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I. Introduction 

lri' the present paper we continue to discuss the problem of the con-struction of the 
higher orders in the major coup I ing constant G in quantum field theories with non­
polynomial Lagrangians .. We have begun this discussion in previous papers /1-;3/ . 
At present there is a number of papers in which similar problems are investigated 11

-
8

/. 

However, a lot of questions remain still unsolved in these theories .. 
The following problems are the chief ones in our opinion: the introduction of inter~ 

mediate regularization with the help of which we get the finite results in our theory and 
the test of unitary of the · S -matrix. The sofutio~ for the latter problem is given in 
our_ paper /3/' and partly in /2/ . There we have proved the unitarity of the S -
matrix in nonpol.ynomia.l . theories in the third order ·in ·c . Here we would like to 
focus our attention on . the former p;oblerri, introduction and subsequent". removil'lg of 

intermediate regularization . 
. We investigate th~ scattering amp I itude· of two massless scalar particles in the 

third _order in G for"the exponential interaction. The attractive feature 'at this process 
is the following. In this case we can perlorm explicitly all the integrations over the in­
termediate momenta. We are able thereby to demonstrate most clearly our method of 
introducing and subsequent removing .of intermediate regularization. . . 

As 'far as we are dealing with the case of massless particles, in addition to ultraviolet 
divergences we meet here ·infrared divergences. The suggested method of analytical re­
gularization· is fo1-1nd to permit removing not only ultraviolet divergences; but also. infrared 

* ones 

----"'-;~~~~~;~~~~~:::~~~enormal izable theories are solv~d by the Speer's method (se/
9
{. 
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In the case of the exponential interaction the higher perturbation orders are ex­
pressed through· the integrals of the product of superpropagators / 1

•
2

/ . We show that 
if we take these superpropagators in the form obeying the principle of minimal singula­
rity introduced by H.Lehmann and K.Pohlmeyer /10/ , then the scattering amp I itude 
constructed from these superpropagators in the third order in 'G agrees automatically 

with this principle. 
This result is. in agreement with similar results, obtained in the third order in 

G by K.Pohlmeyer /7/ and M.Daniel and P.K.Mitter /8/ . Their approaches differ 
essentially from ours 11 - 31 . They have. suggested to use the principle of minimal 
singularity for constructing independently every perturbation order. We propose to use 
the same principle of minimal singularity, but only for selecting a. superpropagator in 
the :•minimal" form. Then we construct all the orders of perturbation theory with the 
help of these "minimal" superpropagators. It seems to us that this approach is m()_re 
convenient for constructing the higher perturbation orders in 'G 

In Section 5 we show how the result obtained for the scattering amp I itude of the 

two particles is generalized to more complicated cases: 

2. The Superpropagator of Scalar Massless Particles 

Let us consider the exponential Lagrangian of the scalar massless field ¢ ( x) 

2 

£: 
1
(x)"'G: l exp[gq)(x)]-1-gcp(x)- ~¢ 2(x)l: (I) 

lh 2 

When we construct the scattering amplitude (the Green function) in the higher orders 
in G , the main difficulty is connected with ·the definition of the integrals of the product 
of the generalized functions - superpropagators. Note here, that the scattering amplitude 
in the higher orders in 'G is expressed in terms of the product of the superpropagators 
only in the case of the· exponential interaction of the fields. In the cases of more general 
interactions, the higher orders in 'G are expressed via more complicated functions, 
"mixed" superpropagators. (see 121 ). 

The superpropagator F (x) in the exponential case (I) takes the form 

F ( x), ""' \' 
7 

-1 11 _ ll 

g ~ 1 ~i 1\ c (x) 1 ' 
r (n+l) 

(2) 

c 
where 1\ (x) i~ the propagator of the free scalar massless field, and I' (n + 1) 

is the Gamma function. For this su?.erpropagator we can write the following integral 
representation in the momentum space / 1 -- 3 .11/ 

4, 

Here 

F (p)"' fim l 
y-->1 

. ( 
. F .·(p)=- :z-: 

y p ~ 

g 2 -, 
K= ( --) .and.· . 411 •' 
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F(p) ~ eim F (p), (3) 
. y~l y 

g 2 
K = ( --) and the parameter 

4TT 
Here is real and larger than four in formula (4). 

_When we· want _to go over to the limit y = 1 , we should use some other representa­
tion for the F ( p) . For instance, we can use· the representation like (4), but with 
a contour bendi,{g to the positive real ax1s. The representation (4) is very·useful for the 
calculations of the integrals over the intermediate momenta in the higher orders in 'G . 

