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1. Introduction 

In this paper we shall discuss the question of the existence 
and uniqueness of the solutions of a certain problem from 
S -rna trix theory. The problem is to find r,· functions h~< r : ; , 
a = 1,:! ... N (the partial scattering amplitudes) of the complex 
variable z ~c x + i Y which satisfy the following conditions: a) real 
analyticity in some sub-region of the· plane b) unitarity; 
c) crossing symmetry; d) h a* ( z) = h a ( z *); e) a condition of 
behaviour at infinity. This problem a), b), c), d), e) which will 
be formulated more precisely below, is called Low's problem 
in this paper. It is a generalization of tbe problem solved by 
means of the intl'!grjll equations of Lowll/ Chew and Mandel­
starn 12 1, Shirkov 13

•
4

• and the like. 
We shall make use of the fact that the problem a), b), c), 

d), e) can be re-formulated as the algebraic system (4). Although 
this system is nonlinear and infinite it is in some respect 
sufficiently simple and can be investigated by means of the 
fixed-point theorems 15 •61. Following this method we shall prove, 
with the help of Schauder's theorem, the existence of solutions 
of (4). 

Recently several authors have 7hown interest in similar 
questjon~. For instance, Warnock / 7 • and MacDaniel and War­
nock/8·9· have studied the conditions under which there exist 
solutions of Low's integral equation, while in Refs. 10 and ll 
Atkinson has made a detailed mathematical analysis of the 
integral equation of Chew and Mandelstam, and of Shirkov et al., 
respectively. 

These authors examine the question of the existence and 
uniqueness of the solutions ha(z) of the integral eqiations with 
the assumtpion that ha(z) have at most one pole in the cut 
plane z. 

Some of the results they obtained are less general than 
those obtained in the present work, because here it is supposed 
that h t z) may have not only poles but also more complicated 
singularities, e.g., cuts. 
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I 
li The approach in this work differs from the usual approach, 

by the way, in which the analytical functions are represented. 
For instance, in the integral equation of Low, the functions 
h a ( z) are represented through the Cauchy integral, while here 
Laurent's series are being used. 

The algebraic approach has some peculiarities which manifest 
themselves both in the theoretical studies and in the numerical 
calculations (Refs. 12, 13, 21). 

Because of the specific features of the algebraic system 
(4) it is appropriate to use the conventional methods of nonlinear 
functional analysis, sue? as Newton's method and the principle 
of contraction mapping 5 •61 as, for example, applied in the Low 
amplitude method 7131. On the other hand, the integral equations 
of dispersive type are solved numerically exclusively by m~rs 
of the N/D method or the inverse Low amplitude method 8 , 

which techniques are specific for that class of problems. The 
theorems proved in this work justify the applicability of the 
numerical methods of Refs. 12 and 13. 

In Section II, the precise formulation of Low's problem is 
given. Besides that, it is shown that under certain conditions it 
is equivalent to the algebraic system (4). In Section III, by means 
of Schauder' s theorem, the existence of solutions of the system 
(4) is proved. In conclusion possible applications are briefly 
discussed. It is pointed out that the Low problem, considered 
as a model problem can be useful when we are interested in 
the investigation of general 2 particle-2 particle reactions/22,23/ 
or in the calculations of p~yal wave amplitudes in the framework 
of the Mandelstam theory 4 • 

II. Formulation of Low's Problem 

Here we shall give the basic results of Ref. 13. By Low's 
problem we mean the problem in which W functions ha (z) , 
a = 1,2, ... N of the complex variable z = x ~ i y are sought to 

obey the following conditions: 
a) Analyticity: h a(z) are analytic in p -st where the region 

p is the plane z from which the points belonging to the cuts 
-"" ~ x 5.-1 and 1 -s_ x ~ + "" have been taken a way, and the closed 
region s~ is a subregion of the region p • 

b) Unitarity: /rn ha( x)= f(x) I h a(x) 1
2 , 1 ::; x .::; "" where 

f ( x) is a real function, the properties of which are specified 
belOW. N a{:~ f3 
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c) Crossing symmetry: h a(-z) = ~ C h (z), where the 
f3=1 

I 
" 1.'11 

"' ·,~ 

crossing matrix ccf3 is equal to the square root of the unit 
N -dimensional matrix) but otherwise is arbitrary. 

d) ha * (z) ~ h a(z*). 
e) Behaviour at infinity: The integrals in (1) converge. The 

contribution of the contour integrals I h a (z) d z taken on 
z 

a semicircle with an infinite radius in the upper half-plane 
is zero. 

