined, This

(1.34)

or in 1nteéra.1 form [1—4] :

TN
T EeR) 0 C I

+0(x-x2) [1 (x2)4 4 ("1\]
= = T () §00))

+quasilocal terms = .
- -(1.35)
+quasilocal terms ’

‘the current commutat or satlsfying the condition

[40a),460] = O,

(1.36)

R z'<¢ O

Rel.(1.36) is called "locality condition" for the current
operator zj(x) . »

+)The symbol T 20 means that either g‘)O

and 3,>0 , or <O

10’

——T——

In the present quantum field theory commutators of the

type (1.36) have always singularities on the sui-face+):

S"= 0. @D

The produot of such a ocommutator with step funotion

8(xD = O (x2- x9) , @s it is well knomn [1-4] , can
be defined only-up to arbitrary quasilocal Opere.to.rs (in the
causality condition (1.33) this 1s taken into account). gne
has to notioe, that in all the formulations of the quantum
field theory we confront with analogous difficulties, which
from mathematlical point of view reduce to the problem of
multiplying singular generalized functions with coinciding
singularities.

This originates, in particular, the famous ultraviolet

divergences in the perturbation theory.

The'ezistence of ultraviolet dlvergencles 1in guantum field
theory have been exhibited at its earliest stages of develop-
ment. Nowadays many physiclsts are convinced that this deffect

is of principal oharacter aml testifies for the 1napplicability
of the theory to describe physical processes in small space-time

regions, or, correspondingly at high energies and momenta.

+)1‘his surface 1s the light cone in the pseudoeuclidean I-
space ('Seg(xrx,)(“ (- 0,1,2,3) . Obviously this spaoe is
invariant under translations (1.11).
¥We shall call quantities of type 'S relative coordinates.
They are canonically conjugated to the half-differences of

L{ -momenta, or in our terminology, to the relative

moment a,



There exist a ldrge amount of papers devoted to the so-
called "nonlocal® quantum ¥ield theories, in which from
different physical reasons and using different mathematical
means the interaction of the elementary particles 1s modified
in the region of small De Broglie wave 1engths+). A common
feature of tneserinvestigations'is introduction of a nmew
universal constant in' the theory- the fundamental length fo
defining the spaoce—time bounds of ‘the Teglon in which Some of
the'iold"' concepts about particles and their interactions i

are not more valid.

L.

In the, present report we would like to discuss one

possible way .of. generalization of the quantum field theory

which naturally leads to an appearance in its framework of\the»

fundamental length E, + From a mathematlioal point of
view the formalizm we oonsider will ‘recall Snyder’s scheme of
quantized space=time [8—13] + However ‘the basic idea and
physical 1nterpretation of, the theory we construct are
essentially different from those of refs. [8 - 13] .

=y

+7_7 omprehensive review of many. attempts to construot a = -

nonlooal field theories 1s given 1n the monograph [7]

2. Transition to Constant Curvature Momentum Space in the

off Mass Shell Extension.

In the previous section we considered a number of conditions
which are satisfled by the extended scattering matrix in
Bogolubov?s axiomatic approach. In a more complete form the
set of requirements, in accordance with which the extension
of the .f; -matrix off the mass-shell 1s made looks as
follows [,2,3,4] :

I. Relativistic invariance, .
II, Translation invariance.
III. Unitarity.
IV. Causality.
V. Completeness of the system of asymptotic states
with positive energy amd existence of unique vacuum state.

VI, Stability of the vacuum and one-~particle states.

In the axiomatlc construction of the scattering matrix
thecholice of a definite way of extension off the mass shell 1is
essentially equivalent to acception of a definite way of
description of quantized filelds interactions. Therefore if
we intend to modify the interaction laws of the elementary
particles.in the region of small De Broglie wave lenghts,
comparable with Some fundamental length 3, (see the end
of section 1.), then obligatory this must be reflected in the
way of extension of the scattering matrix off the mass shell.

It 1s evident that the new extended objects (fields, c.f.,

13



currents, etc.) in the region of energieé and momenta P ﬂ/{,
will be considerably different from theiﬂclassical“+analogues.
At the same time the difficulties of the old theory, connected
with badly definéd products of generalized singular functlons
with coinciding singularities have elther to disappear or tobe

essentially reduced. In other words the extension of the scatte—

ring matrix off the ﬁass—shell, effectively taking into account
the existence of a fundamental length P-o shas to be less
sinpular, than  the "classical” extension satisfying conditions
[-VI. Then naturally arilses the questlon: which of thésg
conditions should be modified and in what direction ?

Presently we have no any arguments based on experimental
grounds to drop the requirements of Lorentz and tfanslation
invariance(requirements I. and II.)The necessity of the
unitarity condition on the f; -matrix, do notlevoke any
doubt (requirement IIT). The requirements V and VI seem to be

also well grounded.

Let us consider now reguirement IV- the "classical"
Bogolubov’s causality condition written for instance in the
form (1.35). As the qhaéilocal terms contribute in the point
5-.: Xy~% =0 then it 1s natural to suppose that the condition

+)L,a.ter on the terminus "classical®™ will be applied to

quantities and relations in the limiting case €,= 0 .

14

should be essentially changed in the reglon:

Igl<d,. (2.1)

Further our reasoning unavoidably has the . character of a
seérch. First of all let us notice that one has necessarily
to add to requirements I-VI in fact one more condition whose
fulfilment 1in the extended off the mass shell S -matrix
is considered usually like'selfevideﬁt. We have_in mind the

pseudoeuclidean nature of the q -nomentum space in which

the mass shell hyperbbloid

,P’-_ = O ‘ (2.2)

is embedded. .

In other words in tﬁe usual theory it is silently supposed
that when the extrapolation off the shell (2.2) 1s done any
of the H -momenta X , on which the extended operators
C(#)  and extended c.f. Sn (B Ppn) depend ,
vecomes arbitrary vector in Minkowskl sgace+). As’a result
because of (l.2a) the geometry of X -space and the geometry
bf § ~space (see footnote on p. il) are also pseu@o—

euclidean.

However the general principles of the theory do not -

+)In perturbation theory H ~momenta 'Pﬁ off the mass
shell (2.2) are usually called yirtual.



uniquely imply that momentum space should be necessarily flat
Minkowskl space. In particular the relativistic invariance
condition does not fix the choice of a definite geometry in

this space, but only requires that the quantities (1:.,1:«;,1:,,1:’,)

should be transformed under Lorentz transformations like

L[ ~vector.

It couid seem, if we recell about identity (1.21) and )
connected with it relatioms (1.25)_ and (1.26) that the pseudo~
euclidean character of the ,1: -space is a necessary oorollary
of the translation invariance of the s -matrix. However
in order the translation invariance to be satisfied it is
suffiolent only the fulfilment of relations of type (1.15),
and equations (1.21)-(1.22) are obtained from (1.15) and the

acoepted g _priord pseudoeuclidean charécter‘ of momentum
space+). ’

’ Taking into account all that let us now formulate the
hypotﬁesip which in all our further constructions will be of
funi amental importa.nce:

The new extension of the S -matrix off the mass shell,

which gives a consistent desoription of the elementary particle '

interaction with arbitrary De Broglié wave lengths, should be

"')The latter is reflected in the explicit form of the volume
element d’ff- dp,d.f? y in the substitution (1.18)
and relation (1.19). ‘

!

based not on a pseudoeuclidean momentum space, but on momentum
space with constant curvature. The mathematical realisation

of this space 1s the hypersphere:

2 Vl f 2 | ez - 4 ’ (2 3)
i i S T T .
Ko -% P s {:'f" t: o
in the pseudoeuclidean -5 -~-space of the variables
(o) $1, f;,?,,?.,) . The constant B, defining the
curvature of the surface (2,3) plays the role of a fundamental

le ngth+) o

We suppbse that the new extgnsion is oonformed with the

"nglassical® requirements I-III, V-VI and with causality

condition modified in the spirit of the new 1) ~space geometry.

-

The curved q -spaﬁe, described by eq.(2.3) is called
De-Sitter'space. It caﬁ be oonsidered as the blosest to ‘
Minkowskl space in the hierarchy of metric spaces. The motion.
groups of these two spaces - Poincaré group (1.32) and De-

Sitter group (I.6) - depend on 10 parameters.

Both contain the j,orentz group as a subgroup which
realize homogeneous pseudoorthogonal transformat tons in the
space ('?'l?“'?l)‘h) (see (1.32) when £-0 and .
(1.7) ) »

+)Some necessary mathematical information about the constant

curvature space (2.3) is collected in Appendix I.

17



,P("-_-/\ryf;, ((q,vs,o,j,za,:!).' ' ‘ :(2.4‘)”

The presence or absence of fundamental length E.‘ in the
theory does not affect at all equation (2.4). This means that
both in the new scheme and in the "'cl‘assica.l" theory, the
requirement of relativistic 1nvafia1}pe (req.I.) may_‘be
formulated in the sau}e waj and we shall not discuss this
point anymore, K

In the flat’limit £ — 0 the relations of De-Sitter
geometry go into its pseudoeuclidean analogues ). In this
case, evidently,all field-theoretical quantities extended off
the mass shell in the spirit of the De—Sitter space geometry

(2.3), have to obtain their "classical" form.

Later on it will be convenlent to use a system of‘units

in which;

\'k,':‘('.al“e.’d— -

In these terms "classical" limit means that we consider

reglon of momenta values:

A\/e\«i. : S (. 5)

+)

Let us note that there exists one more model of a space »

of constant curvature, which have a right pseudoeuolidean
limit. It 1s connected with the surface [ 5] : f.‘ e 1:,,—-—--
We shall not develop theory corresponding to this case,

because of some physical reasons.