In general, some ambiguity can appear in the formula for the superpropagator 'in 
the momentum space (see /11/ ). However, utilizing the principle of minimal singularity 
we can remove this ambiguity and obtain formula (4). Further, we shall use this principle 
in obtaining the expression for the superpropagators in the second order in ·a and 
shall construct the higher orders, using these expressions. The forl!'ula, obtained for • 
the scattering amplitude in the third order in ··a with the help of this receipt, autom.a-

tically agrees with the principle of minimal singularity. 

3. The Scattering Amplitude of Scalar Particles in the Third Order in 'G 

Let us consider the diagram, given on Fig. I. 

jJ.L 

f'~+r 

~d~t?r;Pr'llC/fcr-tor. 

Fig.l 
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This diagram describes the scattering of two particles. The scattering amplitude corres-

ponding to this diagram, in lhe x-space can be written in the form 

4 "" ""oo 2(n1 tn ,..n 3l 
F ( ) 

,, , . ...,. ~-

2 "1 x1,x2,x3 ~ g ""'"'" .... g 
' · (I U () 

(5) X 

. 113r c n2 . c n 1 
[..:i N(xi-x2)] L-'ii\ (xr->3 )] [-i!\ (xrxJJ] 

X ~----. 

nJ-'n 2 !n 3 ! 

With the help of the representation (4) we can write the following expression for the 

scattering amp I itude (5) in the momentum space depending on the three arbitrary para-
meters y ( i ·· 1,2;3) 

• i 

. 0 ( F ( p ' {J ) F ( {J ' fJ ) I F s ), 
y •1 2 )' 1 2 )' 

-U·t i"-> 3 
F (s)= c {f{ <h dz rlz ll 

}' . . . 3 2 1 1 
-0-jN 

-irr 
ctg rr z . [ K e 

I 

X 

.J" (- \' z ) 
'ii !f(s!z,,z2,z3). 

f'(z .)f'(z. +2) • 
I I 

Here .. 

7.. 
I X 

J z:;J 2 z2-1 . .' zrl 
f(s!z 1,z 2 ,z.J=Jdq(q 2+ic) [(p·-q) +ic]. [(h~;·U·t-itl , 

. • 1 ·- • -. 

2 
·s = (:· + o ) . 1 . 2 y=~y1,y2,y3l' 

6 

. (6) 

(7) 

. 10 /8 . . . 0 
c =g · and F 

·y 
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2 -·.. . - . . . 
(q + il)z-1 = F(z)e 

. . . i 17 .•• 

With the help of (8) we ca 

. . 1 

·l(s!z ,z ,z )=.! 
" 1 2 3 

-2 
X ( a

1 
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3
) exp 
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c =g /8 and F 0 (Jp ,·p·.) is the pad of the scattering amp I itude F (p p ) 
y 1 .? y I' 2' 

which corresponds to these diagrams of Fig.l, where one or more superpropagators are 
replaced by. o ~functions, ·o (4

) (1) . The function F? (p j , p 2) is inve-~tigated 
by us in paper I 21, and we shall not consider it here. ) 

The function f (s! z 1' z 2' z .J is expressed through the integral in which ultraviolet 
and infrared divergences can be contained. However, we c'an choose such z 1 -values 

for which all these divergences will be absent in the integral (7) *. 
Let us believe that we have found these z i . Now we.can calculate the integral (7). 

Here it is convenient to use the representation· 

, • TT "" • 2 

( 
2 . z-1 r(z) I-, z . r -z mq -fa 

q + I() = -- e I::! In rr z d a a e 
l TT 0 

With the help of (B) we can get 

TT 
i-z 

2 i s.inrrz. r(z.) fda a 
I I .0 j 

After replacing the variables a i =A t i , A =a 1 +a 2 +a 3 

-z. 
I 

IX 

we are 

integral z-
1 

1 z 2+z3 -I z1+z3-1 

''l(s\z
1

,z
2

,z
3 

)=(-is) r(1-z)fffdt1 dt 2dt3t1 t;2 X 
0 

-z3 . 3 

X t 3 0 (1- L t i ) ' 
. 1 

(8) 

. (9) 

led, to the 

(10) 

* · The problems connected with _the existence of the integrals ·0f tre type (7) and with 
removing, the ultraviolet and infrared divergences in these express •cr.s are investigated 
in paper t 91 
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Now we can easily see, thatthe integral (10) exists in the domain, where Re z 1< 0, 

Rez 2 < 0 , 1 > Rezj>niax(jRez11,1 Rez21J > 0. 

