66.46

СООБЩЕНИЯ
ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ Дубна

S.C.Mavrodiev, N.B.Skachkov.

HARMONIC ANALYSIS ON THE LORENTZ GROUP AND PARTICLES WITH SPIN
IN QUASIPOTENTIAL APPROACH

1972

$$
\text { E2 - } 6646
$$

S.C.Mavrodiev, N.B.Skachkov

harmonic analysis on the lorentz GROUP AND PARTICLES WITH SPIN IN QUASIPOTENTIAL APPROACH

Гармонический анализ на группе Лоренца и частицы со спином в квязипотенциальном подходе

Получены преобразования Шапиро в случае произвольного спина в удобной для кваэипотенциального подхода параметризации, теорема сложения для ядер преобразовании и дан пример локального кваэилотенциала в релятивистском конфигурационным пространстве.

Сообщенне Объединенного нститута адерних исследованин Дубна, 1972

Mavrodiev S.C., Skachkov N.B. E2 - 6646
Harmonic Analysis on the Lorentz Group and Particles with Spin in Quasipotential Approach

The Shapiro transformation for the case of an arbitrary spin is obtained. in the parametrization suitable for quasipotential approach. Addition theorem was also obtained for transformation nuclei. An example of the local quasipotential in the relativistic configuration space is given.

Commanications of the Joint Institute for Nuclear Research. Dabna, 1972

Introduction

In the paper ${ }^{1}$ the unitary representations of the Lorentz vere applied to formulate the equations of the quasipotential approaoh ${ }^{2-4}$ for the relativistic two-body problem in the relatiristio configurational representation. The role of the Fourier-trangformation is there plajed by the Shapiro integral transformation ${ }^{5}$, whioh, from the "group-theoretical point" of viet, performs an expansion of the unitary representation of the Lorenta group in the irreducible uritary representations of the principal series. The generalization of this transformaticn to the case of the spin particles had been carried out by Chou Kuang-chao and L.G.Zastavonko ${ }^{6}$. Later this expansion Fas obtained by Popor 7 on the basis of the theory of the Lorentz group repregentations, developed by Gelfand and Naimarik 8,9, in particular, on the babis of an analog of Plancherelis theorem for the Lorentz group, proved by them. But the formulas obtained by him, differ by their pararetrization fror those used in the quasipotestial approan in order to introduoe the relativistic radius-vector of the relative distanoe between two particles, bocause instead of integration over the angular-variables of the radius-vector they contain the integration over $\operatorname{SU}(2)$ group.

In 10 the expansion for the wave funotion of particles with spin, obtaiged in 6 was used to pasi to the configurational representation in the quasipotential oquation, which describes the interaction of the $\operatorname{spin} 1 / 2$ and spinless particles. It is necessary to know the addition theorem for the kornels of "Shapiro transformation" for Introduoing a looal quasi-potential in that equation, bocause these kernels play the role of plane waves.

The rain aim of the present artiola is to derive such an addition theorem on the basis of Lorentz group representation theory, developed in 8,9 and to construct with its help a local quasipotential Prom the Feynman diagrams of quantum Field theory.

In the first part of the article on the basis of the formulas, obtained in ${ }^{9}$, we present a derivation of the expansion for the wave function of the partiole with spin in the functions which transform under the Lorentz group irreducible unitary representations in the parametrization, which allows the transition to the relativistic configurational representation in the quasipotential approach. This expansion is obtained in helicity and canonical bases. In the second part, the plane waves, introduced in ${ }^{l o}$, describing free motion of particles with spin in the quasipotential approaoh are discussed. In the third part the "addition theorem" for suoh plane waves is dorived. The fourth part is devoted to the application of the addition theorem for constructing the local quasi-potential in the configurational representation.

