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1. Introduction 

In this report we briefly review the origin of singular poten­
tials in polynomial and non-polynomial quantum field theories, 
summarize basic properties of the Schrodinger equation with such 
potentials and consider in some details a new class of potentials 
which have a singularity for some finite r ( I. o, -.. ) . These 
finite range singularity potentials (or FRSP) are of special 
importance for composite models of hadrons and seem to be 
connected with statistical bootstrap models. 

The general method for reducing two-particle problems to 
solving some Sch~odinger equation is provided by the quasipoten­
tial approach 1 

'
21

. The partial-wave quasipotential equation is 

u " t [ k 
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- I' (P t 1) r -
2
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2
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2
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where p (m) is the t -channel spectral function of two-particle 
irreducible diagrams (e.g. for the exchange of the scalar particle 
with mass rr. we have p(rr.')-c'irrr.'-n;)and this, in non-relativistic 
limit _M ~ oo, _gives the Yukawa _rot~ntial- r- 1exp(-m r) )· For r,r 1 »M-1 

the kmematlcal factor (M 2 
t p r ' can be approximated by M . 

With this approximation, we have I<e-(Mrr1fi (r-r1 ) and, 
instead of Eq. (1), the usual Schr<:idinger equation with the local 
potential (Mr )-1 V (r) emerges. For r ... o this non-relativistic 
approximation is not valid but, in this case, non-local effects of 
K f (r, r 1 ) can be repfoduced by using some effective local 
potential Vet (r) (seef2! ). Then in super- renormalizable (SR) 
theories(f';n 1 =A: ¢ 3 : ) we have Vet (r) ... canst, r _, 0, and in 
renormalizable (R) theories ( i';nt =A':¢ 4 

:) 
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In non-renormalizable (NR) theories (f;n 1=>..:¢/ :, n ~ 5) the 
A2 -order diagram gives the potential Vet (r )- >..2 r 6-2n , r __, 0 
Potentials corresponding to superpropagators of non-polynomial 
(NP) theories will be considered· later. 

Quite similar classification of potential was obtained by 
using Bethe-Salpeter or Edwards equations (see e.g. /31). A simple 
example is the Edwards equation for a scalar bound state of 
fermions ( 1/; and lr; ) interacting via some scalar gluon field ¢ 

ffint =it: ;j 1/; ¢: 1 f . .T. .t...l.. 2. +- 2: '+' '+''+' : +··· 
2 

(4) 

The equation is graphically represented by Fig. l. Defining the 
wave function u(r) by the Fourier transform in the 4-dimensional 
Euclidean space 

2 -1 2 2 "" ';I; 
f'(p )=P (M +P )fdrj/ (pr)r • u(r), 

0 3 2 
(5) 

we find for u(r) the SchrlJdinger equation 

u "- [ M 2 + l.. r-2 + 1/t-. F( r) + .1. f J !>. ~(r) + ••• ] U= 0, 
4 2 

!>. (r)= rnK (rnr)(4TT2r)7 1 
F 1 

(6) 

(The asymptotic behaviour of Vet(r) for r -+ 0 in the quasipoten­
tial equation is the same as in Eq. (6)). The generalization of the 
above procedure which allows constructing potentials correspond­
ing to superpropagators is quite obvious. Consider, instead of 
Eq. (4), the Lagrangian 

- "" dn n 
ffint=f:l/;1/; ~1 -,-(gcp) 

n- n. (7) 

Then obvious formal manipulations give us 

2 "" 2 n 2 
V(r)=f n~1 cn[g fljr)] "' [ v(r), (8) 

d2 
where c n = ~.This expression makes sense if the series is n. 
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convergent. If it is divergent for some r (or for all r ) the 
more refined and rigorous methods based on analytic continua­
tions are necessary. 

2. Basic Properties of Singular Potentials 

The Schrodinger equation (consider for simplicity the case 
k=O) 

u "- [ f ( f + 1) r -
2 + f 2v (r)] u = 0 (1*) 

with the boundary condition u(r),__,0 0 
integral equation 

is equivalent to the 

f+t f 2 
no P+ t -P P t t -P 

U=Zr + --- J dr
1 

v(r
1
)[r r

1 
-r

1 
r 1 u(r

1 
). 

2 p +1 0 
(9) 

'o 
If/[vl~J drrv(r.) <no for some ro >0, the perturbation 
series 

0
obtained by iterations of Eq. (9) converges, i.e. the 

wave function u is analytic in f 2 in some vicinity of f 2 
= 0 

If I [ v] = "" , the integrals obtained by iterations of Eq. (9) 
diverge and some regularization is necessary (we choose the 
simplest regularization v(r) _. v( (r) ~ ()(r-£) v (r) ). In the first 
case the potential is called regular in r = 0, in the second case 
it is called singular in r = 0 (or marginally singular). 