Calculating· it in this domain we com~ to the following expression for the function 

f(slz1 ,z 2 ,z 3 ) 

l ( s I z
1 

, z 
2 

,z 
3 

)= 

. · z-1 sin11 Z jSitm Z 2 1 (z 1)1 (z2) l (z 1+Z 3)1 (z2 + Z yl 
1 rrs 

·sinrrz ['(z)1(z+1) 
(II) 

Now we pay our attention to the definition of the integral (6). This is the iterated integr'!L 

ov:er the three complex variables z 1 , z 2 and z 3 . The integration domain 

over the tY{o first variables z1 , and z 2 in (6) coincides with the domain, where 
the integral (10) exists. But the integration domain over variables z 3 in (6) does 

not coincide with the latter and is somewhat shifted to the left. This is a consequence 
of the infrared divergences contained in our scattering amp I itude. 

Taking into account this consideration we suggest the following receipt for defining 

the· iterated integral (6). At first, we calculate the integrals over z 1 and z 2 in the 

dol!lain, where Re z 3 > {3 > 0 . Further we consider th.e obtained integrand as a 

funCtion of one comple;:va~iable z 
3 

and continue it analytically through the domain 

...;.J < Rez3 ~ 0 , where the integral (6) is specified. Then we calculate the last : 
integral over z 

3 
We can go over successively to the limits y i =.1 after performing the integrations 

over the corresponding ·variable z; . We can also keep all the auxiliary parameters 
Y; until the integrals over all variables ·z; are taken. Then it is seen, that the 

F y ( s) exists as a finite function of real y; in the following region 

)' 3 ~y 2 ~y 1 ~ 1• 

(12) 

Further we shall go successively to the limits :' i = 1 
It is important to note, that the procedure suggested by us for the defi inition of the 

integral (6) completely"agrees with the unitarily condition of the S -matrix (see / 2,3/ ). 
If one uses other ways of defining the integral (6), in the expression for the F ( s) 

. terms can appear which are in contradiction wath unitarily. 

8 

., 

4. Rem . 
Let us now define 

which was described in ~ 
Using formulae (6) 

-0-+ioo 
- - c 

Fy (s) = i-:; J, ~;!: 
-:-0-too 

z. 1 (-;'; zi . 2 I 

· xll ((Ks) 1(2-+Z; 1 

where the square brack 

. Rez;J ?.}3 > 0 
analyt1cal_ly in the do 
over ZJ . 

First we obtain the 

-O+J c ... 
Jm F (s) = -i....:.. f ci 

Y · s~O-i 

z 1(-y .: 2 i ; I 

xfl((K·s) i(2+z 
1 . 
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1. 
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l 

~ -

4. Removal oflntermediate Regularization 

Let us now define the limit y .=1 of the function F (s) following the procedure 
l y , 

which was described in Section 3. 
Using formulae (6) and (II), we can write the F (s) in the form - y 

-0 +i-oo z
3 

Fy (s)=i-7 J.dz3 (K·s) 
-0-ioo 

3 
r(z 1 +z 3)r(z2 +z 3) g (cosrrzi) 

sinrrzr(z)r(1+z) 
-e 

-irrz 
(13) 

where the square brackets mean, that the integrals in between are calculated in the domain 
R e z > {3 > 0 . Then the obtained function of one variable z 3 is continued 

analytrcaTiy in the domain -1 < Re z 3 .::; 0 . After that we calculate the integral· 
over z 3 . 

First we obtain the limit y. =1 for the imaginary part of the 
l 

-O+ioo z r(-y z )r(1-z ) -O+ioo 

F (s) 
y 

c . 3 3 3 3 
Jm F (s) = ~i - f dz 3( K-s) ---,---)..--- x[ JJ. dz 2 dz 1 x 

y s ... :.'O-ioo r(2+Z3 -0-i_oo 

2 z. 
xfl((K·s) 

l 

1 

9 

(14) 
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~ ~ 

l 

We see, that we can bend all the contours in the integrals (14) to the positive real axises. 

,Successi~ely perf~rming the integratio~s. and going to .the I imits Y;',= 1 , ., we obtain 
the following expression for the lmF(sJ . ·· · · \,. 

·.·· n3 .···nl+n;? 

lmF(s) =--(2r./..£. 'i~ 'i 
(-1) (KS) 

----------~-------~----------~------X 
·s 0 r'(n

1 
+1)f'(r.

