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1. Introduc tion 4

In the present paper we contlnue to discuss the problem of the constructlon ‘of the
higher orders in the major coupllng constant . G in_quantum field theories with non-
polynomial 'Lagrangians.. We have begun this “discussion in: prevnous ‘papers /1- 3/
At present there is a number ‘of papers ‘in which similar’ problems are mveshgated /1 "8/

' However, a lot of questions remain still unsolved in these theories.
... The following problems are the chief ones in our opinion: the |ntroduct|on of mter--
mediate regularization with the help of which we get the finite results in our theory and

the test of unltary of the S -matrix. The solution for the latter problem is given in -

our paper 3/ “and partly in /2/ . There we have proved the unltarlty of the S -
matrix in nonpolynomlal _theories in the third order .in 'G. Here we would llke to
focus - our - attention on . the former problem lniroduchon and subsequent removmg of
lntermedlate regularlzahon :
i We |nvest|gate the scattermg amphtude of two massless scalar part|c|es in the
third order in G for "the exponenhal interaction. The ‘attractive feature of this process '
-is the fo||owung In this case we can perform explncttly all the integrations over the in-
termediate 'momenta. We are able thereby to demonstrate most c|early our, method of -
" ntroducmg and subsequent removing of |ntermed|ate regularnzahon :

" As'far as we are dealing with the case of massless particles, in addmon to ultrawolet
divergences we meet here ‘infrared divergences. The suggested method of analytical re-
g gulan:ahon is found to permlt removmg not only. ultraviolet dwergences but a|so infrared

ones

... Similar problems in renormalizable theories are solved by the Speer’s method (see/yﬁ.




In the case of the exponenhal mteractlon the higher perturbatlon orders are ex-
pressed through- the integrals of the product of superpropagators 1,2/ . We show that
if we take these superpropagators in the form obeying the prmmple of minimal singula-
rity “introduced by H.Lehmann and K.Pohimeyer /“’/ then the scattering amplitude
constructed -from these superpropagators in the third order in ‘G agrees autométically
with this principle. ,

This result is. in agreement with similar results, obtained in the third order in

"G by K.Pohlmeyer /?/ - and M.Daniel anyd P.K.Mitter /18/ . Their approaches differ
essentially from ours /1-3/ They have suggested to” use the principle of minimal
singularity - for constructing independently every perturba'uon order. We propose to use -
the ‘'same. principle of mmlmal singularity, but only for selecting a superpropagator-in
the ‘'minimal’’ form. Then we construct all the orders of perturbation theory with the
“help of these ‘‘minimal’’ superpropagators. It seems to us that this approach is:more
convenient for constructing the higher perturbatlon orders in’ ‘G .

. In Section 5. we show how the result obtained for the scatterlng amplltude of the
two particles is generalized to more complicated cases.

2. The Superpropagator of Scalar Massless Particles.

Let us consider the exponential Lagrangian of the scalar massless field ¢ (x)

£ (=G templag(n)-1- g¢(x)_.§¢ Wl W

When ‘we construct - the scattering amplitude (the Green functibn)‘in the higher orders
in G , the main difficulty is connected with sthe definition of the integrals of the product
" of the generallzed functions - superpropagators Note hére, that the scattermg amplitude
in the higher orders in - ‘G is expressed in terms of the product of the superpropagators
‘only in the case of the: exponential interaction of the fields. In the cases of more general
interactions, the higher ord‘ers in. 'G are expressed via-more complicated functions,
“"mixed"’ superpropagators (see /2/ S ) ‘ '
The superpropagator F (X) in the exponential case (I) takes the form

To 2n ' N " . . ’ . ) . S ‘A\‘ o .
F(x):i 3 — & | iA], @
" (n+l) ‘ N
where A c(x) is the propagator of the free scalar massless field, and '(n+4)

is “the ‘Gamma function. For this superpropagator we can write the followmg integral
representation in the momentum space’ 151/



F(p)=timF. (p), - | )
,y—»_l Y ‘ .

