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The Shapiro transformation for the case of an arbi-
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table for quasipotential approach. Addition theorem was

~also obtained for transformation nuclei. An example of
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tion space is given.
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Introduction

In the paper 1 the unitary representations of the Lorentz
were applied to formulate the equations of the quasipotential

approadh 24

for the relativistic two-body problem in the
relativistio oohfigurational representation. The role of the
Fourier-transformation 1s1here.p1ayed by the Shapiro integral

transformation 5

s which, from the "group-theoretical point"

of view, performs an expansion of the unitary representation

of the lLorentz group in the 1rred&c1b1e;un1tary representations
of the principal serles. The generalization of this transforma-
tion to the case of thekapin farticles had been carried out

by Chou Kuﬁng—ohao and IL.G.Zastavenko 6 « Later this expansion

was obtained by Popov 7

on the basis of the theory of the Lorentz
group representations, developed by Gelfand and Naimark 8’9,

iz particular, on the basis of an analog of Plancherel!s

theorem for the Lorentz group , proved by them. But the formulas
obtainred by him, differ by their parametrizatiom from those

used in the quasipotemtial aprroaoch im order to imtroduce.

the relativistic radius-vector of the relative distanoe between
tvo particles, bacause instead of 1ntogfation over the
angular-variables of the radius-vector they contain the
integration over SuU(2) group.



In 10 the expansion for the wave funotlon of particles

with spin, obtalned 1; 6 was used to pazs to thoe conflgurational
representation im the quasipotemtial equation, which describes
the interaction of the spin 1/2 and spinless particles, It is
necessary to kmow the additiom theorem for the kermels of
“Shapiro transformation®™ for introduoing & looal quaai—pqtential
in that cquatiomr, because these kernels play the role of pldne
waves.

The nain aim of the present artiole is to derive such
an addition theorem on the basis of Lorentz group representa-—
tion theory,developed in 8,9 and to construct with its
help a local quasipotential from the Feynman dlagrams of quantum
Zield theory. »

In the first part of the article on the basis of the
formulas, obtalned in 9,we present a derivation of the
expansion for the wave function of the partiole with spin in
the functions which transfarm under the Lorentz group irreducib-
le unitary representations in the parametrization, which allows
the transition to the relativistic configurational representa-
tion in the quasipotential approach. This expansion is obtained
in helicity and canonical bases. In the second part)the plane
waves, introduced in 13 describing free motion of particles
with spin in fhe quasipotential approach are discussed. In the
third part the "addition theorem” for suoh plane waves
is derived. The fourth part is devoted to the application of
the addition theorem for constructing the local quasi-potential
in the configurational repres‘entation.



I
The wave function of the particle with spin S and
projeotion 0 on the Z axis tra.nnfo:ms under the SL(2.0)
group transformation in the following way: '

S .
S -
T Diafvest iy (rae) @
p*= p°’:.pp’~o-:‘7$nL, P> 0, ' |
where DG) (S the matrix of the irreducible representation of
weight S of S{U/(2) group, and unitary unimodular matrix
V(a7 P)G SU@.) whioh corresponds to the Wigner rotation, is
defined by

Via,p) = H#'a e | @

Hermitian matrix H,O &€ 51(2/ C) . 18

' 6))
mr £ ) P= PP L

e > oo

(9= (6‘,,0’:._, 6:,)) are the Pauli matrices), oorresponds to
the four-dimensional matrix /’P' , of the pure Lorentsz
transformation, or 'b’ooat" i.,e. that for if Paz(m, 0)

ana P = CPO/-P)

AP‘PA = P €))
and ‘ _

(Nip)°= (Perw)’= P B EEPK

" B mPo+ PK
(/I;LP) = PelE =2 - ™4 KO

(5)



In the space of matrices from SL(2,C) the transformation (4)

induces the next transformation

+
P o= Holath S

N
where in the spherical coordinates
R : 2
P° :m(f}l ) _)D :/”J'/,’Z 2,9 ) ZIP = 4
+ % 0