1 
+2)r(n 2 +1)-1' (n 2 +2). 

a (~s )~ 3. l'(ri1 tr.;;r(n2;~n3) 3 ., · .. 
x-l . 1. (n='in.) 

rln
3 

l'(njf'(n
3

t.l)r(n
3
t2)r'(n)l'(n t-1) 1 

1 
'(15) 

:....., 

·Here all the series are absolutely, converge11t; The asymptotic behaviour of th~ imaginary 

partofthe F('s) when s•"" is 

3y'3 1/3 ' '1 1/3 
-cp(s)cosl-- (K~>) ],,xpl -··- (I<.S) l, 

2 2· 

. :i ·, ~. ·; 

where . cp ( s) increases slower than an exponential.· ·: 
. ·Now let us,tind the I imit y i = 1 for the; real pa~t of the ;· F ( s) 

the limit of the ReF ( s) is equal to y 
' y 

-O+i""' z 

ReF(s)=i\(s)·+ i ~ J dLJ(Ksj 
3 

·..:.o-i"' 

l:l-, 

r(-z3 )f'(l-z3) 
. ,. X 

r (2 +-= J. ," .. . 3 

-Oti"" 2 z f'(--Zj) . r'(z +Z )l'(z +Z..) ... r- .. , .a 2 s 
xl If d~ dz1 n cc'' sJ . 1 . 1"(2 +Zj ) , ~inrr~.f(:-JJ: (1 +Z') ·. 

-0-iw 
", '· '~·~. 

(16) 

. We ·show tliat 

(17) 

]_, 

* Note, that the series which appear after integration over z 1 and z 2 are uniformly 
convergent (see Appendix). Therefore we can integrate them tel'm by term. 
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Let us obtain.these lirr 

. -U•i"-
. (2) • 2 c .· 

ReF (s) .. 1 r. - .J· ell v s . 
• . -0-i"" 

(. 
·~ , (" s)zi sinr. z; 

. X ·---'· -----------'-
.. :.;in77}'.z. l'(l;y.z: 

I I . I I' 

''Note, that in the' c 
divergences are absent. Th• 



•the positive reai axises. 
its yi',= 1 , · ., we obtain 

-------x 
• (n --~2) 

2 . ' 

3:, .,. 

r =In.) 
.· 1 I 

. 
·' ·. ~ 

(15) 

-: . ., 

(16) 

! 'iF ( s) . ·;. We :~~ow that 
. y. . ( ... 

(17) 

· 1 and z 2 are uniformly 
1 by term. 

. ,· 

1
. 

. J 
.. 
. , 
·-~ 

where 

(18) 

· The Integral in formula (17) is a decreasing functionof s when s • ""· . The triple 
and double infinite series, which are increasing functions of the type (15), completely 
cancel one another and disappear in the limit Y; = 1 . The remaining increasing in 

-~ term, •, (s) , is obviously a trace of the infrared divergences contained in our 
amplitude .. The obtained' expression for the .'{ef(s) differs from a similar expression, 
obtained in 17 ,s/ only by that term * . 

Let us show now 'that the expression (17) is the I imit of the ~ c F ' (s) · when . . . ' \ ... , ' 

Y; -.I . One of the possible ways of obtaining formula (17) is the following.'The cosines 
standing in the numerator of the integrand of the· R c F ( s) can be rewritten in the form 

·. f 

3 
CONTTzl} (cosr. z;) · 1 .'1inrrz

1
.-;in rrz;/·o:-;rr(z1 1z 2 )--

(19) 
. 2 

-N!n 11(1: I Z )-·C()STTZ COSI7Z _sillTTZ~ ,<Jinrrz 
1 2 1 2 ·' 

Correspondingly the· real part of the F (.-;) is also decomposed into four parts. In 
the first one we can at once go to tKe limit Y; '" 1 and obtain the integral standing 
in the formula (17). The third and the fourth parts of the ReF (1-1) almost completely 

' 4 c }' 
cancel each other. From them only the term -BiT s.:... survives. At last th~ limit of the 
second part is equal to . \ (s) without the term -8rr 4 c/-". . · 

Let us obtain.these limits. We shall begin with thfi second part ofihe . ReF (s) 
--U!i"-. ·. ··', 0,:'' • ·: ,.. ..... ~/);.;.,_. . . : . y 

(2) "3'' l'(-j'3~l')l'(l_'-z3) . . 2 
ReFY(s) irr 2 ~ r· clz .• (Ks) --------->: [f.fc/zdz n X 

s . ·' ' " . 2 1 1 
-0-i"'- I (2 I zl) -0-r"' 

(t<s) "i .'ltnTiZ; 
X (-;_' -'--------~-

. :.;in11}'· z. 1'(11y .z:)l'(2 
I I I I 

cosrr(z 1 ,z2 )l'(zfi-ZJ)l7(z2·'-z3) ]. (20) 

)--- si;-rrzl''(z)l'(z d) 

