СООБШЕНИЯ
ОБЪЕДИНЕННОГО
ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ Дубна

ААБОРАТОРИЯ ТЕОРЕТИИЕСКОЙ ОИНИКИ

A DISPERSION CALCULATION OF THE REAL PART OF THE FORWARD $\pi{ }^{\mathbf{4}} \mathrm{He}$ ELASTIC SCATTERING AMPLITUDE

1972

E2 - 676.5

S.Dubnicka

A DISPERSION CALCULATION OF THE REAL PART OF TIIE FORWARI) $\boldsymbol{\pi}{ }^{\mathbf{4}} \mathrm{He}$ ELASTIC SCATTERING AMPLITUDE

I. Introduction

Abstract

In recent paper of I.V.Falomkin et al. $11 /$ the authors were discussing the inconsistency of the dispersion relation prediction $/ 2 /$ for the real part of the forward πH^{\prime} scattering amplitude with new experimental data. In this work we analyse in detail the calculation of the real part of the forward amplitude from FDR and show that it is possible to obtain the qualitative agreement with the new experimental data when we shift the resonance peak in the total cross section to the lower energien and to higher values.

The precise form of the FDR is given in section 2. We shall not derive that relation from an analytical assumption (no formal proof of HDR exists so far for our case) because it is discussed in review paper of Ericson and Trocherd2/. Subtraction constant , Ref(i) and the contribution from the unphysical region are evaluated in section 3 . In sections 4 and 5 the contributions from the asymptotical and physical regions, respectively, are calculated. Finally, conclusions are given in section 6.

2. Dispergion Relation

Owing to the fact that the spin and isospin of H_{e}^{4} is zero, there is only one amplitude completely deacribing the

T H^{h} scattering. The once-subtracted FDR for the real part of this amplitude in the laboratory syatem takes the form $/ 2 /$ (units $\hbar=c=\mu=1$ are used; μ is the pion mass).

$$
\operatorname{Re} f(\omega)=\operatorname{Re} f(1)+\frac{2\left(\omega^{2}-1\right)}{\pi} \rho\left\{\int_{\omega_{T \omega}}^{1}+\int_{1}^{17.14}+\int_{17.14}^{\infty}\right\} \frac{\omega^{\prime} J_{m} f\left(\omega^{\prime}\right)}{\left(\omega^{\prime}-1\right)\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime}(1)
$$

where (1) is the incident pion laboratory total energy and $\omega_{r N} \approx 0.143[\mu]$ is the threshold of the inelastic process $\boldsymbol{\pi} \mathrm{He}^{4} \longrightarrow T N$ (T means threenucleon) starting below the elastic threshold $\omega=1[\mu]$. There are present no poles, since the $J H^{4}$ system has isospin unity and no bound rourmucleon state of this isospin exists. The integrals in (1), which we denote by J_{1}, J_{2}, J_{3}, are contributions to $\operatorname{Re} f(\omega)$ from the unphysical, physical and asymptotical regions reapectively. Such a decomposition of the integrals is appropriate since the main source of our information about the behaviour of Ref(c) is in the total cross section (through optical theorem) and this is known only for $1<\omega \leq 17.14[\mu]$ There is no experimental information about $\sigma_{\text {ror }}$ for $\omega>17.14[\mu]$ and no information on the $I_{m} f(\omega)$ can be obtained from direct measurements in unphysical region. Therefore $I_{m} f(\omega)$ mist be calculated from some models in these energy intervals.

To find the $\operatorname{Re} f(\omega)$ means to evaluate the subtraction constant $\operatorname{Ref}(1)$ and the contributions from the integrals J_{1}, J_{2} and I_{3}.