The problem a), b), c), d), e) is a generalization of the 
prob~m rhich is solved by means of Low's integral equa­
tion 1 ,8,9 

Nc(3f3 2 
a ).. 1 oo lh a(z')l2 ~1C lh (z' Jl 

h (z)~ _a+- I dz' f(z')l , + ----,------ l, (1) 
Z 171 Z-Z Z+Z 

where C af3, a = 1,2, ... N is the crossing matrix and A =- ~ czf3A f3 
a f3= 1 

are numbers proportional to the coupling con~tant f 
2

• 

With an appropriate choice of A a and Ca one could describe 
by means of (1) the partial scatter)ng a~plitudes of various 
processes, e.g., of the rr-N scattering 1•16,

1
7 • 

By the conformal mapping 

2Z 
z = -- (2) 

1+Z 2 

where Z =X + i Y = Re ;¢, the cut plane p goes over into the 
interior P of the unit circle c 0 of the z plane, the functions 
httz)are transformed into the functions Ha(Z),the regions s;a into 
the regions s : . 

The regions s: contain all. singularities of H a(Z) which lie 
insideC 0.By analogy we shall denote by s 1~ closed regions 
which contain all singularities of Ha (Z) lying outside C 0 • (All 
singularities in sua were situated on the second sheet of ha (z) 
before the conformal mapping.Some of them correspond to the 
resonances, if any). 

Let the curves dS: and dS f; denote the boundaries of 
Stand S1~ , respectively. The functions H a(Z) are analytic in 
the annular regions D a which are bounded from the inside by the 
curves dS~ and from the outside by the curves dS 1r . 

For several purposes instead of regions D a their subregions 
Df!' are preferred. The De a are defined as the circular rings 
R f < I Z I < Rea , Rf..s: 1 , R~ ~ 1 the R f being the radii 
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of the circles I Z I =Rf which are tangent to the curves dS f and 
Rea , the radii of the circles I Z I = R ~ which are tangent to the 
curves dS{;. 

After the conformal transformation the problem a), b), c), 
d), e) turns into a problem for the transformed functions H a(Z) . 
This problem, after some generalization, will be formulated in 
the following way. 

Find the functions H a( Z) , a = 1,2, •.• N which satisfy the 
conditions: 

A) Analyticity: H a(Z) , Z r;;: D are analytic. 
B) Unitarity: lrr.Ha(Z) =F(¢) 1Ha(¢JI 2 where F(¢)=1(-1--), 

a ~ cos¢ - !!_ < ¢ < ...!!. H ( ~) ~ H ~ e i'~' ) • 2 - - 2 'I' N 

C) Crossing symmetry: na(¢+77)~ ~ C af3H{3(¢), -77 <¢ < 
77

• 

/3= 1 - -
D) H a 1 

( Z) = H a ( Z * ). 
Further on we shall suppose that H a( if>) are 

tinuous: under this notion we shall mean functions 
satisfy the conditions: 

Holder-con­
Hu(¢) which 

IHa(¢ 2 )-Ha(¢
1

) I::: K 1¢
2
-¢

1
1: (3) 

where K> o is a suitable constant and o < c 5..1 and -77-r
1
:_:¢

1
, 

<b' • 77 j. Tf • 2 

Under the hypothesis the functions ReHa(¢)and lrr.Hu(¢) are 
Holder-continuous and coincide with their Fourier series. This 
is sufficient to assert that Ha(Z) , 1 z 1: 1 can be expanded in 
Laurent series 

H a( Z) ~ l H:: Z n , I Z I = 1 . ( 4) 
n~oo , ? 

Taking into account the conditions B), C) and D), one can 
derive the following algebraic system which i~ to be satisfied 
by the unknown coefficients H ~ 

a a "" a 
Hv=lfv + I F(v,k)Ev(Hm ;H,..+ 

m,k =oo 

where 
'<), a =1,2, ••• N; v= 1,2, ••• oo, (5) 

TT 

F(v,k)=L f"7dvsinv¢cask¢F(¢) 
TT - ...1l. 