'Note, that m the case p 2
/ 0 (i 1,2) in-vestigated by Pohlmeyer the infrared 

divergences are absent. Therefor~ the term, like .\ (8 ) , must not appear in his results. 
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We bend the z1 contour to the positive real axis. Then we integrate over z 
1 

and 
go the limit v1-= 1 

-O+ioo ['( )['(1 ) 0 J-ioo • ['( ) Rcl~hJ=2rr2 ~ j'dz
3

. -y123. -5 [ -J -dz
2

·sumz2cos17z3 22+~----X 
Y ·s -0-ioo [' (2 +Z

3
) -0-ioo sinry z f'(l+y z I[' (2 + z ) 

. 22 22' 2 

n 
"' (K s) 1 f'(n -z ) 

X r ------.__.j~~-------
rrn1 )f'(n 1t 1)[' 0+nrz2-z3)f'(2+n 1 -z2 -z3) 

(21) 

(y = ly2,y3 1). 

The infinite series which appears in (21) is uniformly convergent (see Appendix). Therefore 
we can integrate it term by term. We again bend the z 2 -contour to the positive real 
axis, integrate over z 2 and go to the limit y2 =-1 • Then we get the double series 

sin2TTz ~(-1) 112 f'(n2-tz3 )f'(n2 -1t-z) 
3 0 ;J 

00 

X !_ 
( 

r'(n t1) 
2 

II 
(~-;.s) 1 ['(n en +Z ) 

1 2 3 

[' ((I I ) I "( n 1 d )l' ( n 1 +n .! ~ 1) r. ( n l -rn ! + 2) 

12 

X 

(22) 

This. series . is also uni 
it also term by term. _Y 

domain Rezj .-:0 and pe1 
we obtain 

(?) ·. 
ReF~ (s) = -4174 

A similar calculation 

_(1} 4C. 
Re~•· 1 :-;),·-Srr -!1-

. . s 

x ( I'(n )l'(n
3

11) 
3 . 

Finally we can find v 
in the same way as the.lirr 

· R · (41 4c ,~. 
e F ( s)" -817 :... . ..;...:.. 

. ·s .. 0 

x (I' (n
3

)l'(n
3 

d) I' 

Summarizing all these res 
Now we shall show 

the triangular diagram wit 



rhen we integrate over z 1 and 

rZ2COS7TZ3 r(z..l.+~--- X 

7'
2
z

2
r(1-f.y l}r (2+z 

2
) 

(21) 

rgent (see Appendix). Therefore 
~ 2 -contour to the positive real 
. Then we get the double series 

(22) 

This series . is also uniformly convergent (see Appendix). Therefore we can integrate 
it also term by term. We conti~ue analytically each term of this series thr'oughout the 
domain Rezj < 0 and perform the· integration over z 3 . Going to tlie I imit y3 ·~ 1 
we obtain 

3 

x ( l'(n )l'(n d)l'(n.,c2)l'(ti)r'(n +1);-1 1. 
3 3 ·' 

(n ~ n.) 
• 1 I 

Finally we can find very simply the limit of the fourth part of 
in the same way as the limit of the /m F (s). . It is equal to 

' y • 

Rl'l; (s) y 

(41 4 G '-~''\' ReF [si "-Srr - ..:....:.. .... 
" ·s. o 

(...:.1t3 (K s( r(n 1 tt!.l.lLf.!~..iL--->; 
l'(n

1 
1l)l' (n 

1
+2)l'(n

2 
d)l'(n

2
l2) 

Summarizing all these results we obtain the formula (17) we looked for. 

(23) 

(24) 

(25) 

Now we shall show how the results obtained here are generalized for the case of 
the triangular diagram with external momenta. p~ ' 0 ( i 1 ,2,:3) • 

I 

13 



I' 

5. The Triangul~rDiagram with External Momenta. P7? 0 (i= 1, 2.,3·) 

In the gene-ral case the parametrical Green' function or the fcattering amplitude 

in the third order in 'G is represented by the following integrals. 
7
/ · 

IT p 
F ( P • P2 ' 3 y 1 

(4) 3 -0-ioo . · . j 
)"-'io (! p ) fff.dz dz dz n 

1 i 3 2 '1 1 
-0-ioo 

x 1/TTI'(l-z) f(z3 , z 2 ,z II pl
0

), 

3 
(z=~z.)·. 

1 I 

where 

f(z
3

,z?,zllp I)=-
~ a 

1 z 1 -z -2 
"2 3 . 

= r at
2 

1? r at 1 o + 1 2 + 12 1 3 J 
0 ~ 0 3 3 . 

-iTT z. 

[--COSTTZJKC ) 
1 

• lx. 
sin TTY . z . l(1 +y. z . )r (2 +Z.) 

