ИССЛЕДОВАННЙ

Дубва.

E2 - 6653

D.I.Blokhintsev

GEOMETRY AND PHYSICS OF THE MICROWORLD

Submitted to " $У Ф \mathrm{H}^{\prime}$

$$
06 \text { 2equasisan umennyt }
$$

 EHSTHOTESA

Блохинцев Д.И.

Геометрия и физика микромира
Настоящая работа является очерком проблем, возникаюших при переносе геомотричесхих понптий из классической фиэихи в мир элементарных частии.

Препринт Обљедлненного института ядерньх исследованлй. Дубна, 1972

Blokhintsev D.I. E2 - 6653

Geometry and Physics of the Microworld
The present paper is an essay of problem arising as a results of the transfer of geometric notions from classical physics to the world of elementary particles.

Preprint. Joint Institute for Nuclear Research. Dubna, 1972

It is important for the problems to be considered below that the metric (1) is indefinite. Hence, it follows that the notion of nearness of two events \mathcal{J} and \mathcal{J}^{\prime} in the $X_{4}(x)$ space is not an invariant notion and may be formulated only as applied to the given frame of reference Σ.

These are the most important features of geometry, rather chronogeometry[7], which is the content of speoial relativity.

It is also possible to choose another method of arithmetization of events and thereby obtain another geometry.

The basic advantage of the method suggested by the Einstein theory of relativity consists in that it is just this method of arithmetization that reveals invariance of fundamental laws of physics. A law which in the frame \leqslant is expressed by the relation

$$
\begin{equation*}
F(A, B, x)=0 \tag{3}
\end{equation*}
$$

in the frame \bar{Z} is expressed by the realtion

$$
\begin{equation*}
F(\bar{A}, \bar{B}, \bar{x} \ldots)=0 \tag{3}
\end{equation*}
$$

Where $\bar{A}, \bar{B}, \bar{X},-\quad$ are scalars, spinors, vectors or tensors. Therefore not any means of arithmetization is valid. ' The means of arithmetization must be, first of all, physically realizable (at least in an ideal experiment) and, secondly,
maximum universal. The latter means that it must be based on the widest range of phenomena ${ }^{x}$.

Here we can stop the description of the method of arithmetization of events ocmonly accepted in olassio relativistic physics.

In what follows possible restriotions on this method are oonsidered, which are seen to be useful for understanding more oomplicated situation in the worlds of elementary perticles.

2. Possible_Restriotions on the Arithetization Accepted

In classic physios, to the oonoopt of point-like ovent $S(x)$ there well corresponds the oonoept of material point - an objeot of finite mass ($m_{0} \neq 0$) and infinitely small dimensions $(a-0)$.

In virtue of the faot that the spaoe $\mathcal{R}_{4}(x)$ is assumed to be oontinuous, at each of its points one oan oonstruot a spaoe of tangent vectors of infinitesimal alsplacements and a covariant momentum spaoe $P_{y}(P)$. The metrio of this spaoe is also indefinite and has the form

$$
\begin{equation*}
\alpha p^{2}=\alpha p_{0}^{2}-\alpha \vec{p}^{2} \tag{4}
\end{equation*}
$$

[^0]Where $\alpha \vec{p}^{2}=\alpha p_{1}^{2}+\alpha p_{2}+\alpha p_{3}^{2}$. This form is unambiguously defined by the metric of the space $R_{4}(x)$. Thus, the structures of the spaces $\mathcal{R}_{\xi}(x)$ and $\mathcal{R}_{5}(p)$ are not ind dependent.

The motion of a material point (or of a system of material points) can be formulated, in the most general way, in terms of the finsler geometry. In this geometry, the Lagrange variational principle looks like the condition of motion of a material point along a geodesical line. The element of length αs of this 11 ne is

$$
\begin{equation*}
\alpha s=L(x, \alpha x), \tag{5}
\end{equation*}
$$

where \angle is a homogeneous function of the first-power displacements αx [7].

Within the framework of special relativity, there are no logical oontradiotions between the Einstein way of arithmetizatron and the meohanios of material points. Therefore, in special relativity, material points may be thought of as objeots mhioh realize physically a point event $S(x)$.

Restrictions some from the side of gravitation. If the gravitational radius α_{y} of a material point

$$
\begin{equation*}
a_{g}=\frac{8 \pi \times m_{0}}{c^{2}} \tag{6}
\end{equation*}
$$

(here $\kappa=6,7 \cdot 10-\frac{8 \mathrm{~cm}^{2}}{\mathrm{~g}} \mathrm{jec}^{2}$ is the Newton gravitational constant, m_{0} the rest mass of the matrial point) is larger than its dimension \& then "inside" the material point, the metric relations ohange so strongly that the division of the manifold
$X_{y}(x)$ Into the space-like and the time-like parts loses its sense. Therefore the space inside the sphere of radius $\alpha \simeq \alpha_{g}$ is nonlocal in the sense that the usual ordering of events inside it becomes impossible.

This situation is due to the state of matter. For $a=\alpha g$ there arises a certain critical density of matter

$$
\begin{equation*}
\rho_{g}=\frac{3}{4 x^{2}} \frac{c^{6}}{(8 x)^{3}} \frac{1}{170_{0}^{2}} \tag{7}
\end{equation*}
$$

It is seen from (6) that it is advisable to have as objects marking points in spaoe-time material points with least mass $\left(m_{0} \rightarrow 0\right)$. However, in so doing, the matter density $\rho_{g} \rightarrow \infty$ tends to infinity and can go beyond the limits we are aware of from elementary particle physics.