3. The Unphysical Region Contribution

Before the evaluation of the unphysical region contribu tion to the Re $f(\omega)$ we say a few words about the subtraction constant. This is taken as a value of Ref(ω) at the elastic threahold and is equal to the real part of the compla S -wave scattering length. To show it we are in need of the forward scattering amplitude (FSA) expanded in terms of partial wave applitudes.

$$
\begin{equation*}
f(\omega)=\sum_{\ell=0}^{\infty}(2 \ell+1) f_{\ell}(\omega) ;\left(\text { because } P_{l}(v: 0)=1\right) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{l}(\omega)=\frac{1}{k} e^{i \delta_{l}} \sin \delta_{l} \tag{3}
\end{equation*}
$$

\& is c.m. momentun and \mathcal{S}_{2} are complex πH^{h} phase shifts Defining the πH_{e}^{h} complex scattering lengths by

$$
\begin{equation*}
k^{2 l+1} \operatorname{cotg} \delta_{l}=\frac{1}{A_{l}}+B_{l} k^{2} \approx \frac{1}{A_{l}} ; A_{l}=a_{l}+i b_{l} \tag{4}
\end{equation*}
$$

and taking into account the threshold behaviour of the partia wave auplitudes

$$
\begin{equation*}
f_{l}(w) \approx A_{l} k^{2 l} \tag{5}
\end{equation*}
$$

the FSA in (2) may be witten in the following form

$$
\begin{equation*}
f(\omega)=A_{0}+3 A_{1} k^{2}+5 A_{2} k^{4}+\cdots \tag{6}
\end{equation*}
$$

The lifit $k \rightarrow 0$ in relation (6) gives $f(1)=A_{c}$ and from here

$$
\begin{equation*}
R_{e} f(1)=a_{0} \tag{7}
\end{equation*}
$$

Numerical values of c_{0} and b_{0}, a_{1}, b_{1} (these will be useful for us later) are calculated from the phase-shifts of Nordberg and Kinsey $3 /$

$$
\begin{align*}
& a_{0}=-0.133 \pm 0.003\left[\mu^{-1}\right] \\
& b_{0}=+0.081 \pm 0.006\left[\mu^{-1}\right] \\
& a_{4}=+0.265 \pm 0.003 L \mu^{-3} j \tag{8}\\
& b_{1}=+0.022 \pm 0.022\left[\mu^{-3}\right]
\end{align*}
$$

Now we evaluate the unphysical region contribution to the Ref(w) represented by the integxal

$$
\begin{equation*}
J_{1}=\frac{2\left(\omega^{2}-1\right)}{9 i} \int_{\omega_{\pi n}}^{1} \frac{\omega^{\prime} J_{m} f\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-1\right)\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime} \tag{9}
\end{equation*}
$$

where Im f(c:') is found by means of the analytical continuation of the zero-effective-range arplitude

$$
\begin{equation*}
f(\omega)=\sum_{l=0}^{\infty}(2 l+1) \frac{A_{i} k^{2 l}}{1-i A_{i} k^{2 l+1}} \tag{10}
\end{equation*}
$$

obtained from (2) writing (3) in the form

$$
\begin{equation*}
f_{f}(w)=\frac{1}{i \operatorname{cotg} \delta_{l}-i k} \tag{11}
\end{equation*}
$$

and substituting in the last formala k cotg δ_{g} fros the relation (4).

Further we keep only first two terms in the sum of the relation (10). The reason of this is following. There are dominating only. S - and P-waves in the physical region at low energies and we hope higher partial waves remain negligible
also after the analytical continuation of the formula (10) into the unphysical region. Then (10) takes the form

$$
\begin{equation*}
f(\omega) \approx \frac{A_{c}}{1-2 A_{c} k}+3 \frac{A_{1} k^{2}}{1-i A_{1} k^{3}} \tag{12}
\end{equation*}
$$

where k as a function of the pion Laboratory total energy ω is

$$
\begin{equation*}
k=K_{1}\left(\frac{\omega^{2}-1}{\omega+K_{2}}\right)^{1 / 2} \tag{13}
\end{equation*}
$$

and constants $K_{1}: K_{2}$ written in terms of the mass of he lium mis have the form

$$
\begin{equation*}
K_{1}=\left(\frac{m_{2}}{2}\right)^{1 / 2}, \quad K_{2}=\frac{m_{\alpha}^{2}+1}{2 m_{\alpha}} \tag{14}
\end{equation*}
$$