The wave function of the particle with spin S and projection σ on the Z axis transforms under the SL(2.0) group transformation in the following way:

$$
\begin{align*}
& T_{a} \psi_{\sigma}^{(s)}(p)=\sum_{\sigma!-s}^{s} D_{\sigma \sigma^{\prime} l}^{(s)}\{V(a, p)\} \psi_{\sigma^{1}}^{(s)}\left(\Lambda_{a}^{-1} p\right), \tag{1}\\
& p^{2}=p^{0}-p^{2}=m^{2}, p^{0}>0,
\end{align*}
$$

where $D^{(S)}$ is the matrix of the irreducible representation of weight S of $S U(2)$ group, and unitary unimodular matrix $V(a, p) \in S U(2)$ Which corresponds to the Wigner rotation, is defined by

$$
\begin{equation*}
V(a, p)=H_{p}^{-1} a H_{\Lambda_{a}^{-1}}^{-1} p, \tag{2}
\end{equation*}
$$

Hermitian matrix $\quad H_{p} \in S L(2, C)$. is

$$
\begin{equation*}
H_{p}=\frac{m+Q}{\sqrt{2 m\left(p^{0}+m\right)}}, \quad \sim=p^{0}+P \cdot \sigma \tag{3}
\end{equation*}
$$

($\sigma=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ are the Pauli matrices), oorresponds to the four-dimensional matrix Λ_{p}, of the pure Lorentz transformation, or "boost" 1.e. that for if $P_{R}=(m, 0)$ and $P=\left(P^{0}, P\right)$

$$
\begin{equation*}
\Lambda_{P} P_{R}=P \tag{4}
\end{equation*}
$$

and

$$
\begin{align*}
& \left(\Lambda_{k}^{-1} p\right)^{0}=(P(-) K)^{0}=P^{0} k^{0}-\underline{p} \cdot \underline{R} \equiv P K \\
& \left(\|_{k}^{-1} p\right)=P(-) \underline{k}=P-\frac{k}{m} \frac{m p^{0}+P K}{m+k^{0}} \tag{5}
\end{align*}
$$

In the space of matrices from $\mathrm{SL}(2, \mathrm{C})$ the transformation (4) induces the next transformation
$\underset{\sim}{P}=H_{\rho} P_{R} H_{P}^{+}$
where in the spherical coordinates

$$
p^{0}=\operatorname{mch} x, \underline{p}=m s h x n_{p}, \quad n_{p}^{2}=1
$$

$$
H_{p}=u_{p} \varepsilon_{p} \stackrel{+}{u_{p}}, \quad \varepsilon_{p}=\left(\begin{array}{cc}
e^{x / 2} & 0 \tag{7}\\
0 & e^{-x / 2}
\end{array}\right)
$$

The group representation property of the transformation (1) follows from the group composition law for the Wigner rotations

$$
\begin{equation*}
V(a, p) V\left(a_{1}, a^{-1} p\right)=V\left(a a_{1}, p\right) \tag{8}
\end{equation*}
$$

The oonneotion of the wave function $\psi_{\sigma}^{(s)}(P)$ in the canonscal basis with the wave function in the helloity basis $\phi_{\sigma}^{(S)}(\rho)$ is given by the relation

$$
\begin{equation*}
\phi_{\lambda}^{(s)}(\underline{p})=\sum_{\sigma=-s}^{s} \prod_{\sigma}^{(s)}\left(u_{p}\right) \psi_{\sigma}^{(s)}(p) \tag{9}
\end{equation*}
$$

Where $\quad \lambda$ is a value of the projection of the spin on the momentum direction 1.e. - helioity. Prom eq. (i) and eq. (9) the law of the transformations of $\phi_{\lambda}^{(1)}(P)$ follows:

$$
\begin{equation*}
T_{a} \phi_{\lambda}^{(s)}(p)=\sum_{\lambda^{\prime}=-5}^{5} D_{\lambda \lambda^{\prime}}^{(s)}\{W(a, p)\} \phi_{\lambda^{\prime}}^{(s)}\left(\Lambda_{a}^{-1} p\right), \tag{10}
\end{equation*}
$$

where

$$
W(a, p)=u_{p} V(a, p) \stackrel{1}{2}_{L_{a}^{-1} p}
$$

Because of the Lorentz invariance of the scalar product

$$
(\psi, \phi)=\sum_{\sigma=S} \int_{T} \frac{d^{2} \rho}{\rho^{o}} \psi_{\sigma}^{(p)} \phi_{\sigma}^{(s)}(P)
$$

the representation T_{a} is the unitary one.
Thus the wave function can be expanded in the unitary Irreducible representations of the Lorentz group.

