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3 -UMMARY

“In"the - light of recent theoretical ‘studies it has: been found
that in the: procoss of collapse matter tends to minlmlze the va-
‘riety of 1ts global properties.} o o :

~0f much importance are’ the considerations according to’
which, in- the external space, black holes do not excite some '
4',fields (e.g.,scalar, massive vector, neutrino fields). However,v.

the. electromagnetic fields are excited Af the photon does not
‘possess any small rest mass, -?‘” &
. " One of the ‘criteria of the existence of fields out51de black o
: holes, namely the 1ncompatib11ity of" the presence of. the sources S
:of a‘given field (global nonzero "charge") with the p0551b11ity
“of formatlon of a’ closed metrlc,is con51dered.f u‘~’“” Gl
For example, the presence of the total electric charge, the
source of the generalized Maxyell field w1th potential of the type
:’!M)Djv and, -m particular, ~ i/'z, ‘and the source of the Yang-
‘Mills'fiéld are 1ncompat1ble with the formation of the closed CT
‘metric. e B
. There are some grounds to expect that the long—range neutri-.b

no forces would also be 1ncompat1ble w1th the closed ‘metric. Then

.. this would mean that similar external f1elds of black holes should

: exist. ‘ , ‘ o )
The sources of scalar and massive vector fields are’ 1ncompa—_

" tible'wth.the closed metric.



However the inverse theofem is'wrong: the possible'formatiop
of a closed metric in the presence of sources cannot yet testifj
in a decisive manner in favour of the fact that black holes have
no externel long-range scalar and vector fields.

The presentiy available proofs for the disappearance of the
fields outsxde black holes are given which assume, in partlcular,
the existence of the event horizon and the anlteness of the po-
:tentials and fields on the horizon. It is also assumed that the
fields Lnfluence weakly the metrlcs.,; ) e

However the long-range scalar fleld, 8.+yin the form

awv+ 5 6 R,‘P Jr is in contradiction with this assump-
tlon. There -are some arguments in favour- of the: ezistence of the
external massxve vector. (baryon) fields of black holes. These
arguments are associated ‘with the generalized Gauss: theorem for
the massive vector field. ‘ ‘ :

A<rigerous consideration of the p:oblem'ﬁnder_d;scussion re~
quires however that the nonstatic compleﬁe (interhal and external)
solution 'should be found. for black holes.- This consxderatlon
would then result in the fact that the sltuatlon w1th the presence
of horizons, bare_51ngularit1es—and the bahavior qﬂ,f;e;ds eutside

.and inside black -holes would be clear.



. In the light of recent theoretical studies, one has gathe-'
red the‘impression’that in the processvof collapse, in the pro-’
cess of gravztational closing, matter tends to minimize the- va-
riety of its global properties, the variety of the parameters
characterizing the system as a whole. Indeed, many global charac-
teristics are stripped in the process of collapse when a matter ,

falls below the surface of the "event horizon" forming a "black

~ hole". In this way, outside the black hole (collapsar) there is

observed the “lose of the magnetic dipole moment, of. the highest
gravitational multipoles and, possibly, the capability of excit-

. ing some,external fields, etc.

yiThis situation was figuratively defined by‘Wheeler as fol-
lows, “A black hole has no hair".’It is interesting to unders-
tand which properties of systems may be denoted by this tenm
"hair", how proceeds the disappearance of this hair in .the space
around the blak hole, in which cases, in the language of thisvv
terminology, this hairhcomes out (ire.,something isylost by a

gsystemcin the course of‘radiation before -gravitational closing),

in whioh cases this hair is "dressed", say, 4 la Schwarzschild -
sphere and becomes inaccesible for an exterior observer. '
A microscopic material system, for example, a celestial bo-
dy, may possess a variety of global characteristics such as total
mass, total electric charge, total angular momentum,etc. A celes-

~tial body consisting of, €eBey hydrogen gas has huge baryon and

lepton chargos.The system may ‘also possess strangenees. From the

point of view of the electron-neutrino weak interactions, ‘a ce-

'lestial body may be a source of a- neutrino-antineutrino field de-



lcreaaing as 4%&5'; In principle,‘the macroscopic material sys--
tem may be a source of & scalar field., It may possess magnetic
~dipple momemt, highest gravitational momenta,etc. The strippimgv
. of the'global characteriatica, this peculiar'"gravitational atrUr-
tease",can go much far. - ‘ .
There exist'such final states of material systems'that are
deprived ‘of all their global characteristica- here we imply sys-
tems . with closed metric for which, in particular, total mass*,
total angular momentum and total electric ‘charge are zero. The
black holes and the systems with closed metric are two extreme
and not transforming to each other (at least in classiCal phy-
sics)atatea_of systems mith minimized characteriatics.Aa_will be .
seen, the discuasion‘of the glcbal»characteristica which violate
the metric of closed systems and comes with it~in ccntradictioég/
is very valuable for understanding gravitational striptease in
the production of black holes, Ve~ recall that the studiee of
Ginzburg’3/ (1964) and Ozernoy’*/ showed that the magnetic dipole
moment measured at a certain distance from the collapsar tends
to zero as the ccllapaar matter falls below the surface of the
event horizon in the process of gravitational closing, ise. when

the star surface approaches the ‘Schwarzschild surface**. Dorosh-

*It is auppoaed that the so-called /\ -term in the Einstein
equations is absent. .

**In the procesa of gravitational collapse, when the sur-
face of a star is approaching the Schwarzschild surface("event
horizon") there also proceeds a stripping of free electrons down
%o a minimal value R & -AL_& _£_ . That is, for a
CrlTleui wit® M~ Mg, h ~;.,Mom./ 10F ¥ 10 In other words,
there remains one eiectron per 30" ~10*"ton of matter. The:
matter density is, in this case, /( ~ 10 4rfemd



kevich, Zel'dovich and Novikov/B/ (1965) showed that collapsars

do not possess hlghest gravitational multipoles. they are irradi- )

ated in the process of collapse. (In this case the hair comes
too). _ , »
price’*/ (1971) et a1./17178/ concluded that the matter car-.
rvinghlong-range scalar field sources which has fallen below the
Schwarzschild sphere induces no scalar field out31de the black
" hole. ThlB case is not associated with any radiation. the sour—
ces of the scalar field are hid in a black hole. Hartle’”t®/,
concludes that - the collapsar too, exerts no neutrino forces in
the exterior space. He gives the expression for the potentlal of

neutrino forces from sources localized near the collapsar/7/ at

Cat)e

If the place of 1ocalization of the neutrlno fleld sources

the point a

‘approaches the Schwarzschild surface (a -~ M), the expre331on 1)
is equal to zero. The black hole hasinojneutrino hair. The inter-
pretation of this case is more complicated and raises some ques- .
tions. It is asserted that the black holes have no vector meson
(baryon) field/17 18/ It is interesting to answer the question
_as- to which global properties of black holes are conserved. The—
re exists the assertion that the black holes may possess only '
mass (M), electrlc charge (8) and angular momentum ) since
these quantities obey conservation laws. However,' another ques-
tion arises what 1s the situation W1th enormous baryon (or lep—
ton) charges of a collapsing star which are also conserved.
Ruffini ‘and Wheeler/g/ try ‘o explain this situation in the
following way: "Electric charge is a distinguishable quantity



because it carries a long—range force (conservation'of»flux;
Gauss's law) Baryon number and strengeness carry no such long—
range . force. They have no Gauss's law’ ...'5 Ror has anyone ever

been able to give a convincing reason to expect a direct and

spontaneous violation of the principle of conservation of baryon a

number. In gravitational collapse, however, that principle is
not directly violated; 1t is transcended. It is transcended beca-
use in collapse one loses theipossibility of-measuring'barjon ‘
number,’ and therefore this quantity cannot be well defined for a
collapsed object. Similarly, strengeness is no longer conserved"'

‘In an analogous way, Hartle et al. interprets the impossibi-
lity of establishing the presence of the ‘neutrino charge in a
black hole by means of an experiment performed outside this hole.

, In the most recent book by Zel'dovich and Novikov/10/ this situa-
tion is formulated as follows: ’

"The disappearance of signals from particles buried in the
process of’ collapse 1s not the death of these particles. indeed,
we do not consider the man who turned the corner of a building
 to be perished". - R
Further it would be interestins to discuss in: more detail
- to whatkextent the interpretation of Ruffini-Wheeler is adequate
to the situation in question-in‘collapsing:sﬁstems;

It is also interestins to discuss arguments in favour-of
the fact that black holes have no external scalar, massive vec-
tor and neutrino fields. But beforehand it is advisable to con-
sider an agsertion (say,l emma) concerning systems described by
a closed metric. As will be seen below the results of this con-
sideration are very 1mportant for the problems under discussion.