In SR-theories the potentials introduced above are regular. 
In R and NR-theories the potentials (corresponding to any 
finite number of diagrams) are singular. We call a potential 
renormalizable (R) if the diverg,ences in all orders of perturba­
tion theory for u£ can be eliminated order by order by using 
some renormalization constant Z ( in Eq. (9) with regularized 
potential v ( • 

Theorem l. A potential v(r) monotonic near r = 0 is re­
normalizable if and only if for every o > o there exists r0 >0 such 
that iv(r)i< cr-2 - 8 'r <To. Corollary: PotentialsinR-theo­
ries (for any finite number of diagrams) are R-potentials. 
Proof of this theorem was given in the ~?thors thesis in 1969. 
Example: v(r)=r-2 Inv(r0 /r) (seealso 4 ). 

Potentials (monotonic near r = o ) which do not satisfy the 
conditions of the theorem are non-renormalizable (NR). The 
potentials of NR-theories (for any finite number of diagrams) 
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are NR-potentials. In this case the perturbation theory can be 
used only for finite values of c and the transition to the limit 
( • o is possible only for the exact solution of Eq. (9) with 
v • v( , provided v(r):;, 0 near r = 0 (repulsive singularity). The 

solution can be written in the form 

tJ/r)~Zc[w1 (c)u/r)t w
2

(c)u
2

(r)l, (10) 

where u/r)•O,uir) ->oo forr--0 and w1(t}->oc, w 2 (c) ·0 for 
' · o. Here u1 (r) is the solution of the original problem (8). 
Choosing Z,=Z[ w1 (t)]-

1 we pass to the limit l .o and find 
the exact solution z u 1 (r ). So, NR-potentials require a summation 
of all the terms of perturbation theory. This problem is not 
solved even for rather simple potentials and approximate methods 
for solving the Schrodinger equation with singular potentials 
are of principal importance. The most general method is pro­
vided by the "asymptotic" perturbation theory. 

r 0 Theorem 2. Let v(r),~v5 (r)tvR(r), where r 2 v(r) '1-~o+"" and 
l dr vR(r) l vs (r) \-1 /2< "" • Then vR(r) is a "good" per­

turbatwn for the unperturbed problem 
2 -2 2 

u;· tlk - Y( r +1)r -I vs (r)] us = 0. (ll) 

Remark: The perturbation v R is "good" if the series in 
powers of vR , in which the solution of Eq. (11) is the zeroth order 
approximation, is convergent at least near r = 0 . Proof con­
sists of arguments that n -th approximation has a majorant 

n c u 1 (r) with c < 1 (see the authors thesis mentioned above). 
Exam p 1 e: v (r) - r -vs , v 

5 
> 2 ; v R (r)- r -i!R , 

S r-~o r-+0, 
1 ' v 

v < - v + 1 or v ( r) - In ( r I r ) • 
R 25 R r-+0 0 

The main difficulty of this method is to find u 
5 

and simpler 
methods are very desirable. There are two such methods: 
different!al interpolations/sf and Pade approximations ' 6 /. 

3. FRS-Potentials 

Up to now we considered only marginal singularities (r = o or 
'="" ). FRS-potentials, having a singularity at r = b-# o, "" require 

6 
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a special treatment. FRSP naturally arise in a context of 
non-polynomial quantum field theories. 

Let the coe_!ficients c n in Eq. (8) are posi tiY,e and satisfy 
the condition Tirr. (c / /n = 1. Then the series I c n z " is 

n --) rx; n n=l 

convergent for I z\< 1 and has a singularity at z= 1 (see e.g./7-' ). 
Therefore, the potential (8) has a singularity for r ~ b , where 
g 2 ,, (b) ,, 1. The value of v( r) for r < b can be defined by 

analylic continuation in r and in &2 • First we define v v for 
g 2,- g 2 < o. For r ., b the potential v(r) is given by the convergent 
series (8), for 0_:: r:::, b it is uniquely defined by the analytic 
continuation in r. For (!. .> .. o, we define v (r) in accordance with 
the corresponding prescription for the superpropagator l 81 

1·(g 2,r) L\v(-g 1,,i77 ,r); i'"(-g{,-·i,
17
r)\. 