€ : (7)
fp = U Ep ¥p e, )
w, e SU()

The group representation property.of the transformation (1)
follows from the group composition law for the Wigner rotations

V(a0 Via,Map) = Viaa, P) @
o)
The oonneotion of the wave funoction s (P/ in the canoni-

: G,
cal basls with the wave funotion in the hellolty basis ¢a. )60}
1s given by the relation

& S
) D) DE) Wle).
A W:-X

where A 18 a value of the projeotion of the spln on the

(9

momentum direotion l.e. - helioiti. From eqe. (i) and eqe (9)
‘ Jae))
the law of the transfarmations of ¢) Cf) follows:



T 6% =2 DI V), oo

where +
Wi(a,p) = UpV(aP) tgtp

Because of the Lorentz 1nvarianoe of the scalar product

v, 9-) §F L&

the representation 72; is the unitary 6ne.

Thus the wave furction can be expanded in thé unitary
irreducible fgprosentations of the Lorentz group.

In ordef tq perform suoh an expansion let us pass from
the funotions on the hyperboloid (1) and (7) to the funotions
on the sL(2,¢) group defining them as follows:

' s) ' ) (11)
Xﬁja) = 7; %( 6,0?) \ ,
Under such a definition, as 1s clear from eq. (7) and .

eqe (8), the function on the group X&'éﬁ) is indepemient of
the ochoice of basis, i.e. the next formul 1is valid:

s "
XV(Q) = 7; gép ffi) : | (12)

The function )Qy(tl> transforms acoording to the regular

representation

To, X(@) = X(aac) as)



and satisfles the followling covarianoe oonstraint on the left

<
cosets of the SU(Z) subgroup:

: (14)
X,(«a) ZD () X(@), ue S
o /
6"—-,3 - A

From the existence of the analog of the Plancherel theorem
for the SL(2,C) group follows the existence of the formulae,
by whioh the right regular transformation (13) 1s expanded into
. the direot sum of 1rreducible unitary 1nfin1te—d1mensional

representatio ns s
oo

Xe)= . g"f(l"’”‘)f‘f“@? (“a/u)%@"w’"ﬁ(w

o Su(z)
and N

K _(,v|mg)="" (@) dmg () X (W72 V), G
| P4 |

where for any Q € SL(Z,C)V

—-mii8-2 o

dmg @) = | Azl %) @

’

q/ /-Cu) 18 the invariant measure on the SU(2) group,
d /‘e @ / | is left-invariant measure on the subgroup of
triangular matrioes?

K = (A~1ﬂ> )//“ — oomplex number (18)

“\eo )



and Ka, u and 7/{a., U are determined frem

matrix equation

wua = Kau %au -~ 9

Prom (16) 1t follows the following property of the funotion

Ke (u,vIm8) o li-5) |
K., nv|ms)= € - K,[Z‘;V/”’%), %

where the dlagonal matrioes .
'Y/
v e’ 2 0 (21)
- _"67
o £ °

desoribe the rotation around the Z axis. at Y
angle.

Replacing in (15) the variables: U -2 Ua, y
and using the equality

(7/—} = /ozma(za u) %(ua,u) (=2

we arrive at

Xe)=; Zf (gfm}jogu@)olmg(/@u)/((z% o /mg) (23)
(} =00 Sy

The property (14) allows to represent eq. (22) and eq. (23)
in the fom ’



X50): Z_Jf‘;@w‘)w/x,.s(zm[ )

e (24)

X l{o*/ (Z(,/Yﬂg)

Ko’(u/ mg): WJ%LC")Ong (K) /\;_/KZ(). - (25)
R

From eq. (24) it 1s easy to obtain an expansion for the
wave function, because by definition (11)

)(6(76,/0—/) - ﬁ(S)(ID) | (26)