This assertion is formulated as foll ows:



If a system containing sources (specific charges) of some

field is found to be incompatible with the closed metric then the

corresponding black hole has outside it the field of the given

sources. _
The characteristics of the system (critical mattervdeneity,
etc.) are assumed to be euch that when the values of the charges
in questlon tend to zero the metrlc becomes closed. '
As is ]mown, the Priedmann line element’ !/
ai‘(.)d’y )1 a'ty)sin't (de +.91h200/P/ 2
deecrlbee one of the models of the closed world.
Here the varlable 7L changes‘ in the linuts
O<LALT . (3)
The varlable 'L is con.nected with the tlme t by a simple rela-
tion ¢ o = a 0/? |
The same eq.(2) describes the internal metric of a black .
hole provided that the matter of the system is dietrib.uted in
' euch a manner that the region of x is filled only to % < ,_. Then
the external solution, which is Euclidean at 1nfin1ty, must
in ‘an appropriate fash;lon,r be sewed with the 1ntemal solution.
The metric ‘as a whole is nonstatic but, in a certain approxima- '
,-tion, the external metric may be the Schwarzschild metric. 'Finalé’
"1y, if the matter fills the region T <X, <, then there
arises a system with semi-closed metric. If spheres with some
values are‘ circu.mecribed’around the point 7(,: 0, then the sur-

face of the sphere is . - :
S,—\ ’dm(z)w‘ . ()

The surface of the sphere S J.ncreases w:.th increaemg L<E X,
However for 7(} 9- T the dlmenelone of the sphere decreaee and

for }( =J the ephere reducee to a point. ‘The world becomes



closed. For % < (black hole)/ 12/ the spheres mcrease monoto-
” ,nously with increasing radius at a given time moment ('2_) the quan-
tity 2= asmj assumes in the ex‘ternal metric the meaning of a mo-
notoneously increasing radius. The semi-closed metrlc (in the
case 47( (Jr) J.s characterlzed by the: presence of the minimal
“value of?, ’01 “0% >0) In other words, by the presence of a spe—v
cific throat ( in the Wheeler terminology "wormhole") which links
the internal and external metrlcs. The matter density /4. ( t) in-
'tegrated ‘over the whole space of the closed world g].ves the "bare".-
msss of the system. i.e.ythe total mass disregarding the gravita-

tional defect M =2 /44-['6)0./'(:) - (5)
This -value of the bare mass defines the radius of the closed’
world ( Q,) at the moment of its maximum expansion -
X Mo .
_— : 6
. o= _3 T . . . (6)
The latter expression is directly obtamed from the Einstein

/1 9 2 2 .
JTX& C . e -
(a.) - Z{i) TR A%

M
1f in eq. (7) it is puta, dt_Oand according to .Eq. (5)/4 .?JI"'d., .
The total mass of a part of the closed world. localized in.the do-

equation

main from i 0-to 7{ (1.4 ythe bare mass minus its gravitatio-

nal defect) is given by JL' .
Mto(::_—a 5'*"750- ' (8)

. Thus, the total mass of the closed‘system (% eT) is zero.
The total electric.charge of the closed world is also zero., The

latter fact is due to the law of conservation of electric char- )

ge. The attempts to place the electric charge in the closed
world result in a. contradiction between the- Ganss theoren .

- SE olS =2Xgre ) and the closed



metric/ 1/ which illustrate the above lemma.  The character of de-
formatioxi‘ of -the metric by-a small electric~.charge is discussed
in refs. /13 '14/ For an arbitrary small’ electric charge, a noti-
ceable deflection from the closed: metric oceurs only when 7(, is
arbitrarily close to fr In other words, if spheres with x',> o
are circumscribed around a small charse ‘£ localigzed at # 0- P
then these'spheres are characterized by the expression (4). With
increasing of X, to ‘X,- - the ‘spheres - increase. For 7(> g 1£
the’ charge is very small, the spheres decrease. But ‘in’ the do-
main 7(> 2 : the electric strength lines ("hair" of the electro—
masnetic field)ecome more dense. ‘The spheres. (4) for. ¢>._ plays
the role of. peculiar condensing lenses for the strength lines of
electrostatic field. :

‘ A detailed consideration/ 14/ shows that when the density of '
strength lines is such that the electrostatic potential reaches
the value ) ‘ 2. R

‘P""‘ N C))
then with further increase of 7( the spheres begin again to grow,
‘and the metric transforms to the well-known Nordstrom—Reissner
metric which, in the given case, is ‘chardcterized by the value
of the Schwarzsch.ild mags - ' o EI ;

Mtat l/e—' . T (10)
and

" = ‘~ qgcbdt ir—’(,z'[d9+§4n90/‘f)(11)
’where"’\ no . o -
g (1._.~ T

The radius of the minimal ‘sphere which is allowed b}; the elec-
tric charge is prcportional to ~the magnitude of the charge



.

a semi—closed»él =(2)7Z’>'O) world*. -In the:hairdresser langua-

~ric, when ¢ is .given-by eq. (12).

g S '; . »yl' R
U R ESE o T -3
... The metric:ceases to be closed.for an arbitrary small -

glectriqﬂcharge. Figuratively speaking, the ele¢tric étreﬁgth,_
lines ("hair") become more dense for 7{ close toVJTzéo that

'ﬁhej'“punchﬁ in the metric a "woimholeﬁf(thrdat) into which the

‘ eiectric;vector flux‘rusﬁgsifprmins:outsidé the given material

system the NordstrsmfReissner‘meffic.aForian arbitréry,smgll,g"

electric charge;;the metiic as . a whole resembléé the ﬁetrié,of~*

ge, outside the metric there arises a bun "horse:tailﬁ; Eut‘iff

;thé,charge 8—18.1arges¢nough theh.the minimkl,épheré mayhﬁe i;

'ébsent.AIn»this’case,:the'cloéqd‘metricfcgn-be viplapedialpeadyw

at xé Ji,‘_ . Then this metric.describes a black‘hole‘obliga‘to-

‘rily with external electrostatic field. -

. *1f our Universe had a matter density ft~~10'293r/cm3',‘
which in the case of the electric neutrality of the matter
could lead to a closed metric, then the presence of a single re-
dggda%t electron in the Universe would render it unclosed with
throa . 3 . . e TR . .
» Zb\_«‘hf’" g"‘é@: ~ e 10'-'33cm,
and. the total mass for the exterior:observer would be found to

‘be : ﬁ4tqt-V,ﬁ%$ *",f_10*5 gr.

The system which becomes a system with closed Friedmann metric

when the electric charge.tends to zero was called "electrosta- ,

tic fridmon"/2/, and the external metric (11) - the fridmon met- .
It should be noted, however,.that the external metric of

this type may have another internal continuation which descri-

bes the Papapetrou model with the same relation M = & //c o+

But in this case, the internal-solution: describes the static

- gystem in which the gravitational and electrostatic forces equi-

librate each other. Then the sizes of the material system are
necessarily larger than its gravitational radius /15/. The
friedmon metric is the extreme case of the semi-closed metric

L (Mee> HR) e S



It 1s possiblé to perform a "test" of thé lemmavsuggested
with&ut constructiﬁg a‘self-consistent‘solution which takes in-
to account the éfféct'of the sources of the field considered. It
is possible, e:g.sfor methodical purPGSes, to find and discuss .
the solutions of the Maxwell equation for the electrostatic case
with 8 # 0 under the conditions of a strictly closed metric, as-
sume, for simplicity, in the Einstein world or in the Friéﬁann
world at the moment of the maximum expansiqn.‘Under these condi-
tions, the contractions of the requirement & # O with closed
metric result in the appearance of diversences for the potential,
as 7(-—9 Jr.

‘ It is easy to see that in this case the solution for the
alectrostatic potential is

Cohgt
Lp'ag‘nyb . A ()
For the energy demnsity we naturally have
To .4 G

~ T oY
0 alsin' A
At 4 —>JT the expressions (14) and (15) diverge even if the sour-

ce (charse,a ) in the region near ;{_-_Q is smeared out over a
certain finite sphere; Iﬁ other words, for ﬂ:E=3T fhere apears -
a singularity which is characteristic of the point source which
we have not expected in this' place. Thisfisjdgstjthe contradic-;f
tion with closed metric. ' -

We apply the test sugsested to the massive vector fleld.
Then the question is as to what situation arises in the closed
metric if in- the baryon-neutral matter of this system there will
be, say, one redundant neutron at- 7L 0, and this neutron will :

be the sourse of, ‘say, a ;P ~meson vector :field.



* The equations for the massive,(lnby) vecforpfield in an

arbitrary curved space are (¢ = 1) L L
\ . : .
Fil—md o Pl =—dail - (18)
Ve conslder central symmetric . solution for thle equation in :

the absence oforee waves. We‘solve the problem under the same
assumtions as the preVioue one concerning the moment of the ma-
ximum expansion of the Friedmann world ( @& = @, a4 =0).