2 

Consider for example the potential 

I' ( r) · \ ( r) \ 1 - 4 2 
\ ( r) \- ~-

F F 

(12) 

(13) 

If,. /, ttten all solutions of Eq. (l*) are continuous with their 
first derivatives for all r including r=b. We will call such 
potentials penetrable .. If ,, ·, 1, then for one of two solutions of 
Eq. (1*) 11 '1 hJ --."' and we must independently solve two boundary 
value problems: for 11 r· h and for h .· r · · , • Such potentials 
will be called impenetrable. If ,. - 1, we introduce some 
symmetric regularization, e.g. d r J • ~", lr) , d rJ for 'r-h t >c 

.l'i•JforO r-h·,, 1'1-•J for-< r-b/O.ltcanbe 
proved that the solution u, 1 r 1 of this regularized problem has 

the limit u(r)·" Tirr. u, (r J fol"·all r, and u(rJ is thesolution 
( • u 

of Eq. (1*) satisfying the condition 
\u'(b+c)-u'(b-c)\•0,, ,(), 

This solution has acceptable physical properties in spite of the 
discontinuty of its derivative ( 11 • 1 h ± , J • "'- , ( • 0). We call this 
potential semi-penetrable. 

The importance of FRS-potentials for physics lies in that 
they provide us with infinitely high barriers which can keep 
particles (say, quarks) inside some region of space. For impe­
netrable potentials there exists an infinite number of bound 
states lying on infinitely rising Regge trajectories. For penetrable 
potentials the bound states turn into resonances with finite widths. 

7 
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4. Superpropagators and Potentials 

The quanti ties ~; are not well-defined, and so a more 
rigorous definition of superpropagators is necessary. A simple 
approach to this problem is ~~ed on using a differential equation 
in the momentum space (seef 8 where one can also find references 
to different approaches of Efimov, Fradkin, Volkov, Lehmann 
et al.). We give here the simplest version of our method. 

Consider the function (m = 0) 

"" n -1 -1 
F1 (x)=n:O cn+2 (-x) [n!(n+1)!] , x ""g 2 p2(16TT 2 ), (14) 

which up to some trivial factors and the term - 8(p 2
) is the 

imaginary part of the Fourier transform of the superpropagator 
(8) on the cut p2 < o. Defining 8 x = xa", we see that 

"" n -1 
8 (8 +1)F1 "'-xI (c 3 /c 2 )c 2 (-x) [n!(n+1)!]. (15) 
" " n=O n+ n+ n+ 

Now, consider the ratio R ( n + 1) = c n+J / c n+2 and suppose 
there exists a function R(z +1) of the complex/'riable z , which 
satisfies the Carlson's conditions (see e.g. 7 

) and coincides 
with R(n+1)for z=n (n =1,2, ••• ). Then the function is unique and 
the operator R(8+ 1) can be uniquely defined. In accordance 
with Eq. (14), F 1 (x) is the unique solution of the equation 

[8 (8 +1) + xR (8 + 1)]F
1 

(x) = 0, 
X X X (16) 

satisfying the boundary condition F
1 

(x) + c 2 • This equation 
X-> 0 

has also a solution F 2 ( x) satisfying the boundary condition 
x F2 (x) ~... 1. The function F 2 (x) is analytic in the x-plane 

" -->0 

with the cut -"" < x < o, the discontinuity on the cut being 
-2TTi F 1 (x). With the aid of dispersion relations we can find 
the superpropagato/s if we know its imaginary part and use some 
regularizator (see 9

). This method is mathematically rigorous 
but the superpropagator so defined depends on the regularizator 
used (or- on an infinite number of subtraction constants). Our 
definition corresponds to a particular choice of the regularizator 
and depends on only one arbitrary real constant. In fact F=F2 +CFJ 
is also a solution of Eq. (16) with the same boundary condition. 
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For a wide class of superpropagators the condition 

[ReF(x)/ /mF(x)]-. 0, x ->-oo (17) 

is fulfilled for some value of c. This is the so-called condition of 
minima; tingularity in the form fi;st proposed by present 
author 10 .Lehmann and Pohlmeyer /ll later used the essentially 
stronger condition ReF (x)--. 0 and proved that if it is satisfied 

X -J>- oo 

the strictly localizable superpropagator is unique. We give 
here an extremely simple proof of this uniqueness theorem based 
only on momentum space representation of the superpropagator. 
Suppose there exist two strictly localizable superpropagators 
F(x) and F(2lxJ satisfying all analytically conditions and having 
the same discontinuity on the cut. Then D (x)= F(lJ (x)-flfx)is an 
integer function of order< T- and lim D (x) ~ 0. According to the 

X-+-oo 

theorem of Phragmen and Lindelof/7/, D ( x) = o. We did not 
find an extension of this theorem for our condition (16). Never­
theless, we use this as the most natural and general formulation 
of the principle of minimal singularity. 