@
Now let us note that %— (P s as a funotion on the
hyperboloid, depends on three parameters. Iin order to
perform in eq, (24) the integration over an extra parameter

let us oonsider the solutlion of the matrix equation:

2‘ -A}/O = /(7"//3/(/( 2{#/,/“ 0

It is known that from this equation the matrices Zl,,;,,u

(27)

and K.;/ﬂ&_ are determined nonuniquely. However it is possible
to write the solution of eq. (27) 1in such a manner that under
the sign of integration the nonuniqueness is contalned only



in K,z ( 1t can be seen from eq. (15) and eq. (17) that the
element /4/2 plays no roles In this ocase, it is possible

in the right-hand side of eq. (24) to pass to integration
over the angular parameters of the unit vector; whioh is a
spiitial part of the four-veotor 77 2('/, ,7_7) s belonging to
the oone, Fimliy the expansion for the wave function of the
particle with spin S in the canonical basis takes the form

5 @ ir_t

s) —Jir ) >1/(.f/

2 z

3?_(0:):‘2_ gdr(r 45!)5&02, (rn) 1 >0‘0" (up,r) o 6{'—)..(28)
O%S © .

The matrix 2(,0,1\ s which stands in the argument of

function, is deterniined from the equation:

- (29)

Z[r % =~ MP,r ZZP/ r, :
where the matrix 24— oorresponds to the rotation of the
veotor ?_7,,:60,[) in the direotion of the veotor 77 '

-+ - —
Up S0 U = T 7
@

nol (30)

6 -l
et &-Pimere e, r);(,io,ra/m—’ge TP
4

(Zém)” - 7(?““) (Po-~2. 1) AP (PO-£-2)

In order to obtain the formula , inverse to (28), let us make
use of the faot that any triangular matrix K witn the
element Kzg_ = M[ec oan be represented :Ln the form

K = (& K , Where for the triangular matrix K
the oondition arg (r),, = O  1s valid. In this case



d/ul(k) ol :f&:é&’) . Let us put 2 = Ur
in eq. (25). Then, taking into consideration (14), we represent
;t in the form: .

Kylirfg)= 23 By, o) usll) Xg (65 2) o

———
where we have used the equality /md@')%‘(k): dm;@y%(ﬁ/ .
Noxt, let us introduoe into eq. (31) new 1ntegintion
variables using the equality ¥ " Ur = Upp Hp <.

Then, taking into acccunt eq. (14), which leads to

S & ,
X {ttpr #*) ;%Q.F,Z&F/r) )g(% )
and after it 1s easy to arrive at?
3 ~/-ir_ 4 %g/
Wl % 07 Tl e,
0'" -4

We shall consider the fomulas (28) and (32) as & transitien

from momentum representation, to relativistic oonﬂguratione.l
representation, introduced in 1 y 1n which the médulus of
the radius veotor __[' =7 1s defined as [ = 'g/;_ .

The matrix Z(P,/" according to (29) can be represented

in the form: Z‘ﬁ,r = Uy, %p,

where 2);:};- can be found from the matrix equatlon

+ |
Ur Up &p = Kf/r v-;’/l_ (33)



Thus taking into account (9), conneoting the hellclty and
canoniocal basls, we get from eri. (29) and eqe. (32) the

expansion for the wave funotion in the hellolty basis

sp(’ N - jo(f (;772) (J}¢ (P)/

) o o (34)

(s’?) Z fxr(””)f”"”"(”’? I? (v;,) VU ©9)

Y=-3 o

The unitary mtrix U‘plr y as 1t follows from eqe. (33),
has the following values for its elements:

- - X5
U, | (er “P)zz X/L ’ v, ’F-—__(d,- d Jar € . 26)
22 O T ey

It 1s olear from thls expreasion, that-the rotatlion angle
defined by the matrix U_f-;r' depends' only on soalar produot
of the veotors [ and 7