It can be easily seen that the mass shell (2.2) can be
embedded in the space (2.3) only if the condition:

(2.6)

1s satisfied.

We shall suppose that the restriotion (2.6) :Ls always
fulfilled far the masses of the objects, which are described
by quantized fields. Then eq.(2.2) 1s equivalent to the re-

lation:

Pu+ 'm,,) (,Pq-'m.,) =0 , 2.7

where by definition, "y= Ya-mi > O . Since on the

surface (2.3) to any fixed value of 1: there correspond two
diffeient by sign values of 1),, -, then each of the brackets

in (2.7) can vanish:
Py— My =0 (2.82)

ﬁ,{. my=0, | (2.8v) -

Let us make now & physioal assumption: for the free field
X (4. p2) defined in the De-Sitter  jp —space (2.3)
only the condition (2.8a) 1s satlisfied. In other words:

2 (»fq"m"l)‘e(f’;?u) =0. (2.9)

19



We introduced a factor of 4 in order eq.(2.9) to coincide -
'exe.ctly with (1.3) in the "classiéalwlmit,’m, \1:l<< 1 +).

From (2.9) it follows that:
w(pp)-S@p-2md¥(pp), (2.10) .

where "e(P,APq) s operator which does not possess singula-
rities on the mass shell (2.8a).

Later we shall oonsider‘decompositions of different quan-

titlies of the theory in i:erms of ‘f’ ~field products. When

doing thgt each operator ?.(/P,fq) will appear in the corres-
ponding integrals aooompahied by "its own" volume element

(1.5): S - B
S 40} «‘?(1:,1;,). o T (2a1)
(the dots substitute the o.f., a.ll other ’f—operators and

volume elements). On the mass shell taking into account (2. lo)
and (1.5), we can write eq.(2+11) in the form:-

*+Jone equation based on relation (2.8b) has no formally
correot "classical® limit. I,et us note, however, that from
an optimisticel point of view on the theory developed here,
we Thave not to exclude the possibility, that pa.rticle _
states with f,‘ <O ca.n he.ve for the new theory such ‘
a funda.mente.l neaning e.s, for 1nsta.nce, the states with' '

negative energies in Dirao’s'theory of the electron,

20

LI (T (e 258G d% E Q- 2m )€ Cp,mm... =

= Sol 8(? m)‘?(@ﬁ.,)... .‘ (2.12)

In the "classical" case instead we would have taking into

account (1.4):

dtpt(phens = o Lp S )R- (219

Comparing (2.12) and (2.13) we conclude that on the mass
shell the equality should be satisfied: '

C(p,m)=%(p. | (2.14)

Let us stress that between the extended off ?;he mass shell
operators X () and "f(p,p.,) there is no more any

connection because to each extension a different geometry in
the -8 corresponds. In particular the classical field

€(#)  1is defined for all values of pu » but the field
\{(P’p') , because of (2.3), only in the domain

,‘;‘s 1. (2.15)

The relation (2.14) looks like a "correspondence principle™.
With 1its help the commutation relation whioh should be satisfied

by the solutions of equation (2.9) can be determined.

Let us note first that directly from (2.14) it follows the

2l



definition of creatiqn,atnd annihilation operators (see [ '1] )

® % (pmi) -
(8 = —t (2.16)
BT
R P., emi
V(-)($) - ‘PGP)'WIA') ' .
T P -
Further we evidently have:
[e%@). e 9@ -$"z5). e

From he;e,,taking into account (2.16), (2.10) and (I.17) we
obtain [6 ] : )

Lot )] < 6 Cpurb) €Cp2) S Qpuy-2m).

© (2.18) -

' -
Passing to coordinates (v, 1>) (seek I.13) and putting

by definition*):

e = R (DF) , ola 2

+

)Reduction of the range of variation of O here is
connected with vanishing of the: operator ‘?(f,f,,) for
Ky <O (see (2.10) ).

we shall have instead (2.18):

D00, 30,40, 00) = 8 (0010,)8 (B ) € e,) B (a0or0, fiiFE 2mmy) . (2:29)

The neutrality condition of the free fleld \(’(f,f.,)

in the new scheme because of (2.14) is written in form

equivalent to (1.2¢):

Cppd= Clpp) =0, ). (20

We shall suppbse that the relation (220) holds also for the

extended ‘P ~operatars.

In De-sitter 4 -space (2.3) the components of the 4§ -
vectorv ,?(.‘ , as in the flat space, evidéntly commute

identically with each other: |
[Qpb,f,]: o,((q,v-;o,A’,z,;); | (2.21)

From here and (2.17) we conclude that the operator =

‘% - S di: &cfu)(z) ‘eH(Z), &,=\’T+_*F | (2;22)

has all standard properties of‘the field energy-momentum
operator. In partlcular:

%810, -

[ P(‘ IY(P'P')] = 1’(- ‘(’ (’Plf'p) . (2"24)
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In this way we have all which 1s--needed to formulate con- -

dition V in the new :Soheme, We can 1ntroduoe the vacuum state
10> . with the condition )(&) lo)=0 » Supposing
that this state 1is uni;ue. We can construct complete system

l

of state vectors"')

\\9“’(_{(‘.) _..‘?m(z.‘.) \o> , )

: . i A
and in each of them the spectrum of the oparators po and
A2 , ) :
P is positive. The only new feature in oomparison with the

usual theory is the limitation (2.6) on the mass of one-particle E

states.

It 18 easy to see that tyhe' notion of normal préduct of
field operator’s and the corresponding ﬂicl&u thecrem can de
introduced in the new scﬂeme iithout any pi‘ixicipal changes,
The normal product ‘and pairing of two operators are defined
by the relations (see [ 1]):

h e (fufw) W(fufy = (2.26)

=3¢ (?1 ﬂw)q (fn?w)'f + ‘(’(f..ﬁ;)‘e (fl,f\v) ’

"')By construction quantities Y(Q,f,) are apalogues of
out-operators. Therefore, vectors (2.25) desoiibe 6ut-states

of the free particles.
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T T Tl et 8 L

= 8(by,-p2) OC97) & (Lpu-2me) =
\e(?ﬁ)fuh(e(ﬂ)fl;) S(‘Pu ‘P) (‘P) (f )...

(2.27)

1]

8 (ps,- ) D7 (pe) -

Now in complete analogy with the "classical” :decomposition
(1.1), we can write the new SI -matrix in the form of seriles
in terms of normal products of ‘6(?,1:.,) , defined in

De-Sitter momentum space (2+3)%

S= .
,ngﬂf. A S, (st o) s o) - € i)

Decomposition (2. 28), by aosumption, rema.ins va.lid also

(2.28)

after extenslon off the mass shell (2.8a), 1l.e. also in that
case, vwhen the cperatar ‘?('?,'fy) does not“more‘ satisfy
equation (2.9) and the ‘{ -vector 'P(.‘ becoqes‘arbitrary

vector of De-Sitter space (2.3).

Let us' introduce into comnsideratilion the functional deri-

vative of the s -matrix with respect to the ‘f ~fields:

$"S
- )
§€(p,pi) 8 € (pafan)- -+ 5€(pn, Puu) (2.29)

setting by definition that: ‘
1 \e(f’)’\?n\) - g(fﬂ?') .

(2.30)
5 (0, 44)
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(see (1.17) ). Recalling now, that the requirement VI
1s satisfied, we obtaln from (2.28) with the help of (2.30)
expression of the c.f. 1n terms of vacuum expectatlon values

of the radiation operators (see (1.6) )

SV\- (1’1) Pavi - Pno P ) = -

S p—_ §tioy. &
ml g‘f(ﬁ,?‘h. B\ (fm'Pm.)

As the appropriate analysis shows the formulation of the
present theory is simplified 4if exteﬁded off the mass shell

S -nmatrix obeys the supplementary conditlon:

63
B( P:Py)

=0 , 4 py<o. (2.32)

This condition has dynamical character since it 1s imposed
on the S -matrix. It is consistent with our definition of
the mass-shell-—eq.(z.ea) and of the oholce of the free equation
in the form (2.9).

Later we shall suppose condition (2.32) satisfied assuming’
that the theory obtained does not become too poor"'). Then
the extended off the mass shell c.f. (2.31) have to satisfy
the relation:

+)owever confer the footnote on page 20.
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S (Papuasors 3 Parpan) 20, , (2.33a)
if even one of the forth components ,p,;,' . 1s negative:
piyco  (4s Ayyeey ™) o (2.33p)

Let us introduce the current operator ( see (1.8) )

-\-

JCpsp) = & . (2.34)

5¢p, Pu)

From the unitarity -of the extended S -matrix (require-

ment III) we have:

§ o .o 887 |
s 4 S = O . .
TOCppy) secppy

From here and on base of (2.19) 1t can be concluded that
the current operator (2.34) satisfies neutra.lity conditlon
analogous to (2.20):

( L
§(ppa) = JCripy) - /, (2.36)

The varlational derivatives of the S' —natrix in terms .
of I \P ~fields commute by definition and therefore the
current operator should obey "solvability condition' [2,3,'-(] :

'—L(h'h) - g:‘(h'hb = x|y (THEL] i 1)fav)| - ¢
AR D) [N ORIG 1‘*)] (2437)
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Let us turn now to the problem of formulating the trans-—
lation invariance conditlion of the theory (reduirement II).
Taking into aocoount eq.(2.23), we have the right to conserve

. A

the former interpretation of the operator P(.. - a8 generator -

of the translation group (1.11). Then fraom (2. 24) 1t follows
that the free field operators \¢ (ap.f.,) transform under
displacements (1,11) by the usual rule: !