(6) 
and 2 

a a a v N a/3 {3 {3 
E v ( H ,rf H,..+k ) =Hm H;,+k + (-1) {Ll C H m Hm+k 

The system (5) has been derived in Ref. 13. 
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The following theorem which is based on the corresponding 
theorem in Ref. 13 has a more precise formulation that the 
latter. It clarifies the equivalence between the analytical formu­
lation of Low's problem through the conditions A), B), C), D) and 
its algebraic formulation given by the system (5). 

a 
Theorem 1. Let the functions H (cb), a=1,2, ••• N satisfy 
the conditions (3), B), C), and D) and let F ( ¢) satisfy the 
condition £ 

I 
!F(¢

2
)-F(¢I)!5..K1 l¢z-¢I! • 

where K I> o is a suitable constant and o < l I 5..1 

F(±..!!.)=O. 
2 

(7) 

Then the coefficients of the series (4) H :f , a= 1,2, ••• N , 
n = O, ± 1, ±2, •• ± "" will satisfy the algebraic system (5) .. 

With certain modifications of the theorem the opposite assertion 
is also true: 
Let the system (5) have real roots 
satisfying the following conditions: 

"" The series I Ha sinn¢ 
n:I n 

and I Ha sinn¢ 
n:1 -n 

converge on the whole interval - rr::;, ¢ :: rr to (8) 
certain functions v ~(¢ ), and v_a(¢), respectively, 
which are known to satisfy the Holder-condition with the 
exponent £ , 0 <c < 1 on the interval [ -rr -Tf, rr + Tf], 
where 11 is some positive number 

a n N a/3 {3 
Hn = (-1) I C H n , a= 1,2, ••• N; n = 0,-1, -2, ••• -oo (9) 

f3=I • 

and let F (¢) satisfy the condition (7). 
Then the series (4) converge to the functions 
Ha(Z), a= 1,2, ••• N which satisfy the conditions 
(3), B); C), D). 

If besides that, the roots of (5) satisfy 
the conditions 

a a n 
!H. !5..H(R

1
), a:1,2, ••• N, n=0,1,2, ••• oo, 

-n 

a a-n I H I< H ( R ) , a •= 1,2, ••• N, n = 1 ,2, ••• "" , 
n - e 

(10) 
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where H is a positive constant and R~ and R: 
are the inner and the outer radii of the annual 
region, then the functions H a(Z) , zr;;;D~ are analytic and 
satisfy the conditions B), C), D). 

Remark l. Using the result of Ref. 19, Chapter II, § 3 we 

conclude that if I Hal < canst --
1
---

n -
the condition (8) is 

In I (1 H) 

automatically fulfilled. 

a 
Remark 2. Condition (10) induces the analyticity of H (Z) in 
the region D{; which is a subregion of D a . This condition 
is introduced because it is convenient for the proof of the 
existence of theorems in Sec. 3. 

If however, we are interested only in numerical investigation 
of Low's problem then condition (10) is superfluous. In this 
case the determination of the roots of (5) permits one to obtain 
numerically the Holder-continuous functions H a( z) on the unit 
circle Co .After that the H a(Z) can be calculated in principle 
in all points of Da through analytic continuation. The analytic 
continuation can actually be performed by a slight modification 
of the procedure used successfully in Ref. 14, where numerical 
values of Ha (Z) were obtained in a region which is larger than 
Da 

c 
In what follows it is advisable instead of system (5) to investi-

gate its equivalent system /13/ 

t = A ( t), (ll) 

a 
where t-+ tv ,a =1,2, ••• N ; v = 1,2, ••• oo is an element of the 
metric space, and the operator A is definfd by the right-hand 
side of the system: 

a "" a ta= I F(v,A-J1)E (t,;t )+2..., F(v;A-J1)E (r ; tA)+ 
v A,Jl v 1\ J1 A,Jl v 11 

+2 I F(v;~+A)Ea(R c; t,) +2 I F(v;~+A)Ea(R c ;r,)+ 
~A v ~ 1\ ~A v ~ 1\ 

(12) 

+I F(v;A-J1 )Ea (rA 
A, IL v 

.r ) + I F ( v ; ~- Ti ) E a ( R c ; R )+ 
J1 ~ • ., v -s ~ 

+ R a -r a 
-il v 

8 

In (12), as well as below ~ , ., , A , 11 , v and a are 
indices. Furthermore, ~ and ., take the values 0, 1, 2, ... "" ; 
A, 11 , v take the values 1, 2, ... oo and a= 1 ,2, ... N, unless 

states otherwise. In (12) the values R ~ and r A are known, 
and the values t a are sought. Moreover, R a c denotes H~a and 

v a a ~s 
r ~ + t:; is equal to H v. The values H-E= R J are onsi-
dered to be known. For example, R.!:1 =Aa/1 wHere Aa is .the 
baryon pole residue, which is written explicitly in (1). 