By considering simple examples one can find that the super­
propagators with ReF I Im F __. 0 can be obtained by some 

x-+-oo 

analytic continuation in coupling constant g 2 • Consid.J!r Eq. (15) 
with g 2 -.-g 2 < o. Then there exists the solution F(-gip2J.for 

which lim F(-g 
2

, p
2
)dJ and F(g ~P 1= L[F(-g 2ei17,p

2
)+F(-g "e-i,~ 2)] is 

p2->+oo 2 

the correct superpropagator satisfying the minimal singularity 
condition in the strong form. 

-.- 1/n a Here we consider the case lzm (e>
0

) = 1. Then F
1 

7 exp (b p ) 
n·+ oo. p 4-oo 

and ReF 2...::0,0 if a< 0. The potential v( -g 2,r) (see Eq. (12)) 
has no ~ingularities for r > o whereas v(g2,r) obtained by the 
analytic continuation in g 2 has a singularity for r= b = .L. The 
simple example is c = 1, when 2rr 

n 

F (x) = F ( g ~ p 2) =- g 2(16TT x y,) -
1 

N
1 

(2x 7'> ) , v(g ~r )= V.P.4TT(r 2-i /4TT2Fj 

F(x) = F(-g ~ ~ )= g2(8TT 2x y,T1 K 
1 

(2x y,), V(-g ~r) ~ 4TT (r 2 + i/4TT2 
;-

1
; 

(18) 

The· same expression for v(/ ,r) can be obtained by immediate 
Fourier transformating of F(x.). 

0 ., 

I ________________________ __ 



5. Application of FRS-Potentials and their Connection 
with the Statistical Bootstrap Models 

The differential equation (16) for the potential (superpropaga­
tor) (13) has the form 

[r) (r'5 t J)(r) d) tx(o +v+1)]F(x)=0. (19) 
X X X X 

Its solution satisfying (17) and - x -
1 for x ·O is -G}Jrx! 0,-!:1 _1). 

In the coordinate representation this gives us the FRS-potentials. 
The corresponding Schrodinger equation is much more tractable 
in comparison with momentum space equations. If the potential 
is close to impenetrable we may approximately substitute it 
by the infinitely deep square well potential with radius - b . In 
this approximation the resonances are substituted by bound 
states (resonances of zero width). The Regge trajectories of 
these bound states are asymptotically :::: ~ k and the radius 
· r · of bound states (proportional to the slope' of the formfactor) 
is -h. For the exact (penetrable) potential the slope of the 
trajectories and· r · somewhat increase because of "concentrat­
ing" the wave functions near the sufrace r- b. For ,, I there 
exist two exact solutions. The wave function for the potential 
f 

2 
( r 

2 
- h

2
) -I can be expressed in terms of the solutions of the 

hypergeometric equation if k -0 and P is arbitrary. The wave 
functions forl·(r) l2h(r-h)l

1 
"(r 2 -b 2 y- 1 i r 2b(r I a) 1-1 is 

expressed in terms of the Whittaker functions if I'= 0 and k is 
arbitrary. 

Using this simple results and approximations we have es­
timated some basic parameters of the system composed of two 
particles glued together by the semipenetrable potential ( ,, - I) . 
Only a brief exposition of qualitative results is given here. 

i) The finite range of forces acting bet~een hadrons is 
experimentally well established. So we suppose that b < 11 -I . 

Then the slope of Regge trajectories has an upper bound~ wh7ich 
for linear trajectories (in our model the linearity is onty 
approximately valid for small s ) is ~ 1 (Gev)-1 . 2) As 
a (" = o) .S 1, an upper bound on f exists. The exact value of 
this bound depends on masses of constituent particles. For 
example, with the potential t 2rr 2-b 2 y-1 we have the exact result 

a ( k =0) = ~ 1 2
- 1 • Suppose that the hadron is composed max 2 

of two particles of mass M and that for small s =4(k 2+M 2) the 
trajectory is approximately linear, a ( s)= a(O) +a's , where 
a ~1.Then, from the condition a(O):::; 1, we find .J-1 2s, 2/ 4M 2 and 
forM- f we have I 2 ::;. 5. 3) Using the approximation of the 

10 

square well potential and supposing one of two constituent 
particle to be neutral it is not hard to calculate the non-relativis­
tic form factor of the composite hadron ( q 2=, q L q2 ._, OJ 