Then a curious question arises: whether or not the method of arithmetization of events adopted in the theory of relativity can lose its validity before the oondition $\rho=\rho_{8}$ is reached. In fact, if for a oertain density of matter $\rho_{k}<\rho_{g}$ not a single light signal and even not a single neutrino signal, can propagate in a medium, due to extremely strong extinotion, ordering of events in that medium by means of light or neutrino waves beoomes impossible. Under these conditions a sound signal may turn out to be a more suitable tool for ordering events. The velocity of such a signal U may be higher than the light velooity in vaouum C. Nevertheless there ocours no contradiotion with causality sinoe the ordering is performed by the U signal rather than the C signal (for more detall see ref. [6]).

Restrictions of another kind come from the side of stoohastic graritational fields. Fields induced by turbulent motion of matter lead inevitably to that the metrio tensor $g_{\mu v}(x)$ becomes a stochastio quantity $g_{\mu}^{1}(x)$. The interval

$$
\begin{equation*}
\alpha s^{2}=\hat{g}_{\mu \nu}(x) \alpha x_{\mu} d x_{\nu} \tag{8}
\end{equation*}
$$

become s also a stochastio quantity. If the fluotuations $h_{\mu \gamma}(x)$ of the metric tensor $\hat{g}_{\mu}(x)$ are not large oompared to the average values of $\left\langle\hat{g}_{\mu \nu}\right\rangle=\bar{g}_{\mu \nu}$ then it is advisable to write this tensor in the form

$$
\begin{equation*}
\hat{g}_{\mu \nu}(x)=\bar{g}_{\mu \nu}(x)+\hat{h}_{\mu \nu}(x) \tag{9}
\end{equation*}
$$

In this oase the ordering of events oan be based on the metrio defined by the prinoiple part of the metrio tensor $\bar{g}_{\mu},(x)$ (oomp refs. $\left.{ }^{6}, 8\right]$) . If the fluotuations are not small then the ordering in $\mathcal{P}_{y}(x)$ beoomes essentially stoohastic.

Spaoes with stoohastio metrio were oonsidered in refs $[9,10]$ from the axiomatio point of view. However, axiomatic of these s paoes is restricted by a positive definite metrio. An extension of axiomatio to stochastic spaces of the minkorsicy type is still an open problem. Some relevant problems are discussed in refs, $[6,11]$.

The main question to be answered rather by physicists than by mathematicians is related to the indioation of a physical nethod of ordering. Are we approaohing hare the limits of applioability of the oonoept of ordering?

Problems assooiated with the metrio at large fluctuations and extremely large densities appear to beoome of foremost slue when analysing earlier stages of "Big Bang".

We know that nowadays matter is governed by definite laws and there exist definite symmetries. But we have no reason to assert that these forms of the existence of matter are prescribed for ever. It is quite possible that the vacuum and the world of elementary particles we are aware of are nothing less than one of possible ways of evolution of the Universe chosen as a result of competition of various possibilities.

However, at the present stage of our knowledge we have not much information for being able of discussing in more detail this facet of the problem.

3. Point-Like Events in the Moroworld

Now we pass to the world of elementary particles. Modern quantum field theory which describes the behaviour of elementary particles is based on the oondition of locality

$$
\begin{align*}
& {[\varphi(x), \varphi(y)]=\infty(x-y),} \tag{10}\\
& \infty(x-y)=0, \text { for }(x-y)^{2}<0
\end{align*}
$$

Here $\varphi(x)$ is the field operator at a point. $(x), \varphi(y)$, the operator of the same field at a point (y)
$\sqrt{\text { the commutator of the operators } A \text { and } \hat{B} \text {; } A \text {. }}$ We write down explicitly the condition for the scalar field $\varphi(x)$.

The oondition (10) $1 s$ the causelity principle and means the independence of the fields if the points (x) and (y) are spaced by a spaoe-like interval $(x-y)^{2}<0$. In other words, an arbitrary variation of the field at the point (x) oannot affeot the field at the point (y) since a signal of relooity $U \leqslant C$ oannot in this oase reaoh the point (y) and the inverse.

In the oondition of locality (1^{0}) the ooordinates of the. points (x) and (y) are assumed to be detemined indefinitely exaotly. This assumption is equivalent to supposing the existenoe of point-like events $\quad(x), \zeta(y), \ldots$ We have to analyse how auch this assumption is consistent in the franework of the same local theory

Elementary partioles, analogues of material points in classio physics, are natural oandidates for playing the role of representatives of point-like event s. However, this analogy is not far-reaohing due to a number of particular foatures diotated by the laws of quantum physios.

First of all, all particles with rest mass mo $=0$ should be excluded from the analogy since they are nonlocalizabIo in the space $\mathcal{R}_{4}(x)$ Thes oan be looalized only in a tangent spaoe $\mathcal{R}_{4}(P)$. However; there is a trouble with partiales of rest mass mo $\neq 0$, toc. Bosons of rest mass $M_{0} \neq 0$ oannot be looalized in the spaoe $A_{4}(x)$ more exactly than in the limits $\Delta x \simeq \frac{\hbar}{m T_{0} c}$.

In fact, the density $\rho(\vec{x}, t)$ of the meson field $\varphi(\vec{x} ; t)$ obeying the conservation law is equal to

$$
\begin{equation*}
\rho(0, \vec{x})=\varphi^{*}(0, \vec{x}) \Omega \varphi(0, \vec{x}), \tag{II}
\end{equation*}
$$

where $\Omega=\sqrt{m_{0}^{2}-\nabla^{2}}$ is the frequency operator and $\vec{\nabla}$ is the gradient operator. It is positive definite only in the domain $/ \vec{\nabla} / \ll m_{0}$ ice. in a nonrelativistio domain. I_{n} this case, the quantity

$$
\begin{equation*}
\rho(0, \vec{x}) \simeq /\left.\varphi(0, \vec{x})\right|^{2} \geqslant 0 \tag{12}
\end{equation*}
$$

may be thought of as the density of probability for a boson to be located at the point \vec{x} at the time moment $t=0$. However, for $/ \vec{\nabla} / \ll m_{0} \quad$ the density $\rho(0, \vec{x})$ is distributed in the space, in the domain $\mid \Delta \vec{x} / \rightarrow$ 有 $/ m_{0} c$. For spinor particles obeying the Dirac equation there exists a positive definite probability density

$$
\begin{equation*}
\rho(0, \vec{x})=\bar{\psi}(0, \vec{x}) \psi(0, \vec{x}) \geqslant 0, \tag{13}
\end{equation*}
$$