. ‘Let  @Qymy>4 , and the metric be given'in the form (2)
so t‘hat \/— = a: ;{n,z;( ¢n € . In this case the system of equations
(16) reduces to a single equation

2y d an)
sl G ,)—mhaty = - o
Yor small 7( the charge g‘ and the chargo densrby f are connec'b-‘
ed by the relation g—_—JrJoo 37[ j"’_-: a" , provided
(-4
7(('/{0 , and j = 0 provided xf>xa .
Using the standard receipt, it is easy to get for 3 out -

side the charge location the expression

g i
CEnBET L e A=VEImEo1, (o)

which naturally’ may be regarded as an analogue of the ordinary
expression \f'v-—e ". in the Euclidean space. Accord:Lng to eq.
(18) we could draw the conclueion that’ for %—- JC the” poten‘bial
Lf’o" diverges similarly to the case of" electrodynamics and that
the presence of the eourcee of the massive#ector"field with non-
'zero‘total charge is incompatible with the closed metric.

: "But this conclusion is really wrong} it'yis,bae'ed on the er-
ror. We' bave used, by force of habit, the boundary conditions
which are ordinary for- the Euclidean space. These conditions of
the finiteness of the- solution eelect naturally the aolutione
which decrease exponentially w1th increasing % '



I.n the case of the closed world there is no spaoe infinity,

snd therefore a more gIneral type of solution is possible/15/
% +Ah . ,
p< * Py g (19)
O = 5.‘,",7(‘ . .

.'l‘he“requirement for the solution to be finite end continuo-
us outside the source is satisfied by the condition imposed on !
' the ooefﬁoients ﬁ and & ‘

T pe SNyt o0,

Thus, outside the point source we have the following solu-

+)\m-

,tion = v' ; .M S ‘f _ g;ﬁ)\ﬁ"‘%—) . : ‘
» caes i e == J’;L'AJT Sﬂ'h7(~ ‘v- ) _ (20)
Now lP for i_-;;r is finite and the field( f"_;’) for %—-er ‘

vanishes.

Wo are led to the conclusion that’ the prosence of the sour-
cel of malsive veotor field is oompatible with the closed metric{k
thnt the closed world can contain the nonzero total baryon char-
ge (the source of the msssive vector field). In ref./15/a closed
metric tsking into account the massive vector field effects is
constructed. The essential differenoe between the massless and
massive vector fields has thus baan established. »

_ The result we have obtained does not contradiot the asser- "
tion that the massivo veotor field is absent outside black holes.
: But, at the same timo, this result is not a proof of the

validity of this assertion. The matter is thst the lemma inverse
to that suggested above is not definitely valid. It is enough to
" pecall that the msss; the source of ﬁheygravifationel field, al-
lows the closed netric and the black holo excite “in the exter-
nal space a gravitational field. ‘ ' ' '

" As was shown by R.Asanov/16/ the sources of the rassless

{



- sealar -field are also. compat:.ble with the Friedman.n closed met- '

zé)

dft¢) :
ric. In the metric, ds’“__ a(-é ( a&g' e dJZthe équatim.

for the scalar field - SO G .

| B AR =- "Té T CONE

if of the form . - . L

o (o Wl Db

3. - is the invariant density “of the scalar field sources.

In this metric, the Bia.nchl identity.. V 'T‘ 0 using eq. -

(22), yields the relation U /‘L +.2JLL 0 P is the mass (?.3)
dsns:.ty. Here the signs ,‘ e.nd denote the: derivatives w1th
respect to Z and ’Cf ’ respectlvely It it is possible. to intro-

k duce comoving synchronous coordinates (i.e.,when Xis indepen- )

dent of '?/ ) we have the consequence

. Ju=0. . @
Then the scalar field must be either free (‘/ or
u 0. - T T (25)

In the Friedmann metric the condition (25) 1s a direct consequen—-

ce of the world homogeneity and in the scalar field,eq. (22),

there remain only t1me derivatlves. . .
In ref/qs/ a model of the closed world is considered under

the assumption . )
T ‘,L

i = 2/% > L (28)
where e, a ﬂ-mg), 04?4-?.# That is,“ one implies a dust-llke
model. of the Fri edmann world 11/ in a sy'nchronous coordmate
system.

- It is remarkable that the expression for the dens:.ty of the

- scalar field sources is then . )
| S 2sM-4 e
32 Jr/»l‘ al sw'ly - |




The density éhengee in a specific manner with time(cdt= adt/
3 vanishes when sn 2/2 1/2 and at certain time moments changea
even the eign. This behaviour of the scalar field sources may be
.. explained by the fact that, contrary to the electric charse, the
scalar fie;d.charge does not obey the conservation law. Thue,the'
closed world may have the nonzero total'charge‘of the scalar
field, The situatibn with the neutrino field (B)‘is far more
: complicated. ‘ |
The preliminary consideration shows that placing a point
neutrino field source at the point ﬂi: 0 we are led to the
‘image (with opposite sign) of this source at 7(==JF' ‘ ,
—BH{-) = B(4). @7)
If further consideration shows that this result is valid
this will mean that the nonzero leptonic charge is incompatible
with the closed motric. In this case, there will appear neces- .
vsarily an externgl continuation of the metric and the existence
of neutrino hair outside black holes will be inevitable. In
other words, there will be a contradiction with the Hartle re-
ault/7’8/. | » | o
Now we consider the exieting proofs of ﬁhe absence of sca-
lar_(ZL )y massive-vector ( Y ) and neutrino (B) fields outside o
black holes. All the available proofs of this kind/®17117418/
are based on a number of;suppositions. The moet importent»ef
them are the following. ' R ; |
1) The system under consideration posseesee an event hori-‘
zon 9“—-—00‘ T —~Tgr,
. 11) The potential of the: field under conelderation has a

finite valuevon the event horizpn,

17



-r

Here zo,i:‘/hzmz_‘_h(;z—xm

.iii) The influence of the field .on.the.metric- may be neg—

?llected in the case of an arbitrarily weak field.

" We consider in more detail " the situations which happen forl

different fields. . . e el

I. The Scalar Long-Range Fieldﬂ :

We recall that the scalar field has a -large variety of pe-'v,
culiar properties which were mentioned, in particular, by
Dicke/ao/ Further we shall discuss some of them. First of all,
woe note that the scalar field equation can be’ written in the

| form (21): ‘u "‘—-LIJ_J “and in the form/22¢23/

v, V° LL+&LL—*;4JT; e
The latter is conformal invariant end has a number of advantages
compared top(21). The‘problem of eq.(21)»which is similar to
the Nordstrom-Reissner problen was solved‘by‘Fisher/19/more;thaa
twehtj‘jears ago. The metric obtained in this work'stroﬂgly dif-

- fers from the Nordstrom-Reissner and Schwarzschild metric: it is

surprising that 'in the case of the scalar field the event hori— :

- zoh is absent. More correctly, the" appropriate Schwarzschild '

sphere reduces to a point and this occurs for any small charge
of the scalar field source. . e o
This result in itself seems to be so surprising ‘and unlike-

ly that one wants automatically to find any calculation errors

_or some natural restrictions of the range of applicability of

the static metric for just the scalar field. Birstly we give the

" results of ref./19/, The metric _obtained by Fisher is

_ /2~ z 2o Yo sl
ds* = (2= i: (z+z )dz — o s V/(29)
GlB the “‘gscalar‘eharge\<go)



'D— xm

m O e
z(z) ?,e,.xp(\’—)\)_..t t—oco | 00:@1:944:_'61\ . (32)
(2'20) (2*'21)“-,’——- et ¢ ))

According %o (29) g,“ fui'ns to infinity nowhere. 9,
Similarly to 300, tends to zero for 2+2,. Accordmg %o (BByand
900 are equal to zero at’ '(’/ = 0.

The potential obtained in this paper has, at ¢ = 0,a loga-
rithmic singularity : » ‘ :
w = G 6’1. Z+2,

2 )tz'mz+KG'z' 2-2o °
- The Fisher's results were independently obtained more than .

(54)‘

twenty years ago by Jams, Newman and Wj.nicour/zq'/ In their paper )
_the metric was found o be , - .
‘ R,+'z -
S :[2 (et " L(d@-f-&'h 90('(‘) /Mi— (55)
~% (-1 ) % (p1+1)
where

‘2: / Z,zmz [/““)] ’“/'m'?"//“ 1)] o)
By means of a simple transformation, this metric transforma to
the metric (29) which is~ more convenient for discussion since :I.n
it 4, is the coefﬁc:.ent for 0[,'1— rather than for. a{»ﬂ as
is the case of eq.(36) :
Both papers/ 19'24/ contain some errors/ 25,26/
in the analys;.s of the nsymptotic behavior of the
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metric' but they do not concern the form of the linear element
, (29) which has been calculated correctly. Thue, for the scalar
‘field described by‘eq.(21) there is.no~ condition of applicabi-
'lity,of‘the theorems which provide evidence for the fact that |
the black hole has no external ecalar field;rif.in the case,of
the scalar: field the metric (29) is: aseumed to be correct. .