-~0+1°o

L | . 8mk z I(-yz)
. 'F (p)=1id—m——o dz Ctgvrz[K(p +ie)e ” - X 4
14 p2+'1e _({_m (2" (2+2)

Here k= (

When we ~want to go over to the limit y = 1 . We should use some other representa-
tion for the F (p) . For instance, we can use: the representation like (4}, but with
a_contour bendu?é to the positive real axis. The representation (4) is.very- useful for the

calculations of the integrals over the intermediate momenta in the higher orders in 'G .

In general, some ambiguity can' appear in the formula for the superpropagator in
the momentum  space (see /11/ ). However, utilizing the principle of minimal singularity

2 .
) and the parameter -y s real and larger than four in formula (4).

we can remove this ambiguity and obtain formula (4). Further, we shall use this principle

in "obtaining the "expression for the superpropagators in the second order in 'G. and
‘ shall construct the higher orders, using these expressions. The formula, obtained for

the scattering amplitude in the third order in "G with the help of this recelpt automa-

tically agrees with the principle of minimal singularity.

3. The Scattering Arhplitude of Scalar Particles in the Third Order in 'G

Let us consider the diagr}:m, given on Fkig.l.

)

L7 .

/=7 |
— - Superpropsgalor.

Fig.l
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This diagram describes the scattering of two partlcles The scatterlng amplltude corres-
pondlng to this diagram, in the . x- -space can be wrltten in the form -

ou w00 2(ni+nzt113) .
F2”(x‘1_,x2,x3).—g L%‘)lg X - : . . (6) -
) n,
[-—‘-i‘/\((xl x2;] 3[—4\ (}\ —)3)] A_in € (J\I—x 3)]

X

n,. nj .’n3.’

With  the 'help of the representation (4) we can write the following expression for the

scattering amplitude (5} in the momentum space depending on the three arbltrary para—
meters y° (7. 1,2 3)

Fy(p_ P, ) F (p,p )4F (9),

_().}im

w

: . X . -~ z. e .
Fy(s):c i dz3 dz 2(121 lli } Clgnzi[KO ’ | ix _ ‘6?
—(—=jou
I'(~yz) )
X i f!(slz',ZQ,zﬂ).
Pz V(2. +2) : ’

Here

A N ot TS B
f(s)zy,2;,2,) = [du(q ric) l(p; q)+tf] w2 lpy i) il o
'S=(.'?1+,D,2) P) }’={)’1 7}’27 }’3}7



+

o ' 0 P S R
c =g10 /8 and Fy (bl »p,)is the part of the scattering amplitude F}' (pl,p2), '

which corresponds to these didgrams of Fig.l, where one or more supérpr‘opagaf‘ors are

replaced by. & -functions, & “(g) . The function: F),O (pj,p,) -isinvestigated

by us in paper 2/,’and we shall not consider it here. .

The function f(s[ zl,z?z‘a)is expressed through the integral in which uliraviolet
and infrared divergences can be contained. However, we can choose such 2, -values
for which all these divergences will be absent in the integra! (7) v

Let us believe that we have found these 'z, . Now we.can calculate the integral (7).
Here it is convenient to use the representation :

. ) : , 00 . 2 .

2 ., oz=1 o iz, = it q “—€a . ‘

(¢ +ie)” = l_(z)e 2 “ginn z fdaa %e , . v {8)
1T 0 o B
With the help of (8) we can get.

‘ . 1 3 "‘n‘z ‘~ l - . TR . .
A(slz, ,z, ,z, )= [e 2.4 ‘gingz,T(z,) [da a X
o1t 2 3 1. I e i i _

-2 . aja, v ; 19)
i xlay +a,+ag) gx‘ph—-——-——-————S—c(a1+a;2+a3).

‘41+a2+a3

)\=a1 +a, +tag we are led, to the

After replacing the variables ai=)\’i .