Where $\psi(0, x)$ is the wave function for a single-partiole state. There exists a belief that for the single-partiole state $\overline{\Delta X^{2}}>\left(\hbar / m_{0} c\right)^{2}$. In reality the Dirac particles obey the usual uncertainty relation $\overline{\Delta x^{2}}>\frac{1}{4} \pi^{2} / \Delta \bar{\rho}^{2} \quad$ (see refs, $[6,12]$). Therefore one might think that the Dirac particles can be localized with any aocuraoy. However, we should bear in mind
that the creation of a wave packet of dimensions $\Delta x \leqslant \hbar / m$, c
by means of the external field, even if the latter is adiabatioaily switched on, will result in the production of pairs of particles x^{2}. Therefore, a possible localization- of spinor particles turns out to be illusory, too.

We see that in the mioroworld there are no objects which would serve as a model of the point-like event $I(x)$ since elementary particles cannot be localized more exactly than

$$
\begin{equation*}
\Delta x>\hbar / m_{0} c . \tag{14}
\end{equation*}
$$

In olassio physics any material point can be oonsidered not only as the realization of a point-like event but also as a body of reference ("Bezugliörper") which fixes the frame of reference. In the world of elementary particles this is impossible to do.

If we choose as a body of reference an elementary partiole of rest mass m_{0} then in the Lorentz transformation (2) U will be the four dimensional velocity of the partiole $u=\frac{P}{m_{0} c}(P$ is the particle momentum) and the space shift components $\alpha_{1} \alpha_{2}$ and a_{3} its coordinates at the moment $t=0$.

It follows from the uncertainty relation
F For example, in a compound nucleus which is produced when two nuale1 with charges z_{1}, and \mathcal{Z}_{2} come near each other,?) under the condition $z_{1}+z_{2}>137$, there arises an eleotronio orbit of radius $\alpha_{0} \simeq{ }^{\prime} / m_{0} c$. However, in this case an adiabatic production of pairs $e^{+} e^{-}$non-single-partiole phenomenon, takes place, ref. [13].

$$
\begin{equation*}
\left[p_{i}, a_{k}\right]=i \hbar \delta_{i k} \tag{15}
\end{equation*}
$$

that the parameters of the transformation (2) become operators. Therefore, the coordinates (\bar{x}) reckoned from this body of reference become also operators. In particular, from (2) and (15) it is not difficult to calculate the commutator \bar{x}, \bar{t}

$$
\begin{equation*}
[\bar{x}, \bar{t}]=i \frac{\hbar}{m_{0} c}(x-\hat{v} t) \tag{16}
\end{equation*}
$$

Where \hat{v} is the operator of the three-dimensional velocity of the particle.

Thus, el anentary particles of finite mass can be utilized neither as objects by means of which one marks paints in the $P_{y}(x)$ space nor as bodies of reference,

Of the other hand, experimental cats point out that the predictions of the local field theory based on the microsoopio oausality (10) are satisfied up to scales of the order of $10^{-15} \mathrm{~cm}{ }^{x}$.

It should thus be supposed that there exist elementary particles with a mass much more heavier than the mass $7 / \mathrm{p}$ of a nucleon for which $\quad \Delta x \approx \hbar / m_{0} c=2 \cdot 10^{-14} \mathrm{~cm}$.

Thus, it follows that loos theory assumes inexplioftiv. the existence of arbitrary heavy elementary portioles $\left(m_{0} \rightarrow \infty\right)$ x $S_{\text {Be ref. }}[14]$

Under this assumption the contradiction between the use of the notion of erbitrary exact ooordinates in the space $\gamma_{4}(x)$ and the absenoe of objects playing the role of point-like events would be eliminated.

The limitation of the partiole masses from above by a oertain limit $m_{0}=M$ would imply a limitation of principle of applicability of the local theory for soales of the order of $\Delta x \sim \hbar / M C$.

The requirements of an ideal experiment ooncerning the marking of spaoe-time points are opposite in olassic and quantum physios. In what follows we oonsider possible reasons for the existence of the upper limit of the elementary partiole mass.

4. Gravitation in the M1oroworld

In just the same way as in maorosoopio physios, IImitations on the clementary partiole mass can oome to the mioromorid from the side of gravitation.

Aooording to the basio idea of A.Einstein, the ourvature of the space-time R and its metrio g_{μ} are defined by the motion of matter. The basio equation of the theory reads:

$$
\begin{equation*}
R_{\mu v}-\frac{1}{2} g_{\mu v} R=\frac{8 \pi k}{c^{2}} T_{\mu v}(x) \tag{17}
\end{equation*}
$$

We remind, here: $R_{\mu \nu}$ is the ourvature tensor, $T_{\mu \nu}$ the momentum energy tensor, K the gravitational constant.

A detailed desoription of the motion of matter is definitely assooiated with quantum phenomena, consequently, the tensor $T_{\mu \nu}(x)$ should be considered as a stoohsistio: quantity represented by the operator $\hat{T}_{\mu \nu}(x)$. The quantities in the 1.h.s. of (17) become also operators. In other words, whenever the motion of matter is viewed within the aoouraoy up to quantum phenomene the gravitational field beoomes a quantum field ${ }^{x}$.

The question about the role of gravitational phenomena in quantum domatn is of a quite different nature.