Having in mind that k in (12) for $\omega<1$ is complex

$$
\begin{equation*}
k=i K_{1}\left(\frac{1-\omega^{2}}{K_{2}+\omega}\right)^{1 / 2} \tag{15}
\end{equation*}
$$

for the imaginary part of the FSA in unphysical region we obtain

$$
\begin{align*}
I_{m} f(\omega) & \approx \frac{b_{c}}{1+2 a_{0} K_{1}\left(\frac{1-\omega^{2}}{K_{2}+\omega}\right)^{1 / 2}+\left(a_{2}^{2}+b_{0}^{2}\right) K_{1}^{2}\left(\frac{1-\omega^{2}}{K_{2}+\omega}\right)}- \tag{16}\\
& -\frac{3 b_{1} K_{1}^{2}\left(\frac{1-\omega^{2}}{K_{2}+\omega}\right)}{1-2 a_{1} K_{4}^{3}\left(\frac{1-\omega^{2}}{K_{2}+\omega}\right)^{3 / 2}+\left(a_{4}^{2}+b_{1}^{2}\right) K_{1}^{6}\left(\frac{1-\omega^{2}}{K_{2}+c u}\right)^{3}}
\end{align*}
$$

This explicit form of the Imf(w) (with the values of the scattering lengths (8)) was used in the dispersion integral (9) to calculate the unphysical region contribution to the Ref(ω which is graphically shown in fig. 1.

4. The Contribution from Asymptotical Region

We mentioned in section 2. that we have no information about $\sigma_{\text {ror }}$ for $\omega>17.14[\mu]$. To obtain the explicit foril of $\sigma_{T C T}$ in the asymptotical region we proceed from two assumptions:

1. for $\omega \rightarrow \infty \quad \sigma_{\pi / R e} \geq \sigma_{\pi N}$
2. for $\omega>17.14[\mu] \quad \sigma_{\pi H e}(\omega) \leq \sigma_{\pi H e}(17.14) \equiv 5.24\left[\mu^{-2}\right]$

Having in mind asymptotical behaviours of Fror of other processes (as e.g. $\pi N, K N$ and $N N$) we write $\sigma_{\pi}+\frac{1}{2}$ in the form

$$
\begin{equation*}
{\sigma_{T O T}}=C_{1}+\frac{C_{2}}{\omega} \tag{18}
\end{equation*}
$$

where constants $C_{1}\left[\mu^{-2}\right]$ and $C_{1}\left[\mu^{-1}\right]$ are determined from assumptione (17). Then we have two extrene forms for $G_{\text {ror }}$ in the asymptotical region

$$
\begin{align*}
& \sigma_{\max } \doteq 5.24\left[\mu^{-2}\right] \\
& \sigma_{\operatorname{MiN}}=1.2+\frac{69.25}{\omega}\left[\mu^{-2}\right] \tag{19}
\end{align*}
$$

which when we put through optical theorem

$$
\begin{equation*}
\operatorname{Im} f(\omega)=\frac{k}{4 \pi} \sigma_{T O T}(\omega) \tag{20}
\end{equation*}
$$

Into the integral

$$
\begin{equation*}
J_{3}=\frac{2\left(\omega^{2}-1\right)}{\pi} \int_{17.14}^{\infty} \frac{\omega^{\prime} I_{m} f\left(\omega^{\prime}\right)}{\left(\omega^{\prime 2}-1\right)\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime} \tag{21}
\end{equation*}
$$

we obtain the asymptotical region contributions (see fig. 1) $I_{\text {SMAX }}$ and $J_{\text {JMIN }}$ respectirely.