A A

iPa |
v ¢ WP'?“)Q et NEEHE (2.38)

AS in the "ola.séical" theory we postulate this transforma-
tion law as well for the extended operators (see (2.12) ).

Because of requirement II in the new scheme the translation
invariance condition for extended S -matrix (1.13) have to
be oonserved. From here it follows immediately that the ‘c.f.

S,\," in the decomposition (2.28) must be represented in the
form (1.15):

S,.(?hf‘n; o Payi - ifn,?uq) =
! ; (2.39)
= ‘8'(1\1+f._+... +4) Sn (1?‘,&.,; “ Py puy)
It 1s remarkable that in the new forma.lism, as in the
'
-%olassical" theory; the quantities S,. may be expressed
1n terms of the original o.f. In result new 1denti(1es‘wh10h

are direct generalization of the "olassical®™ ones (1., 2_1) in
the oase of De-8itter space appear */

+)The proof 1is given in the next seotion.
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From the translation invariance of the S -matrix amd
rel.(2.38) 1t follows also that the supplementary condit;ion
(2.32) is translation invariant and the current operator

transforms in a standard way (see (1.14) ):

)-é:. '-ié\ ipa.
e jlppde =2 4(ppo). (2.40)

3. Identities fc-:r the Extended S -Matrix Coefficient

Functions.

The derivation of the above mentioned i1dentities almost
literally repeats the correspondent procedure in the

"classical® theory (see Sectiop 1, egs. (1.16) -~ (2.21) ),

First of all let us pick out the n'th  order temm from
the decomposition (2.28) (see 1.16):

Sdﬂf.dﬂ?_‘s (fs,fﬂi-“ P ?ma) Z‘Q(fa,f«.)---w (fm fnq)'- . (3.1)
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Now consider the expression (see(4.I7)):

gdﬂ?l"'dnfn Sn(fii‘?ﬂi'" 51’“)?"")' '
| (3.2)

(T Gua)..

) yoes Pl
| .. .‘((P,,(-)U(’ : (Pa"’v,(,' ”)w)")
U(?l"‘ P

where is De-Sitter space vector, given by

rel. (I.21a).

Because of (2.39) the integrand in (3.2) is defined on

the surface:

Prt Pz +--- +1>K=O . ' . (3+3)

Therefore we may put the U -veotor in (3.2) equal to zero+).
That proves the equivalence of the expresslons (3.1) and (3.2).

Further, proceeding again in oomplete é.nalogy with the
"classical" case, (see (1.18) ) we substitute in (3.2)

R
ko U @po)
9
(1P
where Ur )

satisfy the supplementary condition (I.2G), Taking into account

(3.5) "

is given by eq. (I.2la) and the vectors 9.t

+)In five dimensiomal foxm:

UL = (OM 1) - (3.4)

(1.22), we obtain the following result (c.Z.(1.20) ):

§ dfLq,. dlq, S(UCD0).

. S d-n-g Sl\ (qk’)&’ (q‘*) a)q; ‘inﬁ)"a(‘in@f‘)u)'
: ’ . (3.6)
: '-‘f(‘h:‘hq\) TR JCIN. P

As eq.(3.6) identically ceinoides with (3.1), the rela-
tion holds (see (1.21) )i

S-\‘ (fl)?tlg'l ;Ph)fs‘w =

- §(U* o) |4y Sulrerk, o khi..; Pk, (ol =

"

g(U(r...p.) 0) ’S‘w e (3.72)

From (I.17) and (I.21a) we got:
3(v Gw.fn} 0)= (\((?ﬂ'--* P-); )“ § (pur--v ‘P_“) - (3.8)

From hare and from (2.3) and (3.7a) we obtain the analogue
of eq. (1.22):

S0 = (fpap ) S0 2.9)
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Therefore:? ! gw (1;1(.»)%, (?.,u)b),‘ TR 1),.«-) %, (p,‘u-)ﬁ),‘ =
Sw(?i»‘?:q')"' Prs fnq) = ; o

Y Yoo V (3.7v) . t ' = T . . .
= g(f1+---+ fn)(\kh++ f.)M ) SK(P"Pi‘l.’"')PH;?"v). o | Sn(?u Pau ,---,’?m?ﬂ«)

We shall prove relation (3.11). Let us first note, that

(3.11)

It was our goal to prove the idenfity (3.7a)- - ,
(3.7b)+)‘ . ’ A from (I.11), for arbitrary Y -veotors 4 k and &

‘ v the equality takes place:
It should be olearly understood that valldity of relatlons »

of tke type (3.7) for the 'c.f. of the decomposition (2,28) (’P&)%)G)& - /\gk('?&)(&ﬂ’ Q))’ (3.12)
garantees the translation invariance of the scattering matrix S : ‘.

when it 1s extended off the masa shell in the spirit of the R where AG'( is a yorentz transfcrmation, which parameters
. . » N
constant curvature f -8pace geometry. 'depend on % and k .
Between idéntitieé (1.21) and (3:7) one may display a far ’ Then taking into account the relativistic invariance of
going analogy 1f group theoretical considerations are involved. : ' the extended function S,\_ (requirement'I) we can write:

For instance under displacements (I.9) in ourved ,P -space
(Danre Do .

the 4 -dimensional vector U ‘PP ) » which is argument S Sn (1,”1,“;.__-' mew)=s (Aﬁnfwi‘"il‘fmf’"'b' (3.13)

of the 8 -funotion in (3+7), transforms according to the

law (1.24) (sce (1.26) ), and aimultaneously the function

(nere /\ 415 an arbitrary Lorentz transformation).
S (f'nf'm Pmapue) remains invariant (see (1,25) ): .

Now, using (3.12) and (3.13), the left-hand side of egq.
+)It is evident that in the "cla.asical" domain the identity - ; ).  aentieally transtomed:
3.11) can be identica H

v g w(perby (penb)y 55 paiby (p.«»%).)-

Greedhs —o o Ceaw - (40, S, (o ik i--s(pbloko(ptield)=
| | | | T - 40,8, (pelobpbint) s Ay (ol (puoteat),) <

= (a5 (ool pitantly- \P-H(“"")’ (pwo vt

3.7 ‘tranmsforms into Q1. 21) In partioular (see I.20b),

.32 « L / 33



The substitutions

key b — k (3.15)

in the last integral, owing to (3. lo) and (3 15) leads us

to an expression, coinciding with the right hand side o.f
(. 11).

From the rela.tivistic invaria.nce of the functions S
and rel, (3. ll) which we just proved, follows that quantities

\
Sn. are lnvariant under arbitrary tranafomations (1.6)
of De-sitter group 50(2 3:

5.\(1’4»1’4.,)“-; P-.fn-)= §h('Af., (Apa)ys--s (Ap.).(Apu),,) . (3.16)

¢

~ Therefore these functions depend on 50(2,3) invariant
scalar products of the type:

PioPjo- ?’4’?3 T Plypjy= (?DL(/?,')L (i,j=1,z,...'n);
Sn= Su (‘ et ('PJ-),_ (?5),_---) . (3.17)

With the help of (1.9) it is easy to show that (cefeI.20b):

(1;“.')1_ (’PQ)L = J'i - (?4(") »Po)"?
Therefore

S\N: g‘\’(... (?4(-)1;&"...) .

(3.18)

(3.19)

Substituting (3.19) aml (I.20b) in the identity (3.7v),
we have: .

Sn.(ft,fﬂ 3ot Prubuy) =

(3.20)
- S(pr- 49_)[m2 V-Gt | Sl (we,‘)
k- =l
k¢l

Let us recall (see sepotion 1), that the "classical"
functions S“' are invariant with respeot to Poincare
group (1.32) of Minkowskil # -space and this fact is
refleoted in eq. (1.33). comparing (1.33) with (3.19) and
taking into acoount (3.20), we can interprete the extension
apcepted in the new scheme, as a transition"') to "curved®
relative momenta with the oondition that the conservation
low of the total U -momentum has usual "classical" form
[5,6] o As we shall be obnvinoed later in-Section 4 in-

such an approach

"')If the "curved” relative momenta are defined in accordanoe

with eq.(I.25a) - (1.25b), putting

43P~ (R
qJ c‘u clj

;= L (peyt L\Goan NPy
((‘* ,_(?«*i‘ (f&-rf;)’,‘_) , (\3=1-21_-(pj+§ (p‘-+ﬁ)"|_),
then it 1s not difficult to show that:
LN
@Peop) = (g4 w gt
In "olassioal® limit this relation, evidently, goes into

equation ('?;_-AP‘])L = Y q’i, *
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also the relative coo;‘dinates g (see the footnote on
p 45 ) which are canonically oonjugated to the relative -
momenta change in essential manner. Let us now continue

discussing the properties of 1dent1ty . 7a).

First of a.ll we notice that this relation 1s ”1rreducible"
in the same sense as it :is "irreducible" identity (1.21)
(see Section 1, p.7. )+ That.is 1f ‘the integrand
Su (pank, (kg ,Mk’@‘fk)') in (3.7a) 1s itself written
in a form of an integral multiplied by a S' -funotion )
using (3.7a) then we again obtain (3.7a). Inde;d, because of
(3.72), (I1.24) and (3.11) we have:. - :

Sulboks(pokli (puekd (uek)) =
= S (U™ 9k,0) S (ugers -3parpus) o

Therefore,

S dﬂk S'\ (?1”“’(?&”1;“'; f_““k"?“fk)'l _—_‘

. (3.22)
= Sn [0, 8(UCPPY 1, 0)- |

But from (I.18) and (1.17)

g%’(v(h Pn) ko)d-’zk g U(h '-\) )dﬂ.k ""i 23

which proves the "irreduocibility" of (3.7a).

Let us now oonsider the oase, when the o.f.