For example, the gravitational field genarated by zero $08011 l a t i o n s$ of a solid body is related to the field oreated by the mass of its atoms as $\frac{\hbar \omega_{0}}{m_{0} c^{2}}$ where ω_{0} 1s the Debay frequenoy and m_{0} the mass of an atom (or a moleoule) The magnitude of this ratio is $10^{-11} / \mathbb{A}(A$ is the atomio weight of atams).

We deoompose the momentum-energy tensor $T_{\mu \nu}(x)$ into two parts:

$$
\begin{equation*}
T_{\mu \nu}(x)=T_{\mu v}(x)+\hat{t}_{\mu \nu}(x) \tag{18}
\end{equation*}
$$

[^1]where $\cdot \bar{T}_{\mu \nu}(x)_{\text {is defined }}$ by the average motion of matter and $\hat{t}_{\mu \nu}(x)$ by the fluctuations of this motion. We represent the metric tensor $g_{\mu v}(x)$ in the form (9). Then the Einstein equation (17) is
$A_{\mu \nu}^{\rho_{\sigma}} \hat{h}_{\rho \sigma}+\beta_{\mu \nu}^{\rho \sigma \alpha} \frac{\partial \hat{h}_{\rho \sigma}}{\partial x_{\alpha}}+C_{\mu \nu}^{\rho \sigma \alpha \beta} \frac{\partial^{2} \hat{h}_{\rho \sigma}}{\partial x_{\alpha} \partial x_{\beta}}=\frac{8 \pi k}{c^{2}} \hat{t}_{\mu \nu}(x)$
where the tensors A, B and C depend only on the average tensor $\bar{g}_{N^{\prime}}$ and its derivatives.

If the dimensions of the mass M defining the average metric are of the order of α the space curvature R is in the order of magnitude equal to

$$
\begin{equation*}
R=\frac{1}{e^{2}} \simeq \frac{1}{a^{2}} \frac{a_{g}}{a} \tag{0}
\end{equation*}
$$

as it immediately follows from the Einstein equation (17). Here α_{g} is the gravitational radius of the body (see eq. (6)) and l - is the length characterizing the space curvature. If the characteristic fluctuation mass is $\Delta M 7$ and its charaoteristio size is b then eq. (19) can be schematically written as

$$
\begin{equation*}
\frac{\alpha}{e^{2}} \hat{h}+\frac{\beta}{l e^{\prime}} \hat{h}+\frac{\gamma}{e^{\prime l}} \hat{h} \simeq \frac{b_{g}}{\sigma^{3}} \tag{21}
\end{equation*}
$$

Where

$$
\begin{equation*}
b_{g}=\frac{8 \pi k \Delta n 7}{c^{2}} \tag{22}
\end{equation*}
$$

is the gravitational radius of fluctuation, $e^{\prime}-$ the length scale characterizing the stochastic field gradient K^{1}; $\alpha, \beta, \gamma-$ are the numerical coefficients. Following the meaning of eq. (14) $\ell^{\prime} \ll \ell$. Next, it follows from the linearity of the equation that the scale of length defining the gradient of the tensor and the scale defining the gradient of the matter tensor should be compatible. Hence it follows $e^{\prime}=e$. Thus, on the basis of (21) we have

$$
\begin{equation*}
\hat{h} \simeq \frac{b_{g}}{b} \tag{23}
\end{equation*}
$$

This equality defines the order of magnitude of the fluctuations of the gravitational field by the magnitude of the matter fluctuations. Hence, it is not difficult to determine the fluctuations of the metric tensor which are caused by zero oscillations of a certain quantum field. For example, for the scalar field $\varphi(x)$ zero mass oscillations of a sole exceeding b are
$\Delta m(b)=\frac{\Delta E(b)}{c^{2}}=\frac{b^{3}}{c^{2}} \int_{0}^{1 / 6} \frac{1 \omega_{4}}{2} d A^{3}=\frac{\hbar}{c b}$.
where $\frac{\hbar \omega_{x}}{2}$ is the zero energy of a k-th oscillation. $I_{\text {ns erring (24) in (23) we get }}$
$\hat{h} \simeq \frac{8 \pi r}{c^{2}} \frac{\Delta m(b)}{6}=\hat{g}_{g}^{2} / e^{2}$,
where

$$
\begin{equation*}
\Lambda_{g}=\sqrt{\frac{8 \pi k \hbar}{c^{3}}}=0,82 \cdot 10^{-32} \mathrm{~cm} \tag{26}
\end{equation*}
$$

is the known length uniting the gravitational constant and the Plank constant. It is seen from (25) that this length defines the magnitude of the fluctuations of the metric tensor which are caused by the quantum fluctuations of a material field. These fluctuations are small throughout the whole range of frequencies for which

$$
b>\Lambda_{g}
$$

$N_{\text {Ow }}$ we return to the collapsing particle considered in section 2 and take into account quantum effects. A partiole of mass m has an effective dimension of the order of $a=\frac{\hbar}{n 1 c}$ We assume that this partiole has reached its oritical mass so that its gravitational radius is $\alpha_{g}=\alpha$. Then it follows from the condition $\frac{8 \delta k m}{c^{2}}=\frac{h}{m c}$.

$$
\begin{equation*}
a=\Lambda_{g}, m=M g=\frac{\hbar}{\Lambda_{g} c}=0,52 \cdot 10^{-5} \mathrm{~g} \tag{28}
\end{equation*}
$$

Thus, the length Λ_{g} defines the maximum mass of a partiole obeying the laws of quantum theory . According to (7) the density of matter reaches tits limit value.

This particle was called by Markov maximon $[15,16]$.