In fact, in this case the system with scalar field sources
has no event horizon (the condition. i) ie-not fulfilled).
this case there is no black hole, but there 1e eomethins simi-
bf»iar to : "bare“eingularity to which the Schwarzechild sphere
‘\ ie.degenerated. But the potential turns to infinity on this de-
- generate Schwarzschild sphere (the condition ii) is not fulfil-
led).'Tneflatter remirk concerns the criticism of the proofs of
rea.//1"7178/ ynich deal with the static metric.

: An analyeis of the problem being a nonstationary problem
in the comoving coordinate system which is given by, .8y
Price/6/ will be discuesed later on.

It is obvious that the metric (29) posseeses a variety of

unexpected properties which are hardlyvreconciled to phyeical .

*As- R.Asanov remarked/as/ in the papere/24/ in the nota-
"tion- 2, = 2m there is no- gravitational constant. Therefore,
there arise difficulties in 1nterpretin§ the aeymptotic metric
for x—0,

In fact, Fisher has ——- = ﬂ.}-—-—— — ; P 0.
: n—>0o

In the papers of JNW ;L___

K—)O

In the first case, when )L—>0 the metric (29) becomes Eucli-
dean.
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intuition. This is, first of all, the destruction of the Schwarz-‘
shild horizon for arbitrarj_ly small scalar field) Than the qu-_

‘estion arises. Is)i't: possible to bring into agreement this pro- ’

perty of the metric (29) with the transition to the limit G0
ghich necessarily leads to the Schwarzschild metric? It is found
that this property is fulfilled. At G-»0, according to (30)
3;: 0; 3‘1'='2xm_. According to (31) p = 1, according to (33):
Z2+dkm =2. - ,Gﬂ
Consequently, for G-—»O the metric is

dS (1 "2’”'700(: ﬁ "2’”'76(1 ‘z{oéé-f-&m‘?d'f/(%)

On the other hand, at any small G, 5‘,0 and g,; tend

. for ¢--( monotonously to zero.

A formal analysis shows that when 2 () enad C——'Othe :
metric behaves in a nonanalytic manner | 2-—’0/2-70) but at the
very limit ( r = 0)," according to (37) assumes ‘by ;jump the value

z,-zxm. - 1 ‘ y O%
' It may be supposed 't:liatvthe s't:atic metric (29) can be ap-'
plied only up. to some Zz{-’ It is quite possible that- there
exist some physical causes which have not been analysed yet and.
which' do not allow, in this metric, to restrict thev internal '
solution to an;y small z. ‘ . ‘
The cause of this may be the following peculiar properties

.of the scalar fJ.eld. Ve consider, as an example, in a cer’bain

Newton approximation, the total mass of the system distributed )
over a spherical doma:.n of a radius Za . Let the bare mass of.

a matter (disregarding its gravitational mass defec't:) be Mo and
the total scalar charge distri‘buted over this domain be G.
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.. By generalizing the well-known Arnowittfbeser—Misner‘reia-J
tionzg74fer the:total mass of the.system we get . . '
, ‘ p Y

: T o x Mo [ /

’ ‘ Mtof - MO ,,'ZC'Z - azCLZ > . (40)

. » 4 S

According to (41) the total mass vanishes for ] e

Gt _— ‘ SRR (42)

a?Mo (_2,

. The system in question cannot be 1ocalized in the domain

R<'C, « When 7<'C, there arises the negative value of the.to-

or . ..~

. tal ﬁass,‘the 5ra#itational attraction is‘repiaced, as if, by
_the gravitational repulsion, and the system conserves its mini-
mal sizes Zo . , _— ‘
The latter may testify in ravour of the fact that a conti-
nuation of the external vacuum metric (29), to any small dis-
tances (similarly to the static metric) appears to be invalid.
; If we analyse the structure of the metric (29) in the light
of the above considerations, we can draw the following conclusi-

on.

ts L>o0o, Tosz, o
o A % 2oz P @)
- gﬂ,-— e —.E;Z E;:ﬁ:j) ——-1v) CZ—co, '
On the other hand, using (33), e¢> can be expressed as

= BRo(Eg) . (44)

Or, substituting the values of 5 and Z 1 o

om_xEt o asy
i+ 2% A
For large, but finite 2, and consequently, 55',6.'2111,

as in the cases of the Schwarzschild and Nordstroq+Reissner

i

metrics.



However, starting from certain- ' or % , € becomes

smaller again and at Z—»O tends monotonously to zero. But, the
most unexpected fact is that 6 ' chenging‘in this manner,
nowhere turns to infinity. In other words, in this case the
event horizon i8 not formed*.
But it is remarkable that with changing ¢ , €>‘ turns

twice to"unity: at 2-—»00(1.8. at 't;v ©o ) and at '

k 2

'% = -zc "

n2me , RERSE (46)

Following the meaning of the relation,(uz), ‘the -relation
(46) nay be - J.nterpreted as follows. if"a ‘matter is
charged by a scalar charge and localized in the domain
2z C:-z—GE‘; then the ‘total mass of the system in the_
range i‘rom 2 0 to 2 2 is zero., "In other‘
words, if the Schwarzschild mass measured at 2 — 00

turns out. to " be m ’ then the whole of it is localized ‘
-only in the range 272-01‘“. ) ' : \ '

NE
3

Ineq. (53) assuming 2‘ _to be equal to - the cri-

“tical value » Zc_: -2—; = i 2; it is poss:.ble %o find
the eritical 'L vt 4=%o -

In a recent paper by R Asanov "The Static Scalar Field -
and the ‘Eyent Horizon", -6564 Dubna, 1972, a model with sca- :
"lar and electrostatic fields for the Schwarschild mass
with the requirement for: the metric to be. Euclidean at the po--
int . 2 = 0 is constructed. - . .

The numerical solution shows that in any case if. 2 5 0,9um,
where: ¢» > 1. and where it is meaningful - to sew the mternal
" snd external solutions,the event horizon is absent.
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4 -
o T Wit
5 /xm-:—)z(; +xm : e A )
cut = .2m. \/)szz’-I-hC— —xm | P 2.
f U<
7)Cacn«ﬁ( 1.

.

Summarizing the above considerations conoerniné the metric
(29) and the specific features of .the scalar field we mayvcon-
clude that the problem of the scalar field in the process of col-
lepae of systems is still (be careful ) open.'It will be solved
when one will succeed in finding the'internal solution of the
.‘collapsing system taking into account the Bcalar field effect
on the metric and the ‘external Bolution seweﬂ w1th the former.
It is essantlal that this should be done outslde the framework
of perturbation theory. This problem is essentially nonstatic.
case of oautral symmetric motion of matter there can occur a mo-
nopole radiation of the ecqlar field whlch changes the mass and
the gravitational radius of the system. ’ ; '

Above we. have considered the acalar field obeylng eq 21).
The other form of the scalar field eq.(28) leads to the metric
_whlch, in a particular case, contains the event horizon/as/
~ This particular case is characterized by a definite relat;on-
ship between the total mass (m) and the total oharge (G),of:the»

system
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Cz = Zem? ‘ - (48)

In this case there arises an external metric which is

quite analogous to the particular case of the Nordstrom-Reissner

metric when the total mass (m) is equal to the total electric
charge ( & )i
goa—'e =< —(1" CL) a= Xm’/ . (49)
But, contrary to the electrostatic case, in this metric -
too, the scalar potential on. the event horizon turns to infini—
. S 2/( = - =y ' ‘v ‘ (50)

Here we have the counter-example when the.black hole pos-

.sesses an external scalar field. Because on the event horizon
the. potential Z/L vanishea the theorem according to which the
field is zero outside the black hole can.not be applied to this
case (the condition ii) is violated). ‘
On the other ha.nd, a possible existence of the external

field is proved by the general analysis of C,hase/ 29/ follow - S

ing which, in this case, the potential at the event horizon
should have infinitely large values. Generally speaking, the
Chase's result is obtained in the ‘simple way.

