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1. Introduction 

The relativistic two-body problem is one of the majn 
problems in quantum field theory. The Bethe-Salpeter 11 : 
equation, describing the same problem in four-dimensional 
formalism, displays a number of undesirable features. First 
of all, it involves a relative time which has no clear phy~ical 
meaning. Sev,~ra,l years ago, L<;>g~nov and Tavkhelidze / 21 

, 

Kadyshevskyi~.4, and Todorov 15 , proposed a quasipotential 
approach to the relativistic two-body problem. The important 
features of the quasipotential equations are that the wave 
function depends on one-time argument and allows a probability 
interpretation. The finding of the solutions of the corresponding 
quasipotentia.l .equations is not a simple .m.athematical problem, 

Sisskind · 6 , Bardakci and Halpern' 7 ,. , and De and Kim 8
· 

showed that the two-body relativistic problem can be described 
in the infinite momentum frame. Having in mind an isomor
phism between a subgroup of the Poincare group and the 
two-dimensional galilean group they suggest a two-dimensional 
description of the relativistic system. The corresponding 
equations are two-dimensional non-relativistic equations which 
contain Lorentz covariant quantities. This method allows 
one to make use of some results of the non-relativistic potential 
theory. In a series of publications 9 ,1o,11/Namylowskidiscussed 
some problems of infinite momentum dynamics and covariant 
quasipotential approach. 

In the present paper we suggest a three-dimensional equation • 
for describing the two-body relativistic problem in infinite 
momentum frame. The longitudinal fractions which are analogous 
to the masses in non-relativistic theory are expressed by the 
center-of-mass energies of constituent particles. 

In Section 2 a simple equation for relativistic two-body 
problem with arbitrary interaction in infinite momentum frame 
is considered. The quasi potential approach in infinite momentum 
frame is discussed in Section 3. The potential is defined as an 
infinite power series in the coupling constant which fits 
the perturbative expansion of the on-energy shell scattering 
amplitude. 
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2. Equation for Relativistic Two-Body Problem 
in Infinite Momentum Frame 

Consider the system of two spinless particles of masses 
m and m2 and four-momenta p 1 and p 2 • The total momentum 

/{ , m 1 f rn2 of the system is related to the total energy 
by 

P 2 cs w 2 
(1) 

The center-of-mass energies E1 and E 
2 

of particles 1 and 2 
can be defined by the covariant relations 

or 

E~_l_P·p1, 
1 w 

1 
E ""' - P • P2 2 w 

E 
I 

2 2 
w2 -~-m,_:-!"2' w2 -m2 +m2 

E ,. -----L----~ 
2 2w 2w 

(2) 

(3) 

For the relative four-momentum q 
Gording vector 

we use the Wightman-

E 2 q"' -- pl 
w 

_§_i p 
- 2 w 

(4) 

Consequently, if both the particles are on their mass-shells 
then 

q,P ..,Q 
(5) 

and in the center of mass system q
0
= o. If we consider 

a minimal way out of the mass-shell assuming that the four
momenta squared in the initial, final, or intermediate states 
satisfy the relationl1:?/ 

2 2 2 2 
P1-P2=m1-n;2 (6) 

then the condition (5) will be valid always. 

We shall consider the description of the system of two 
particles from two reference frames. The system of the 
particles L · is supposed to be moving with respect to the 
center-of-mass-frarpe L, at a high velocity (near the velocity 
of light) in the - P direction. Hence in the frame L the 
total three-momentum is P=(O,O, ! Pi ) , : P ! • "" • The finite 
quantities 11 1 and 11 2 defined by relations 

4 

j 
-. :t •-----==---------~~~~~~-~ 

• I 

1 -(j) 1 -w 
111 = 2 e ( P1 )3 ' 71 2 = 2 e ( P2 )3 (7) 

will be called the longitudinal fractions, where ( p 
1 

)
3 

and 
( p 2 ) 3 are the third components of the momenta of particles 
1 and 2, and the hyperbolic angle thw = v becomes very large. 
Let us assume that in the frame L' for the zero component of 
the Wightman-Garding vector the conditions 