From (27) and (28) quite different oonclusions an be drawn ooncerning the role of gravitation in the world of elementary particles depending on to what frequenoies $\Omega_{0}=\frac{C}{C}$ the spectrum of vaouum fluotuations is really limited. Aocording to oontemporary theory, it is almost uniform1y distributed over the frequenoies and the high frequencies are expeoted to give an infinitely large contribution to gravitation. If later on, for some or other reason, it will turn out that the possible frequenoies in the microworld are limited by an "elementary" length $a>\Lambda_{g}$, then gravitational offeot will be nonessential.

In the opposite case they will play the fundamental role in the microworld, but they will be represented in their quantum interpretation ${ }^{x}$.

Prediotions and hopes based on classio oaloulations of gravitation will be "majorized" by quant um effeots. At the same time the "classic" average metrio will be no longer predominant and the situation like that mentioned in seotion 2 arises: the notion of interval between events as well as the idea itself about a possible ordering of events in $X_{4}(x)$ space becomes more than doubtful. Here we are approaohing the edge of an abyss without being sure if it is not too early to peep into it.

[^2]In what follows we shall consider other possible restrictions on local theory. Among various oompetitors the "weak" interaction claims to this role.

5. A Weak Maximon"

We distinguish three modes of interactions: strong, eleotromagnetio and weak interactions. Let us compare their behaviour at high energies using a criterion suggested in ref. 18 Aooording to it, an interaction is assumed to be strong if in the oourse of the interaction the density of the kinetic energy E_{K} is much smaller than the absolute density of the energy of their interaction W :

$$
\begin{equation*}
\varepsilon_{x} \ll \mid W / \tag{29}
\end{equation*}
$$

We first consider a collision of a nual eon (N) and a pion (π). In this case the density of the total energy is

$$
\begin{aligned}
H=\bar{\hbar} c \bar{\psi} \partial \psi & +M c^{2} \psi \psi+\frac{1}{2}\left(\square \varphi^{2}+m^{2} \varphi^{2}\right)+ \\
& +g \bar{\psi} \gamma_{5} \varepsilon \varphi \psi
\end{aligned}
$$

Where ψ is the nucleon field, φ the meson field, M. the nucleon mass, $n>$ the meson mass; $\quad \partial=\gamma^{\mu} \frac{\partial}{\partial x^{\mu}}, g$ is the interaction oonstant. Let ℓ be a length defining the magnitude of the gradient in the o.m.s. $\left(l \simeq \frac{h}{p}=\lambda, P\right.$ is the partiole momentum). Then the density of the kinetic energy ε_{N} of the nucleon is of an order of magnitude

$$
\varepsilon_{\mu} \simeq \frac{\hbar c}{l} \psi \psi
$$

(since $\partial \sim \frac{1}{e}$); the density of the meson kine tio energy as

$$
\begin{gather*}
\varepsilon_{\pi} \simeq \frac{\varphi^{2}}{l^{2}} \tag{32}\\
\left(\text { since } \nabla^{2} \sim \frac{1}{l^{2}}\right) \cdot \text { Henoe }^{\prime} \tag{33}\\
/ W / \simeq g \psi \psi \varphi \simeq \frac{g}{\hbar c} l^{2} \varepsilon_{N} \varepsilon_{\pi}^{1 / 2} .
\end{gather*}
$$

Taking into oonsideration the faot that $\varepsilon_{N}=\varepsilon_{N}+\varepsilon_{\sigma}$ from condttion (29), we get

$$
\begin{equation*}
1 \ll \frac{g}{\hbar c} \frac{\varepsilon_{N}}{\varepsilon_{N}+\varepsilon_{\pi}} \varepsilon_{\pi}^{1 / 2} l^{2} . \tag{34}
\end{equation*}
$$

Then

$$
\begin{equation*}
\varepsilon_{x} \simeq \frac{\rho c}{e^{y}} \simeq \frac{\hbar c}{e^{4}} \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\varepsilon_{N}}{\varepsilon_{N}+\varepsilon_{x}} \simeq \frac{1}{2} \tag{36}
\end{equation*}
$$

As a result,we find

$$
\begin{equation*}
\frac{g^{2}}{\hbar c} \gg 1 \tag{37}
\end{equation*}
$$

Thus, it follows that according to the oriterion used, the strong interaction is strong under all the conditions since the inequality (37) is always fulfilled.

Now we apply the same criterion to the interaction of an electromagnetic field with charged spinor particle.

In so doing, we have

$$
\begin{equation*}
W=e \bar{\psi} A \psi \tag{38}
\end{equation*}
$$

Where $A=\gamma^{\mu} A_{\mu}, A_{\mu}$ is a rector potential and e the particle charge. Following the same procedure we get

$$
\begin{equation*}
\frac{e^{2}}{\hbar c}>1 \tag{39}
\end{equation*}
$$

This inequality does not hold. Consequently, following our oriterion, electromagnetio interactions do not belong to strong interactions ${ }^{x}$.

Now we consider the, case of weak interaction we are interested in. In this ouse the density of the total energy is $H=h c \bar{\psi} \psi+M c^{2} \bar{\psi}+\hbar c \bar{\varphi} \partial \varphi+m c^{2} \bar{\varphi} \varphi+$

$$
+g_{F} \bar{\psi} O_{\alpha} \psi \cdot \bar{\varphi} o^{\alpha} \varphi
$$

where ψ and φ are the fields of a nucleon and a lepton respectively, and M are the masses of these partioles, G_{F} is the Fermi constant, O_{α} the epinor operator. x We note that we have not taken into account the direot int eraotion between a gamma quantum and rector mesons ($\rho, \omega .$.)