'S,\(Pa,fw',---; f..,f“) contains disconneoted components of

the type (c.£.(1.27) )3

Sm (f:,?uﬁ PM;PMV) .y (’Pmu,Pmt 35 Pny f;‘v) y (3.24)

anl each of the Gefe SOw, and Sm.m  satisfies
; identity of the type (3.7a)¢
R S PPy -+ 3 PrngPons) =
- S(U(h---?-), o) S,,.\ (T*'?W;""lP'NP'“D (3.25)

Sn-m (Pmu; Prary)r--s fm?m) =
- S(U(rmu,...)h)’ 0) Suom (Presy Prss 433 Prospy) -

It happens, that it 1s sufficient the relatlons (3.25)
to hold in arder the disconnected oomponent (3.24) also

to obey the identity (3.7a):
SRR 5 Ponr Prs) Sncrn (Prvaas Prasa o= 3 Pn Ps) =

—_——
e (3.26)
= s (U (ret ,) O) Sm (h Pﬂf"“ e P ") Sn-m(f'ﬂoh Pmare)-) P-Pm')

It 1s clear that eq.(3.26) 1s a direct gemeralilzation to

the oase of De-Siltter
(1.24). The derivation of (3.26) goes over the same pattern

4; -space of the "classical® formula
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as the correspondent reasoning in Section 1.
& 3 : e 4. Configuration Representation. Locality and Causality

First from (3.8) and (I1.17) 1t is.easy to obtain that
(see (1.30) )

S(U(Pl P"“)O)g(U(Pmu: 3 Pw) O)__

Condition.

Let us make a Fourler transformation of the field ‘e(ip,f_..)

defined in pe-Sitter spaoe (2.3), using the basis function

- S'(U(P- Pn) O) N U(Pl Pm) U(p..m, ,?h)) (3.27) ) - - (1.33)-(T.34). If we introduce <’5\,P> as universal notation
: - ‘ for these functions, where §  1is one of the sets
(L)'VL) e)m) ? (A) "y e, 'm) ] (L)N) and (A)AD

Further, using (I.18) we write (3.27) in a form analogous
to (1.31): |

we shall have:

s(U(Pr-P“),o) g(U(M,..;,?n)’ o) o o » | (211')“/’- S 4?; |4=>dﬂ?‘€(’?;1’u) “Q('g) 1) -
. S, U(P,...p..) S U("" by — (3.28) It V(P,?.,) satlsfles the free equation (2 9) then
( ’O) J.ng( Z*?k7o)s U : @H‘) in the right-hand side of (4.1) we shall write ¥° (3) .

Therefore, taking into account (2.10) and (I.5),
Finally, multiplying both sides of (3.28) by -

~ ouk , ~

S (Puray i Prprma) S (Pt fones o 3o Prerpr) : € ) 1%,,1 S‘?l*@s(ﬁ' Y E(Pq-mu)‘@(p,ml)d-sfp - (4.2)

and taking into account (3.21) and (3+25) we obtain eq.(j.za). ’ _ '
In the oase when as basls functions £5|f) the "plane
waves" (I.34) are chosen the opsrator A ¢ ('5) owing to
(1.35)-~(1.36) satisfies differential-difference equation of

"Klein-Gordon" form;
2 (KLf- 'WL.,) \?(';L) 20 ( L-series, x= (L'N))
4.3
Z(KL '““v) \elgﬂ) o) (/\-s«mcs,g— (/\ N))

Now applying to the free operator ?(P,)P.,) simultaha-

ously two operations — Fourier transform (4.1) with “plane-
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waves" (I.34) and translation transformation with parameter °

X we have:

1

S J.Px —aPy
@ &iede  Clppye dflp =

. | 4.4y

v §4519> & T p40) A2 = 0,75)

Here the operator ‘fxmx(g) depends essentially cn
two varif;],.‘es X | and g as far as the functilons <-5|P>
and @ . dre different mathematical objects.. This
phenomenon has no analcgue in the "classical® theory. The
point is t;xat, in the usual formalism both mementum space and
the space of the parameters of the translation group (1l.11)
are pseudoeuclidean. For this reason the plane waves in /‘: -
spaoe, the quantities (3‘/?) and the plane waves e Apa
which realize representation of the group Q. 11) have the

same form:
Cslpde e FE
$ T (4
As a result, instead of eq. (4.4) we gett):

(€=—-

B b
c‘.)” SQ ?(1’) d‘ =‘€~?_s,+x) (4.6)

It is useful %o keep in mind that the plane wave in

"ole.ssica.l" ,? —-space, ca.n be considered either like
]

simultaneoua eigenfunotion of the generators -5(“"‘“ 3— 4.7

+
)The operator (4.6) 13, of course, "classical® 1limit of (4.4)
(see (X.37) ).

of the transformation (1.23), or as solution of the eigenvalue

problem for the operator of the " 4 -interval squared”:

R

which plays-the role of Casimir’s operator of the motion

group of the flat /F—space. In the latter case

-(2)'¢ |
=3 zlp) = ANZI4D s 4 - (4.9)
where the necessary type of the spectrum:

_g! >0 ~timelike region

A= zf._- O -light cone ' (4.10)

-g! ¢ Q -spacelike region .-

is obtained if unitarity of the considered representation of

the Poincare greup (1.32) is reguired.

that- the representations of the group
, are labelled

Let us also recall,

(1.32) which correspond to intervals gz),o

by one more invariant eigenvalue of the time operator
) z, = 3— :
’Of, .
35 . invav, o (4.11)
1%l

when one -goes to De-Sitter ,F ~-space the “degeneration“'

of the plane waves, fixed in rel.(4.5),1is removed. As a result,

4



- there appear.two Fourier transformations; one of them like
‘before is conneoted with decomposition in. terms of matrix
elements of the translation group.(1,11) - usual plane waves,
and the other uses as basic functlons the quantities <§M>>
(see 1.34) closely connected with the matrix elements of the

unitary irreducible representations of De-giltter group 50(2,3).

1f we apply a translation with parameter @ , to the ope-
rator (4.4), which is obtained as a result of simultaneous
action of the two mentioned Pourier transformations, then
the obtained result oan be répresented as "displacement" to

a quantity €L of the "index® X , keeping 5 constant;
A

iPa .y -iba £
e Y (3)2 = Cyra (x)- (4012)
The invariance of Z under displa.cement transformation

in rel. (4.12) gives a hint that this variable can be used in

the new apparatus as analogue of the "classical" relative
coordinate 3: x1_X& o

- Let us consider like an example commutation relations of

the- type)s

2 [e(%), e (9]

" ot (4.14)
v [ (3),% (9],
+)7he quantity ~% 1o determined by the equality
-3,= (L,-N), -3,= (A-N), (4.13)

42

where by definition "') ‘ : N

| Pr .
e (9-e "

" .
= L, At

(4.15)

simple calculatlons using (4.4), (4.15) and (2. 18a.)
demonstrate that both commutators do not depend on X ’

i,e. because of (4.12) are translation invariant. They can

be expressed by the follawing integrals“').

[‘(’ (S) Yy (o)]-
(4.16)

25(3, ‘i g<§|\>>€(?°)8(2?r2*“v)dﬂ1a

[?x"“*(z),‘é, (—s)} = i
= +26%) = = \(zg\p)e(?.)s(zﬁ-zm,)ouzr

Comparing (4.16) with the "classical” oommuj:a.tor

(4.17) ©on

relation

[‘e"“‘(ﬁ),‘em"{(&)} ,____% z(x"_ %2) ,’ B ’(4.183)

+J) nuclassical 1imit ‘fw‘*(o) = ‘ew(i)\ {=0

+)Iet us notice that the funotion 2(3,0) © ’obeys the
differential-difference xieizi-Gordon equation (4.3).



1t can be concluded, that guantity g -in (4.16) plays
{;he same role as the relative coordinate X;—-Xp, in eg.(4.18a).
Actually,substituting in (4.18a), X;_sx » X% =%

and taking into acoount (4.6) we get:

[‘ex“t(g), “exw*(o)] = —4; 3(_5) .- (4.18b)

Obviously the "classical ’ana.]‘.ogtie of the relation (4.17)
is the equality:

aut oud ‘
L' (S),‘(’x (—5)]= [‘P"(‘ﬁs),‘?m(‘:‘s)]= %2?(7@) - 419y

Therefore in (4.17) we have to interprete ; as "half"
of the relative coordinate. ' )

the
What isYnature of the new ooordimate

of § ' 4n our formalism is direotly conneoted with the

' £ ? The appearanoe

solution of the eigenvalue problem for the Casimir’s operator
of the group SO (2,3) (see:(1.30) - (I.34) )+). If‘one
compares (1.30) and (4.8) it is easy to notice that this
operatar is a direct geomeirjcal generalization of the operator
af t:h{.a LI ~interval squared (— ‘af)t « Moreover, as the
quantity (— 2 )
group of Minkoweld.’

is Casinir’s operator of thewnotion
,? ~3paoe, then its substitution with
the Casimir’s operator (I1.30) in ths transitim to De-8itter

+)simile.r;mathemat;tca_1 origin has th_e three dimensional relati-
vistic ooordinate [14] .y introduced in the framework of
the quasipotentiml approch. (See also [ 15] De

e i e e A

,F ' —-space 1s.a natural step from -group~theoretiocal point
of vlew.too. In the "classioal" limit evidently;

“%351;9(3(“’ )—’_ _)l"

Comparing spectra (I.32) and (4.lo) we see that L, -series
(I.32a) -goes into the timelike region -§2>o y and A~
series (I.32b) into the spaoelike region 'gz <O‘ of the
pseudoeuclidean % -—spaoe (see also (I.37) ).

we would like to emphasize that for "distances" ~ 4.
(in normal units ~ Q, ) the structure of the new %, -space

. 1s esgentially different from’the geometry of the S—space

in the usual theory. In particular,-as it is seen from (I.32),
the boundary between the "timelike" L,‘—series and the
"spacelike" /\ —seriest ) can not be more,.desc_ribed by
equation of type (l'.36). So the light' oone is "smeared".