In order to perform such an expansion let us pass from the functions on the hyperboloid (1) and (7) to the functions on the $s L(2, C)$ group defining them as follows:

$$
\begin{equation*}
x_{\rho}(a)=T_{a} \psi_{\sigma}^{(s)}\left(P_{R}\right) . \tag{11}
\end{equation*}
$$

Under such a definition, as is clear from eq. (7) and eq. (8), the function on the group $X_{\sigma}(a)$ is independent of the choice of basis, $1 . e$. the next formal is valid:

$$
\begin{equation*}
x_{\sigma}(a)=T_{a} \phi_{r}^{(5)}\left(p_{k}\right) . \tag{12}
\end{equation*}
$$

The function $X_{\sigma}(a)$ transforms aooording to the regular representation
$T_{a_{0}} x_{\sigma}(a)=x_{\sigma}\left(a a_{0}\right)$
(13)
and satisfies the following covariance constraint on the left onsets of the $S_{U}(2)$ subgroup:

$$
\begin{equation*}
x_{\sigma}(u a)=\sum_{\sigma^{\prime}=-s^{\prime}}^{5} D_{\sigma \sigma^{\prime}}^{(s)}(u) \quad x_{\sigma}(a), u \in S \cup(2) \text {. } \tag{14}
\end{equation*}
$$

From the existence of the analog of the Planoherel theorem for the $\mathrm{SL}(2, C)$ group follows the existence of the formulae, by which the right regular transformation (13) is expanded into the direct sum of irreducible unitary infinite-dimensional representations 9 :

$$
X_{\sigma}(a)=\frac{1}{(2 n)^{4}} \sum_{m=-\infty}^{\infty} \int_{0}^{\infty} d g\left(s^{2}+m^{2}\right) \int_{S U(2)}^{\infty} d u(u) \overline{\alpha_{m g}\left(K_{a, u}\right)} K_{\sigma}\left(u, u_{a, u} / m \xi\right)^{(15)}
$$

and

$$
\begin{equation*}
K_{\sigma}(u, v / m \xi)=\pi \int_{k} d u_{e}(k) \alpha_{m \rho}(k) X_{\sigma}\left(u^{-1} k v\right)_{\eta} \tag{16}
\end{equation*}
$$

Where for any $C \in \operatorname{SL}(2, C)$

$$
\begin{equation*}
\alpha_{m g}(a)=\left|a_{22}\right|^{-m+i \rho-2} a_{22}^{m} \tag{17}
\end{equation*}
$$

$d \dot{\mu}(u)$ is the invariant measure on the $\mathrm{SU}_{\mathrm{L}}(2)$ group, $d \mu_{e}(k)$ is left-invariant measure on the subgroup of triangular matrices:

$$
K=\left(\begin{array}{cc}
\lambda^{-1} & \mu \tag{18}\\
0 & \lambda
\end{array}\right) \quad \lambda, \mu-\text { oomplex number }
$$

and $K_{a, u}$ and U_{a}, u are determined from matrix equation

$$
\begin{equation*}
u_{a}=k_{a, u} u_{a, u} \tag{19}
\end{equation*}
$$

From (16) it follows the following property of the function

$$
\begin{align*}
& K_{\sigma}(u, v \mid m s) \\
& K_{\sigma}\left(\psi_{1} u, \gamma_{2} v / m \rho\right)=e^{i m\left(\gamma_{1}-\gamma_{2}\right)} K_{\sigma}(u, v / m \rho), \tag{0}
\end{align*}
$$

There the diagonal matrices

$$
\gamma=\left(\begin{array}{cc}
e^{i \gamma / 2} & 0 \tag{21}\\
0 & e^{-i \gamma / 2}
\end{array}\right)
$$

describe the rotation around the Z axis at γ angle.