4integra| : » o P 2241 2phegt
-f(SleI,Zz,Z:,, )=(—is) I'(1l-2) -gfdtl di,dtgt, t, x
—z3 3 . o ‘3. - (10)
Xt? 5(1—»?!1‘.), (z.‘;%;i}

" The problems connected with the existence of -the integrals -of tre type (7} and with
removing,t?e ultraviolet and infrared divergences in these express.crs are investigated
in paper / ° . ' ‘ '



g Now,We;ca’n easily see, that the integral (10) exists in the domain, where Re z,< 0,
E ‘,Re:." 2' <0 , 1> Rezj >‘m'ax([Rezl I Re22 1) > 0.

“Calculating' it in thls domam we come to the followmg expressnon for the functlon
f(s| z, ,22,23) ; - :

f(s[zl,zz,z )—
-z—1 smnzlsmﬂzzf‘(z )F(Zz)r(21+23)r(22 +23 : m
= iws ¢ : )

singz [N(z)'(z+1)

Now we pay our attentlon to ‘the deflnltlon of the integral (6). This is the iterated integral
over the three complex variables zl R z 5 and 2z3 . The integration domain
bver the two first variables 2z, , and z5 in (6) comcndes with the domain, where
the “integral (10) exists. ‘But the integration domain over variables z3 in (6) does
not. coincide "with the latter and is somewhat shifted to the left. This i |saconsequence

* of the infrared divergences contained in our scattering amplitude.

‘ Taking into account this consideration we suggest the following receipt for defining .
the - iterated integral (6). At first, we calculate the integrals over Z;and Z 5 in the
domain, where Re z4 >,B >0 . Further we consider the obtained integrand as a
function of : one complex variable 23 and continue it ‘analytically through the domain
1< Rez3< 0 , where the integral (6) is specified. Then we calculate the last -
lntegral over zg4

_ We can go over successively to the I|m|ts Y= A after performmg the integrations
over the corresponding variable z; . We can also keep all the auxiliary parameters

Y; . until the integrals over all variables ‘Z; are taken. Then it is seen, that the
.Fy (=) exists as a finite function of real y; in the following region
Y2y, 2y 2 1.
(12)

Further we shall go successively to the limits v, =1

It is important to note, that the procedure suggested by us for the defiinitic}n of/the
2,3 )

“integral (6) completely~agrees with the unitarity condition of the S -matrix (see
if one uses other ways of defining the integral (6), in the expression for the F(s)
_terms can appear which are in contradiction with unitarity.



4. Rehvo?a/ of Infermediate Regu/arfzatiod o

Let us now define the limit ’yi=1 of the function F (<) following the procedure
‘which was described in Section 3. Y
Using formulae (6) and (1), we can write the Fy(s) in the form

. _VO +iocc z ‘ | —0+io0
g 3 T'(~ (-
Fy (s) ='-i’_c. [.dz5(k's) ( v s2gt (I=2) xL[f dzzdzl‘ X
' $ —0—ico I2+z,.) =0—ies ©
2 | z; V(= z) L(z,+z,)[(z, +z3)1i(coswzi ) —imz 13-
xI ((xs) —) e "

}r(2‘+zi) sinrz'(z)T (1+z )

where the square brackets mean, that the integrals in between are calculated in the domain

Rez,>B > 0 . Then the obtained function of one variable z4 s continued
analytically in the domain —1 < Re z; <0 . After that we calculate the integral’
o over zg4 )

First we obtain the limit v, =1 for the imaginary part of the F (s)
) ' ' 4

13

e I—O-l-‘ioo N 23 F(_y3 23)F(1—Z3) —O-F('oo
JmFy (s)=—i— [ dzs(ks) x[ [f dz,dz, x

—0—ioo T'(2+z3) —0=ico

2 T(yz) (2T 42y) 3 (14)

N((ks) 1| -1,
xl_((Ks) @z, ) T ) 1(cosnz, )]7




We see, that we can bend all the contours in the |ntegra|s (|4) to the posntlve real axises.
Successnvely performing.the integrations :and gomg to: the Ilmlts y.».,‘,~1 , we obtam

the following expression for the ImF(s)