A remarkable property of the representqtions, correspond ing

to L_-'series,is thehexistence in these representations of a

+)We have the right to call the discrete L —series "timelike"
not only for reasons of "classioal®™ correspondenoe, but also

beoause the speotrum of the time coordinate T, in our

case, 1s always disorets (see (1.29b) ). In this context
the word "spaoelike® applied to the oontlnuous A -series
ca.n‘.be cqnnected with the gontinuity of an arbitrary compo-
nent of the coordinmate operator T, (1.26).
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supplementary SO(Z,B)-invariant ~the sign of the discrete
eigenvalue of the time operator ¥, (see (I.28) and (I.29) )

[16]

- = invar. (4.202)

Relation (4.20a) is a dlrect generalization of eq.(4.il)
and evidently have to be takén into account when the causality
orinciple 1s formulated in the new scheme.- '

A direct calculation using eqs.(I.33a) and (I.34a) demonstra~

tes that in L. —series o

N o o
’ | I
Thereforé, eq. (4.20a) 1s'equ1va.1ent to the following:
Ne = * invar. : (4.2gb)
\N l

Let us prove that the commutation functions 2)(3)0) and
p%(ifg) , defined by (4.16) - (4.17), venish in the "space-
it — .
like" region ’ '5 'T'_gl\ e

et us first calculate 2)(3,\)0) ." Because. of (1.34b)

anml (I1.5): v
E(ZA)O)-—-
-3, +4LA i '
SE(?QS(Q?TZNIDZS(?‘_ ‘)(h* pN) d.‘f . (4.21)

I 5
where N =N°z—N =4
invariance of (4.21) and the fact that i(f.) is odd function

- , making into account the relativistic

of ,Po we get the desired result:

O 3.

% (-SA;O) =

11%’;: Si (?-)8(2P1'2YK.;)2 & ( pi- 1) dp, AR dp, (po- P,)J/ +8A
(4.22)

Similarly it 1is proved that:
2)(‘51\,“;»\)--' o. - (4.23)

Let' us now demonstrate that there 1s another way 1;0
obtain the commutation funstion 2(’;,0) 'y defined by
(4.16)+ Namely one can introduce. the relative coordinate g
as a variable canonically conjugated to the "curved" ‘

relative momentas . .- - -

(7.?‘) (2 Pa— (s
U full il
4= 'P (e 7 (4.24)

[(‘1= %.(fi'i"' "i kﬁ"’?&)ﬁ_ ) ) (“’-= ‘% ('?u'f' %_J(f.w.)"._)]

(see (1.25a) - (3.25b) ), where 41 and 42 are the
argument s of the ‘f ~fields in the commutator (2.18). Let
us consider in coxmection'with this the integral:

] (?I
@ )° ¢ "a \°\>“2f A, [lpupe) Cputad] . (425

| k;.&?&
It is clear that in nclassical® limit when <‘§h>—>e
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into th tation relation: Tet us recall that in the '"classical™ theory, both for the
this expression goes [+] e commutation P |

1 free operators and for operators, describing interacting

[‘(’(x+%) ,\e(x_ :25_)]= —‘-3(;). (4.26) . i systems, in particular for the current operator (1.9), the
: o 1 ) locality condition has the same form and is reduced to

- S

A ‘ £ bstit t in (4.25) the vanlshing of the correspondent commutator out of the light
From the other hand, if we subs ute in .

cone (see for 1nsta.nce (1 36 ). It is tempting to suppose
commutator (2.18) anl integrate with the help of the 8‘ - ( )

. ’ o that also in the new scheme gne’ +) of the egualigies (4,28)-(4,3Q0)
furc tion over "fz. , and then taking also into aocount . ‘Q

) ¢ can be taken as a pattern when the locality comiition on the
(4.24) and (4.16) we ob ain- ' ) 2

*(? . ourrent operator (2.34) is formulated. 1f we prefer relation
[ : N
(—25-“—), SQ (S‘q>dﬂ' Aﬂr [Q(fufﬂ) \e(fz,ﬁv)] = : (4. 30)"’*’), then the locality condition on the current operator

(4.27) ‘ in our formalism 1is written in the forms
"@1 843‘?1> dﬂ'r E(PA)S(Q-?« ZMM)- *3(‘50) i ‘) :
Thus the same commutation relation (2.18) for the free: Se bt ?

‘m@dﬁr.dﬂﬁ [’J (pu 1), 1(1’:.?:1)] 0, .o

field operators in ,P -representation originates different

ions )
in form but equivalent in their content oommutation re;l.at _g =-SA and X is arbitrary.

i

i

in configuration space: (4.16), (4.17) and (4.27). : |
ik !

{

A1l these commutators possess a specifio locality , +)There 18 no anyguarantee that the eqoiva.lence of the relations
property - they vanish for ¥ from the "spaoelike” A - ‘ (4. 28)—(4 JO),which holds in the theory of the free v -fields,
geries: . C ) . : o i is conserved after tra.nsition to more general operators.

"""%he reasons for such a choice gre ma,inly technica.l- there

[‘(’,.M('S), ‘€, (O)] =0, - (4.28) ‘ is in (4.30) a complete separation of the variables to "rela-
' ik g ' C tiven and "absolute", both in configuration and momentum
[Y,‘ (%),‘f, (“S)] =0, (4.29). - - space, which 1s very convenient for calcéulations, taking.

into acoount the translation invariance of the theory.

4 S Aprpdx

@19’- < I‘“P\ @tﬁ)(ﬂr aU)T [‘(’ P “)"((r' P")] =(4. 30)

=0,

if g.—:g/\ and X 1s arbitrary.
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Relation (4.31) is translation invariant since only

the arbitrary parameter X varies in it under transformation

(2.40).

In "classical limit we obtain from (4.31), in complete
e.nalogy'with (4.26), the standard locality oondition for the
current operator (1.10), equivalent to (1.36):

[4¢+8),j(x-3)]=0, (432

if §2< @] amd X 1s arbitrary.

As 1t 1s well known relation (4.32) in the usual theory
is a corollary . of ths Bogolubov?s causallty oondition
(1.34) and the "solvability condition [2,3,4J « As far as
in thisscheme we already postulated the locality conditlon

. 1n the form (4.31) and the "solvability condition® bas the
form (2.37) then naturally the questlon arises: how the new
causality comiition has  to look like in order that from 1t
the localilty oondition (4.31) to follow, when 0q.(2,37) 1is

taken into aococount? Recalling that in the new S -spaoe, for

"timelike® values I, = (L, N) , the sign of the oomponent
No (which colnoides with the sign of the disorete time)

1s relativistic invariant (see (4.20) ) we oan put in oomplete

analogy with (1.34)*):

+)1t 1a easy to see that in "classical® limit eq. (4.33) goes
in the causality ocondition (1.34), written in terms of

“relative® and "absolute® ooordinates:

=0 . 1 320 , X arbltrary.
*,+ %z

(% 5= 237X,

S e*"(’?#fx)x

(3| Ebtib S’("‘*f") 49, A0, =
'+("‘> 8y pay) | " au33)

if g 2 0 ) X - arbitra.ry{ »

The symbol '52_0 has thb,_following sense in our

context:

" 1) elther §=§L=( L)N) - and ;fg%&:isian’rl.)O‘

2)or 3=, = (/\,N) .

1ater we shall consi.der relation (4.33) as gausality con-
dition in the develoged field theorx. We shall suppose that
the extenslon of the S-ma.trix off tha mass shell, based on °
De~Sitter momentum space, should be consistent with (4.33)
(the amlogue of the "classlcal" requirement I'f,—‘-’see section 1),

Similarly to (4.31), equation (4.33) 1s translation invari-
ant. If we substitute in (4.33) g with —F - (see (4.13) ),
put E = F, 1in the original and thus obtained relations
and subtraot them from each other then because of "solvability"”
condition® (2,37) we obtain the locality condition (4.31).

With the help of a sim:L'La.r‘ prooedure it is not difficult to
demonstrate -that: - . '
g i(pe fu)x le,r. M‘}“ﬂr#% S*s gt-
(s BYEPu Pro) 80 puyPav)

- (f‘ 1’*) afu- (Ps | : ’
B S lcc. +S= >d.ﬂrd.ﬂr J(PnPN)J (pu ) + (4.34)

| {epdx wpew, :
e fen l“ Ayl oy o]+

(et
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where

nS0

O(N) = O(n) = { ; ’ (4.39)

MmO

and.. the dots at the right hand side indicate that here in
principle oould appear supplementary additive terms, vwhich
could be caused by a possible unm;iqueness of the product of
Q(No) and the ourrent oommui;ator (confer with the
quasilooal terms in (1435) ). It 18 clear that investigation
of products of this type will allow to Judge how singulg.r
is the new off-mass-shell extenéion, based on the 1nfrbdu°£ioﬁ
of fundamental length in the theory. We shall come back to
discussion of this problem im Section 5.