It is not difficult to see that in this ouse the interaction energy is of the order

$$
\begin{equation*}
|W| \simeq g_{F} \frac{\varepsilon_{N} l}{\hbar c} \frac{\varepsilon_{e} l}{\hbar C} \tag{41}
\end{equation*}
$$

where ε_{N} is the density of the nuoleon kinetic energy and ε_{e} the density of the lepton kinetio energy. Taking into oonsideration the fact that $\varepsilon_{N} \simeq e_{e} \simeq \frac{P c}{e^{3}}=\frac{\hbar c}{e^{4}}$ from condition (29), we obtain

$$
\begin{equation*}
\frac{\Lambda_{F}^{2}}{e^{2}} \gg 1 \tag{42}
\end{equation*}
$$

where $\quad \Lambda_{F}=\sqrt{\frac{g_{F}}{\hbar c}}=0,66 \cdot 10^{-16} \mathrm{~cm}, l \simeq \lambda=\frac{\hbar}{p}$.
Hence, it follows that a weak interaction beoomes strong at an energy $E \sim \frac{\hbar c}{\Lambda_{F}} \quad 300 \mathrm{G}_{\mathrm{e}} \mathrm{V}$ (see also refs. $\left[19,2^{0}\right]$).

We now consider a decay of a heavy hadron of mass Which is due to a weak interaction

$$
M \rightarrow m+\ell+\tilde{v}
$$

Here m is the nuolion mass, ℓ is a lepton and \tilde{V} stands for an antineutrino. The decay constant for this process, when $M \gg m$ is [21]

$$
\begin{equation*}
\frac{\Gamma}{M}=\frac{1}{4 \pi^{3}} G_{F}^{2} M^{4} N \tag{43}
\end{equation*}
$$

Where $G_{F}^{\prime}=\frac{g_{F}}{\hbar c}=1 \cdot 10^{-5} \frac{1}{m^{2}}: N$ is the number of channels for different decay modes, which may be large. It is seen from this formula that for the hadron mass

$$
\begin{equation*}
M>m_{F}=\frac{\hbar}{\Lambda_{F} c} \tag{44}
\end{equation*}
$$

the decay constant becomes comparable with the hadron mass M and the hadron stops to exist as an elementary partiole since it may not be assigned a definite mass. It is advisable to refer to a particle with mass M_{F} as weak maximon . As is seen from eqs. (44) and (267), this restriction begins to work earlier than that imposed by gravitation, since $M_{f} \ll M_{g}$. At the same time the restriotion on local theory must then occur muoh earlier than it is expected from the assumption about the existence of a gravitational maximon $M g$.

6. Blaokness"_of Particles and Locality

The elemantary particle is a certain medium whioh is desoribed by the oreation and annihilation of virtual partioles.

It is natural to raise the question about the condition of propagation of a metrio signal in suoh a peculiar medium. Starting from perturbatinn theory; it is possible to answer this question by means of the Green funotion which, being based on $100 a 1$ theory, guarantees the propagation of an interaotion with the velooity of light.

However, the situation changes if the interaotion beoomes strong. I_{n} this case there arise nonlinear phenomena and a strong absorption as a result of inelastio processes.

The former group of phenomena ocours in the region of strong fields and small gradients. In refs. $[22,23]$, by the example of a scalar and an eleotromagnetio fields it was shown that the law of propagation of these fields noticeably changes, up to the disappearance of any possibility of propagating: the characteristios of nonlinear equations beoome imaginary, and the equation of the hyperbolic type turns to an equation of the elliptio type. This situation was oalled a "Iump" of events. I_{n} the spirit or oontemporary understanding it is more right to give in the name of "light oollapse $[6,22]$.

In the region of large gradients there oocur inelastio processes. A possible limitation of the spao-time description of the elementary partiole structure wes indicasod in ref. $[25]$. This limitation is due to the faot that the oross seoticn for an inelastio prooess does not deoreaso with inoreasing energy but tonds to a oonstant limit or even inoreases slowly.

At the came time elastio soattering assumes the oharacter of a diffraotional soattering on a "blaok" sphere of dimension a. A In partioular, on the basis of first papers on pionnucleon soattering, it was noted $[24]$ that the effectire" notential for this scattering is purely imagingry and is we 11 represented by the formula x
x This potential is being sucoessfuliy used as a first approxdmation in the theory of "quasipotential" [25].

$$
\begin{equation*}
\tilde{V}(q)=i A(E) e^{-a^{2} q^{2}} \tag{45}
\end{equation*}
$$

Here q is the momentum transfer and $A(E)$ a certain function of the energy E defined by the main differential maximum.

When the role of Inelastic processes becomes dominating the information is relative not so much to the space-time structure as to the production of new particles. The "blackness" of particles makes it impossible to use elastic scattering for studying space-time distribution of matter. The given example of mesons is a very particular case, therefore it is not of value of principle.

For the problem we are considering here of interest would be only a situation when "blackness" would appear for the most universal signal. The most universal are weak interactions.

The refore, scion a situation can arise if the weak interaction is assumed to increase up to scales dictated by unitary limit.

Thus the possible limitation of local theory by the conditions of the signal propagation inside an el ementary particle coincides with the condition following from the existence of a "weak maximin".

Classic theory deals with the space $\not X_{4}(x)$ and the contravariant tangent spaoe $\mathcal{P}_{4}(P)$ in a combined manner. Quite a different situation takes place in the domain of quantum phenomena. In quantum motion the trajectory of a material point Is nondifferentiable x and the spaces $R_{4}(x)$ and $P_{4}(P)$ are mutually complementary. They belong to two different incompatible classes of measurements.

The both spaces are equal in rights from the the oretical point of view, since the transition from the description in one of them to the description in the other is performed by means of a unltary transformation of the state veotors ψ^{\prime} and the appropriate transformation of the operators \mathcal{Z} which represent physical quantities.