I I I I I 

(26) 

2 t 2 t t 2 z-1 
P. t- 3 p. + 3 2 p k • ] (27) 

I I t-'l( , · 

1 + (2 + t 2 t 3 

Here a= liJ,k I i,j,k 
The behaviour of the function 

in the paper /7/ . 

are not equal to one another and take the values I ,2,3. 

f (z
3 

, z 
2 

,z •11 pI CT) has been carefully investigated 

We consider here the most simple case when all the pf" 0 . On the basis of this 

instance we show that our result coincides with Pohlmeyer's results obtained 
in the paper /7 I Like Pohlmayer's formula the obtained by us expression for the 

scattering amplitude in the third order in G agrees with the principle of minimal 

singularity. 
lnthecasewhenall p~>O always (pf+t3 pf t-t3 t 2 PiJJO 

in (27). Therefore we can easily estimate the behaviour of the function f(z3 ,z 2 ,z liP Ia) 

in the domain n 

!l= IRe~ >0, oo > Rez 2 >-oo, Rez> 0 I. (28) 

' 14 

I 
!. 

I 
~-, 
' 
1 

The function l( z
3 

, 

through a holomorphic fun1 

f(z ,z ~z llp I )= 
3 2 .. a 

where. 

I( z
3 

,z
2
,z II p

0
1J 

1'(;3 jf'( -z2) 

4 

iTT(z 3 
c 

. · Here the contour C er 

expressions i'n the. brad< 
c 

There exist positive' 

[ ( ZJ 'z 2, z II pI (]) ~ 

xi z ~-Rcz2 I z 
2 

Using this estimate for 

procedure of going to th 

way as we did it in the Sec1 

We shall again cons 

. Using the formula (I 

we can go immediately t 

the limit y 
1

=1 we obtain 

3 -0 
ReF~(2 J=2o(4J (!.p.) .n 

y J I . 

-P· 



p~> 0 (i=-1,2,3) 
1." 

tion or the fcattering amp I itude 
integrals. 7/ . · 

-i7T z. 
( ) 

I 
· . COS 7T Z; K C .:,_ ___ Jx. 

7TY. z. f(l +y. z. )f (2 +z .) 
'I I I I I 

(26) 

2 2 
lpi+f/2Pk 

. z-1 
+·if 1. 

(27) 

+ t 2 t 3 

her and take the values I ,2,3. 

s been carefully investigated 

~ . p?" 0 . On the basis of this 
I . 

1lmeyer's · results obtained 

btained by us expression for, the· ' 

!S with the principle of minimal 

(28) 

.-

The function f(z3,z2,zllp!(T) is meromorphic' rn n .. We can express it 

through a holomorphic function [( '3, z
2

, z II pl a) in the following way 

'1'(1-tz) -
f(z ,z ,zllpl )~--~- f(z ,z ,zllpl ), 

32 a., 32 o 
sm 7T z 

3 
I ( z_

1
) 

(29) 

where. 

(30) 

·Here the contour C encircles the real _interval IO II . II is so close to illhallhe 

expressions i'n the brackets in (30) do not vanish in the domain bounded by the contours 
c 

There exist positive constants M 1 , M 2 and M3 such that in n 
- · Rcz IU.,z

2
1 RC'z

3 f(z3 ,z 2 ,zl!pi
11
)<M1 M2 M3 Y 

Rez 
I z 

3 
I 3 cxp ; ( llrr. z

2 
I +lim z 

3 
! ). I I

-RC'z2 X Z 
2 

(31) 

Using this estimate for the behaviour of the function f in 0 we cari carry out the 

procedure of going to the limit ·yi == 1 in the function F;(p
1 

,p
2 

,p
1

) . , in the, same 
way as we did it in the Section 4. 

We shall again consider the real and the imaginary p~r~s of the F; indepemdently. 

. Using the formula (19) let us decompose the ReF{: on four parts. ln·the first part 

we can go immediately to the limit y. = 1 . After integrating over z
1 

and going to 
• I 

the limit y =1 we obtain for the ReFa(2) 
1 )' 

a(2 ) (4) 3 -O+ioo · clf5TTz3 siil7T z 2 f(l H_:) x 
ReF_ =20 (~p.) J{dz

3
dz2 . . . 

y 1 I 
0

· . Sitnnt Z Sin7T}' Z l (z )f'(2;-z )l'(}n Z Jl'(l+y
2
z) 

- -1'>0 '""/ 3 3 2 2 3 j I ' 3' 2' 
(32) 
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1 ·00 "1 
x--x~_K_. f (z3 ,· z2, n I{ P laJ 

r(2+z2 ). 1 r(n
1

) ro +n -z -z )f'(2+n -z -z) 
1 2 3 2 3 

(32) 

It can be easily seen that the next step, the integration over z 2 and going to the_ limit 

y 
2 

== 1 , gives the result 

ReF. a(2) y
1 

= 0. 