Obviously, relation (4.34) generalizes the "integral®
causality oondition (1.35) of the usual theory. Commuting
explioitly the currents and pex;roming identical transformation
we can write the right~hand side of (4.34) in a form of a
speoiﬁo chronologioal produots

A(perpa)x (aPi-(hfe\ 4 3’ -
ge Gl f+¢u > Qﬂ‘ﬂﬁs‘(’(ﬁ, )S(O(f.,f.,) $'=

ae S(No)g (;\(‘_‘fl_@)dﬂr J-ﬂr J(’P«,fw)d (sper)-
S A(ptp)

(4+36)

"e(No

\ll

<‘Slf'—""—‘1—>‘ﬂr Al (o) (Pt
Hptp)x
=—‘T S (;lﬂi"}dﬂfldﬂh’j th‘w)_) fz)fm)'l-"-
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Let us now consider as an i1llustration, the application 7

of the 1—operation, defined in (4.36), to the free
\e —fields _Notice first that the step ©- function
(4435), which appears in relation (4. 36), has' the following

Fourler decomposition:
T S
wn deo
9(»« = A 1" ..
)= = \e . (4.37)

Further, taking into account (2.26)-(2.27) we obtain:

p )
";{@M "G I!‘*_ﬁ__)an m,f ) €l 1,,,))

_ S~(ﬁ+4’-)

(.; (“4?1 (‘P‘- d,n.olﬂ :'f( 4 .'f; WPa)e '
l > £t VAP 1") (ﬁf * (4.38)

4
‘)3

4")’ S ~(ecrbx d _Q 4 Q S (?,, ) 6¢3) S'(Zﬁ.,—-2m,).

[9(“) <§‘—m) + 8( n)(';\ (“ﬁ t"P:.>]

'l‘he last 1ntegra1 in the right-ha.ni side of (4.38) can

be written in the form:

.i.! Sdﬂ? e(-f,)§'(2f,,-2m.) [6()<sip) + éF“)(S I1>>] =

\ (4.39)
- :[ om2° (5.0) e(n)2> %, 0)]E 12" (s.o)
%)
where 2 (E,O) are the positive kand negative

freguency parts of the commutation function (4.16) which
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define the normal palrings of flelds in con_t‘igu.ration_

spaces

25”(§,o) S(g]p)&(P)S(zf,-zm,)aﬂ =
='~\°x ‘e, - .‘<4-4oa

 Sl9-Bts 0 - 25 5 o520 =
(4.401)

ou.t
-_4.\? (o)"? ( ).

. ‘ :
As the quantity 2 (K,O) in (4.39) 1s even funotion
of '§ , we can use the "spherical® basis (T.33) for

1ts calculatlon. As a result we shall have:"

2 (;,o) S(An,ewqf,) afz (4.41)

{ﬁ(w).* Z-(w,':é) + 80 *Z(-)(w,}?)]\‘ } ’

w=-w -

L

where A= {/\ y and with ¥* we denote the
A

-2'- = and
Y

convolution operation of the function e(w)=
) \l__‘
2 (w,p) = 9(—w)§(7-605w + 2m,)
on the circle |w | ¢ 97
X

B *Ztg(w.-f?) = %S:&j‘:’—l—— 27! -Bdw _

w-w! —ig
R (4.42)

1 ' 4~-m2
cors 2 = cos = °

4
2 "3“———“2“"“ ' A7

=+ S‘(’“ <3\Md‘_'f_*>m 40 ‘f(r«.f«)‘?(ﬁ.fw)}

Now, with the help of (4.42) we finally get:

dflp =
me\lhf -Z2my-ig (4.'43)

dSlp

(2“)" S«M}) 2(p-my=i)

, bece.use of the already mentioned

B0-4, (aw

where <§ l,‘;)

symmetry property Z (S,O) 2(—-;,0) can be considered again
as the "plane wave® (1.34).

Coming back to the initial relation (4.38), we can

write:

4 A(1a.+1»;)x \ P .
T, {wg |.(“_1"_°‘L> 40, Xl \a(,,‘,ﬁ')}
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(an)*

+—2“@@

For comparison let us write’the corresponding "olassi-—

cal™ formula:

o o out enl t
.; 14 . o . (c)
T [ (e ¥ G- =¥ G PG 3+ £271), (4.45)

where

z®e@ma>wnﬁ%)

S PE d'p  (4.46)
(2 )" : 'm‘-f;‘-ii.



Therefore we are convinoed that the quantity we obtalned:

t (¢ <% dfl
200-002%0- 0B 9- A S_'fl——f—
2 y-my-3t)
(4.47)
is closely analogous to the,causal>Green function (propagator)

of the "olassical" theory.

From (4.39) and (4.40) 1t 1s easy to demonstrate that:

'r;{v,(;)\a, (o)} = BN E) G (0 + BN e (D% (5) =

(4.48)
LA 5®
= 1 %@%0: + 12°G,9.
A slight modification of the calculations which -leads

us to (4.39) and (4.41) gives one more. formula with
the FT; ~product (see (4.17) )t

T, {v, v (-;)} = BN (5%, £5)- BME (D)% (¥)=

(4.49)

- g ()G eE): + 22769,

where

4,.50)
_ig) (

2 G, D= eF S(«\?) z(ﬁ gy

We would like to emphaéize that the relafivistic invariance

o

of all considered rT;-products is guaranteed,first by

eqs.(4.20a)—(4.20b)'(1n‘the "timelike® L -region) and
second by the locality condition (4.28)=(4.30) (in the space-

like A ~region).
The "integral® causality condition together with the
recurrent relation for the radilation operators+)
Nned
Y :3 E;+
S ‘e(_f"?“")' -3 ‘e(-“\' 1;-“)8 ?("‘Pmi) f‘ma,u)

(4.51)

£9 . } .
[ S.'f('fqif‘ib"'g‘e(’?n,fnv) %YG?.N)P\‘uﬁ) J(fm'“?"“'")

.

and the identities of type (3.7) may be used as a base to
obtain a chain of connected 1ntegrai equations for the c.f.
(2.31). Doing that 1t is convenient to write (4:34) in -

representation:

+)Eq.(4.51) (see eq.(2.3) in [4] ) 1s a corollary of the
unitarity condition for the.extended S -matrix and is
obtained after M -fold variation of eq.(2.35). The

Y

arrow under the symbol —

1) 1

1s performed from right to left.

shows that the operation
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§%S
80,4 8 Cputie)

= - j(fv?ﬂbi‘(?ﬂf"‘) +

—————————

sl L (s M(?v?:-f«'d&')(ﬂ“‘f’ sy BEMally oD

‘l f. +h (2n)

. <-§ | t%((:li_> dﬂﬂl d Q?; [’j (’P:.'P«’v) ’ j(?:;?;lﬁ)] *

.- are given by eq.

) ‘ , ,
where (\4,., (u, (‘1 and (=

(I.25b), the volume element dﬂ; in - g — space has
the form:+)

2LANLADSEH) 4N, 28 525, (1,N)
i}
|3 2A ‘,,f-'-)ﬂ\r/\ SQVM)A"H vif5=5,= (AN) (4.53)

|

and by definition:

(2) \(g\ct)dﬂ <'§|q> S(q, ct) (4.54)

+)
See the footnote on p. 45.

.

(the integral in (4.54) denotes summation over |_ —-gerles

and integration over /\ —series).,

7 Let us calculate with the help of (4.52) as example the

c.fe S (191,/?“',4:, p,.,) + Taking into acoount (2.31) and
using the oompletenessof the system of states (a. 52), we shall

have"')

%6?«)?‘"5'%)?1'):

fw*ﬂq » 1= (112
2 {en, <a4r>"g Gt ’f*'fa)dﬂ A, 49 (z\m ?)

‘{O(N'KE\C‘::(“'? Z< ‘J(T"?\V)‘“><“|J(ﬁ ,1’;-,)\°>+ |

t e('”)(i\("f' ‘(“ i )Z_(o‘j(f‘ e )“n><“\.)(fﬂ?1‘l)l °>} A‘(4 .58)

where .
<0\J(lf.,1>..,)|n) (ol)(f.,p...)lk., ,k 9 | (4.56)
‘and Z &notes summation amd 1ntegration over all

intermediate states. Then, using relations (2.40) and
(2.32) 1t 1is easy to obtain ( compa.fe with [6] ) that:

"')For simplicity here we do not take into account the
hyppthetica.l additive tems, denoted by dots in the oausality

condition (4.52),
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<°\j(f'1’«)ﬂ:u-"]:u>= \?"\S(f"%))«?\ g"nqj(a,,q.,) ﬁ("_‘:h>, | . i v- . . | where the spect'tra} ‘qunc;t:‘Lon is introduoed:in a standard

way:
> o - - ' N : . :
. ) . : . ! )
<k,...|<,JJ(1’.f.,)‘|O>— lf.,\S(?fB“,)(‘(,,...,k\\gdflq)(a,,cl;") |o>:4.57) | . K | '. 9(1°z)'"fz lg@lj(q.qq)dﬂqli,,.,_Z)(z s
. ‘ (the summation in this formula is performed only over inter-
where ks P(“) . (4.56) s mediate states witg total 4-momentum P
) " 12 we notice now that :
(2.3:in::s 4 -ﬁguarg 1: :blig:‘tor:e::::d:::ne?zttzr SI."-’-“ - 5 9(4‘1’)9(1") d\' Sd(“z S(z\ﬁ__' 2(“) —i’ —; |
e, o o 407w 4 ey o e | Sl o) 48y, (o )

invariant mass obeys analogous limitation: and "51"8 (4.47) and (4.54) we can write equation (4.60)

in the fom

P(:, e | (4.59) S(?,,f‘.,, f,,f,, _ﬁ’ﬂf) Sd(‘ ‘3((“) & H;,)dﬂ

Substituting the matrix elements (4.57) in (4.56), taking (4.62)

A % <§\1>>4§§g_= 4 Sﬂwos o y_ 4t
R T S A R

Hence we proved, that in the new scheme there exist

into acoount (2.36), the speotral conditi,on,r the requirement
(4.9) amd integrating over lf"‘l and A’ with
the help of the $ —functions we get: '

S (1’1'1’“» “PorPy) == 2. S_('ﬁ'_")' S<§ M"‘\) d'n‘;

an analogue.of the Kilen-Lehmannn speotral representation
for the o.f. S,\, « The most interesting feature of the

(1 .
(2“) new representation 1s the cut-off of the spectral :Lntegra.l
. ) 4.6
{B(N')<E\“1’> 9(4_",:) e(fo) e(fz) + ( »0) . b or the finiteness of the spectral function. As f:r as in
’ v ) ’ i ‘ the "olassical" theory the :Lntegration over (‘1 is
+ e("~o)<§\'?> 9(4_1;,_) e('?o) e(?g)}?('?,_)d"'? , ‘, . carried up to infinity and usually the integral 1s divergent
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on 1its upper 11mit+), the result we obtalned should be

considered as an indicatlon for a possible softening of the
difficulties connected with the ultraviolet divergenciesv
in the present approach (see also Section 5e)e

5. The Problem of Generalized Singular Function Product in

the New Scheme.