However, both the descriptions are unequal in rights in a physioal experiment. The space $\mathcal{R}_{4}(x)$ figures in an experiment in its macroscopic aspect. The microsoopio ordering is not revealed experimentally, in a direot manner, sinoe the observed causality is a macrosoopio causality. I_{n} fact, for an event A located in the spoe-time region $g_{A}(x)$ to be oonsidered as a cause of an event B in the domain $O_{f}(y)$ it is necessary to be sure that when A had oocured a quantum of an energy $\varepsilon=\hbar \omega \geqslant 0$ and momentum $\vec{P}=\hbar \vec{k}$ had been emitted which was then absorbed in the domain $\mathscr{O}_{B}(y)$ generating theraby the ovent B_{0}. $\bar{X}_{\text {See ref. }[27] \text {. }}$

In this description of the causal relationship we have used both the spaces $P_{y}(x)$ and $R_{y}(p):$ the former is to show the relative position of the events A and B and the latter is to indicate the direction of energy and momentum transfer ${ }^{x}$. The combined use of the mutually complementary spaces $P_{q}(x)$ and $\chi_{4}(p)$ leads us to the classic, 1.e. macroscopic, field of physics.

Consequently, the space-time description is carried out with an aoouracy which is far from being sufficient for the restrictions of the type (14) to be appreciable.

Contrary to the spacetime description, the momentumenergy description in the space $P_{4}(P)$ is realized in an experiment with an accuracy which seems to be unlimited. In this description miorosoopio causality expressed by the condition of local commutativity (10) is displayed indirectly, in the behaviour of the amplitudes $T_{i f}(P)$ predicted by local theory for different physical processes. Here c labels the initial state and f^{\prime} the final one. In particular, microcausality is manifested in the analytic properties of the amplitude $T_{i,}^{\prime}(\rho) \quad 1 n$ the complex plane of the variable $P_{0} \quad$ xx. In the space $P_{4}(P)$ the state of free stable partioles.is desoribed by the points on a hyperboloid:
$x_{\text {See ref. }}$ [6].
XX These properties underlie "dispersion relations" which are important for analysing experimental data [28].

$$
\begin{equation*}
P^{2}=P_{0}^{2}-\vec{P}^{2}=m_{0}^{2}, \tag{46}
\end{equation*}
$$

where M_{0} is the particle mass. Each such hyperboloid is the Lobachevsky space $P_{j}(\vec{P})$ with curvature $R=-\frac{1}{m \eta_{0}^{l}}$ In the space $P_{4}(P)$, due to the fact that its metric (4) is nondefinite, there exists no invariant conoept of large or small momenta. Consequently, there also exist no invariant limitations on the frequency ω or the wave vector. $/ \vec{k} /$ Such limitations would necessarily select any frame of reference. This supplements the assertion about the absence of an invariant measure of spacing of events in the space $Q_{y}(x)$.

The amplitudes Tit describing physical processes are the matrix elements of the scattering matrix

$$
\begin{equation*}
S_{i f}=\sigma_{i f}+i T_{i f} \tag{47}
\end{equation*}
$$

This matrix is known to define the state of partioles at a time moment" $t_{f}=+\infty$ if it $1 s$ given at a time moment" $t_{i}=-\infty$. From the geometrical viewpoint the s-matrix transforms the state of particles given in a certain direct product of the Lobachevsky spaces $P_{3}\left(\vec{P}_{p}\right) \otimes R_{3}\left(\vec{P}_{2}\right) \otimes R_{3}\left(\vec{P}_{3}\right) \otimes R_{3}\left(\vec{P}_{3}\right)$ to a new state given, generally speaking, bs some other product of the se spaces $R_{3}\left(P_{1}\right) \otimes R_{3}\left(P_{l}\right) \otimes \ldots P_{3}\left(P_{\sim}\right) \quad S_{1 n c e}$ the partiole moments are specified, the particle coordinates are undetermined. The time moments" $t= \pm \infty$ are undetermined too. Theretore the ordering of events in $\mathcal{R}_{y}(x)$ obtained my means of the S matrix is minimal one.

Contrary to the common opinion, the description of the
microworld phenomena by means of the 5 matrix is incomplete. The $S_{-m a t r i x ~ c a n n o t ~ b e ~ u s e d ~ t o ~ d e s c r i b e ~ t h e ~ b e h a v i o u r ~ o f ~}^{\text {of }}$ unstable partiole since the specification of the initial conditions, In this case, cannot be formulated for the time moment $t=-\infty x$

This statement may be illustrated by a situation with K_{0} mesons when it is necessary to follow the evolution of the state

$$
\begin{equation*}
\tilde{K}^{0}=\frac{1}{\sqrt{2}}\left[K_{s}^{0}(t)-K_{L}^{0}(t)\right] \tag{48}
\end{equation*}
$$

where \tilde{K}_{0} are the state of an antimeson and K_{s} and $K_{L}{ }^{0}$ are the states of a short-and long-11ving mesons, $t-1 s$ the time. Oldfashioned methods of description seem here to be inevitable since an ordering of events in time with an acouracy $\Delta t \ll \tau_{s}$ of $111 \mathrm{e}-\mathrm{tlme}$ of a short-11ved \mathbb{K}^{0} meson is needed. The se remarks relatod to the g-matrix do not restriot possibilities of the desoription in the spaos $P_{4}(P)$ Whioh can be extended to the domain of oomplex P - Moreover, suoh an extension seems to be necessary for describing the behariour of unstable yarticles. Therefore, in spite of formal equality in rights of the desoriptions of phenomena In $P_{y}(x)$ and $P_{4}(P)$, the desoription in the latter is less open to the oritiolsm addressed to the looal theory which deals with the spaoe-time.
x The exception 18 some special cases when, e.ge, an unstable particle may be thought of as a resonance.