E E 
qo=~(P1Jo - ~(p2Jo= O (8) 

should holed. Then, having in mind (5), we obtain that the 
total three-momentum ff will be orthogonal to the relative 
three-momentum 

:P. Ci~ o. (9) 

From (8) we get the approximate relations 

E 1 ( P 1 )o ( P th 711 -=-----=-
E2 (p2)0-(p2)3 71 2 

(10) 

or 

~ .. ~. 
E2 r12 

(ll) 

According to (9) for the energy of the system 

' 71 ~ -> 2 2 ' 712 -> 2 2 
P = y(:1.l. P+q) +m 1 +v (-P-1') +m

2 o M . M 
(12) 

' _. l M (~ 2 ? M (-> 2 2 = .P, +---.- q +m- )+--.- q +m ), 
271 I _.,.I 1 271 lp,,.1 2 

1 Ip ' 2 I . 

where 

M = T/ 1 + 712 (13) 
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fr is an easy exercise to verify that for the quantities P0 +P3 
and P

0 
- P 

3 
under a Lorentz transformation in the Z direction 

P 'P-> cw(P +P
3

), 
u 3 u 

P -P ··e-w(p -P ). 
,· 0 3 0 3 

If we choose the Lorentz transformation such that 

21 Pi"' Me <ll 

(14) 

(15) 

(16) 

and using (12), (14) and (15) we have in the infinite momentum 
frame 

...... 

q2 m2 m2 
H -P -P =-+.:::..L+.::..2...., 

(I (I .l .• 
/l ' 1/ 1 1/ 2 

(17) 

P +P -M, 
(I 3 

/l' ~ __ 1.!LT/ J __ 

1/ + 1/ ' 
1 2 

(18) 

where H is the Hamiltonian of the system of the non-interacting 
particles, 

1/' pt - 1/ 1 P2_ - ~ p 
q ~ __ ·c .. -------- w 1 

M 
~P, 
" -

(19) 

is the three dimensional relative momentum. Multiplying (17) 
by (18) we have 

E = q2 
µ * , (20) 

where 

2 1 . 2 w m m2 E= ---- - • (21) 
M 111 11 2 

On the basis of (11) and (18) it is easy to verify that 

4 2( 2 2 2 2 2 2 
2 

w - m +m jw '(m - m ) 
b ~ µ * E = 1 2 _____ ~ __ 2 __ 

4 w 
2 

(22) 
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is the on-shell value of the center of mass momentum squared 
of each of the two particles. 

The next question is how to introduce an interaction into 
the system. Keeping the non-relativistic analogy for an arbitrary 
potential V we get 

~2 1 
E·--- I- -V. 

µ* /l * 

When we substitute 

if·-iV, E·1 

in (23) we have 

iJ 
JI 

j j}_i_ ~ - M!..; _l_ Ve/> 
() I /I ; 11 1 

(23) 

(24) 

(25) 

For stationary states there is an equation describing the system 
of two-spinless particles interacting by local potential in the 
configuration space in infinite momentum frame 

\4. .! I :2 ') - I/Ji+- -~!..- ( "''L . m,-M I , - - "----)~'' 1 
/l 'I 1 1/ 2 

Having in mind that the fraction 
by E

1 
'E 2 we have 

_I_ V1/J 
/I 

111 'I 2 

. ' w .! El .! I w I 
" f,, 1.1 ~-/:J. 'f - .J; ( m - • m. ) lJ ; -- Vu • 

- E l IE 2 E 
i I 2 

(26) 

in (26) is expressed f 

(27) 

The equation (26) is of the type of the non-relativistic Schro
dinger equation 

(- \ 
/I 

The factor 

_!___ V ·- E J l~ ~ 0 • 
/I 

(28) 

1 in the term of the potential is such that in 
11' 

the non-relativistic limit when 
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...... 

w-->E'frn trn 
1 2 

!E'i«rnJ,rn2 

we obtain the non-relativistic Schrodinger equation 

(!\+k 2 )r/J(r)- V(r)ifl(r). 

(29) 

(30) 

In (30) k
2 

is the value of the non-relativistic center of mass 
momentum squared of each of the two particles. 