It was mentioned in Section 2 that one of the goals of
our approach 1s to obtain a satisfaotory solutlon of the

problem of multiplying generalized singular functions with

coinciding singularities. we shall report some of the results

obtalned in attempts to investigate this problem. A detalled

discussion of this question will be given in a separate paper.

Lei: us begin with one—dimensional example from the usual

theory - the product of the step function 8(s*) and 5(3°)

which 1s a good 1llustration of the discussed difficulties
[5] . ’

As far as:

UAS it 18 well known this is directly connected with the

ultraviolet divergencles.
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+00 LE;" .
9_ A e
8(39-= 2 S 1€, (5.1)

E-4i¢

- oo

then formally we have

400

o8- | 2 18E) = 5@). 5y

A more rigorous approach based on generalized fu.hction

theory arguments glves:
0(x)5®) = c 6y, .

where C is an arbitrary oconstant.

The analogue of 9(‘§°) S(§°> in the new scheme is
the expression o(n) gn,o where ©(W) is the
step function (4.35) with Fourler deoomposition (4.37),

and 8“,m 18 the Kroneoker symbol, Therefore

)4 T dew _
8(m)Bn0 = {«3—-—— } e =

{J‘_;_’. -4%
{ i \—éi __L}g = 4
;;-i',o. E-if A4EZJ Mo 2 “no (5.4)
( ‘*3—;-_’- = E 1s the new integration va.riabl.e).
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The conclusion which oan be drown by considered example

is that the functions ' 9(‘,"') and 8“,, are,
contrary to their conti_nuous analogues, ordinary (nct
gereralized) functlons and their product is defined uniquely.

It turns out that a similar situation holds in more
general case, For instance the ‘commutator (4.16) for zero

mass particles is given by the expression:

DEA = e 8,

m=0
(5.5)
fnl 3 L+3,
L=-4,0,4,... ,
where
n):: e(n)- e(-h') - -41 J:Jf wn<{0
In the "olassiocal® case we oould have correspondingly"’):

)| = £@5E) o

+)The oondition M=0 plcks out the most singular part
of the "classiocal® 2 ~function (4.18).

A comparison of formulae (5.5) and (5.7) demonstrates that

B the first one has a completely well defined mathematical sense

and can be interpreted as an grdinary groduo of ordinary
funotions"’) and in the same time the second formula is a

typloal for the "classical" field theory example of multiply-
ing of singular generalized funotions with coinciding singu-
larities.

It should be clearly understood that the appearance in
our formalism of discrete (quantized) variables M  and
L ie direotly -connected with the boundedness of the

new 1: -space 1n timelike direction in the sense of

De-Sitter metrics. owing to the same reason the "plane

waves" (I,34a), corresponding to the timelike L ~-series
are square integrable functlons (see the footn‘cte on p- 79)
The last oircumstance will blay an important role in the -

++)

example s which we oonsider below,

+)4 similar statement 1s true for the funotion 5({,0)1
eq.(4.16), for all above considered oommutation functions
andl propagators a.ni a.'iso for arbiltrary powers and products
of these quantities.

M)In the present report this example has only methodical

meaning,
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Let

k@)= re Ty 5.5)

is a "bilocal" operator, constructed of the fields (4.4).
From (4.29) 1t 1s obvious that:

[_jx(g)a:)x ("g>] =0 , if §=F, and  (5.9)

X arbltrary .

It is clear also that:

<5, j< (9)]19>= CILEL DI, o)

where »
JE) = Jo(5) = " (5): .
Now let us consider the 1ntegral:.

%(f) =

- & (sl BT, JEnior<slpy

(5.11)

1s defined in (4.53).

where OL-Q g

In the "classical®" limit this quantity colncides up to
a constant factor with the real mrt of the one particle
prepagator, calculated in second order of the perturbation
theory, in a model with H ‘P“"(X):
(’n)l 2) .« As 1t is well known in this case

interaction
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. the oorrespondent 1ntegral is divergent. The reason is that
:. the product of generaiized functions 9(;') and

'<°\Ej<!),j(-§)]|°> |

18 not 1ntegra.‘ble because of coincidence of their singulari—

ties in the point ¥ =0 .

Let us investigate the convergence of  the 1nteg:cal (5.11)
Notloe first that owing to the locality oondition (5.9)
the continuous
integral?l

gm-é \2(L+i)(L+2)(L+/)8’(N 1)AN

L=-4 (5.12)

<5l O(N.)@l[j(m,j(-sk)]Io><€L\1=> ’

/\ —-series do not oontribute to the

Using the Wiok’s theorem we easily obtain:

<))l = <el[e 8, € EEio>=

_ “!(—{_)'b\.{<b¢-)(gh_.§h))w‘ (Df-)(_,gug))"'} ’ ('5.13)
—2> (s—z) 2 (z)? (;)

* o ) Gy ockyBak-2mddly

(5.14)
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and (cf (4. |+))

2759 - 2°¢ z,s) 2 (ET). (5.15)

Let us now estilmate the modglus of the function (5.12),
assuming_fo’r definiteness that 'Pz) o and making

obvious majorizations in the integrand (compare with (II.2) ):

(f)‘ <
l g (5 :16)

Z(L+i)(L+2)(L+ 3)l(ol [jE,j¢ E)]I°>\g Cpr+ o).

L—-

- .
The integral over J.N can be calculated explicitly:
aN ;| a3
(( = -?v[am (-1,
(5.17)
4 2
- -c AL]L+; (‘F)’

where [11] -

o (p) = S - (5.18)

v [(+2) ' Ay .5,
Ty AREbE)

and A‘_ i1s the finite difference symbol. It is
easy to see that expression (5.17) as a funotion of L

_has no singularities for 1=-4,0,1,... .
In the region L >4

|3L+2 (?9l %—‘ ( D) % G

Taking into account (II 7) and (5.17) we obtain from
(5.16) the following inequality:

\%(f)\"— = (L+4)(L+2)(L+ 3 IAL L+2(1’)|
L--

"w :
n

() aGaztmd]) o
where C collects all constant faotors., 1t is easy
to see that series (5.2p) are absoiutely c/o&vergenf. Indeed,
let us choose sufficiently large number L. y . Suoh
that when L >t . -we can substitute the expressio-n
urder the sign of summation in ().20) by its asymptotic
value, Then, introducing the notation M (’P L) for
the finite sum from =-1 to L=L ana taking
into aocount (5.19) and (II1.8) we obtain:

\(3(1’)‘4 = f,L) “"“t 2 L —4l."(5.m)
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_ The infinite number series in the right-hand side of (5.21)

are convergent far M 32 bacause:

o -3(2-4)
128

(5.22)
=—4—-Sx dx ¢ oo

2 ) _

L

( Cauchy criterion). Therefore, the function \g%(p)\
is bounded and the initial integral (5.11) 1is absolutely

convergent.

The considered examples testify, apparently, that the
constant curvature » —-space extension of the f; -
matrix off the mass shell is really "less singular® than
the "classical" extenslon, using flat pinkowski momentum
space (compare Section 2 ). It can be expected also that
in the pausality conditlon (4.34) the number of hypothetioal
additive terms, denoted by dots in the right—hand side,
will be reduced to a minimum*? A great sucoess of the
theory would be a unlque, selfconsistent determination of
the mentloned terms because this would allow to answer
the questlion: which kind of interactions among the quantized

fields 4s reallzed in the Nature?

+)This additions cannot disappear completely, for this

S;—'matrix [ 4-) .

would imply a trivial unit
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6. Conclusion )

In this Seotion we would like to formulate a program
for future investigations in the framework of the approach

we proposed here.'

1) A detatled analysis of the generalized causality éon-
dition (4.34) ,ginoluding the questlion of. the arbitrary
additional terms) should be carried and én 1ts base the
ma crooausality oondition'qn the scatteiing matrix
should be obtained.

2) Construotion of perturbation theory and developing
appropriata diagram techniques.

3) Three~dimensional fonyuiation of_the/tqp—body_problém i
in the spirit af the quasipotential approach [18,19,26]
ani development on its base a phenomenologloal. theory of
interaotion of hagrons with De Broglie wave lengths

<1, .

4) Obtaining of different qualitative Predictions in the
glven soheme, based on the faot, that the .Y —momentum
of arbitrary virtual particle obBys the restriction

p2e 4 . In particular this is related to
the one-photon pair (ei‘ei) annihilation, lepton

pPair production, deep inelastic processes,etc.
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Appendix I.