It seems that in this conneotion, as early as in the fourt1es, H. Snyder ${ }^{[30]}$ suggested an interesting idea according to. Which the metric of the momentum space $D_{4}(P)$ may be more complicated than the $M_{\text {inkovsky metric (4). Instead of (4), }}$, he has just proposed a Riemannian metric

$$
\begin{equation*}
d p^{2}=g_{\mu} d p_{\mu} d p_{N}, \tag{49}
\end{equation*}
$$

where the metric tensor $g_{\mu V}$ is a function of the momentum

$$
\begin{equation*}
g_{\mu V}=g_{\mu v}\left(\rho, P_{\alpha}\right) \tag{50}
\end{equation*}
$$

and the parameter

$$
\begin{equation*}
p_{\alpha}=\frac{\hbar}{a} . \tag{51}
\end{equation*}
$$

Here α is a certain "elementary lengin" and P_{α} is a momentum playing the role of the curvature scale for the momentum space. The relationship between the space $X_{4}(x)$ and $R_{y}(p)$ 1s based on the assumption that the ourved spaoe $\mathscr{R}_{4}(P)$ is a space of constant curvature ${ }^{x}$. This limitation makes it possibIe to consider the coordinates $x_{0} x_{1} x_{2} x_{3}$ in the space $R_{4}(x)$ as displacement operators in the space $X_{4}(p)$:

$$
\begin{equation*}
x_{\mu} \rightarrow \hat{x}_{\mu} \equiv\left\{i \frac{\partial}{\partial \rho_{\mu}}+A_{\mu}^{\nu}(\rho) \frac{\partial}{\partial \rho_{\nu}}\right\} \tag{52}
\end{equation*}
$$

For $a=0, A_{\mu}^{\prime}(p)=0$ so that (52) transforms to the usual operator of coordinates whith is charaoteristio of local theory.

[^3] I.Gelfand $/ 31 /$, ∇. Kadyshevsky $^{32 /}$ and I.Tamm $/ 33 \%$.
I. H. Poincare, Ia mesure du temps.Rev.de Metaphysique et de Morale, VI (1898).
2. A. ЭинмтеИн, Собр. научн.трудов, $I, 7$ (I965), Сущность теории относительноети, ИI (I955).
3. J.И. Мандельптам, Cбор.соч. У, AH СССР (I965).
4. А.А.Фридман, Мир как пространство и время, Науга (I965).
5. А.А.Тяпкин, УФН I06, 6I7 (I972).
Б.Б. Кадомцев, и др. там те.
6. І. И. Блохиндев. Пространство и время в микромире, "Наука", (I970).
7. H. Rund, The Differential Geometry of Finsler Space, J. Springer (1959).
B. D.I.Blokhintsev, Nuovo Cim. 16, 382 (1960).
9. K.Menger, Proc.Nat.Ac.Sc1.USA 28, 535 (1942).

IO. B.Schweizer, A.Sklar. Pacific Journ. of Math. 10,N.I (1960).
II.Д.П.Блохинцев, Сообщения ОИЛा P2-6094, Дубна ,I97I).

I2.D.I. B okhintsev, Acta Phys.Sc.Hung, 22, 307 (1967).
ІЗ.В.С.Попов, Ядерная физика ХП, 429 (I970).
I4.I. I. СоловневРаппорт.докдад ва Киевскои копференции
по физике внсогих эне ргй (I970).
I5.M.A. Марк ов, препринт E-2644, Дубна (I966).
I6. M. A. Марк 0B, препринт Ее-527I, Дуона (I970).
I7. I.A.Whceler, СО. Гравитадия и геометрия, MИP (I965).
I8. І. И. Блохинцев, УФН ХІІ, 381 (I957).
I9. D.I. Blokhintsev, Roc.Rochester Conf. 1960.
20. D.I.Blokhintsev, Nuovo Cim. X, 9 , 925 (1958),

2I.С.И.Биленькй, Введение в диагрампур технину, Ат омиздат (I97I).
22. І.И. Блохинцев; ДАН 82, 553 (I952), Си.также 6 .

24 .D.I.BIokhintser, Nucl.Phys. 31, 628 (1961).
24. D.I.Blokhintsev, Nucl . Phys. 31, 628 (1961).
25. D.I.Blokhintsev, V.S.Barashenkov, and V.Grishin, Nuovo cim. $X, 9,249$ (1958).
26. A.A.I ogunov, A. H. Tavkhelidze, Nuovo Cim. 29, 380 (1963).
27. Р.фейман и А. Хиобс. Квантовая механика и интегралы по траек ори ям, MLP (I968).
28. Н.Н.Боголобов, Б.В.Медведев и. МК.Поливанов. Вопросн теории дисперсионннх соотношений, ГКझМІ (I958).
29.H.A. Черников, Научнне доклады выспеи пполн. Физ.мат.науки, 陁2, I58 (I958) 。
30. H. Snyder, Phys. $R_{\text {ev }}$. 71, 38 (1947).

3I. D.A.Гельфанд, ॠЭTФ 57, 4504 (I959), 43, 256 (I962), 44, I248 (I963).
 588 (I962). ДАН СССР I47, I336 (I963).
33. И.Е.Тамм. ХП Медд: конференция по физике высоких энергин, Дубна, т.П, 229 (I964).
34. В.Г.Калншевскии, Препринт Р2-57I7. Дубна (I97I).

Received by Publishing Department on August 11, 1972

[^0]: x Thus, for example, the assunption based on the relooity of sound U, rather than on the relooity of light C, would intoduce very private partioularities of sound phenomens to the oonsideration of all physioal phenomena. In a similar way, measurement of lengths by means of a spring dynamoneter would introduoe speoial properties of the spring (see refs. ${ }^{[4,6]}$).

[^1]: ${ }^{x}$ There are also other opinions oonoerning the possible extension of the $\mathrm{E}_{\text {instein }}$ equation to quant um phenomena. The approaioh in question is the most natural development of the Einstein ia ea.

[^2]: x over many years this line has been developed by Wheeler and ooworke rs ${ }^{[17]}$.

[^3]: $x_{\text {The S Snder }}$ idea has then been developed in papers of