2 POM& "J.O
ces 9 | Uaul - /UJ‘_l/ _';Tz,';@"’ s (37)
: L.
where (03 9;071_ = 1P/ .



It should be stressed, that the kernel of the tra.nsi’orma—
tion (32) automatically contains D( functiony, whioh
transforms the wave functlon from the oanonical basis to the
helioity one, then in faot the expansion for the wave
function 1s performed only 1n the hellcity baslis. Thus, as the
wave function W;J /(_/‘):maex Y= an in the oonfiguratio-
nal representation is the eigenvalue of the helicity operator
on the cone 12 s the indioes ) and )) of the wave

functions are elgenvalues of helicity.
II
The quasipotential equation for the wave funotion,

desoribing the relative motion of particle with spin S

and spinleass particle, has in the O.me.8. the following form
11, 12

9, <
) (.p/fg.;;d )

G)
The wave function of the oont'.‘l.nuous ‘speotrum (// CP/
is connected with the scattering.amplitude in the o.m.s,

AO‘O" (P,9) 1n the following way?

: LG
C ¢/ Aopi(P3) X
‘ioj{f) 2(2)”35./@))(6" ) yﬁr% 2 F«;-Z Ep (O

(39)

14



here _‘I(7 and ,9. are the momenta of the initial and final
. A
particles with equal masses in the c.m.8. and og /

is a normalized @5 *’) oomponent spinor in the ca.nonical
basis.

The expression CL)I)B 5‘&’6),?)16‘(5‘) in eq. (39)
desoribes free moticn. On transforming eq. (32) to the
configurational representation, this term gives the "plane
wave®™ with sp:l.n

@9 .
@(1’,") L {ve (55) - (40)
=i @)
(P?z) g FZ. ( AL

From this expression and the: oconnection of the spinor ﬁ( )@)
in helicity basis with the spinor )’c in oanonioal basis

) ZD ) &’

6=-5
We see that in this ocase as well, the kernel of transformation

perfoms “the wrotation® of theoanonical basis to the helicity
one, and then eq. (49) takes the form:

300= (%) Z_D%)&”)

In the nonrelativistio limit %, [P, F) turns into the plane

waves B ) (P)

15 “



which describes a free motion of nomrelativistio particle
with spin S .

Let us emphasize, that just in the heliolty basis
the expansion for, the wave funotion is an analog of the
quanfum mechanioal expansion in the plane waves e.ﬂﬂi~

because in this basis the kernel

(o0 = 00 DL (V)

contains the rotation by an angle; which ( as it follows
from eq. 61)) ) depends on three dimensional soalar'product
of the vectors £ and 77 only. The kernmel of the
transformations (28), (32)v15 not the function of the scalar
produot of J? and ZZ s because it contains, as 13 olear
from eq. (29) also the rotation up from the _1? s to the Z
axls, along which the projeotion of spin is determined in the
canonioal baéis. For this reason it cannot serve as an aralog

of the plane wave.

III
In order to oonstruot & quasli-potential in the relativistio
configu;ational representation, we need an addition theorem for
the plane waves (49) x’ analogous to that‘gor nonrelativistic
sane waves ¢ £ [ c"g.t:}* _ ,Co.r
For this purpose let us notice, that the substitutlon into
the right-hand side of the equality (1) of the expansion

x For the spinless case such an additiontheorem has been
obtained in T ,



allows one to represent the latter in the form

/H %( P) Z_ 2,£V(HK,P2/X : (42)
sm“ J
Z' jotr(rlw"l/fdww ?(PL)E,OP,;‘”)”&M,QZ:(&Z
/L,_’f' 0

where, aocording 1 ’ the notation
~1-(r

G(pr)= O 2 (-2

is introduced. The four-veotor 7 = (;// 2-7) belongs to
the oone ")?7‘20 + In the left term of eq. (1) we make use
of the faot ° , that under the transformations (13) the
function K (U, y/m,g/ in eq. (15) transforms by the

irreduolble representation: )
—Elmgjk(u) V/m/g) - "Z"M UZ“)V) /Z (2’(/ Va,v/"“y.(%}

Tc this one at Q = 7%4 _there oorresponds the transformation
in the configurational \representation of the following type?