Performing successive transitions to the limits y. = 1 
l 

for the Re Fa(3) 
y 

we obtain 

"3 n 
(-K) I K 2 . X 

f'(n3)f'(n3+1)r(n3+~ 0 

. 3 00 

'Re~(3)= -88(4
) (I P. ) I 

1 l 1 r(n-
2

+2) 

- 3 
K"1f(n 3 ,n 2 , In.llvla) 

I 1 , 

x o f'(n +1)f'(n
1

+2)r( f n
1

) 
1 . 1 

00 

. (33) 

(34)'. 

For the ReF a(4~e obtain the same expression but with other sign. Summarizing all these 

results we get for the 'Re Fa (p
1 

, p2 , p3 ) 

(4) 3 
8 (I p.) -O+ioo 3 z f' (-z ) 

a. 1 1 [' i] ReF (p ,p "~)= fffdz dz dz n K l X 
1 2 3 ·i1fl -O-ioo 3 2 1·1 f'(2+Z.) 

l (35) 

x f'(l...,.z) f (z3 , z
3

, z II pIa). 

This function decreases when any 
2 

P . ... "". 
I 
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I 

l· 

•\ 
I 
I . 

I 
i 

I 
• 

I 

I 
l. 

I 

' 
I 

I 
\ 
I 
ii 

Let us give also the E 

. ) 8 
lm Fa ( 1-j ,p2 ,p3 ="-;; 

>' ~ f 
iJ n 3 

Kn3 f (n3 ;n2' 

f(n )I'(n+ 
3. 3 

At p: .... oo .this1 
. I . " 

These results ,are i 
In conclusion of t 

investigate also the ·most ! 

( i = I ,2,3). In this 

function f(z
3

,z
2
,zllv 

and in the second ( v?+ t 
I 

Thus, we ~ave sha 

"minimal" superpropaga 
in the third order in ·c 
niently be made by· pas 
y

3 
c-: 1. 

The S -matrix is 

resentation for the superp 

*A . 'I . s1m1 ar way was'u: 

** Note,_ that the functio 



(32) 

>n'over z 
2 

and going to the limit 

or the Re Fa(3
) 

y 

. (33) 

(34)'. 

o~her sign. Summarizing all these 

r(-:-z. ). ] __ _.;...,_X 

r(2+z.) 
I (35) 

a : 
Let us give also the expression for the 1m F (p , p , p ) 

1 .2 3 . 
. li 

I . 
(-1P3 ~1121-111 

X 

r (n 1+ 1 )r(n 1 +2) f'(nJ -t2) 

. li 
i .. 
I! 

]. i 

(36) 

il 

I! 

I! 
I, 

2 I II I 
At p. -."" this function increases as an exponential. 

These 
1 resul~s are in agreement with the principle of~ minimal si1gularity 17•101 

In conclusion of this Section we would like to ~ote that in a similar way we can 

investigate also the most general case, when a part of p ·ll ·, 0 , and 1 part of p2, < 0 
( i == 1,2,3). In this case it is convenient to divide the integra over t 

1 
in the 

function f(z
3

, z
2

, z II p I"} . into two parts. In the first lart (p~ +t p~+ t t

3 

p2) > 0 
a :11 1 3 1 3 2 1< -

I 

* I' and in the second (p?+ t rJ2. + t t p2 l < 0. ,' 
I 3 } 3 2 k'- II 

II 

1: 

ji 

il 

6. Conclusion 

Thus, we have shown that the scattering amplitude;: constructe with the help of the 
"minimal" superpropagators does not contradict the nciple of 1minimal singularity 
in the third order in 'G . The removal of the inte '

1 

iate regudrizatlon can conve­

niently be made by passing successively to the limi 'I Y1 ,~1 , Y2 == 1 'and finally 
- y3c-= 1, 'I I 

The S -matrix is unitary in. this theory* We can ' fy it usi the spectral rep-
resentation for the superpropagator (see /2,3 /* ) 

*A similar way was used by Pohlmayer (see/7/ !· 
** . Note, that the function (37) is identically equal to the on (4). 
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-
Fy ? . 