3. Quasipotential Approach in Infinite Momentum Frame 

In quasipotential approach the two-body propagator can 
be written in the following form /s/ 

1 
G .,,, c --------- (31) 

0 w • 2 
-q-+ iO-E 

µ* 
and the corresponding equation for the scattering amplitude 
is of the Lippman-Schwinger type: 

T ,, V t c _v ----1 --- T • (32) 
"' ->2 q .'µ*+·iO-E 

We now choose the constant c w such that for a hermitian 
potentials eq. (32) should imply the on-shell elastic unitarity 
condition 

' • . ;2 3 ... 
T( q, q ')-T*( q: q ')"" -77..:L {T(q, k) T*( k, q')o(--E)d k (33) 

wµ* µ* 

Using (32) after some transformation, we get 

T -T·•~ cwT< ~!_----.-- - ,
2

. 
1 ----~) T *. 

q . µ * - E + I 0 q ,- µ * -E -1 0 (34) 

If we identify (33) with (34) we have 
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1 __ 
c~----* 

w 2w µ (35) 

The wave function defined by the relation 

•1• ( • ) " ( • " 1 1 T ( ... -•) 'I' q ,.u p- q) + ---- ------ q, p 
E 2µ*w q'2/µ*-E+·i0 

(36) 

satisfies the homogeneous equation 

··• q -+ _..... ..... -t 

2µ*w(:7*"'"- E)i/!E(q)= [V(q,k)i/l (k)d
3
k. µ . E 

(37) 

The corresponding equation in configuration space in infinite 
momentum frame is 

2 A ,/, rn2 rn 2 1 
!!.__if!= - A...x:. + ( ::.L + :::...2.. N + -- Vifl • 
M µ* 11

1 
r1

2
, 2µ*w 

(38) 

This equation coincides with the quasipotential equation obtained 
and discussed by Todorov ,'s/. 

The potential is defined as an infinite power series in 
the coupling constant which fits the perturbative expression 
of the one-energy-shell scattering amplitude found from (32). 
Consequently, if T ~ l T n is the perturbative expansion of . 
T when V~ l Vn with 

V = T , V. ~ -T - - 1
-Tr:-. ---

1 ---.- T1 ••• (39) 
1 1 2 2 2µ~w q2/µ*-Et·i0 

In the simple model of two complex scalar fields interacting 
via a neutral scalar field of mass µ the potential obtained 
by (39) in ladder approximation is of the Yukawa type. 

·e-µr 
V(r)-rn rn a-. 

1 2 r 
(40) 
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A detailed investigation of the / r,elativistic Coulomb problem 
is given in the Todorov's paper'~· and we repeat some results 
for completeness. 

For µ ~ o eq. (38) is exactly soluble and leads to the 
following relativistic Balmer formula: 

2 2 2 2 112 
w n ~ m 1 i m 2 + 2 m 1 m 2 ( 1 - - a

2 
) • 

n 
(41) 

Th . f 1 k 1 t / 13
'
14

'
15

/ h" h •ts is ormu a is a nown re a ion w ic perm1 
to find the spectrum of masses of two spinless particles 
interacting by Coulomb potential. It should be noted that this 
result cannot be obtained directly from the ladder approxima
tion of the Bethe-Salpeter equation. 

In the case, when the mass of the exchange particle is not 
large the potential ( 40) may be expanded in powers of /L • 
Using the perturbative method of the solution of the Schrodinger 

I ' 
equation suggested by Muller ' 16

•171 we get 

2 2 
w nl' ~ I m 1 I- m 2 

a 2 \!\_\!:: UL +2m
1 

m
2 

(1- . -) I ~ __ ..:.I __ _ 
( n I- r d/ ll2 1/; ( 42) 

. 0-----) 
(n 1- I' d) 2 

In this relation the second term is 
non-zero mass of exchange particle. 

a correction due to the 

The author is sincerely grateful to I. T. Todorov, R.N. Faus
.,. tov, P.N.Bogolubov, V.A.Matveev, M.D.Mateev, D.Z.Stoyanov, 

'v.R.Garsevanishvili and V.G.Kadyshevsky for many critical 
remarks and fruitful discussions. 
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