It is supposed that approximate values are known for H~ 
which are denoted by 'va • Therefore& in (12) the small correc­
tions t ~ to the approximate values r v are sought. 

lll. Application of Schauder's Theorem for Proving 
the Existence of Solutions of Low's Problem 

System (12) is very convenient /;or numerical determination 
of the solutions of Low's problem 13! In the present paragraph 
we shall ·use it in order to prove the existence of such solutions. 
For this purpose, we shall make use of one of the fixed-point 
theorems - Shauder's theorem. 

Schauder's theorem is formulated in the following way Is! 
Let the operator A from (11) have the properties: 
1) A maps the bounded, closed convex set M belonging to the 

Banach space B into itself, i.e., if t r;;;M then A(t)r;;;M. 
2) A is a completely continuous operator. 

Then at least one element of the set M exists, which 
is a solution of (11). 

The application of Schauder's theorem to Low's problem is 
facilitated by making use of the function 

xk(n)=x (jk;n)=!nJ-h,n=±1, ±2, ••• ±oo 

xk (OJ= xu k ; OJ= I. •· 

In our case, i k , k = 1,2,3,4, are numbers larger than 1. 
The sets M t , M r and M R which we use below are defined 

respectively by the inequalities 

Jt~J< t*x (j ,A), a=1,2, ••• N; A= 1,2, ••• oo, 
1\ - 1 

Ira I < r *X (j , J1), a = 1,2 , ••• N ,· J1 = 1,2 , ••• oo • 
J1 - 2 

I R ar :::; R *X ( j , ~ ) , a = 1,2, ••• N; ~ = 0,1,2~ ... 00 • 

-~ 3 

(13) 

(14) 

(15) 
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In (13), (14) and (15), t * , r * and R * are positive numbers. The 
function X is also convenient for the estimation of F ( v; e* ) . 
This expression is defined by the integral (6), which in this 
case is conveniently put down in the form 

1 +17/2 
F(v; e*) =-I d¢ I sin(v+e* )¢+ sin(v -e* )¢ !F(¢). 

277 -17/2 

Further on we shall suppose that 

I F ' ( ¢ ) - F ' ( ¢ ) I < canst I rl.. - rl.. I ~ - 17
2 

< ¢ , ¢ < 
2
17 , 0 < c < 1 

2 t - '1-'2 '1-'1 - 1 2 - -

F(± !!..)=F'(±.!!..)=O 
2 2 

F '_ dF 
- d¢-. 

Let us consider the auxiliary function 

F (¢) =F(¢) 

-
F(¢)=0 

- t.:s¢<...!!. - 2 
17 2<S..¢S.. 3.!!... 

2 

(16) 

It is obvious that F '(¢), -17:::0 ¢_< 17 is Holder-continuous 
with an exponent c, o < c::;, 1. This means that the Fourier 
coefficients of the function F(¢) obey condition 

F=O[ 1 ] 
n lnl(l+f) 

(for proof, see Sec. III in Ref. 20). 
Hence F ( v , e *) can be majorized by the inequality 

F ( v; (* ) < canst[ ( v + e* Fi 4 + ( v _: e *) - i 4 ], j > 1 if v ± e* ,b. 0 
- 4 

F(v;e*J =canst, if v ± e*= 0 

Using the function x0 4 , n) introduced above, at n = v+e* and 
n=v~*, and choosing an appropriate positiv~ constant F we 

obtain the inequality 

F(v;e*J~ F[x
4 
(v+e*J+x 4 (v~*Jl. (17) 

By means of (13), (14), (15) and (17), the equation (12) is 
majorized by inequalities containing X· In order to simplify 
these inequalities it is convenient to use the formula · 

"" 
I Xt(nJx2 (n+mJ<TS2xt(m)+K2tx2(m), 
n~oo 

(18) 

