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I. Introduction

In recent paper of I.V.Falomkin etv al./ 1/ the authors
were discussing the inconsistency of the dispersion relation
pred:l.ction/ 2/ tor the real part of the fohvard T HE scatter-
ing emplitude with new experimental data. In this work we ana-
' lyse in detail the calculation of the real part of the forward
amplitude from FDR and show that it is possible to obtain the
qualitative agreement with the new experimental data when we
shift the rescnance peak in the total cross ssction t.o the lower
eﬁersiu and to higher values,

The precise form of the f'DR is given in section 2. We
shall not derive that relation from an analytical assumption
(no formal proof of ¥DR exists so far for our case) because
it is discussed in review paper of Ericson and Locher’?/, Sub~
traction constant :R&fa) and the contribution from the unphy~
sical region are evaluated in section 3, In sections 4 and 5 .
the contributions from the asymptotical and physical regioms,
respectively, are calculated. Finally, conclusiona are given
in sectiom 6,

2., Dispersion Relation

Owing to the fact that the spin and isospin of Hé is
zero, there ia only one amplitude completely describing the
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ST Hé scattering. The once-subtracted FDR for the real part
of this amplitude in the laboratory system takes the form’ 2/
(units h=c= =4 are used; o is the pion mass).

At A4 oo .
2= R 4“‘“ 4 ﬂr’(_‘"z_ ! 1
Re frun=Re ft4)+ ? (w"' 4)(‘»,1 x)d"’ )
FUY

where () 18 the incident pion laboratory total energy and
w = 0,143 [(u] is the threshold of the inelastic process
ﬁTH‘é —>TN ( T means threenucleon) starting below the
elastic threéhoj.d w = Jc(u] » There are present no poles,since
the 9( He systen has isospin unity and-no bound rournucleon
state of this isospin exists. The integrals in (1), which we
denote by J, , 1, , J, , are contributions to Re f
.from the unphysical, physical and asymptotical regions res-
pectively. Such a decomposition of the integrals is appropriate
since the maJ.n source of our information about the behaviour
of Re flcw) 1s in the total cross section (through optical
theorem) and this is known only for 1< w £17.1% E(JJ
There is no experimental information about G, for w>17.14[&]
and no information on the Jom f(w) can be obtained from direct
measurementé in ,unphysical region. Therefore = Jm f(w) mat
be calculated from some models in these energy intervals.

To find the Re f) means to evaluate the subtraction
costent Re f¢) and the contributioms from the integrals

y J, and 7, .

3« The Unphysical Region Contribution

Before the evaluaf;'ion of the unphysical region contribu :
tion to the Re f(@) we say a few words about the subtrac-
tion constant. This 1s taken as a value of Je f(w) at the
elastic threshold and is equal to the real part of the comple:

S -wave scattering length, To show it we are in nqéd of the
forward scattering amplitude (FSA) expanded in terms of par-
tial wave amplitudes. | ‘

oo :
f(w) = Z (2¢+4) f;(“”é (because E(v;d-l) 2

Lso
where

4 id 3
fow) = e oin g ,
£ is c.m. momentun and | OC are complex T He phase shifts.
Defining the T He complex scattering lengths by

U

Z cof?a" =-+B, | Ag=Qtiby  (4)

and taking into account the threshold behaviour of the partial
wave amplitudes

Ly = At 5)
the ¥SA in (2) may be written in the following forql ’
flew) = Ao + AL + SAR s (6)
The limit >0 in relation (6) gives f(4)=A, and from
here ' o
Re fn = a, @
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.Numeric;.l values of &, and 'b y Ay » b, (these will
be useful for us later) are calculated from the phase-shifis
of Nordberg and Klnsey/3/

Qo = =0.133 £ 0.003 Lp']
b, = +0.081 + 0,006 L p']
0, = +0.265 % 0.003 L[]
by = +0.022 4 0.022 [x']

i

®)

Now we evaluate the unphysii:al region contribution to the
Re {() Tepresented by the integral

4 ‘
3, = A fw T fled g 9
T ('L g) (@' w?)
[53)

™

where Jm f{t-) is found by means of the analytical conti=

nuation of the zero-effective-range amplitude

g |
flon = Z (2¢+ f) ——‘ 2 (10)
obtained from {(2) writing (3) in the form
4
(w) = -
f" ‘Ecofgtf—ih an

and substituting in the last fomula .Z_ wfy from the
relation (4). '

Further we keep oniy first two terms in the sum of the
relation (10). The reason of this is following. There are do-
minating only = § - and P -_waveé in the physical region at

low energies and we hope higher partial waves remain negligible

also after the analytical continuation of the formula (10)

‘into the unphysical region. Then (10) takes the form

1
f(w) ~ Ac +3 Ak s “12)
1-1AL 1-iAk
where £ as a function of the pion laboratory total energy

w is

. b 4 A :
.& = K‘.(w + K,) | (13)

and constants [, , K, written in terms of the mass of he-

lium M, bhave the form

) my l/l. /rni +4 :
K4 =( 1 ) | f‘( = ——znm‘— s

Having in mind that & in (12) for w< 4 is complex

AN '
=~;k,(4,w)z - (15)

Ky+w

for the imaginary part of the FSA in unphysical region we

obtain B

Yo fle) = = — — -
‘ 4 +2a0Ky +(a+b)|.( -
kfw (k‘ow) (16)

36,k (52)
4 2a,K: (i;c_o_)% (a® + i) K (4 {-cw? )3

Kyt

This explicit forn of the Jm f(w) (with the values of
the scattering lengths (8)) was used in the dispersion ;nte—
gral (9) to calculate the unphysical regien contribution to
the Re f(w) which is graphically shown in fig. 1.