1 n‘ *"2

00 B ._1 .
ImF (s) = —r2r)3—°— >3 ( ) (es) : X
s 0 "(n, +)F(r +2)(n, 1)'1‘(n2 +2).
. . ‘il ] T L  3,:,;.‘ \ o
s (ks)" (g )V (g n5) 1. (n=3n,) 15)

X
+)T o 3.1 : i
6n3 l(nj)[(ng&l)l (n3+2)l(n)l (n 4 ) \
‘Here all the series are absoll'u.tew; convei—gen{; The as;%mptofic beha;/i'oui;“of the imégjinafy

part of the - F'('s) when s > s

’ e 1/3 S :
—z,b(s)cus[‘)vq K\)I/:;](;Xpr (KS)/ 1, o {16)

“% o

, 1where' ‘¢(s) increases sl0wer than an exponenhal : AN R
*Now ' let us find the limit y =1 for the;real. part of the F(s) We 'show that -

the limit of the ReF (s) is equal to

RS '(".)."V‘ CE v

: : A—(;+xoa zh i (- I 1__
. ReF(~S)=A(S).<) 1—(. f dl':;()\'s) ( 13 ) ( £3)
, : S L0=ie S I‘(2+, )_ . |
. e » ko o
—-O+1ua ‘ 2 -
z, T (~2 r(/ z on (7 + )
~xl i dz dz; ll ((/\o} F(=z) . i z, L

—0=jw

T2z ) sinnz. F(z)l (1 )

Note, that the series which appear after integration over z; and z, are uniformly
convergent (see Appendix). Therefore we can integrate them term by term.



where: °

00 . n .
Mo)mtnt & § (xalfan), (8)

P2 (140 )T (242)

" The integral- in formula (17)“is" a decreasing function'of ‘s  when s o . The iriple
and double infinite series, which are increasing functions of the type (15), completely
‘cancel -one another ‘and-disappear in the limit Y =1 . The remaining increasing in

“term,. "% (s) , is obviously a trace of the infrared divergences contained in our
amplltude The obtained’ expression for the ReF (S) differs from a similar expression,
obtained in /7.8/ only by that term : 7 .

Let us show:- now ‘that the expression” {17} is the I|m|t of the xe“' {s})" when

Y; ~1 . One of the possible ways of -obtaining formula {17} is the followmg The cosines
‘standing in_the numerator of the integrand of the- '(eF (e) can be rewritten in the form

3

.cosnztlll (cosn 2z ) -1 .w'nnzlsin ITZZ(‘O.')'W(ZI v2.,) =
; i . ) 2

2. i (19)
—sin‘u(z 12 )—cosmz, cosmz Singz, Sinaz .
1 2 1-. 2. 3

COrrtéspZ:oindingly .the' real part of the F (s) is alsold/ecomposed into four parts. In-
the first one we can ‘at once. go to the limit y; ~-1  and obtain the integral standing
in the formula™{I7). . The "third and the fourth parts of the ReF, () almost completely
cancel- each other. From them only the term —87 7— survives. At last the limit of the
-second part is equal to_ A (s) without the term ~8nterss. . ‘
T Let us obtain these limits. We shall begln WIth the. second part of the RuF (s) . :,

------

a()l,-\_ ’ O STV .
' ~y3z I 1=
ReF (s) dn? = [ oday (I‘\‘.\')’ l (= }3/’) A 77) [(d/ dzII'I *
: —-()—-px N 7 I-(2‘7~; ) —-()--rr\.
('} L (I\\) ‘i sinnz; ‘ cosa(zyizy)V (223l (22423 ) J (20)
(e
’ sinmy; | (Iiyixi-)l‘(Z vz ) WnnZI (z)l (z rl)

“Note, that i the case p 100 (i..1,2) |nvest|)gated by Pohlmeyer the infrared
. _divergences: are absent. Thereforé the term like , must not appear in his results.