10 

I 
i ~· 

':l 

l1 

1 
'I 

i 
,J 
I 

l 

' ' ) 
,\ 
( 
I 

where 
it 

K =(2 +1)((j
2

)+1; 
12 

i2 
K21 = (2 +1)( (j 1 )+1 

and ((j
1 

) and ((j 
2

) 

theory of numbers. 
are the Riemann ( -functions from the 

When proving (18) it is convenient to proceed from the 
expression 

"" I x (n)x 2 (n -m) 
n=-oo 1 

which is numerically equal to the expression 

lx
1 

(n)x2 (n+m). 
n =-oo 

The inequality (18) is proved by majorizing for a 2: 2 the 
right-hand side of the equality 
! X (n)x (n-a)~S +X (O)x (-m)+S +S +x

1 
(m)x2 (0) + S

4 n=-oo t 2 1 1 2 2 _3 

where 
-1 -i1 -i2 -i2 -t -it 

S1 = I In I ln-ml <m I lkl =x/m)((j 2 ) 
n=-~ k=-~ 

n' -it -i2 -i2 -t -it 
S =In ln-ml <m I lkl =x (m)((j) 

2 n=t k~oo 2 2 

m-t -i1 -i2 i1 -i m-t -i2 
S =I,n ln-ml <2 m 1 I,In-ml < 

3 n=n n=n 

<2itm-i1I lkl-f.?=2i1 x
1

(m)((i
2

) 
k=t 

n '= 0,5 m 

if m is even and n '= 0,5 ( m + 1) if . m is uneven 

00 -i1 -i2 -i1 00 -i2 
S =I n (n-m) <m "'I lkl =x 1 (m)((i 2 )· 

4 n=m+1 k=1 

For m = 0 and m = 1 the fulfilment of (18) is proved directly. 
For m < o the proofs are analogous. 

In order to satisfy the first condition for the operator A we 
substitute in (12) tf ' T a ' R~ and F(v; e*) with the expres­
sions from (13), (14), (l5fand (17). 

Having the inequality (18) we can easily apply the Schauder's 
theorem to Low's problem. 

For this purpose we choose the Banach space to be a subspace 
of the space of the bounded sequences of numbers/51. More 
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precisely, we· use a space Y, the elements of which are the se­
quences of numbers Yof,l y ~I< Ax(j, ~). of=-oo, ••• -1,0,1, ... oo;j> 1 the· 

norm being defined by eq·uali ty II Y II = s'J!. I Y of I · 
As (18) holds only for j > 1 further we shall suppose in (13), 

(14), (15) and (17), j 1 >1, j 2 > 1, j
3 

> 1 and i4 > 1, respectively. 
To satisfy the condition A( t) ~ t, it is enough to put down 

(1 -t-NC)Ft* I['x (11-t-A-!L)+x (11-A+!L)lx (A.)x (!L)+ 
4 4 1 1 

>..,1-L 

-t-2{1-t-NC)Ft*T'* l [x (v+A.-Jl} +X (v->..-t-1-L)]x (!L) X (>..) + 
\ 4 . 4 2 1 
"•IL 

+2(1-t-NC)Ft*R* I [x (ll+>..+ofJ+x (v->...:.: ofJ]x (ofJx (>..) + 
>..,,f 4 4 3 1 

-t-2{1-t-NC)Fr*R* I [)( (11-t-of-t->..) +X (v-of->..))x (of)x (A.)+ 
>..,of 4 4 3 2 

2 
+(l+NC)Fr* I [x (11-t-A-!L)+x (v->..+!LJ]x (!L)X (>..)+ 

>.. 4 4 2 2 
·IL 

+ ( 1 + N C) F R *
2 I [ X ( 11 + of -· T/ ) + X ( v - of + 71 ) ] X (of) X ( TJ) + 

.f.TJ 4 4 3 3 

+R*x (11)+r*x (v)<t*x (v), 
3 2 1 

where C =maxC; a , {3 = 1,2, .. N • When deducing the latter 
inequality it is advisable to suppose at first that N = 1, and 
caP = o. In this case in the inequality we would have 1 instead 
of the factors 1 + N C. In the last expression N c accounts for 
the contribution of the term 1 

(-1/ f caf3 H f3 H f3 
f3= I m m+k 

in the formula which defines E a • 
II . 