5. The Physical Region contribution and Ref(ω)

In this region $I_{m} f(\omega)$ in known from the experimentel values of the total cross section, which are shown in fig. 2. It is not so simple to find one Bmooth ourve sufficiently good interpolating the whole experimentally known region of $\sigma_{\text {tor }} \cdot$ To aroid thia difficulty we decompose the interval $1<\omega \leq 17.14[\mu]$ into three parts each of which is interpolated by means of the functions (see fig. 2):

$$
\begin{align*}
& \sigma_{1}=\frac{4.6 \omega}{(\omega-2.16)^{2}+0.7} \text { for } 1<\omega<3.2914[\mu] \\
& \sigma_{2}=1.03 \omega^{2}-9.89 \omega+29.04 \text { for } 3.2914<\omega<4.6789[\mu] \tag{22}\\
& \sigma_{3}=-0.046 \omega^{2}+1.001 \omega+1.638 \text { for } 4.6789<\omega<17.14[\mu]
\end{align*}
$$

respectively. How using the optical theorem (20) (with k given by (13)) and (22) we can evaluate the physical region contribution

$$
\begin{equation*}
I_{2}=\frac{2\left(\omega^{2}-1\right)}{\pi} \dot{j}\left\{\int_{1}^{3.1914} y_{m_{4}}^{4} f\left(\omega^{\prime}\right)+\int_{3.2914}^{4.6789} y_{m_{2}} f\left(\omega^{\prime}\right)+\int_{4.6789}^{17.14} y_{m_{3}} f\left(\omega^{\prime}\right)\right\} \frac{\omega^{\prime}}{\left(\omega^{\prime 2}-1\right)\left(\omega^{\prime 2}-\omega^{2}\right)} d \omega^{\prime} \tag{23}
\end{equation*}
$$

represented by the curve J_{2} in fig. 1.
Then the sum of all contributions gives

$$
\begin{equation*}
\operatorname{Re} f(\omega)=a_{0}+J_{1}(\omega)+J_{2}(\omega)+J_{3}(\omega) \tag{24}
\end{equation*}
$$

graphically show in fige 3 whore it is also compared with the new experimental resulta/4/. One can see immediately that the real part. does not agree well with the experimental data. Fo know
the cause let us look on the independent contributions from the integrals in (23) shown in fig.4. We gee only that the first integral is (comparably also with the unphysical and asymptotical region contributions) mainly responsible for the shape of the $\operatorname{Re} f(\omega)$ at Low anergies. In other words, to obtain the better behaviour of Ref(ω we have to change the form of the interpolating function of the experimental

Frot at the reaonant ragion. If we ahift the maximum of the interpolating curve to the lower energies and to the higher values (see curves σ_{4} and σ_{5} in fig.2) we obtain the qualitatively good agreement of the $R e f(\omega)$ with the new experimental data, as is shown in fig. 5.

6. Conclusiong

In this section we sumarize what has been leamed from the analysis of the $T H^{4}$ FDR. As is possible to see in fig. 1, the main contribution to the $R e f(\omega)$ at low energies is frori the physical region where the total charge independent cross section is used as an experimental input in FDR. The unphysical region contribution is for $\omega>1.46[\mu]$ roughly speaking . cancelled out with the subtraction constant. The contribution from the asymptotical region is appearing to be rerarkable only for $\omega>3$ [u] where, as jet, there is no experimental information about the $\operatorname{Re} f(\omega)$.

We believe that it would be desirable to repeat the analysis when more experimental information about the total cross section in resonant region will be available.

The author is indebted to Prof. D. V.Shirkov for suggesting this problem. He also wishes to thank Prof. P.S. Isaev for many useful suggestions and discussions in the course of this work and F.Nichitin for help with the numerical computations.

References

1. I. V.Falomkin et al., JIRR, E1-6534, Dubna (1972).
2. T. E. O. Fricson and M. P. Locher, Nucl. Phys., A148, 1 (1970).
3. M.E.Mordberg and K.F.Kinsey, Phys.Lett., 20, 692 (1966).
4. FoNichitiu, private communication and ref. 1.

FLg. 1

Fig. 3