We bend the  z; contour to the posmve real axis. Then we mtegrate over ZI and
go the “fimit Y -1

-=04i : —0-Loo
'ReF(__2)(s)=2n2.£.. j1dl Py, %)F(I—%)[ fOH sinnz, cosnz, I'(z,+z;)
g yoo S-—O—;w F(2+23)

. %
~0—jo Stn7y2 2F(l+y2zz)[‘ (2+z 2) ‘

o~ . nl ‘_ ‘ .
x ¥ (cs) [,‘(n’ 22) : 1 , (21)
Cn, )r("l"l)[‘(1+"1‘Z2f23)r(2+"1 -z, =z3) \

(y = ¥y2,y3 i),

The lnflnlte series which appears in (21} is uniformly convergent {see Appendix). Therefore
we can integrate it term by term. We agam bend the

Z 5 -contour to the positive real
axis, integrate over z, and go to the limit y, =1

. Then we get the double series

sin nz }_( 1)"2 [(n2+z3)l"(n2 -1+23)
k l“(!?2%1)

4 (22)
WS («s)! U(n -n,+z; ) o
L P(e a4 DU (n +a

ot 1) [‘(nl+n,_,+2)

12



- This. series is also uniformly convergent (see Appendix). Therefore we can integrate -
it ‘also term by term. We contmue analytically each term of this series th*oughout the
domam Rez3( 0 and perform the mtegratlon over 73 Gomg to the limit y3 .-=1 '
‘we obtaln .

.

2 ' Nt ,
ReF ls)=ant €3 (k9" (Qin) : (23)
‘ ST ST M D (na2) ‘

3 N
A similar calculation made for the Re l"(y)(.s*) gives the following result
n
~ . 3 .. n ] Al .
(-1) (xs)” | (nl+n3)| (n24n3)

RUmes)-.-—Sn“—c—-[ll— hp -
. s .0 l“(nli-l)lj(nl-12)]“(n2 )1 (n2 12)

A

3

: x ( |‘(n3)l‘(n3 {.1)[‘\(n3 k2)1'(n) 1 (n +1))’1 l. (n: Elln'i) (24)

. Finally we can find very simply the limit of the fourth part of Re Fy (s)
in the same way as the limit of the ImF y (s). .ltisequalto

. _ o B DIEPIAT BT I .
ReF (4%5‘)::—8774%- DN (/fl) (’\. b), L(ny 105)] (nl)m-q) SR (25) '
S0 U, )1 (n 42U (0, 1)1 (n 40 2) o C

EXONCNINCRPINC [OLNCPINCER :

B Summarizing all these results we obtain the formula (17) we looked for.. : o
Now we shall show how the results obtalned here are generalized for the case of
- the trlangular diagram with external momenta - pi ~0 (i 1,2,3).



5. The Trlangular Dlagram with External Momenta p2> O ( i= 1 2 3 )

In ‘the “general case the parameirlcal Green functlon or. the/sc7tter|ng amphtude
in the third order in G is represented by the following integrals.

: —im z.
—0—jioo o 3 1
Lo (4) 3 ‘ e cosmz;(ke .
F%p ,p ,p. )=id p, ) Iff dz dz dz n [ ( )
y 177273 1 O_m : smny z F(I +y z, )F(2+z )
‘ AU ' 25)
1V (122) (2, 2,21 1 pY,), o
3 .
(Z = EZ'. )'-
1
where
f(z3’ 7ZHP‘0)=
2 2 2 -1
1 z -2 pe+t pl+ttp e (27)
= [ dt,t, 2[dlt3(1+t vt t) i T375 32 kel -
0 . 1+t2 oty
Here o=1i,j kl 1jk ~are not equal to one another a’nd take the values I,2,3.A;
The behaviour of the function f (z3 yZ 442 Clipd ) "has” been carefully‘investigated
in the paper /7/' A
We consider here the most simple case when all the p‘lf)\ 0 . . On the basis of this
instance we show that our result - coincides with Pohlmeyer's - results obtained
in' the paper /7 . Like Pohimayer's formula the obtained by us expression for the

scattering amplltude in the third order in G agrees with the principle of minimal
singularity. - ‘ N R L :