Replacing in (15) the variables: $U \rightarrow \mathcal{U}_{a}, U$ and using the equality

$$
\begin{equation*}
d \mu(u)=\left|\alpha_{m \rho}\left(K_{a, u}\right)\right|^{-2} d \mu\left(u_{a, u}\right) \tag{22}
\end{equation*}
$$

we arrive at

$$
\begin{equation*}
\left.X(a)=\frac{1}{(2 \pi)^{4}} \sum_{m=-\infty}^{\infty} \int_{0}^{\infty} d \rho\left(s^{2}+m^{2}\right) \int_{S u\left(z^{(2)}\right.} d u(u) \alpha_{m \rho}\left(k_{a^{-1}}, u\right) K_{\sigma}\left(u_{a^{-1}, u}, u\right) m \rho\right) \tag{23}
\end{equation*}
$$

The property (14) allows to represent eq. (22) and eq. (23) in the form

$$
\begin{align*}
& x_{\sigma}(a)=\frac{1}{\left.(2,)^{2}\right)} \int_{u=-\infty}^{\infty} \int_{0}^{\infty} \alpha \alpha_{j}\left(\rho^{2}+m^{2}\right) \int d \mu(u) \alpha_{m_{\beta}}\left(K_{a_{1}^{\prime-}, u}\right) \sum_{\sigma=-1}^{s} D_{\sigma \sigma^{\prime}}^{+}\left(u_{a_{1}^{-1}} u\right) x \tag{24}\\
& \times K_{\sigma^{\prime}}(u / m \rho) \\
& K_{\sigma}(u \mid m s)=\psi_{k} d \mu_{c}(k) \alpha_{m s}(k) x_{\sigma}(k u) . \tag{25}
\end{align*}
$$

From eq. (24) it is easy to obtain an expansion for the waive function, because by definition (11)

$$
\begin{equation*}
x_{\sigma}\left(H_{\rho}^{-1}\right)=\psi_{\sigma}^{(s)}(p) . \tag{26}
\end{equation*}
$$

Now let us note that $\psi_{\sigma}(\mathrm{s})(P)$, as a function on the hyperboloid, depends on three parameters. In order to perform in eq. (24) the integration over an extra parameter let us consider the solution of the matrix equation:

$$
u H_{p}=k_{t p, u} u_{H_{p}, u} .
$$

It is known that from this equation the matrices $U_{t_{p},} U$ and $K_{H_{p}} u$ are determined nonuniquely. However it is possible to write the solution of eq. (27) in such a manner that under the sign of integration the nonuniqueness is contained only
in K_{12} (it can be seen from eq. (15) and eq. (17) that the element K_{12} plays no role) In this oases, it is possible in the right-hand side of eq. (24) to pass to integration over the angular parameters of the unit vector, which is a spatial part of the four-veotor $n=(1, n)$, belonging to the cone. Finally the expansion for the wave function of the particle with spin S in the canonical basis takes the form

$$
\Psi_{\sigma}^{(s)}(p)=\sum_{\sigma^{\prime}=5}^{s} \int_{0}^{\infty} d r\left(r^{2}+\sigma^{1^{2}}\right) \int d w_{\underline{n}}(p n)^{-1+i r^{+} \nabla_{\sigma \sigma^{\prime}}^{(s)}\left(u_{p, r}\right) \psi_{\sigma^{\prime}}^{(s)}(r) \cdot(28),(r) .(1)}
$$