Summing over all indices from - "" to "" and using (18), 
w~ obtain · 

2 2 . --
2(1 + NC)F t* [K X (II)+(K K + 2K K )X (11)] + 

41 4 41 14 14 . 11 1 

2 2 ] +2(1-t-NC)Fr* [K X (11) + (K K + 2K K ) X (11) + 
42 4 42 24 24 22 2 

12 

2 2 ] 
-t-2(1-t-NC)FR* [ K43 X4 (v) + (K43K34 + 2K34 K33) X3 (11) + 

+ 4(1 + NC)F t *r* [ K
42 

K
41 

x/v)-t-(K 
43 

K
24

-t-K
34

K
23

) x
2 

(11 )+ 

-t-K3.f32 x/11)l-t-4(1-t-NC)F r*R*[K
43

K
42

X/11)+(K
43

K
24 

+ 

-t-K K )X(II)-t-K K X(ll)]-t-4(1-t-NC)FR*t*[K K x(v)+ 
34 23 2 34 32 3 43 41 4 

+(K43 Kr4 + K.J4 K13 ))(3 (II) -t- K34K31 X/11)] -t- r*x /II)+ 

-t-R*x
3

(v)<t*xj11), v =1,2, .. ,oo, 

We suppose that j 2 ~ j 1 ; j 3 2 j 1 and j 4 ~ j 1 • Under this 
assumptionxivJ ::;x 1(v); x 3 (v)::; x 1 (II) and x 4 (v) ::;x1 (11)·.1f 

we put r * = p t* and R * = q t * and suppose that p + q < 1, the 
above inequality is transformed into the inequality 

t*=t*< 
1 

where 

1-p-q 

2 2 
2(1-t-NC)F(U

1 
+pV

2 
+qV

3 
+P V

4 
+q V

5 
-t-pqU

6
) 

2 
Ul = K41+ K41K14 + 2 fS.4K41 ' 

U2 = 2 (K42 K41 + K42K14 -t-K24 K21 +~4 K12)' 

V3= 2 (K43K41+K_,3 K14-t-K34K31 -t-K34K13 ), 

2 
U4 = K42 + K42 K24 + 2 K~4K22, 

2 
Us= &3 + K43 K34 + 2 K34 K33, 

2 
V6=2(K43~K43K24 -t-K34K24+K:u K32). 

(19) 

Let us suppose that t * is so chosen that inequality (19) 
is satisfied. In respect to (13) that means that the absolute 
values of the left-hand sides of the system (12) are less than 
the absolute values of those on the right-hand side. In other 
words, if inequality (19) is satisfied, the set M 1 = M 1 is such 
that A (M1 ) c;: M1 • And because by (13) M 1 is a bounded and 
convex set, it follows that condition 1 of Schauder' s theorem 
has been satisfied. The second condition of Schauder's theorem 
demands that A should be a completely continuous operator. 

13 
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Let u,s recall the definition of a completel:y continuous opera- ~ 
tor Is,: The operator A is 1 complet~y continuous on the se1. Mt T 
if it is continuous on M t and compact on Mt, i.e. when A maps 
every bounded subset of M

1 
into a compact one. The operator 

A is continuous on M 1 • This is easily proved with regard 
to formula (15) from /2ti.The compactness of M1 is proved 
when taking into consideration that according to its definition 
M1 is compact Its/. 

Therefore, if condition (19) is satisfied, which with an 
appropriate choice of the parameters t , p and q can always 
be achieved, then all the requirements for the applicability 
of Schauder's theorem are also satisfied. This result is expressed 
in the following theorem: 

Theorem 2. Let (16) be satisfied. Let sequences of numbers 
R~ ,a=1,2, ... N; e=0,1, .. ,oo beknownsucl!that 

I R a I < const X ( i
3 

; e). (20) 
--' -

Then the algebraic system (12) has at least one solution 
t a , a .. 1,2, ... N; 11 = 1,2, ... oo such that ta .. 0[-1-

1
- ], j > 1. 

II II ~~~~ 1 1 

Let in addition the condition ( 9) be satisfied. Then the series 
(4) converge to the functions Ha(Z) , a = 1 ,2, ... N, which 
satisfy the conditions (3), B), C), D). In the particular case 
when the sequences H na , n = 0 , -1, -2, ... are finite, the 

~ a a functionsn (Z) , Z~Dca(1=Re>IZI~R 1 ,.0) areanalyti-
cal. 