P~+it: 

(37) 
~+ioo r (- ) 00 2(z-1) 

-i8 TrK .r dz COS TT Z K z y z .r dp.2 _.:...11 ___ _ 
+0-1"" ['(z)f(z+2) 0 p.2-p2~if 

With the. help of this representation any amplitude in the n ~order in G consisting 
of superpropagators is. express~d through a similar amp I itude consi.sting of ordinary . 
propagators of the massive particles. Owing to this the problem of unitary of the S - . 
matrix in the nonpolynomial theory reduces to an· analogous one in the ordinary polyno­

mial theory (see /2,3 / ). 
The author is deeply grateful to Prof. D.I.Biokhintsev for his interest in the work 

and the valuable advice. The author wishes to thank A.V.Efnimov, G.V.Efimov and O;I.Za­
vialov for helpful discussions. 

Appendix 

Let us show that the series of Sections 4 and 5 are uniformly convergent. Here we 
consider the two most typical series and prove that they uniformly convergent 

n 
·A ( ~ (Ks) 1 T(n1-z2 ) 

1 z2, z 3)= ..:.. . • 
n1=1 ['(n jl(n 1+1)[' (1+n rz 2-z J r (2+n 1-i 2 -z 3 ) 

00 

A2(z3)= ~ 
n -0 . :r 

n2 . 
(-1) l(n 2 +n1 +z3) l(n2+~)1(n 2 -l+z3 ) 

r (1 +n2) r (1 +n 2 +n 1) r (2 +n 2 +n 1) 
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(A. I) 

(A.2) 

' l 

\ 

J. , .. 
\ 

l 
l 
I 
\ 

i 

i 
i 

!: 
' I 
I 
I 

'~ 
I' 

1: 

J 
li 
' 

I 
'! 
I 

·I 
'I 
! 
I 

I 

I 

!' '. '. 
. t 

' 

We can believe that th 
We use the following for 

If'(:.: +·i yJll :=r (xJ[ 

00 . 2 
shTTJ=TTY fl (1 + ~ 

1 k 2 

With the help of them WE 

·"" 
A < ~ 

1 -- 1 

(Ks/1 

['2(n+l)f'( 
1 

2 . 

< 11 (1 + {2+Y.l} r~-
1 J? tr; 

The last series is ab! 
from all the terms. The1 

Let us proceed nov 

"" 
·A < ~ 

2 n =2 n (n 
2 2 2 

The condition of the ab! 
fore the series A 2 ·is 



(37)· 

n. ~order in G consisting 

litude consisting of ordinary . 

·oblem of unitary of the S -
,·one in the ordinary polyno-

• for his interest in the work 

nov, G.V.Efimov and O.I.Za-

iformly convergent. Here we 

nly convergent 

(A. I) 

I 
I 

J 
il. 

i 
I. 
!I 

We can believe that the variables . z i are imaginary and change in the infinite I imits. 
We use the following formulae /IJ I 

• CXl y2 -¥2 
!f'(x+·iyJll.=f'(x)[IT(l+ -.-

2
)] (x> 0) 

o (x +k) 

CXl 2 
·shTTY=TTY IT (1 + y

2
). 

. 1 . k 

With the help of therry we can obtain the following estimate for the ser:ies A 
1 

00 

1 2 (n +l)['(n +2) 
1 1 

CXl. 

IT 
Q 

(A.3) 

(A.4) 

(A.5) 

The last series is absolutely convergent. 

from all the terms. Therefore the series A1 
Let us proceed now to the series A 2 

The y -dependence is uniformly separated 
are uniformly convergent. · 

. Using (A.3) we can show that· 

(A.6) 

The condition of the absolute convergence of this series n 
1 

'· -4 
fore the series A 2 is uniformly converg~nt too. 

is fulfi lied. There-
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L 

npenpHHTbl H coo6m< 

HMHOI'O o6MeHa, yHHBepci 

aaytJHbiM rpynnaM H OTJl 

nonytJaTemiM H3Jl8Hl 

RBHTb HHHUH8THBY B 6ec 

o6MeHa npHHHM8lOTCH Hf 
ny6nHK8UHH no T9M8THKI 

EJlHHCTB9HHhlfi BHJl 

,aTO penpHHTbl loTTHCKH C 
B pHJle cnytJaeB Mb: 

6onee KpynHbiM nonytJaTE 

cnaTb H8M K8KHe-nH60 K 

:lKypaanbr, H3JlaiO.mHecg B 

HanaTenbcKHfi oTJlel 

COB H8 BblCbinKY H3Jl8HH 

YK83biB8Tb HHJl9KC aanp. 

nHCbM8 no BCeM BC 

OTJl9nbHbl9 H3Jl8HHH cneJl: 

( 

AJlpec JlnR nocbtnKI 

6ecnnaTHOfi noJlnHCKH aa 