The matrix $\mathcal{U}_{\rho, r}$, which stands in the argument of function, is determined from the equation:

$$
\begin{equation*}
u_{r} H_{p}=K_{p, t} U_{p, r} \tag{29}
\end{equation*}
$$

where the matrix \mathcal{U}_{r} corresponds to the rotation of the vector $n_{0}=(3,0,1)$ in the direotion of the vector n :

$$
\begin{equation*}
\vec{u}_{\Gamma} \sigma \cdot n_{0} u_{r}=\underline{\sigma} \cdot n \tag{30}
\end{equation*}
$$

and

In order to obtain the formula, inverse to (28), let us make use of the fact that any triangular matrix K with the element $K_{22}=/ \lambda l e^{i \alpha}$ an be represented in the form $K=\gamma(\alpha) K_{r} \quad$, where for the triangular matrix K_{r} the oondition arg $\left(K_{r}\right)_{22}=0$ is valid. In this apse

$$
d \mu_{2}(k)=\alpha \alpha d \mu_{e}\left(k_{r}\right) \quad \text {. Let us put } U=U_{\Gamma}
$$

in eq. (25). Then, taking into consideration (14), we represent it in the form:

$$
\begin{equation*}
K_{\sigma}\left(u_{r} / m \rho\right)=2 z^{2} \delta_{\sigma, m / 2} \int d u_{Q}\left(k_{r}\right) \overline{\alpha_{m s}\left(k_{r}\right)} X_{\sigma}\left(K_{r}^{-\alpha} u_{r}\right) \tag{31}
\end{equation*}
$$

where we have used the equality $\alpha_{m s}(k) d \mu_{e}(k)=\overline{\alpha_{m \rho}\left(k^{-1}\right)} d \mu e\left(k^{-1}\right)$. Next, let us introduce into eq. (3I) new integration variables using the equality $k_{r}^{-1} u_{r}=u_{\rho_{1} r} H_{\rho}^{-1}$. Then, taking into account eq. (14), which leads to

$$
x_{\sigma}\left(u_{p_{i} r} H_{p}^{-1}\right)=\sum_{\sigma=-s}^{s} T_{\sigma \sigma^{\prime}}^{(s)}\left(u_{p, r}\right) X_{\sigma}\left(H_{p}^{-1}\right)
$$

and after it is easy to arrive at:

$$
\begin{equation*}
\psi_{\sigma}(s)(r)=\frac{1}{(2 n)^{3}} \sum_{\sigma^{\prime}-5}^{s} \frac{d^{3} p}{p^{0}}(p n)^{-1-i r} \prod_{\sigma \sigma}^{(3)}\left(u_{p, r}\right) \psi_{\sigma^{\prime}}^{(1)}(p) \tag{32}
\end{equation*}
$$

We shall consider the formulas (28) and (32) as a transition from momentum representation, to relativistic configurational representation, introduced in ${ }^{1}$, in which the modulus of the radius vector $\Gamma=r \underline{n}$ is defined as $\Gamma=8 / 2$. The matrix $U_{\rho_{1}} r$ acoording to (29) can be represented in the form: $\quad U_{p, r}=V_{p, r} U_{p}$, Where VP, can be found from the matrix equation

$$
\begin{equation*}
u_{r} \ddot{u}_{p}^{+} \varepsilon_{p}=k_{p, r} v_{p, r} \tag{33}
\end{equation*}
$$

Thus taking into account (9), connecting the helicity and canonical basis, Fe get from eq. (29) and eq. (32) the expansion for the wave function in the helioity basis

$$
\begin{align*}
& \phi_{\lambda}^{(s)}(p)=\sum_{\gamma=-5}^{s} \int_{0}^{\infty} d r\left(r^{2}+\nu^{2}\right) \int d w_{n}(P \eta)^{-1+i r+(1)}{ }_{\lambda \gamma}^{D}\left(v_{p_{1} r}\right) \psi_{\nu}^{(s)}(r) . \tag{34}
\end{align*}
$$

The unitary matrix $V_{P_{1} r}$, as it follows from eq. (33), has the following values for its elements:

$$
\begin{equation*}
v_{22}=\frac{\left(u_{r}^{+} u_{p}\right)_{22} e^{-x / 2}}{\sqrt{(P n)}}, \quad v_{21}=\frac{\left(u_{r} u_{p}^{x}\right)_{21} e^{x / 2}}{\sqrt{(p n)}} \tag{36}
\end{equation*}
$$

