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The equations of quantum field theory I 1 I , e.g. the equations 
for the Heisenberg field operators, are of essentially nonlinear 
nature. The Dyson equations for the one particle mass and pola
rization operators bear quite a similar nature. At the same time 
the Bethe-Salpeter (B.-S.) equation for the two-particle Green 
function is often treated as a linear one. This lack of correspon
dence is directly connected with the usual definition of the kernel 
of the B.-S. equation within the perturbation theory in the form 
of an infinite sum of "irreducible" (in the sense of two-particle 
sections) Feynman diagrams 

However, such a representation often proves to be unfit, e.g. 
in quantum electrodynamics (QED), because of the presence of the 
"infrared" divergences closely associated with the zero photon 
mass. In the case of the bound state problem the "infrared" 
di.vergences do not arise even in the "scattering" approximation 
if we explicitly take into account the effects of "binding" in t~e 
intermediate virtual states. To this end it is necessary to sum up 
<;0lectively an infinite seque~ce of "irreducible" diagrams in the 
kernel of the B. -S. equation 2/. Such a summation can be accomp
lished in the simplest way if there is an additional equation for 
the B.-S. interaction kernel (e.g. of the type of the Dyson equati-
on/ 3/ for the one-particle mass operator). · 

Now we try to deduce an appropriate equation in the framework 
of QED taken as an example. Consider the Green function of two 
distinct particles with masses m1 and m2 and spin 1/2 (say 
an electron and a positive muon): 

G(xl x2; Y1Y1)=<0IT!r/J1(x1)tf,2(x2)ii(yt)-;j2(Y2 JI! 0». (1) 

In QED the Heisenberg field operators r/J 1 ,2 satisfy the equation 
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(px - m) !/; (x) 

where 

A • a p = ., __ y 
x ax µ 

µ 

eA(x)¢1(x) 

A(x) =-A µ(x) y 
µ 

(2) 

and Aµ (x) is the Heisenberg operator of the photon field. We 
apply the operator (PA - m) to the Green function G • Then using 
the definition of the T-product in terms of the () -functions, 
eq. (2) and the canonical equal-time commutation relations for 
the operators !/I we obtain the relation 

A 4 
(p -n; )G(x x ;y y )=-o (x -y )S (x -y) + 

XI 1 1 2 1 2 1 1 2 2 2 

µ - - (3) 
+et Y1µ <OI TIA (x1)i/J1(x1)«fr2 (x2)i/J1 (y1)l/12(Y2)11 O >' 

where 

-
S (x - y) = - i <0 IT I «fr (x) «fr (y) 11 0 > 

..... 
is the complete one-particle Green function (propagator)ofa fer
mion. The term with the o -function comes from differentiation 
of the ()-function. 

Now we define the generalized irreducible vertex function r of 
the two-particle system /4/ similar to the case of one particle. To 
this end we consider the five-point Green function 

Rµ(xl x2,-Y1 Y2lzJ = 

µ - - (4) =<OITll/; (x Jr/I (x )A (z)i/J (y )!/I (y) II 0>, 

and set 
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1122 11 2 2. 

R µ = :JJµv 'G * 1 * G 
v (5) 

• 

~ 

where 

Tµv (x-y) .= ·i<OI TIA"' (x)Av (y) 110> 

is the complete one-photon Green tunction, and ·a is the two-par
ticle Green function, defined by eq. (1). In the operator eq. (5) sym
bol * denotes the "convolution'' with respect to the two-particle 
virtual states. Definition (5) is represented with the help of the 
diagrams in Fig. 1. 

Now eq. (3) for the Green function G can be rewritten, using 
eq. (4), in the following way: 

A 4 
(px1-rn1)G(x1x2; Y1Y2)=-o (:ic1-Y1)S(x2-Y2) + 

+ elylµ Rµ (xl-x::l ;yl Y;il "1) • 
(6) 

We pass with the help of the Fourier transform to the momentum 
space. Then, with the account of definition (5) of the generalized 
vertex function, eq. (6) takes on the following operator form: 

-1 
Sf! G('.P) = -I1 S 2 + 

µv 
+e

1
y

1
µfd 4kT (k)G(P-k)*iv (P-k,P)*'G(PJ, (7) 

where P is the total four-momentum of the two-particle system 
and S / is the Green function (propagator) of a bare particle 
(without the account of interaction with the photon field), satisfy
ing the equation: 