In the case of electrostatics, ‘when the potential trans-

forms as the fourth vector oomponent, the first integral of the:

equation gives the derivative of the electrostatic potential

with respect tc the ccordinate ("gield™) | ' -

(f = ZL 'e "'?—- -CL 300g44, | (51)~

whereas in the caso when the field u is soala.rmg/
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U —- QL e 2 3 914 LT (52)
. T ..z ya, T Ny
In the Nordstrom—Reissner metric we ‘bave — goa 9,,— e = i
In a similar metric, or in a mcre general one, _but also
with the event horizon, when e —>00 4 'l—+ 2(9., and 500 is

bounded at the event horizon, the field Z{ muet inevitably as-

- sume infinitely large values. This is juet the peculiar feature

" of ZL s ‘the peculiar feature of its ‘scalar nature. o

Generally speakmg, some’ similar- cases which are charactez:lz—
ed by infinite values of certain physical quantitiee on the
“V'Schwarzshild surface may be "diequalified" as unphysical casee.
For example, they ‘may not ‘be. the extreme caees of the phyeical
collapse. In the procees of . collapse there mst not arise a ein-
gularity in the metric on-the event' horizon which is not removab—
“le by a coordinate traneformation: the" lcnown invariante muet not '
have a Bingularity on the horizon. Lo

From this point of view the metric.. (49), as the one whioh
coincides formaly with the Nordstrom—Reissner metric, is quite
correct. Si.ngularity does not ariee for invariente (e.g.@f”/z#rﬁ
on the event horizon. Moreover, in epite of the fact that the
potential u (as Ta>Q) divergee, the energy deneity & T )for

=R vsniehee. This is due to a peculiar/za/ dependenoe of

the tensor 7:, with respect to u snd derivatives. ‘

In addition, the peculiar feature of the ecalar field con-~_
sists in that in the Lagrangian the scalar potential is added to -

20, 21/
S/ T)

This means that, from the point of view of the observer, of a

“the’ mass/
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systemmoving with velocity'l}’ ", the scalar potent1al is of

' the forn/20s21/

If we take into account then accordJ.ng to (49) . ‘
‘/1 % =90 = (“‘) R

and the potential (50) 1s given by the expression

- & .4
w = =-—wi-E

sthen for an observes which crosses the horizon in an falling
down freely coordinat system the potential of the scalar ,V
. charge localized under the horozon remains finite. o
» Keeping apart the pe.rticular case (48), the general solu-
) tion for th.ch v + )\ :,_‘- O ’ conta:Lns, similarly to (25),‘
singularity only when 2_->0 o o
‘ ’l‘hus, it seems adv1sable to consider the process itself of
’collapse of the matter charged by the scalar field sources. ’l‘his
_means that it is necessary to cons:.der a nonstatic problem. to
find a nonstatic mternal solution (in the domain occupied by
' Vmatter) and a solution in vacuum sewed with it, e.g. in a fal- ’
ling down coordinate system. ' L | ;
v ! This tas}: has been performed by Price/ / » but in the frame-
Vwork of pertu.rbation theery Prico / 6/ ' considers :I.t pos-
‘ ‘sible to disregard the scalar field effect on the metric if the

scalar field 1s assumed to be weak. He uses the model of dust—_

flike matter. ’l‘he internal metr:.c of a star is described by the

T eIn the equabion V., oSu= llJ"J the potential U and the -
scalar charge density ; are invariants, ‘while the- total sca-
lar charge- C-— is not invar:.ant and transforms as
L3 volune' E \) _1;7,::.‘ o : } ; PR ERA
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Friedmann like .element. (2). The external eolution is givken.fby‘
the well-known spherical: eymmetric line element in a comoving
' (synchronous) ‘coordinate syete / 1/

dst = 7™ LAl P,

The system begins to: collapse from the distance ?/g =4M .

At this initial moment the scalar field (qb ) lB supposed A

to be static ( qu/dT"O /dTl 0) For convenience the

internal initial form of the potential is chosen WJ.th a defini-
te 7[ ~dependence. The particular 7( -dependent eolution is

qS _C C&s/{[]d-l—&nz,?;() - (55)

The author shows that at the moment when the etar surface

taken as:

‘.crosses the event horizon the potential ‘of ‘the ecalar field and
its derivavlves vemain. finite and non-vaniehing. Thus, it is
proved that the scalar field" perturbs weakly the mctric. The
bauthor/s/ ignores completely the diecueeion of the metric (29)
which seems not to allow the application of perturbetion theory
to Price'e problem. Thus, for the moment 1t is poeslble only to
state the contradgctlon between two approaches As we have seen
B above, in addltlon there is the dlrect countre-example of the
Price's result, the . metric (49) where there is the horizon, but
'at the horizon _the scalar potential turns to infinity. In thie
particular case (48) 6; 3’(”1. This means that the scalar and
grav1tational forces are of the same order. Moreover'the zero
approximatlon (the event horizon exists, the scalar field is
ﬁabsent) has no sanse. =0 gives rise to'J;rK/,- 0. The = -
concrete Price model is doubtful too. The matter is that,»in N
the synchronous coordinate system, sccording to the Bianchi
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identity we have zL} = 0, tne'potential must’not_depend on jﬁ
‘(see eds.‘(25);“(24)fend'(25)).AIn’general, ed.5(22)"for the po-
tential in the'syetem used by Price should not contain deriVati-
ves with respect o the spacial coordinate. It is unknown to
what extent a siven concrete 7{,-dependence is allowed in a gi-

- ~ven model and whether the initiel conditions Qéé =0 and q%t =0
are admissible, bearing in mind“eq.(22) which, in the synchrono-
us system must, strictly speaking,  contain only time‘denivetives.

" Further, Price uses actually the law of conservation
of scalar charge. At the same time, as the analyeis of the sca-
lar charge deneity behavior in the Friedmann metric ehowe/16/
the scalar charge density can change its sign with time and
even vanish (27).. L '

If we performed a test of the above lemma for the scalar
‘charge in the ‘¢losed world .aesuming, by’ analogy with the elec-
troetatic ceee,‘thet the integration'constant is unchanged then
we ‘would obtained for the scalar potential an expression similar’
to the electroetatic one (14), NP Zl.of——jz' which would -be
incompatible’ w1th the clased metric at A =T,

] The,scqlar field.poesessee another surprising pnoperty:h
the particle mase'of'the‘scelar field source must be a function"
of the ecalaiypotentiel. The‘veriation‘of the scalar potential
with time changes the mass of the system and inversely. This
property was eIEO’indicated‘oy'Dickelao/; The corresponding’neéi
lation in seneral relativity is a consequence of the contracted
;Bienchi 1dentity SR L e
TV=O> LG8

from where/16/
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p=du (5)

, where l‘L is the matter density, J the ecalar charge dmsity

) Thus, the study of the scalar field under the conditions, of‘
a collapsing system is a. i‘ar more complicated problem than the
electrodynamic:problem. It eeems-to us that it has not been stu-
died yet completely. - : S

It is very important to explore _the behavior of the maeeive

scalar fields in the process of collapse. These fields have re-"'v
cently been discuesed in- the theory of elementary particles and
are of fundamental importance when attempting to construct a

unified -theory of weak and. electromagnetic interactions/ 30/ ’

2, the Vector lassive Field

Unfortunately an external solution of the type of the Nord-
,strom-Reissner solution: for the massive vector field has not
been obtained as -yet. The example of the scalar field shows how
.important is the ooncrete form of the metric for: the enalyeis of
the state of the external field-of collapeing eyeteme. Ignoring
- the concrete form of the-metric it is hard- to garantee the absen-
ce of any surpriee in this case. - ' : |

‘ Let us consider the example of a maasive vector field in
the form of the .. y‘-meeon field. The sources of the § ~meson -

field are nucleone, assume for simplicity, neutrone. The field

F =9 ¢, D,V --and the potential l/’ - obey. the' equation
vo Wy T

. e e f—jf—.-m W“:_.-émjf‘ (1)
where m.? is the mass of the y meeon, J/‘ is the beryon cur- -

S
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In this case, contrary to the case of the scalar field, the
barwon charge g obeys the conservation law. But, contrary to
electrodynamics, in vector mesodynamics there is no Gauss theo-
rem.

It is considered that this difference results in the fact
that black holes have. no external massive. vector field,

' . It is remarkable that in the case of the massive vector
field there is . a certain peculiar analogue of the Gauss theorem,
more correctly, a peculiar generalization of it. A more detailed
consideration of the . relations available here forces us to. as;
sume that in the case of the magsive vector field the problem of1
- the external metric of the black hole is, carefully speaking,
awaiting its solution. i

Let us consider a mesodynamic analogue‘of the electrodyna-
nmic Gauss theorem, in the Euclidesn metric, for eimplicity

Let a baryon charge .p be localized in a certain domain in

such a way that R
J’#O T < 7—0)

,f @) ) 7 Co.