It is clear from this expression, that the rotation angle defined by the matrix $V_{p, r}$ depends only on soalar product of the vectors P and \because :

$$
\begin{equation*}
\cos \theta_{v}=\left|v_{22}\right|^{2}-\left|v_{21}\right|^{2}=\frac{P^{0} \cos \theta_{m n}-P}{P n}, \tag{37}
\end{equation*}
$$

Where $\cos \theta_{p x}=\frac{\underline{p} \cdot \underline{n}}{|\underline{p}|}$.

It should be stressed, that the kernel of the transformslion (32) automatically contains $D^{(-5)}$ function, which transforms the wave function from the oanonical basis to the helioity one, then in fact the expansion for the wave function is performed only in the helicity basis. Thus, as the wave function $\psi_{\gamma}^{(s)}(\Gamma)$ index $\quad \gamma=\frac{m}{2}$ in the configuration nail representation is the eigenvalue of the helicity operator on the cone 12 , the indices λ and γ of the wave functions are eigenvalues of helicity.

II

The quasipotential equation for the rave function, describing the relative motion of particle with spin S and spinless particle, has in the o.m.s. the following form 11, 12:

$$
\left.\left.\left(2 E_{q}-2 E_{p}\right)\right|_{\sigma^{\sigma}} ^{(s)}(p)=\frac{1}{(2 n)^{3}} \sum_{\sigma_{0}-s}^{s} \int_{k^{3}}^{d^{3} \underline{\sigma^{\prime}}} T_{\left(2, k, E_{q}\right.}\right) \psi_{q \sigma^{\prime}(s)}(s)
$$

The ware function of the continuous speotrum $\psi_{\sigma}(P)$ is connected with the scattering amplitude in the o. mes. $A_{\sigma \sigma^{\prime}}(p, q)$ in the following way:
here P and q are the momenta of the initial and final particles with equal masses in the comes．and $\chi_{\sigma}^{(s)}$ is a normalized $(2 S+1)$ oomponent spinor in the canonical basis．

The expression $(2 \pi)^{3} \delta(\underline{p}(\rightarrow) q) \chi_{\sigma}^{(s)}$ in eq．（39） describes free motion． On_{n} transforming eq．（32）to the configurational representation，this term gives the＂plane maven with spin

$$
\begin{align*}
\xi_{\gamma}^{(s)}(p, r) & =\sum_{\sigma=-}^{s} \xi_{\gamma \sigma}(\underline{p}, r) \chi_{\sigma}^{(s)}= \tag{40}\\
& =(p n)^{\left.-1-i r \sum_{\sigma=-s}^{s}\right]_{\gamma \sigma}^{(s)}\left(u_{p, r}\right) \chi_{\sigma}^{(s)}}
\end{align*}
$$

From this expression and the oonneotion of the spinor $\mathcal{C}_{\lambda}^{(S)}(\mathbb{P})$ in helicity basis with the spinor $X_{\sigma}^{(J)}$ in oanonioal basis

$$
\varphi_{\lambda}^{(s)}(P)=\sum_{\sigma^{\prime}}^{\infty} D_{\lambda \sigma}^{\left(s^{\prime}\right)}\left(u_{p}\right) \chi_{\sigma}^{\sigma\left(s^{\prime}\right)}
$$

略 see that in this pase as well，the kernel of transformation performs the＂rotation＂of the canonical basis to the helicity one，and then eq．（ 4° ）takes the form：

$$
\xi_{\gamma}^{(s)}(p, r)=(p n)^{-1-i r} \sum_{\lambda=-s}^{s} D_{\gamma \lambda}^{(s)}\left(v_{p, r}\right) \varphi_{\lambda}^{(s s)}(p) \text { (41) }
$$