0 
G(lJ=( qb)-

1! Si( qb)- !_Si( I_qb + 77 )- _!..Si( I_ qb -77) 1. 
2 2 2 2 

2 2 . 
Then dG/dq = -b /18 and for the values of b estimated above, 

q2= 0 

we have <r>- 0.8 fermi. This expression, being nonrelativistic, 
cannot be used for q 2 _,_no. The asymptotic behaviour of form­
factors for penetrable potentials is, however, defined by the fact 
that they are regular in r = o. This property of/ o~r potentials 
enables us to use considerations of papers 12 leading to 
rapidly decreasing elastic formfactors and to §.C~ling for deep 
inelastic formfactors. 4) For k 2 _, +"" the two particle approxi­
mation is evidently not valid and so our estimates of asymptotic 
behaviour of Regge trajectories are not exact. However, the 
trajectories indefinitely rise and we may hope to obtain more 
reasonable results by considering a generalized two particle 
approximation: resonance _ _, l(resonance + resonance). 5) To 
roughly estimate differential cross sections for scattering of 
composite particles we use the approximation 

d I 2; I 2 4 2 
( 01 dq ) (da, d~ )q

2
=

0 
-G (q ). 

Then, comparing the exponential parametrization for the form­
factor, G (q 2)- exp(- Bq 2), with our approximate expression Eq. 
(20) one finds B- 10, in qualitative agreement with experimental 
data. For large q

2 rescattering effects are not negligible and 
such a rough estimate is incorrect. It should be noted ~at 
it is probably incorrect also for very small values of q , 
because the exact wave function does not vanish for r? b. This 
means that the slope of formfactor for very small q may be 
somewhat different from one resulting from Eq. (20). 6) The 
principal features of our model, such as the finite size of hadrons 
(-11 ;J and the finiteness of the wave function for r= o, were used 
in parton and droplet models and ~n 

1
the Hagedorn-Frautschi 

statistical bootstrap models (SBM) 13' .We have demonstrated 
above how these properties follow from certain field theories 
generating FRS-potentials. One may simply postulate some 
non-polynomial interaction of gluons ¢. such as !finF l:lfii/J exp(g¢tp): 
and obtain the semipenetrable potential acting between consti­
tuent particles. Another interesting possibility is to deduce such 
potentials self-consistently from SBM. The rough idea of such 
an approach is as follows. In SBM the den~ it~ of resonances is 
asymptotically of the form p(m)-m 8 exp(bm)' 1 ~ This is true also 

m->oo 
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for density of resonances with fixed Q,B and Y .The angular 
momentum distribution of resonances has

1 
the Gaussian form 

- 3t2. n2 147 p(m, )-p(m)m- Yexp(-L /dm ), where d;;.b • Let us suppose 
that the forces between constituent particles are due to resonance 
exchanges. Then, neglecting the widths of resonances and assum­
ing the contribution of the resonance of mass m and spin e to 
be(2fd)Py (cos0)(t-m 2 ;-; 1 where cos0-(1+2s/t) ,s<O, 

t» Is I , one finds the contribution of all resonances of mass 
" y, I m ( P0 (cosO ) - ( --7---- ) ] 

0 
(( e + 1 2) e)): 

f sm e 
00 

- 2 3 1 2 
~ (2f +1)P0 (cosO)p(m,P )= --

1
F

1 
(-;1;- -0 dm)p(m);:; 

f=o . r '>/77 2 4 

-:.. 2" -'h p (m), as e 2dm«1. 

According to Eq. ""(3) the potential corresponding to this 
amplitude is v ( r) -I d m p ( m) exp (- m r). This integral 
is well-defined only 11for r 'b and the potential has a singularity 
for r =b. To more accurately define the potential we must use 
the methods described above, finding a superpropagator with 
the imaginary part -p (p)and then constructing the corresponding 
potential. In such a way one can prove that the singularity of the 
potential corresponding to the spectral function p(m) is of the 
form -(r 2- b 2)Y where y ~-.§....-a , a< -3/2. To find the super­
propagator (14) with the ifnaginary -part -p 8 exp(bp) it is 
sufficient to choose en- n at37i . 

In SBM the parameter r 0 "' ( kb) - 1 is interpreted as the 
maximum temperature of hadrons. As was pointed in /13/ the 
value of k T 0 is of the same order as the radius of hadrons. 
As soon as the radius is introduced a priori, this result seems 
to be accidental. In our approach the coincidence of these two 
apparently different parameters is unavoidable. 

The useful discussions with B.Arbuzov, P.Bogolubov, A.Ef­
remov, S.Kurashov, V.Ogievetsky and Ya.Smqrodinsky are kindly 
acknowledged. 
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