For the flux of the mesodynamic vector &, through the
closed surface surrounding the charge, using. eq. (570, we. have
_the following expresSLOn '

JE.dS = “"f?"o/v.—fyd'/-‘ . <se>‘-
After a sphere of radius 22, has- been circumscribed
around the charge, we get a vector flux through this sphere
in the form , - ‘
' fE,, dS Z/erj, jlf"(z)zzah —Z/ﬂg (59)
I Lfo-,—__ oz ,then :
Fo efe,.o/s‘ yag[m?, J&edle- /] (60)
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~ In electrodynamics the flux of the vector f; "hAs the

‘ same value on the sphere of any radius ‘which surrounds this . =
charge. But in the case of mesodynamics the total flux of E;
decreases with increasing radius. For the sphere radius tending

‘to infinity, the r.h.s. of eq.(60) vanishes. the flux of 5? is -
completely cancelled. - ' ';

If it is appropriate to employ in mesodynamics the term : -

"straight 1ines" then in the case of vector massive field the .
straight lines do not end, similerly to the case of electrodyna- w,'

'mics, by the charges of opposite sign. Figuratively speaklng,' i
they are cancelled by the specific ufield charge" which is rea-
lized by the field potential and always distributed continuously
over the whole space. We imply the' integral in the r.h.s. of
€q. (60).‘ .

_ The sphere of finite radius ? is orossed by the nonzero
IVeotor flux. This is the "hair" of the-baryon flux. The asser-—
tion that outside ‘the black hole the flux vanishes means that,
inside the black hole .1t becomes zero when approaching the event
horizon, This means that, in some msnner, "the field charge" in-
tegrated over the internal space of the black hole increases so

' that it becomes able of compensating the potential vanishing
which has occured outside the black hole. Without appropriate
increase of the'potentisl in the internal space it is impossib-
le to ilet the flux vanishlthrcught the Schwarzschild sphere,

COnsidering the situation with the discussed‘flux in the
closed world it is easy to verify'thst the potentisl (20) pro-‘
vides vanishing of the flux on the world boundary for A=T.

‘Phis possibility is due'to the fsct?thst inside the closed
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world in the erpreesion for the potential one adds a term with
1ncreasj.ng exponent. Therefore the charge density increases so
that to compensate the baryon charge. In this sense, ‘in the
closed ‘world the total "be.ryon charge" (the r.h.s. of eq.(58))is

. zero. Because of the change in the potential the "hair" of the

‘P -meson field ere setlled inside the closed world.

The problem 15 as to’ at the expenee of what can increase
the integral of the vector mass:.ve field inside the black hole.
It is kmown that the boundary conditions on the Eucl:.dean infi-
nity for a’ collapsins sysi:em do not cha.nse. In other words, it
is impossible to make the. exteme.l field of the black hole equal
to zero, .11: should be, figuratlvely speaking, "driven inside"
the black hole, so that ta increase the integral N flf"g/l/
:Lns;.de the blagk hole to the value which compensates the total
bar'yon charge g . In any case, it is still uncloar how in the
process of collapse the' generalized Gauss theorem is fulfilled.

One may not assert that black holes have no external baryon:

field.

3. The Neutrino Field ol : S

'The‘sithatioﬁ'with the neutrino forces is much more comp-‘ :

licated. In fact, if there proceeds the interaction (C\’)( € V)

then a system cons:.sting 0.8» of hydrogen should induce in
the eurrou.ndmg ﬁpace a neutrino-antineutrino field with po-

tential B /L . Ve imply here the vector mode of :Lnteraction

for which there 1e tho le.w of conservat:.on of ‘the sources of

this field, the law of coneervation of leptonic charge. The
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forces are here the repulsive forces. The quantity

L= [nte)-ne]+[po0)-n(]

conserves.. Denoting’the corresponding spinore as fellows

and Y/

the conservation law for leptonic charge ie then

(bi(l#l.z.lr’-s) =0, |

'-ﬁhere ¥, o /Y, ©
‘ ”( —_— € — ol
‘ ' B /Vﬁ) ) ¥ (0 ‘f;,).7

X are the corresponding Dirac matrices.
o

The situation is complicated. by the presence of the paper

" of Hartle/7/. one often refers to. He asserte that outside the

black hole the neutrino force potentialivanishes.lln the fra-
mework of the approximations of this paper, if seems to be cor- ‘
rect. If in the collapse the whole mattervof the‘bieck hole turns -
into neutrons then the. problems we are interested in cancel since
in this case the leptonic charge is irradiated.

But, in principle, the situation is possible when the mat-
ter density ie very smaii and the mass of the object is large
enough. There arises the question whether the metric may. be.
closed (e.g. the metric of our Universe), if the total leptonic
charge is nonzero’a/. Unforﬁunately, the neutrine field iéﬁnet
the soiutiop of some equation of the Maxwellktype and here the

. law of conservation‘of leptons is not connected with any ana-

logue of the Gauss theorem. One may however attempt to construct

. formally a certain generalized Maxwsll field for the case of

electrostatic ‘forces with the dependence // end higher. Such
a 5eneralization has been_ ‘made by the author- and Beresin/31/

With this consistent formalism, the‘Gauss theorem is automati-



cally formulated for a certain tensor. The formalism includes -
the static potentials i c . .f
8 l].“’ ——??II_ L . ) “(61).
Similarly to the electrostatic field, the generalized vector
-~field does notiyepishroutside the bleck bole. The external
' metric of this oollabser is e.geeeralization of ‘the ﬁordstr3ms
Reissner‘mefrid. This examﬁle.ie instruetive;by‘that‘the poten-
vtiallwifh such a high dependence,on,ipdoee.nof exclude the ap~ -
propriate\Geﬁee‘theorem'. It might be assumed thet the abeenee"
of oeutrino hair,outside,black.holee is in some way assoeidted~
~',with the fast decrenee of the potential with increasing distan~
ce, However, the example of the. appropriately generalized Mat-
well field ahowu that ‘here the situation is more complicated.
Although,the»generalized Maxwell}fleld, similarly to‘ﬁhe,"
) neutrino-ahtineutrino field, is the vector field,,although in

: *The classic equation of motion for the given charge ie »
written as in: ref./7/

m, QW= &’ ("', 2, B"): Fv=Ty By-Dyba,

where.By is the vector-potential, Zl/L is -the velocity vector. L

‘In the same  way one chooees the interactlon lagrangian
| o = Ay gk - -
X' = - <% (,} B , "= “the current. .

But the lagransian of--the-free field interaction is now written

- in the form ,

: \4 ‘ S

. ) —ol(F Fﬂ ) is constant._“
Then the generalized Maxwell equation reads N K

'Dx (E"VFM)K_ Fw] ‘-/JI/C'z’ c7

The Gaues theorem 13 fulfilled for the tensor .
g v K-J r
| D= (ﬂvﬁ”) FE |
“For K.=1 the formalism leads to the Maxwell theory. ‘

- WL : = Lo e I
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the both cases the static potentials have. the same power depen-
dence, the analogy between: the two fields is," aa yet, exhausted
only by these characterigtics, The theorems proved for the ge-
‘nerelized_Maxwell field cannot be Eimply'tfansferred to the "
Hartle case. The attehpt to come to contradiétioo"(or agreement)
with the closed metric 1n the Hartle case, by analogy with the
electrostatic field, by means of a direct caloulation of the -
'neutrlno-antineuftrino quantities at x—r\'ff seems to lead really
to elngularitiea, as ‘in the electrostatic caae . For a point
source of the neutrino forces localized ‘at the point j(_ 0 of

\the‘closed world there arises a mirror‘;mage of the source at =ﬁ; '
BA)=-B(1-1).

In other words it would seem that the corresoond;ng'neut:i-
no hair should not disappear. This result needs a more thoroughv
checking. However if the lepton charge conservation law is not .
violated in strong graV1tatlonal fielde it is apparently hard '
to conceive a "mechaniam" by means of which it would be possible
" to dress the neutrino hair in the closed world or & la Schwarz-
schild sphere. The neutrino vecto: field in its proberties iaA -
in a certain sense, close to‘the Maxwell one.fcont:ary to the
scalar field, this field is characterized by the inevitable exis-
tence of particles qu antiparticles as‘the eourcea of fhis
_field, similarly to the case of the Maxwell field., Uniike the
mesodynamic field, any boundary condition cannot let the neutri-
no field (as the electrostatic one) vaniah on the surface surro-
unding the source of this field, This’ vanlshlng of “the neutrino
.field inside the black hole, when approaching the horizon from
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‘inoide\fhe black'hole,'muét‘be'in some way; realized if-outside

" the black hole the neutrino field is absent. In other words, in .

the-case:of the neutrino field, ‘as-in the previous cases -of the

' “scalar’and vector meson fields, the final conclusion about the -

" behaviour of -these fields outside the black hole can be drawn

after finding the sewed internal and external solutions.’