In the nonrelativastio limit $\xi_{\gamma}(P, r)$ turns into the plane ware：$e^{i \underline{P} \cdot \Gamma} e_{\lambda}(p)$

Fhich describes a free motion of nomrelativietio particle -ith spin S -

Let us emphasize, that just in the helioity basis the expansion for, the ware funotion is an analog of the quantum mechanioal expansion in the plane wares $e^{\text {cP.I }}$ because in this basis the kernel

$$
\xi_{\nu \lambda}\left(P_{1} r\right)=(P n)^{-1-i r} T_{\nu \lambda}^{(s)}\left(V_{p r}\right)
$$

contains the rotation by an angle, which (as it follows from eq. (37)) depends on three dinensional scalar product of the vectors P and \underline{n} only. The kernel of the transformations (28), (32) is not the funotion of the soalar produot of \underline{P} and $\underline{\eta}$, beoause it contains, as is olear from eq. (29) also the rotation up from the \underline{P}, to the Z axis, along which the projeotion of spin is determined in the canonioal basis. For this reason it cannot serve as an analog of the plane ware.

III

In order to oonstruot a quasi-potential in the relativistio configurational representation, we need an addition theorem for the plane wares (40) ${ }^{x}$, analogous to that for nonrelativistic plane wares $e^{i \underline{P} \underline{r}}\left(e^{i \underline{K} \Gamma}\right)^{+}=e^{i(f-\underline{k}) \cdot \Gamma}$. For this puxpose let us notice, that the substitution into the right-hand side of the equalits (1) of the expansion X For the spinjess case such an addition theorem has been obtained in ${ }^{1}$.
allows one to represent the latter in the form

$$
\begin{align*}
& T_{H_{k}} \psi_{\sigma(P)}^{(S)}=\sum_{\sigma^{\prime}=-\beta}^{S^{\prime}} D_{\sigma \sigma^{\prime}}^{(S)}\left\{V\left(H_{k}, P\right)\right\} x \tag{42}\\
& x \sum_{\sigma^{\prime \prime}=\sigma^{S}}^{S^{\prime}} \int_{0}^{\infty} d r\left(r^{2}+\sigma^{\prime^{\prime 2}}\right) \int d \omega_{n} \xi_{\{ }^{+}\left(\underline{p-1 \underline{k}, r) \prod_{\sigma^{\prime} \sigma^{\prime \prime}}^{(s)}\left(U_{p \in-k, r}\right) \psi_{\sigma^{\prime \prime}}^{(s)}(\Gamma),}\right.
\end{align*}
$$

Where, according ${ }^{1}$, the notation

$$
\xi(p, r)=(p n)^{-1-i r}=\left(p^{0}-p \cdot n\right)^{-1-i r}
$$

is introduced. The four-veotor $\eta=(1, \eta)$ belongs to the cone $\eta^{2}=\boldsymbol{O}$. In the left term of eq. (1) we make use of the fact ${ }^{9}$, that under the transformations (13) the function $K(u, v / m / s)$ in eq. (15) transforms by the irreducible representation:

$$
\begin{equation*}
T_{a}[m \rho] K(u, v / m s)=\overline{\alpha_{m s}(K a, v)} K\left(u, V_{a, v} \mid m \rho\right) \tag{43}
\end{equation*}
$$

To this one at $a=H_{k}$ there corresponds the transformation in the configurational representation of the following type:

$$
\begin{equation*}
T_{H_{k}}^{[\nu, r]} \psi_{\gamma}^{(s)}(\underline{r})=(k n)^{-1-i r} \psi_{\nu}^{(s)}\left(\Gamma_{k}\right) \tag{44}
\end{equation*}
$$

where $\underline{r}_{K}=\Gamma \eta_{k}$, and the unit vector n_{k} is

$$
\begin{equation*}
n_{k}=\frac{1}{k n}\left(n-k \frac{1+k n}{1+k^{0}}\right) \tag{45}
\end{equation*}
$$