4, The Contribution from Asymptotical Region

We mentioned in section 2, that we have no information
about Gor for W > 17.%4 [pxl . To obtain the explicit
form of ©;.,in the asymptotical region we proceed from two
assumptions: »

1. for w —3» oo G’THE Z s;'\'N ‘

, a7

. ) . . "

2. .for w>A4F. 4 [p] b € G;_“‘&(”“"')-EZ‘IE@ 1

Having in mind asymptotical benhaviours of Gy, of other
processes (as e.g. I N , KN and NN ) we write G,'mg

in the form

c
=+ c.n.)z ‘ (18)

G

30T
where constants (, [(p: '] and (,[&"] are determined from as-
sumptions (17). Then we have two extreme forms for Gror in
the asymptotical region , ’ ’

6urax

5.24 [u']

G = 42 + ‘Z'j‘ L] ~ (19)

which when we put through optical theoren
Jm flwr = = qo () (20)
into the integral oo
2 [N ,
1 = 2(w™- 1) i Im }:‘(m) de’
3 ",((d 2 4,(0) 2 wz)
we obtain the asymptotical region contributions (see tig. 1)

1)

Tymax @nd I respectively.

i e e S ety i A T

>

-

P e ety

—

N

5. The Physical Rogit'm Goﬁtribution md e f(w)

In this region jnnﬂql; 18 nown from the experimental
values of the total croas section, which are shown in fig. 2.
It is not go sigple to find oné smooth curve sufficiently
good :hterpolating the wholé experimentally known region of
6,,r + To avoid thia difﬁculty we decompose the interval

A < £17.14 [‘.L] into three parts each of which is inter—

polated by means of the functicna (see ig. 2).

5 h¢ew :
T @z 03 for  Acw< 32944 E(ul

Gy =4.03'-9.89c +29.04 for 3.2944< W< 4.6¥E9 pl (22)

6, =-0.0khC e’ +4.004c04 4638 for h.6789 << 47.44 [p]

respectively. Now using the optical theorem (20) (with '& '
given by (13)) and (22) we can evaluate the physical region
contribution
, - ,"“ - k6349 CA¥Ab
2w 4) w'
Y= ——————P{ Iom, Fca')+ | FTomy fe3 + [Bom i) ——-—-,,_ T dw (23)
, 3% he3e

represented by the curve Ji in fig. 1. \
Then the sum of all contributions gives
Re fea) = Qo + Ty + Tytw0) + Tyfo) (@)
graphically shown in fig,3 where it is also compared with the

new experimental resulta’?/, one can see immediately that the real

part doses not agree well with the experimental data. To know



The author is indebted to Prof. D.V.Shirkov for Buggesting
this problem, He also wishes to thank Prof. P.S. Isaev ‘for

the cause let u‘s look on the independent contributicns frbn'

the integrals in (23) shown in fig.#4. We'see only that the
N ful ti a dai i
first integral is (comparably also with the unphysicael and many use suggestions an scussions in the conrse of this

ork F.Ri i o
asymptotical region contributions) mainly responsible for the s end ichitiu for help with the nume:pical computations
shape of the ﬂe f(w) at low emergies. In other words, to

obtain the better behaviour of Pe f(w) we have to change
' Reforences

the form of the interpolating function of the experimental . ,
6xr at the resonant region. If we shift the maximum of 1, IL.V.Falomkin et al., JINR, E1-6534, Dutna (1972).

the interpolating curve to the lower energies and to the ‘ 2. 1.E,0.Ericson and M.P,Locher, Nucl.Phys., A148, 1 (1970).
higher values (see curves G, and 6; in fig.2) we obbain it 3. M.E.Nordberg and K.F.Kinsey, Fhys.Lett., 20, 692 (1966).
the qualitatively good agreement of the Ke f(w) with the new : 4, F.Nichitin, private commmnication and ref. 1.

experimental data, as is shown in fig.5.

6. Conclusions . ) {

v . ;

In this section we summarize what has been leaméd from

the analysis of the THé FDR. As is possible to see in figel, . | - Received by Publishing Depattment
the main contribution to the Pef(w) at low energies ‘is from ¥ T on October 23, 1972.
the physica.l‘region where the total charge ;Lndependmt cross
| section is used as an experimental input in FDR. The unphysical
region contribution is for «w > 1.46 E(u] roughly speaking .
cancelled out with tho subtraction constant, The contributicn i
from the aaymptotical resion is appear:lng to be remarkable "g
onl;y for w >3 [u] where, as yet, there is no experimntal f
:Lnfornation about the Rg f(w) . ‘
We believe that it would be desirable to repeat the
analysis when more experimental informatiom about the total

cross section in resonant regiom will be available.
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