In the case when all p,>0 always (p2+ p +izt, pz)‘j(O
in (27). Therefore we can easily estimate the behavuour of the functuon f(z,, 2,2 z. |ip }a)
in the domain €} :

Q=1{Rez >0, o > Rez,>-, Rez>0}. (28)



The function [(23,22,/|;p(0) is meron.10rphic' in" .. We can express it
through a holomorphic funchon [(ZI 75,2 | {p} 0) in the following way

(1 . ' '
(_3_72)_ f(z,2,,2lipl ), a3 (29)

gxnnzjl (23)

Iz ;2,2 | Ip} )=

',;NhQFE«
[(ZJ;ZZyZHPUU: . “ - . -
7(p, 41 2yt
(N (—2- in(z;-2y) . P 1+ p p- .
:_I(ﬁ).]j_(_f_z_)_c 32 E ’tt; 512 ]1 . (30)
2 : 1
c c (! +, + L, .,.)
“'Here the contour C encircles the real interval [01] . I is so close to it that the

_expressions |n the brackets in '(30) do not vanlsh in the domam bounded by the contours
C

There exist.positive constants Ml . M2 and M3 suchthatin )

= Rez Rez, | Rez
[(z3,2,,2ztp} )< M, M, 2 My 3~

_ Rez. ' ‘ ‘
Rez, |z3| €%3 exp-ZL 7(|1m l+|1m23g). (31)

!

><|z2

Using this estimate for the behaviour of the function f in- 9 we can carry out the
procedure of going to the Iimit'y, =1 in the function ' F(’(p],p2 Py in the same
way as we did it'in the Section 4.

We shall again_consider the real and the lmagmary parts of the F lpdepqn,déntly.
» . Using the formula (19) let us decompose the ReF? . on four parts in-the first part
. we can go |mmed|ately to the limit Y; =1 . After integrating over z, and going to
. the limit yl_l we obtal.n for the ReFU(-?)

—0+4ix ‘
ReFa(2)=25( p )ffdz d? clgn z3 .stnﬂ27r(1—i7 )
v —O—m smrry z smvy zl (7 n (21/ )I (lay z?)] (1”222)

(32)



k"L F(Z3{22,nlip¥&)

1 .
L(n) T (1 +n —z 4—23 ) (2 +n —z,~Z )
S - . 1{32)

(2+Z ).

00
X - x
1

it can be easily seen that the next step, the lntegratlon over 22 and going to the limit

, gives the result

Yar= 1 ‘
Cp g O(2) - .
' 3
Performmg successive transmons to the limits Y =1 forthe Re F;( ) _
we obtam ‘
ing (-x)” '3 3 k2 .

"Re’Fﬂ”:‘: 85W(Ep )3
; ~ 17171 D )T (n+)0(n 3 T(ny+2)
: /,(34)'.

- 3
kn1f(n3,n2, 21: niH p’a)

x 2 -
0 T'(n +)T'(ny+2) T'( b n,)
1 1
_‘For the ReF o), we obtain the same expression but with other sign. Summarlzlng all these
results we get for the Re F"(pl »PyrP; ) : :
g (2 P,) —0+ieoc I(~z, )
- ReF' (p.,p., p)= ——— [[fdz_dz dz, n[x I 1 ]x
r-23 it —0—joo 3 2 - T'2+z,) ‘
. i - (35)
xI'(1-z) f(z3, z3',. zlip }U).
2
p, — .
1

This function decreases when any

6



: L ' Lo
Let us give also the expression for the  ImF (pl, P,» P, ) )

v

(_1)113 Kn2+nI

ImF? (p, p, 0, )=S0 P (z; p,) ‘52 : x
U'(n, +1)T(n;+2)T(n} +2)

. 3 (36)
Jd [ K3f(n3yn2;§”,~up}a)

¥ — 1.

Ing L )1 +1)‘1"(n3+2)l"(§:ni)

At p? - oo this function increases as an exponent al.