(; - m ) Sf ( p) 1. (8) 

Now we introduce according to Dyson /31 the one-particle 
mass operator M·: 

S=S 1 + S 1 MS, (9) 

or 
-1 -1 

M sf - s 
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The B. -S. equation for the two-particle Green function looks like: 

·a ·a 
0 

+ ·i G 0 * K * 'G , (10) 

where 

Go = - st 52 ' 

from where the following operator expression for the kernel K can 
be obtained 

-1 -1 
iK=G

0 
-G. (11) 

Inserting expressions (9) and (11) into eq. (7) we find a suitable 
representation for the kernel K ·: 

K ( p) . -I 
= - ., Mr S 2 + 

+ ie1 Yiµ 52-II d
4

k T µv (k)G('Y-k) * r,, ('Y - k' 'Y). (12) 

In terms of the Feynman diagrams eq. (12) is displayed in Fig. 2, 
where symb91 __._ denotes the factor s -I • On looking at 
eq. (12) and Fig. 2 it stands out at once the formal resemblence of 
this representation for the kernel K and the Dyson equation fqr 
the one-particle mass operator M • 

-.. Eq. (12) is unsymmetric with respect to both the particles. 
~owever, it is quite easy to get in a similar way the "mirror" 
equation (with the substitution 1 ~2 ): 

C1J -1 
K ( J ) = :.. i S 1 M2 + 

+·ie2 Y2µ s;tJd4k ~µv(k)G('Y-k) * f'v ('Y -k' p), (13) 

which in the graphic form is presented in Fig. 3. Combining 
eqs. (12) and (13) it is possible to obtain the symmetric expression 
for the kernel K • 

In application of eqs. (12) and (13) it is convenient to represent 
the quantities ·a and r in the following way: 

·a 'G 0 + i G 0 T G 0 , (14) 
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I~ . G I = - I ext _ • - . -1 
8 ,_[ I 

8 Aext A =0-- tf'ot 52 -·1S1 f'o2 + /\' (15) 

8 K I /\. "' - ext BAext A = o ' (16) 

where T is the off-mass-shell scattering amplitude and f'0 is 
the one-particle vertex function, corresponding to the diagramm 
in Fig. 4. Now the terms containing T and /\ should be considered 
small in eqs. (14) and (15). 

Then solving eqs. (12) or (13) by iterations in the modified 
perturbation theory we find as an initial approximation for the 
kernel K the one-photon exchange diagram, shown in Fig. 5. The 
corresponding approximation for the Green function G f 1-0btained 
from eq. (10) is obviously the sum of the ladder diagrams, present
ed in Fig. 6. Now we are able to construct the next, imp!)oved 
approximation for the kemel K. Inserting the function G into 
eqs. (12) and (16) we find the set of terms shown graphically in 
Fig. 7. 

The main merit of the expounded procedur-e lies in the possi
bility of the explicit and straightforward account of binding in the 
intermediate virtual states of the inl~raction kernel. In fact even 
the first (ladder) approximation G ( for the Green function re
produces the existing bound states. For loosely bound system in 
QED binding is important only in the intermediate states with 
low-frequency photons. In this region we may use the nonrelativis
tic expression for the two-particle Green function. The high-fre
quency region may be treated by usual Born approximations. The 
sum of both the contributions yields a comlpetely infrared conver
gent result for the bound state energy shifts. 

The renormalization of eq. (12) for the B.-S. kernel K pre
sents no special difficulties and can be accomplished in a standard 
way (cf. the renormalization of the Dyson equations). 

It consists in attributing the vertex renormalization constant 
Z i to the bare (point) vertex in eq. (12) and introducing renor

ma ized quantities such as charge, masses, propagators and 
vertices. 

The most convenient method of relativistic description of the 
two-particle bou?d s7stem is thequasipotential methodofLogunov 
and Tavkhelidze 5 •6 . The kernel of this three-dimensional equa
tion-quasipotential is determined in terms of the off-mass-shell 
scattering amplitude T which can be obtained from the equation 
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1 = K + K * 'G 
0 

* 1 = K + K * G 0 * K + ••• 

This approach considerably facilitates calculation of the energy 
levels of bound systems /6/. 

We hope that the proposed equation (12) for the B.-S. interac
tion kernel may prove to be helpful also in some other problems. 
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