: As a'result of thisidiscuSBion’of thé'nonstatic pnoblems,

'lt is’ possible ‘to. concelve ‘all’the™ 51tuatlon with the- presencef~

:of horlzons,; bare 31ngu1ar1t1es (if any) and - the behaviour -of

the fields outside ‘and (obligatorlly) lnSlde black holes.
Leaving -the questlon as to:whether or ‘not” black holes have

the scalar-and ‘baryon flelds open:we are able of asserting more

‘definitely: that there may ex1sts a world ‘with closed metric ‘with

neutfal scalar fleld sources, ‘There may exist a closed: world
w1th unequal number of nucleons and antinucleons.

‘ It should be stressed that, in principle, the closed world
may exist in the form of very" small sizes (small R, = Rpay)an yand:
contain a- Bubstance of very small mass Mo._But the needed homo— .

genous matter densxty at:the moment of maXLmal expanaion of .
the system mnst obey the belatiog : "‘
0 N JHE ¢ @
~ 80, for.the: mass of the order of the solar mass: (MQ"103293’

-5 the max1ma1 'sizes- of the . closed world (6) are a ~jkmand the -

denSLty is ”/{4v10 gr/cm5 The range of appllcablllty of the

. clas 1ca1 theory (nonquantum) for the formation of syatems with

closed metrlc lies in the reglon of the mass Mon'10 -2 gr and of

g the closed world 31ze;#z—n/a n/10 55 cm. If in: our world we
. . "

* could bulld such systems artlficlally out of the matter surround-
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_ ing -us or, under some-conditions, they could emerge at will
then some peculiar situations would occur. . : '
These . closed . systems would then be chafacteriied oufsido
by the cbmplete absenc; of hair, A1l the properties of matter
would- be buried in these systems without extqmal rémaindor :
_(ha;r) and/ irrevoéably. As we have seen above, such a closed
system may, in principle, consist of neutrons alone (i.e. witho-
ut the same number of antineutrons), Therefore its formation |
would. mean that ‘woi‘ lose some number of neutrons.: This would be s
direct violation of the law of conservation: ofkb the barion num-
ber. In this situation it would unappropriate to use the “term
‘branacended" introduced by Uheellor. This s:.tuation is adequately‘
described by the term "violated"..Following the book of Zel'do-
vich and Novikov, it is impossible to apply to this example the
. comparison with a man "who turns the‘cbmer".f Now even £his cor- -
ner has not-  remsined*, Howgver, as is lmown,” the formation of
~aystems‘ with closed metric out of matter surroundin'skus is im-
‘possible, 7 . o . , . V
‘ The black hole, the semi-closed system and the closed world
can be deacribed by the same line ‘element (2).:Although the se-
mi-closed and the closed worlds-are lower energy states of sys-
tems consisting, in. principle, of the . same number of, say, neu-~
trons -the transitions-of black holes to the state of a semi~clo-
sed system are nevertheless forbidden, The matter is that the -
event horigon ‘(6.g. the Schwarz'a‘ch’i_ld' sphere) is as if the sur—

-

*If here we can draw some analogy with the man v}o rather
imply the lieutenant Kizhe who, as is known, "has no body".
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face of a semi-conducting (“one way") membrane - it can only ab-
sorb matter and iqcreases in this process bnly its sizes. The
system which is fallen under this surface.cannot decrease its
~ total mass, cannot irradiate energy. The transition of the black
hole to.the state of the semiclosed»system is impossible .,

The transition of a Bemi-closed system to the closed one is im-
possible for the same reasona. The fact that these transitlons
‘are~forbidden appears to be a peculiar manifestation of the

law of conservatlon of baryon charge.
, From the methodlcal point of view, in order to develop the
,above-mentloned ideas it is useful to dlscuss the 1nstructive
example of the collapse of very small masses the possibllity of
which wag illustrated by Zal'dovich/52/ He shows that a given
arbitrary small N ‘number of baryons can be summed in such a
manner that their tbtal mass measured by an external. observer ..
will be arbitrary small. In fact, the total mass M for a mat-
ter At rest. of density,hft, ié

M= 4Jrf/<(t) 2*de NG

and the total number of partlcles N is given by ‘ -
: N = )urjn(z)e 20/2 (e
yhere N(7) is the par’tlcle density, € ..'v-— (S I£ the dlstribu-

‘ tion is j«. g; )?<R /¢( 0 ra 7@ then in the case

of an ultra-relat1v1stic gas
1 4,
24 an%:

and the expression for the total mass is - 4/
. Yo
M = COnS‘(' /\/ 3& (1 8']”1@ ,f)\ ccnxt_(ss)

< *Some . other situation occurs in the case of anticollapss.
when a radiation originatlng from the system is possible.
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"According to eq.§65), for any N the mass M tends to zero,.
provided a,-——;"— Zel'dovich notice ‘that, in principle, it.
would be possible to design such a machine which would perform.
mag;nificent contractlons, would lead the aystem to the desired
configuration with extremely large gravitational mass defect at
" 'which the energy ‘released would be close to thetotal proper energy -
of the system‘, In nuclear reactions the energy released is about
one percent of the mass of the systeiu'. However, we are interested
" not in the Zel'dovich fa;atastic machine, but the instructive oc=
casion for discussing the extreme ca'g‘evof-ivzhe systen wiﬁh zero
total mass. I..e't;',\ilé have fbxjmed"a systen c.onAaisti‘ng" of N neu-
. trons, or Zel'dovich has aucceededzir_; constructing & machine ,
which by realizing the case QA = §%L"bring the system to a state
with zero total mass., If such a case waé realized, the system
would completely disappear from our experiénce. The construction
of this machine would lead Yo a deci‘eaée, i.e, acfually annihila-
tion of baryons in the Universe. In this sense the result is
quite adequate to the formation of closed systems With'which wei
have dealt above. ' , ' .
Now using this example it is apjﬁ‘opriate to continue the
discussion of the generalized Gauss theorem for the nassive vec~
tor field. Neutrons are sources,: €.g. y— me"son forces which are
completely heglected in the Zel'dovich treatment. If we attenipt .
to iﬁduce ‘a.collapse of, say, one grain of neutrons then wﬁen the

the

neutrons are localized in a region much smaller than —
) f

value of the second term in eq.(60) becomes infinitesimal. When

the region of localization is still by many orders of masnrt;ude

larger than the gravitationa.l radius of the system (Zg.‘,fvio cm)



when the grav1tational forces nay still be neglected, the gene;
ralized Gauss theorem is actually ’ - o U
- JE. o(S-—éarﬁ Lo (8
In other world, there arises a purely electrodynamic analogue of
the Gauss theorem with its characteristic properties, in parti-
cular, concerning baryon hair. If the collapse of such a system

.was realized, then in vlrtue of applicability of eq.(66) the cor-

' responding black hole would have baryon hair and, consequently ’

nonzero nass. Here vie have taken the opportunity to Lllustrate
once more ‘the 1mportance of the analogue of the Gauss theorem
in mesodynamics. Although the appropriate calculations of the‘:

machine ‘in the framework of the 1dealization suggested by the

L author are quite correct ‘it should however be noted that this

' digtances larger thanoL1i

machine cannot in princlple, be applied to the real neutron mat-
ter. In fact, if the system is contracted to slzos somewhat smal—

ler than /4?f ~, the potantial of the . repulsion forces of

,this H~ neutron system is estimated to be

\/ N[ﬁc)m o

where: rhqv 1sLthe neutron mass.

Since ;51— >4 then the energy of the mass localized at
c
&<d. “furns out: to be larger than -

the total rest mass of neutrons forming this systom‘ Further
localization of the system of N neutrons (i.e. the "packlng"
of them 1n a: stlll more narrow region) 1ncreases only the exteru

nal energy of the meson field. The total nass of the system lo- :

calized in the field when the machine operates is always larger

. ) KN "14
. * At this stage of construction (dimensions 10 cm)

*-f the srav1tatlonal mass’ defect is still nesligible.

e
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than JVhb and never vanishes. From this point of view, the :. C
machine destroying baryons, about which writes Zel'dovich is

|
|
|
impossible. B e ‘. g ,
. The Zel'dovich machine is impossible just because of the N i
"haiﬂ'the source of which is the conserved baryon charge‘. When |
discussing the operation of the machine we have disregarded the i
A’fact that the huge meson fields which are due to contraction ‘
will lead to the production of neutron-antinentron pairs.The e
tinentranswill be attracted by this system decreasing its ba-'
ryon charge while the neutrons will be repulsed from the system.
Vhen the system will be completely neutralized in the baryon
charge due to further contraction, the system may, in principle,
become closed with zero total mass. In’ this case the system will
have no baryon hair (meson field), but this fact is in. agreement
with the law of conservation of baryon number. Unfortunately k
the machine does not provide the desired energy yield from mat-
ter: due to the operation of ‘the. machine the same number of
neutrons will be in the surrounding space. Roughly speaking,
all the neutrons will be "squeezed out" from the system. Here -
it should be noticed that due to the vector meson repulsive
forces: the star collapse appears to be unable of -developing in-
finitely, _ o . :
The role of the short-range nuclear forces in-the develop-
ment of the gravitational collapse was repeatedly discussed.:
But usually one considered the ‘situation when the sizes of the

collapsing.system (R): are, much larger than the range ofﬂaction

- *VWe imply here the systems in the initial state. which
are in no way microscopic, however far from the critical mas~ -
ses of celestial bodies. The gravitational radius*%; is assign-
ed to the mass ;;