These results are in agreement w1th the principle of minimal singularity /7,10/

In conclusmn of - this Section we would like to qote that in a similar way we can
|nvest|gate also the most general case, when a part of p 2‘ >0 :.and a part of p2 0
(1 = 123).. In this case |t is convenlent to dlvufe the mtegra over ¢, in the

R o n the first part (n2 2)s 0
| function [(,43 R Iip }a) into two parts. In the first Part (pi +t3 pj2-;-t312pk)_‘.f_ 0

. A *
in th d 2 2)< 0.
and in the secon (pi+t3pi_+t3t2p12_ 0

6. Conclusiqn

Thus, we have shown that the scattering amplitude} constructed with the help of the
““minimal’’ * superpropagators - does not contradict the brinciple of ‘minimal smgularlty
in the third order in ‘G ~ . The removal of the intermediate regulelxrlzatlon can conve-
niently be made by passmg successwely to" the Ilmlts Y: =1 ,,}" =1 and finally
)/3 = 1. i .
The =S -matrix is unitary in this theory},< We can'! verify it using the spectral rep-
resentatlon for the superpropagator (see [23/* ) ‘ ‘

*A similar way was used by Pdhlmgyer (see/7i’ ). :

¥ Note, that the function (37) is identically equal to the function (4).
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4z)? )
p-+ 1€
{0{-1'00_ _ ) ' z‘_‘ .
~i8uk [dzcosmz k* F(-rz) [ du? L
+ 0— I~ I'(z)U(z+2) Y p, -p 2-ie -

With the. help of this representatlon any amplltude inthe “n_-orderin- G consisting '

of superpropagators: is expressed through a slmllar amplitude consisting of ordlnary S

propagators of thé massive partlcles Owing to thls the problem of unitary of the § -.
matrix in the nonpolynomial theory reduces. to an analogous one in the ordmary polyno-
mial theory {see /2,3 / ). '

‘ The author is deeply grateful to Prof. D.I. Blokhmtsev for his interest in the work
and-the valuable advice. The author wishes to thank A.V.Efrémov, G.V.Efimov and O.l.Za-
vialov for helpful d|scusswns

Appendix

Let us show that the series ofy Sections 4 and 5 are uniformly convergent, Here we
consider the two most typical series and prove that they uniformly convergent

°° . (K's)nl l"(nI-—zzA)" : ' v
A (Ad)

.'AI(z 3)._ 2,
1~ F(nI)F(n +1)F(1+n -z —z_?)F(2+n —z2 z,;)

A( ) oo : (_1)"2 [‘(n2A+.nI+z3) F(ny+z )T (ngy—1+z3 ) . “a.2)
"2_'0 l"(1+n2)l"(1+n2+n1)l"(2+n2+nl) :




.- We can believe that the variables . z; are imaginéry and change in the infinite limits.
~ We use the following formulae /13/ : ‘

R . o y2 ..1/2 : » ’
IPGriy)l| =T ()l 1+ ——)] (x> 0) (A3
| 0 (x+k) «

@ g ; y2 : . \

With the help of them we can obtain the following estimate for the series AI

(1+ (Y,)+ .}’_’,‘)2)(1l ‘(YD +}§)2

o0 . ﬁ] . 2 » 2 1/2
4, < p3 (ks) [ 1 v(1+n1+1<) (240, + k) 1<
T Lo ‘ a ,
r (n1+1)F(n1+2) . y o | | .
o0 ¥ 2 o0 n ) . - n]
T B )§ o)t vy § (k) :
1

' 1 12, .
"P2n 1 (a2 7O, ) (0 )V (n 12)

The last series is absolutely convergent. The y-dependence is uniformly separated
from all the terms. Therefore the series A; are uniformly convergent. - K
Let us proceed now to the series A2 .‘Using (A.3) we can show that-

hai I'Cn, ~1) . R
4,< 3 2 : a6
. ons | n, (n2 +n )F(n2+n1+2) ‘ :
The condition of the ‘absolute convergence of this series n, w is fulfilled. There-

fore the series ‘4, is uniformly convergent too.
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