Remark 1. Condition (16) can be replaced by the stronger 
condition. 
The function F ' ( ¢), - t .:s ¢ -:;_ ; is bo~nded and 

lim [ F(cp)( !L- ¢) (l+f) ]< oo. (16) 
2 ¢ ->rr/2 

Proof. In addition to the above motivation in proving the 
theorem we remark that j 3 > 1 and j 4 .> 1, firstly because 

-of (20), and secondly because Fn = cJ [ 1 ] , o < £.:S 1 . 
In I (t H_) 

Then choosing j 2 ~ i 1 and j 1 > 1 we can write i4 ~ i 1 and 
h ~it , which was supposed in deriving (19). So we complete 

the proof of the first part of Theorem 2. 
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To prove the second part of the theorem, it is sufficient 
to demonstrate that the conditions of the inverse part of 
Theorem 1 are satisfied: 

Condition (8) is indeed fulfilled. This is a consequence of 
the fact that according to the first part of Theorem 2 
IHnai.:S constx (j 1 ;n), n =1,2,3, ... • Condition (20) means that 
IH~ I::: constx (i 3 ,n ). From here, in connectionwithatheorem 

of Ref. 19, Chapt. II 3, it follows that V+'fc/>) and v_a(¢) exist 
and satisfy the Holder condition with exponent c, o < (:::;, 1 on 
the interval [-rr-77, 77+ 77 ], where TJ is some positive number. 

Condition (19) of Theorem 1 is also fulfilled because it 
figures in Theorem 2 as well. 

Condition (7) of Theorem 1 is satisfied because it is a con-
sequence of condition (16) of Theorem 2. 

With this the proof of Theorem 2 is completed. 
This theorem is an improved version of Theorem 2 in Ref. 21. 
Let us consider the application of this theorem in two 

special cases. , 
a a ~ a) Suppose that R_(= o , ~ = 2,3, ... oo and R_ 1 ~ T 

With these assumptions and the appropriate choice of cafi 
Low's problem corresponds to the problem resolved by means of 
the integral equation of Chew and Low. The existence of solution 
to this problem depends mainly on the properties of the cut-off 
function. 

So in the case of the G.Salzman and F.Salzman's choice of 
3/2 2 

cut-off function f(xJ~ (x-1) exp -(x - 1), where m is the 
12 77 4m
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meson mass, passing from f(x) to F(cp), we conclude that the 
condition of Remark 1 to Theorem 2 is satisfied. Hence the 
problem has at least one solutio(). H l1( z), which is analytic 
at least in region o < 1 z 1 < 1. The exis~nce of at least one 
soluition to (1) was proved by Warnock 7/ through its direct 
investigation. 

b) Suppose that R:(=o .~ = 1,2,3,~ .. , a= 1,2, ... N,i.e. the 
partial scattering amplitudes have no pole at the origin. For 
N =3 and with the appropriate choice of c af3 this problem 
is equivalent to the integral equation of Shirkov et al. /3, 4 / for 
the 77- 77 scattering in the low-energy region. If instead of the 

-kx 
function f( x) from Ref. 10 we use the function f(x)e , k->0 
the results of Theorem 2 could be transferred directly to that 
case. If we conjecture that, we can put in the solution k=O , we 
may conclude that the Shirkov equation has at least one solution. 

15 
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In particular cases as, for instance, in the case of the 
applications a) and b) of Theorem 2, the condition of analyticity 
A) is satisfied. But in general Theorem 2 does not guarantee the 
fulfilment of this condition. 

As is seen from Remark 2 to Theorem l the conventional 
approach of simultaneous fulfilment of the conditions of analy­
ticity, unitarity, crossing symmetry and of the condition D) 
can be abandoned. This is just the case with Theorem 2 in its 
general formulation, where the last three conditions are consi­
dered to define one problem while the fulfilment of condition 
A) must be regarded as a second problem. (The second problem 
can be attacked differently, for example, by the Padde approxi­
mation or by other methods for analytical continuation /I4/ ). 

Such an approach may be fruitful, especially when numerical 
investigation is intended, because it provides regions D a , which 
are larger than the region of analyticity resulting from the direct 
consideration of the integral equation (1). 

As far as the proof of the existence of functions Ha(Z) which 
fulfil all conditions of the problem A), B), C), D) is concerned, 
it is given in particular cases in Theorem 2. More general 
conditions assuring the fulfilment of the four conditions are defi­
ned in the next theorem. 