~l-cr @)
E:v,r] %@)Q_) - (K;y % Q) r (44)

where __‘_; =TI Qgﬂmd the unit vector 77, (S

: 1+ER
e = L n - K (45 )

— kn - A+K° )

17



Hext,

]
Ty, Yo fdx(ruo )fé‘“’" w910

a.nd after appropriate substituticns:

jdw,, ; (0.0 56,0,,,@, - y
©)
Z D l/[ He, /y}j dw, '<r'/ ( Pc—/z,_)pr”wgz(r )

Ulv”

from where we can easlly derive the addition theorem for the
plane waves with spin. Since aocording to the rasuits of

the kernel of eq. (28) automatically performs a transformation
from the canonlcal basis to helioity one, then we can deal

with eqe. (37) for the wave function o"(UGD} in the ocanonical
vasis. In this case for oconstructing local quasipotential

in A{"— space we need the addition theorem Jjust in the form
(46)s

Iv,..

It follows from eq. ( 4% ), that for a quasipotential
to be local in the r— space 1t should be in the momentun

representation of the form?

V(PuEf) Z W,/z//z/z,fyj (e, )

(48)



Therefore the questlon arises whether it 1s possible to
construct a quasipotential of such a type from any field
theory matrix element. »

For example, we consider an interaction of two particles

with spin 1/2 in the oase:

74/“,”( (x/ = ; N %X/{f}/[fv é’(x/f »

where the spinor field %(K/ can describe the nucleons and
antinucleons with mass 777 , and €ex) corresponds to a

pseudosoalar meson with mass /(A « In aocordance with the
general rules for oonstructing the quasipotential given on

3’11 in second order in - ;, s the quasipotential is proportional

Pl//(,\’//g/ Y,

to the dliagram

In the owmes. /7 = = P g o=ty = K

the dlagram glves

i /& 7 )8 U ’@i%&(&M’ak5ﬂ
\V4 (1 Eg) = (ﬁ"%) 74

PZ: 7772.

(a9

A1l the momenta are on the mass shell
0 0
but are off the energy shell pe#K « Therefore, the denomina-

tor eq. (49) can be transformed to the forms



1

(P—k)z—/u rlmh/f“—zPlt=
50
- ;zmi‘/bt ‘—m/mLf-(fHE)" ( )

*

l.e. 1£ is a functlon only of the distanoe on hyperboloid. The
spinor part of eq. (48) oan be written in the form:

W UE) = o) Ty Sy 4@
= UE) I.DO// V ///Af/%’)f ‘&’(-}/4 “w

where - . / __‘ /”

Sp _1> for 77

= z,/zal)

Thus we see that the expressions (50) and (51) permit to
obtain from eq. (49) a quasipotential of the form (48), on
passing to the two-oomponent spinors ;(;_ ahd ‘ %?

( see 1 )e ’ /“

In oonclusion the authors would 11k9 to express thelr
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20



Appendix

For oompleteness we give the orthogonality relations for
kernel ?0‘0" ( 2, f‘) 1n both momentum and configurational
spaces:

N Qo

+ : .
2,643 t[ l ’ '/ :gf—f' (T .
éz_:;ad; (‘5({{@ o*)jwr_z ?6‘0“ (Pr)go‘,o‘)(pr) P ( )’m‘

: + -
: }‘;z: gS' fé;%r EgZPU’ (F?f;> €?cr’0"’<¢3'_£>::&3f%755;7} EL)GVW

U
=-5
which follow from the Plancherel formula in ° and (29)
and (32). It is obvious that our formulae in the zero Spin case

1

are the same as the formulae (1.6) and ( 17) in ~ .

2
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