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The equations of quantum field theory /1/ , e.g. the equations
for the Heisenberg field operators, are of essentially nonlinear
nature. The Dyson equations for the one particle mass and pola-
rization operators bear quite a similar nature. At the same time
the Bethe-Salpeter (B.-S.) equation for the two-particle Green
function is often treated as a linear one. This lack of correspon-
dence is directly connected with the usual definition of the kernel
of the B.-S. equation within the perturbation theory in the form
of an infinite sum of "’irreducible’’ (in the sense of two-particle
sections) Feynman diagrams.

However, such a representation often proves to be unfit, e.g.
in quantum electrodynamics (QED), because of the presence of the
"infrared'’ divergences closely associated with the zero photon
mass. In the case of the bound state problem the ’’infrared’”
divergences do not arise even in the '’scattering’’ approximation
if we explicitly take into account the effects of *’binding’’ in the
intermediate virtual states. To this end it isnecessary to sum up
selectively an infinite seque ce of ’irreducible’’ diagrams in the
kernel of the B.-S. equation’?/ . Such a summation can be accomp-
lished in the simplest way 1f there is an additional equation for
the B.-S. interaction kernel (e.g. of the type of the Dyson equatl-
on/3/ for the one- particle mass operator).

Now we try to deducean appropriate equationin the framework
of QED taken as an example. Consider the Green function of two
distinct particles with masses m; and m, and spin 1/2 (say
an electron and a positive muon):

G(x, %, y,9,)=<0|Tip, (%, 0¥, (%)%, (7,08, (v, )11 0>+ (1)

In QED the Heisenberg field operators ‘111’2 satisfy the equation
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where
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and AH¥(x) is the Heisenberg operator of the photon field. We

apply the. qperator (pA- m) to the Green function ¢ . Then using
the definition of the T-product in terms of the 6 -functions,
eq. (2) and the canonical equal-time commutation relations for

the operators ¥ we obtain the relation

A - . 4
(pxl mI)G(xlxz,,vl Y )=-07(x -~ ,vl)Sz(xz—,vz) +

u - _ 3
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where

S(x =y )=-i<0|T1y(x)g(y)llo>
~

1s'the complete one-particle Green function (propagator)ofa fer-
mion. The term with the § -function comes from differentiation
of the ¢-function.

Now we define the generalized irreducible vertex function I of
the two-particle system/4/ similar to the caseof one particle. To
this end we consider the five-point Green function

R#(XI X2;,V1 Y2|Z) =
<Oy, (x ) 8 @8 (5,08, (501105 . @

and set

B apv,
R" = ¢ G*FV*G , 5)

where

CH (x~y) =i<o|T(4* (x)a¥ (y) 110>

is the complete one-photon Green function,and G isthe two-par-
ticle Green function, defined by eq. (1). In the operator eq. (5) sym-
bol + denotes the '’convolution’’ with respect to the two-particle
virtual states. Definition (5) is represented with the help of the
diagrams in Fig. 1.

Now eq. (3) for the Green function G can be rewritten, using
eq. (4), in the following way:

(P, ~m)G(x, X275 Y ”2)=‘84("1"y1)5(x2"y2 )+
1
(6)
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We pass with the help of the Fourier transform to the momentum
space. Then, with the account of definition (5) of the generalized
vertex function, eq. (6) takes on the following operator form:

1
S, G(P) =-1,8, +

e, J4R Y (6P -0, (9-k,F) 69, O

where ¥ is the total four-momentum of the two-particle system
and S; is the Green function (propagator) of a bare particle
(without the account of interaction with the photon field), satisfy-
ing the equation:

(p -m)S,(p) = 1. ®)

Now we introduce according to Dyson /3/ the one-particle
mass operator M:

s=_S[+s[Msy (9)

or



The B.-S. equation for the two-particle Green function looks like:

G =G, + -iGo* K +G , (10)
whei'e
(;0=-Sl 82 ’ t

from where the following operator expression for the kernel K can
be obtained

ik =63 -6 | an
Inserting expressions (9) and (11) into eq. (7) we find a suitable
representation for the kernel K:

K(%) = -imy 52" +

rie, ylus;lfddk T (RGP -k)x T, (P -k, 9). (12

In terms of the Feynman diagrams eq. (12)is displayed in Fig. 2,
where symbol —x— denotes the factor S~ On looking at
eq. (12) and Fig. 2 itstandsoutat once the formal resemblence of
this representation for the kernel K and the Dyson equation for
the one-particle mass operator M.

Eq. (12) is unsymmetric with respect to both the particles.
However, it is quite easy to get in a similar way the "’mirror’’.
equation (with the substitution 1¢-#2): -<

K(9) «-is7 M, +

viegyy, ST R TGP -k)xT, (P -k, 9), 13
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which in the graphic form is presented in Fig. 3. Combining
eqs. (12) and (13)itis possible to obtain the symmetric expression
for the kernel K.

In application of eqs. (12) and (13)itis convenient to represent |
the quantities '6 and I' in the following ‘way: i

G =G, +iGyT Gy , (14)

R I

1 =-‘1-;;-;—t- Aext=o=—1l—‘01 52 —’ISI F02+A, (15)

A = - 5 K ¢ Aext 0o ’ (16)
SACX =

where T is the off-mass-shell scattering amplitude and [, is
the one-particle vertex function, corresponding to the diagramm
in Fig. 4. Now the terms containing”T and A should be considered
small in egs. (14) and (15).

Then solving eqs. (12) or (13) by iterations in the modified
perturbation theory we find as an initial approximation for the
kernel K the one-photon exchange diagram, shown in Fig.5. The
corresponding approximation for the Green function G (/)obtained
from eq. (10)isobviously the sum of the ladder diagrams, present-
ed in Fig. 6. Now we are able to construct the next, lmP}SOVEd
approximation for the kernel K.Inserting the function G'° into
egs. (12) and (16) we find the set of terms shown graphically in
Fig. 1.

The main merit of the expounded procedure lies in the possi-
bility of the explicit and straightforward account of binding in the
intermediate virtual states of the inse;raction kernel. In fact even
the first (ladder) approximation 6 “ for the Green function re-
produces the existing bound states. For loosely bound system in
QED binding is important only in the intermediate states with
low-frequency photons. In this region we may use the nonrelativis-
tic expression for the two-particle Green function. The high-fre-
quency region may be treated by usual Born approximations. The
sum of both the contributions yields a comlpetely infrared conver-
gent result for the bound state energy shifts.

The renormalization of eq. (12) for the B.-S. kernel K pre-
sents no special difficulties and can be accomplishedin a standard
way (cf. the renormalization of the Dyson equations).

It consists in attributing the vertex renormalization constant

Z to the bare (point) vertex in eq. (12) and introducing renor-
maiized quantities such as charge, masses, propagators and
vertices.

The most convenient method of relativistic description of the
two-particle boul}d S)'stem is the quasipotential method of Logunov
and Tavkhelidze / >*5/ . The kernel of this three-dimensional equa-
tion-quasipotential is determined in terms of the off-mass-shell
scattering amplitude T which can be obtained from the equation
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T =K+K*‘GO*T =K+K*GO*K+...

This approach considerabI}' facilitates calculation of the energy
levels of bound systems /s/

We hope that the proposed equation (12) for the B.-S. interac-

tion kernel may prove to be helpful also in some other problems.
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