Some Relations Used in the Constant Curvature

M -Space Formalism

1) The hypersphere equation (2.3) in units Rac=28,=1

Pi- Pi-pi-piepl =4 (1.1

In five-dimensional form:

(%°o= 3#":'31#:'321:' 8“ =4, 8““:0 for L4M),

or simply
pi=1 . (1.3)
The lire element: .
1: dfz + .(ié-ﬁ):- .
' - %% (1.4
. 4)

(4p%= dpu-dBr , pp= podp,-FdF) .
The volume element:
28(?:~i>ds1> (1.5)
2) The motion group +) (De—bitter group S0 (2,3 ).

B = A" L Py (LM=0,1,234)

ﬂ“/?' }HKAH Ay : (1.6)
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Lorentz transfarmations ( 5 —rotations around the .f.,-

axis):
'?k—'FH
pe= N 'e»(c‘"“”)

"Pranslations" to a Y4 -vector 6(4 ( 5 -rotations in

the plane ((‘“I) s
hes AT + AL (Dpy

(.n

(1.8)
/?'; = /\q y(g) f" + Aq q(g))P’i .
Ih explicit form
/\’q (’?"‘)2’)(4 f@*g Pr = ,‘,,4,‘,) ( )
I.9;
Pz (perb)y = - - 6 ety
By definition:
pebs pEY).
Obviously, .
A, - "mfm% - (1.10)

Properties of the "translation® operation (1.8)-(1.9):
HOLEE X
=0 .
: -1
A(QDA(&)A (e,&1g2>=Lorentz rotation .

The representations of reflections are not considered.

(1.11)

+)
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3) "Spherical® coordinates ((.O )X) 9,‘?}

,Fa_ SAm W ‘LX
Py= mmg\)(
/F1=§LX9u9un‘-Q'APi sL\)(hu‘Bsm‘-(’,f;_Sl\Xqu (I.12)

(lwlgw ) 0£X40a, D£O ST, 04 e 2m)

s
"Semispherical® coordinates (w) /P)

= \J'HF:' $imw

By = A+

(1.13)
?-3
(leom , 0% p o).
The volume element in coordinates (I.13):
—’
d.Qf = dwdg. . (1.14)
Group-theoretical sense of the cocrdinate (I.13):
1 il .
k=9 wk' (1.15)

where
PL= (Pn_??) P‘l)"' (@“‘“‘0 )F) \/:t_-’-:'?—"wﬁw)
qt: (0)?) @) (1.16)
k:_l:.‘(SI.‘hLO )-6, w‘ﬁw>
4) The function 1Y (1’ f) .
‘S(\”) S‘&(f)s(?)?) dﬂ?) (1.17)

S50 lpal OB (o= YOI (72
B (pnk s k) = B(php ‘ (1.18)
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5) Transition to i:he variables ‘1:.‘,(;=""'")a.nd U(fﬂr-vf“)
1,1___ q(ﬁ‘[](ﬁmf’n)

(1.19)

By= (+)U(" ?“)

where
(‘11”‘2*‘"* q")f ((ql*""'q“),\a Quyt -+ Qny) =

= (O’u J 1’!"“"“"1’“)2' ) (1.20a)
(?«* +'Pn) = w-rZ\l& (191(),% (1.20b)

t‘j..
4.'#1

- B pa Huoutt Poy | U 8} G- ?") I.21a
(ﬁﬁ, +?“)H [,————-\1‘ *?")P) A ) U (1.21a)

U._(?.MP‘)) =U +U:. =1 ) (1.2

dfdp d i)y =

o= S (U("""‘lu)’ 0) Aﬂm... al_thl QU(?""P") (1.22)

If:

......... 1 ' _ » (1.23)
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then

U(f: ?n) U(1’1 P-) (+>?)

(I.24)

In the case of M = 2

)U“’-lfz) _ _C:fl:_(i'-fi - . (1.25a)
(Wt (M2
Goe U _ i
- ("r" (‘1-

(= \l .+1>;),4>
e 2 (puy + \l P:%M)

the eq.(I.22) when =2

Afp, Ay =S(U("“")o)olQ dil, iﬂvcr.m—( "
. I c
4'p
= dQ 0(4 q - —)
g Py . ’
\vhere P—- 1+?._ ) q Ch (see (1. 258.)) rthe

7 .,V(i.25b)

appearance of Q(1- q2- P—) is oonnected with the

condition (U(ﬂ?‘)) = i (U(fll’) > 0.

6) Generators of the group SO (2 3)
YRV (VS

(K,L=O)4'2,3,Ll ; )e)h = 014123.3>

(1.26)
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) S
Mx = A( K_l - X_a_
? 'Dﬁ IP ‘313,,_
qu = :"f‘l?_ E—'gk (Snyder’s L[ —coordi-
DPA nate)

We have also:

A

[gx ’ SX] =4M". (1.27)

[-]
The time operator g
(1.13):

in "semispherical" coordinates

° D
§ =450 (1.28)

o

L ) o
The elgenfunctions of the operator E s perlodical

on the segment - < O &£ 7 :
inw
<niw) = € , n=0,+4 £2,...
(I.29a)
This corresponds to the spectrum:
-]
'§ ="n ) ' (I.29b)
7) Casimir’s operator:
4 KL 4 “_X 2 ,
2 M MKL"' EM Mxh +E = (1.30)
- 14 2 -1
= G o (Fe Vgl L)
Igl 'bf { 3?9
where ||gr9|l 1s the metric tensor, calculated with
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the help of (I.4) ; 4= det llgc.,,ll

The eilgenvalue problem:

A 2 (G g 2 _ |
- Vigl ’bﬁ.(_a(“’ﬁraf)<'\""|f>‘ A 0?’"“’? ’ o

where the dots denote the variables which together with A

form the oorrespomlent complete set of observables.

For the unitary representations of the group f;CkZ,B)
from the maximal degenerate series, the spectrum of A

is of the form:

L(L+3)  L—4,04,....

(discrete series

(BN 0chcoo

(continuocus serieé)+)

)_,_) (I:32a)

(1.32v)

. ++)
8) The elgenfunctions, corresponding to (I.Jé)

Spherical basis (see I.T12):

+)For brevity the dilsorete series‘wé shall call LJ -seriles
and the continuous correspondingly /\ -Serigs.

++)We shall 1nvestigate the propertles of these functions
in a separate paper. Here we would 1like just. to mention
that the elgenfunctions in the Ld -speétrum are square
integrable (I.5). '

79

-
v



L, -series: :
< L,m, ¢m H’>=<L)“’exm|‘°:)(»9,‘€> =

nw L -1-3 ' -
- (00 th 3+fen Le3elw 5 3

¢ Voo RS ).
with |
(I.33b)

[nl3 L3,

/\ -ggries: .
CAmtimlgy = €7 Yo (,0ER )

(1.33¢)
Cihr 218 AT 48-m ¢l
‘2F1 ( :z ! 22 ;e %; 2X) :

“Plane wayes"

L_. ~series: .
L, NM’) (ﬁ ‘?N)

(1.34a)
N= (NN); N'=NZ-H*= 4
‘ /\ ~seriess ' '
. : --+4.A
<A:N;_IP>= (1’1" fN)

CN- (MR N N-A- A

Functions (I.34) satisfy the following differential-difference

equations in the variables (L) N) and (A,N)

(13w

L. ~series:

2 (KL— ’FD(L;N"P>= 0,

-2 (1.35)
oL
ko ol - s
L+ L (Lt ;_)(L+?_) /
where A(N) is the Laplace operator on the hyperboloid

and N.z—/vz= 1 .

/\ -series:

2(K\- po)<ANIY=0,

{1.36)
2
K, = 2hi2 ) _ &
=9 dil - 2k - — ~
" M “n AA@EA-S) Aims

where A(N) is the Laplace operator on the hyperboloid
and ﬁJ ﬁV = - i

In the "classical limitn
WNTNp - iEp
L,N - :
LMp) — e =¢ (5(«:’ E%) (1.3

REY

(A,NH:) —e =QiE-P<gr= (-_g_‘/\/(«) . (1.38)




Appendix II

)
Absolute Value Estimate of the X) '— Function

Consider the function (see (5.14) ):
2% D=2 £ (esikyock )5(z\< 2mYdld

"and let us estimate i1ts modulus in the timelike region

=%, .
<z, |k>\ (o))

CRVRVEEY

(11.2)

(see (I.34a) ), then o )
()
| 2 (E\.)"g )\ < , (11.3)
<k )3g(|<z (w)) o (k)8 2k, -amdfl, -

Taking into account the relativistic ilnvariance of this

1nequa11ty we can write the - right—hand side in the form [4?]'-

%,g (ke k.) AN 2ky-2v )y =

=—5——S glL . _:1__Q§ : k‘d“d -
i ) @o I T (4 k)

(11.4)
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= A 5(3;L+2) F (L+3 =L+ ;‘;m,}),

@nf 2

Therefore:
I D(-)(Eu'-g'-)l <
m’- r(L"’Z)

46:rr:V= M) * *
It is essential that for all possible values of L=-1,0,1,’2.,...

(L 3 2' L+¥. ) (11.5)

the right-hand side of (II.5) has no singularities.

When L »1 the inequality (II.5) is simplified:

' Z(—)(EL,

) -3
< womat. L 77, (11.6)

With the help of (II.5) we get the following estimate for
the matrix element (5.13):

[Il46.), i)l | < m! 2| 29, -5.)]

wmlm™ r(L+2). Y ™ arm-
< — . N
27 \F(Ls %))[,_E_ (L+3,§ ;L+ -21 ; m,')] .
When L. > 1 we get:
3n 4 .
l<°|[](§L‘),j(-§L)]|0>l < comat. L2 (11.8)

+)
Let us notice that the estimate (II. 6) is valid, as it should

be from the correspondence princ
€ iple, also f " -
cal" % —function [1 j) . ’ °r the Telassi
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