MO ﬂm c 2”’ iO 94 10 ton |
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of nuclear forces ( - _ﬁ%‘ Jo In this case (Q>>y:{c)
n

‘it is possible to- introduce the notion of pressure - since the’

nuclear energy enters additively when summmg small parts of

' "_the system. The general thermodynamic consideration shows that -

at this stage of collapse (R>> r:'
Y\

) the nuclear forces do
‘not cease ‘the srav:.tational contraction, For R,( —‘—" the

' phenomenon goes nut the framework of the thermodynamical consi-
vderation .and further stage of the collapse should be considered

. dynamically as in the case of the presence of electrostatic
forces, As. Nov:.kov ‘has remarked/ 33/ ' electrostatic forces, being
‘long-renge ones, are capable of stoppmg the gravitational col-
lapse. When the gysten is localized. in the region R'<-h—1—:€ the

“fields become actually long-range ones, and there arises the comp-
lete analogy with- the electrostatic forces in the treatment of

" the possibility of. stopping the collapse. Naturally the matter

’ density becomes here huge. In fact, the critical mass at which

the collapee of & star can occur is MVM ~1073 gr

In the sphere oi‘ radius j—- “the density of such a mass

-3 m c
o 207 o7
It is :I.nteresting that this demsity, at which the collapse

is expected to stop, is about 20 orders of magnitude smaller

. ; than the so-called critical (quantum) density crit ‘Iog%r/cm?

which in certain hypotheses is aseociated with the conndera- :

tions* a'bout a possible stopping of the star collepse“ -

‘eThege considerations consist in that, at such densities,

-+ nonquantum- mechanical approaches are already invalid, and there
_.remains, in principle, .a hope that in this case other:laws sham o
1mpede further development of the collapse.

’ ' The density /»(~ 'lO93 /cm3 is reached for masses’ larg

than Mg by a factor of ‘40%°, i.e. for M ~ 10%3gram, May be

mhﬁnce this: value coincides appronmately w1th the mass of our
verse.

-



Apparently the problem of infinite devéiopﬁent of thé.coi-
lapsé up to thé point limit does not sihply,exist.'However in a
comoving coordinate system“theré arises the‘problem‘of the stér
* expansion after the collpse haé‘Btbpp@d. The classic considera-
-tion shows that this expénsion may not be an expansion into the
~ same ‘space’ 27/ *, . ‘ : ,

We have discuésed'the imp?ssibilitj ofyformation'ofvclosed‘
and semi-~-closed systems in the framework of classicél physics It
is, however, qulte p0551ble that in quantum theory there can oc-
b_cur 51tuat10ns when certaln analogues of these g8ystems may be re-
alized. We imply the occurence of, e.g. rare quantum fluctuatlons
in few-nucleon sjstems. Here we may refer tb our ignorance of
the laws in this domain of physical’ph%homena. But the forma-
‘tion of closed systéms‘due~to fluctuations would be a_viélatiop
of the law of baryon conservation. The quntanéous formation of
microscopic semi-closed systems or microscopic black holes does
not contradict any laws of conservation. However when these sys-
tems have small siZes‘only extremely émall (unit) éléctrical and
baryon charges, i.e. systemé of the type of fridmonsla/, are ‘
more favorable energetically. Theée’smﬁll systéms with large
gh&rgés‘are unstable due to pai¥ production end vacuum?polarizaf
~tion in §trong fields near point sources.

Howeﬁer, in modern theory of eleméntaiy particles there are
situations in ﬁhich the discussion of possiblé formation of mic-

roscopic semi-closed systems mayfturn‘out to be important. Ve

*With such contractions it is necessary to take into acco-"
unt the space-time picture of pair production, mixing of char-
~ged particles and the. motion of pair components toward periphery.
- It is quite possible that this fact can change noticeably the -

whole situation.



,J.mply here the J.ntermediate states in modern perturbation theory
as applied to elementary perticles. The states of seml-closed )
systems or the states of black holes would seem to belong to
the coxnplete set of the states which can spontaneously oocur in
" “these cases. Moreover, energetically these states are the lowest
© ones whlch, as we ahall see ‘below, is important. Thus, if in the
intermediate state the particle emits a quantum of mass then,

according to the Heisenberg relation, this mass is 1ocalized in

, £ £ Sl
\,Zwmc ; ‘éllen, mr\/—é? . . (67)

The coxnplete set of intermediate states includes states with

the doma.in‘

arbitrary large energies and, consequently, erbitratily large '
masses. In modern theory of elementary particles one 1egalized
) historically the violation of the logic namely to introduce in-
to consideration states with arbitrary large nasses and, at the :
same time, to disregerd completely their gravitational effects.
When in-the : mtermediate state we have “the, mass of the order ‘ ‘
[n,.v fic. ’ then ‘the gra.vitational Igdius of this mass is~ ,
. — dxm : 2«/1? /— (68)
g = 2 - . »

On the other hand, for this mass, the dimension of the do-

main where the mass is localized (accordmg to (67)) ’
e Mz”‘ coincides with the gravitational radius
of the ob;ject in this state. With further increase of the. ener-
gy of the mtermed:.ate state “the gravitational radius should al- - ‘

80 increase. But, on the other hand, the domain_ of locelization

*When a quantum of energy E £V  is emitted, follow-
ing the Fermi language. /35/, the particle. "horrows' the energy
E=mc%. - According to the uncertainty relation, the time
of "borrowing" cannot be longer than #_/MmcZ. During this
" time the emitted quantum cannot go away from the particle at
a distance 1arger than ~ K/mec * D
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sheuld thez decreaue accordlng to the Helsenberg relatlon, and

for ML> t— iy

d;us. If such-a 91tuatlon occured in the range of appllcation of

should become smaller than the. grav1tat10nal ra-

claSSLcal physrcs we would sqy that we were deallng thh a sys-
tem the mass of whlch is under the ochwarzschlld grav1tational
) sphere. In other worde, we would 1mp1y a system in a collap31ng
state. Thrs mlght be elther the state of the black hole or ra-
ther a state of the system with semi-closed metrlc if the bare
mass of the intermediate state strongly decreases due to. ‘gravi-’
tational defect. At present we do not know whether our under—:
standlng ..of the metrlc remains valid in this state. But we
" know that with increasing energy of the intermediate etéte, ac=~
cording to the Heisenherg relation, the domain of mass iocaliza—
tlon decreases. Hence, due to large mass concentratlon, the gra-
v1tatlona1 mass defect should increase Whlch then decrease the
total mass of the intermediate state. It appeare that the gravi-
tatieﬁal radius of the system may not'exceed the dimensions al~.
lowed‘by the Heisenherg relation, if'wevteke into account the
gravitational mass defect. In this wej the'cohtradiction under
discussion may be resolved. :

If we can admit the.estimates (40) for the total mass of
the intermediate state of this klnd, then it would be obtalned

Mat

h, ,
from the relation = - —

vhere VYLP is the partlcle mass, /évc‘ 1s the mass of an emit—_

ted quantum in the lntermedlate state, or

M{:ot °C o+ 'Log: "T.kt +2?,sze‘
At 'z,o->-0 K . )"—{ ’
Mf:o{:"‘[/ifé .
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" This value is the ﬁaximum bossible one for the total mass (ener-
-gy) of the intermediate states,

It is obvious that the édequate quantum description of col-
lapsing systems can introduce esseﬁtial corrections apparently
to their spacédihe description. It is doubtful whefher the
energy pictﬁ:é of these states will change appreciably, or
more ;xactly, whether this affect noticeably the gravitational
defect of masses localized in a small domain,

If these consideratioﬁs are really found to be essential for
'elementgry<particle theory this will precisely be that rare case
’when‘thé discussion of the properties of collapsing cosmic bo-
dies initiates the discussion of the fundamental problems'of '

. elementary particle theory. ‘ o
In conclusion I takes it may pleasant duty to thank my
colleagues R.Aéaﬁov, V.Beresin and V.Froipv for numerous discus-
sions as a result 6f,ahich séme problems have became more clear

and,on the conﬁrary, others have lost their clearness.
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