Theorem 3. Let (16) be satisfied. Let sequence of numbers 
R:;, a= ,1,2, .•• N, ae=t:0,1,2, ••• "" be k~own such that 

IR~I'S. coost(R 1 )"', where 1 > R~> 0 
are constants (21) 

Then the algebraic system (12) has at least one solution 
ta , a =1,2, ••• N; v= 1,2, ... "" such that 

v 

1 ,~! = 0 [ -;}t- ] ' iz > 1 • Let in addition condition (9J be 
satisfied. Then the series (4) converge for 1 ~I Z I> R 1 to 
the functions H a (Z), a= 1, 2, ... N , whi<;h are analytic for 
Z t;D~ (1 ~ R~ >IZ I > R 1a) and satisfy the conditions B), 
C), D). 

Proof. Having in view condition (21) we introduce instead 
of x ( j 

3
, n) the function ( R f J-lnl . We remark that the 

relatibns (13) and (14) hold also for Theorem 3 if relation 
(15) is substituted by (15') 

IR~\:.:;R'*(R~)e, a=1,2, ... N; e=o,1,2, ... oo. (15) 

The proof of Theorem 3 can be carried out merely as 
a literal repetition of the proof of the Theorem 2. For this 
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purpose the relation (18) must be substituted with an analogous 

"" a -lntml for the expression ~ x 
1 

( n) ( R 1 ) • This is 
n=-oo 

relation 

easily achieved, observing that for K · large 
< Kx (j n) so that we get the relation 
- 3 

~ Xz (n)(R~ y-ln+ml ~ K
1

; x/m) + K3~ x/m), 
11=>-<X' 

where 
K/3 =KK13 , K31 =KK 31 • 

a -In I 
enough ( R 1 ) :.; 

With (15) and (18 ') instead of (15) and (18) we repeat the 
reasoning leading to the proof of Theorem 2 and get the proof 
of Theorem 3. In Theorem 3 an extra moment is the proof of the 
analyticity of H a(Z), which is trivial. 

IV. Conclusion 

In the conclusion we would like to stress the following 
points. 

1) Theorem 2 concerning the existence of at least one 
solution of Ref. 21 was splittereu here into Theorem 2 and 
Theorem 3, differing in the properties of the solution. While 
in Theorem 2 the solution H a(Z) is supposed to be Holder­
continuous on c0 

, in the next theorem H a(z) is proved to be 
analytic in an annular region. In the equal way Theorem 3 
of Ref. 21, guaranteeing the existence and uniqueness of the 
solution, could be splittered into theorems 4 and 5, the first 
being connected with the appurtenance of H a(z) to the class of 
Holder-continuous functions and the second with the analyticity 
of Ha(z). 

•· 
2) In the Bros-Epstein-Glaser theory it is proyed that 

eventually there can exist a finite non-analytical domain/22 •231 . 
The present investigation allows us to give an semiempiric 
answer to the question whether a domain where Ha(Z) is non­
analytical really exists or not. For this purpose we must 
consider ReH cy¢) and lmH a(¢) as known by the measurements. 
In this condition the coefficients S:; and c ~ in the Fourier 
series 

/mila(¢)= f sa sinv¢ 
v.:l v 

a ~ a 
ReH (¢) = 2 C cosv¢ 

v=O v . 
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are known. Therefore the coefficients H a , n = 0,1,2, ... oo 

related to s~ and C':- by the equalities H[J -H..! ,s ~ and 
H a + H a =C a can be determined; 

v -v v But H.!:n = R.!:n must obey (9). Because among the eigen-
values of c 43 there exist the eigenvalue +1 with the eigen­
vector E ~ and the eigenvalue -1 with the eigenvector E ~ , 
a= 1,2, ••• N , (9) could be rewritten in the following way: 

Ra =f2Ea 
-v 1/ + ' 

Ra=82Ea, 
-v v 

v odd 

v even 

Clearly, if the suggestion of H'?'ZJ, being nonanalytical in the 
vicinity of z ~ o, is true then some f ~ and g~ will be not 
zero. Moreover the components R! , a= 1,2, ••• N should 
be proportional to the components of Ef or E ~ if the 
condition C) would hold for the whole interval - 11~ ¢-5.11. 

Another example for partial amplitudes with restricted 
domain of analyticity are the partial scatt;t(ng amplitudes 
derived from the Mandelstam representation 4 

• This question 
also may be of interest for the application of some of the results 
obtained here. 

The author is indebted to Prof. I.Todorov and Prof. V.Mesh­
cheryakov for valuable consultations. 
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