Next,

$$
\left.\left.T_{H_{k}} \psi_{\sigma}^{(s)}(D)=\sum_{\sigma=-v}^{s} \int_{0}^{\infty} d r\left(r^{2}+\sigma^{\prime^{2}}\right) \int d \omega_{n}\right\}_{\left\{\sigma^{-}\right.}^{\infty}(P, r)\right\}(-r, \sigma) \psi_{\sigma^{\prime}}^{(s)}\left(I_{k}\right)(46)
$$

and after appropriate substitutions:

$$
\begin{align*}
& \left.=\sum_{\sigma, \sigma^{n}=s^{\prime}}^{s} D_{\sigma \sigma^{\prime}}^{(s)}\left\{V\left(H_{\underline{\underline{k}}, \varphi}\right)\right\} \int d \omega_{\underline{n}}\right\}_{\sigma^{\prime} \sigma^{\prime \prime}}^{+}(\underline{p-1}-\underline{k}, \underline{I}) D_{\sigma^{\prime \prime} \sigma^{\prime \prime \prime}}^{\left(u_{r}\right)} \text {, } \tag{47}
\end{align*}
$$

from where we can easily derive the addition theorem for the plane waves with spin. Since according to the results of the kernel of eq. (28) automatically performs a transformation from the canonical basis to helioity one, then we can deal With eq. (37) for the wave function $\psi_{\sigma}^{(s)}(\rho)$ in the canonical basis. I_{n} this ouse for constructing local quasipotential in Γ - space wo need the addition theorem just in the form (46).
IV.

It foll oks from eq. (47), that for a quasipotential to be local in the Γ - space it should be in the momentum representation of the form:

Therefore the question arises whether it is possible to construct a quasipotential of such a type from any field theory matrix element.

For example, we consider an interaction of two partial es with spin $1 / 2$ in the oases:

$$
H_{\text {int }}(x)=g: \bar{\psi}_{(x)} \gamma^{5} \psi(x) \varphi(x):
$$

where the spinor field $\psi(x)$ can describe the nucleons and antinuoleons with mass \mathcal{M}, and $\varphi(x)$ corresponds to a pseudosoalar meson with mass μ. In accordance with the general rules for constructing the quasipotential given on 3,11 in second order in g, the quasipotential is proportional to the diagram

In the o.m.s. $\quad \underline{P}_{1}=-\underline{P}_{2}=\underline{P}, \quad \underline{M_{1}}=-\underline{K}_{2}=\underline{K}$
the diagram gives

$$
V^{\mu_{4} \nu_{1}, \mu_{2} \nu_{2}}\left(P_{r} E_{1}, E q\right)=g^{2} \frac{\left[\bar{u}^{\mu_{1}}\left(P_{1}\right) \gamma^{5} u^{\nu_{1}}\left(K_{1}\right)\right]\left[U^{-\mu_{2}}\left(P_{2}\right) \gamma^{5} U^{\nu_{2}}{k_{2}}_{2}\right]}{\left(P_{1}-K_{1}\right)^{2}-\mu^{2}} \cdot{ }^{2}(49)
$$

All the momenta are on the mass shell $\rho^{2}=m^{2}$ but are off the energy shell $\rho^{0} \neq K^{0}$. Therefore, the denominator eq. (49) can be transformed to the form:

$$
\begin{align*}
(p-k)^{2}-\mu^{2} & =2 m^{2}-\mu^{2}-2 p k= \\
& =2 m^{2}-\mu^{2}-m \sqrt{\left.m^{2}+(P G) k\right)^{2}} \tag{50}
\end{align*}
$$

1.e. It is a function only of the distance on hyperboloid. The spinor part of eq. (48) an be written in the form:

$$
\begin{align*}
\bar{u}(\underline{p}) \gamma^{5} u(\underline{k}) & =\bar{u}(0) \gamma^{\delta} S_{p}^{-1} S_{K} u(0)= \tag{51}\\
& \left.=\bar{u}(0) \gamma^{5} D^{(s)} \mid v\left(t_{k}, p\right)\right\} S_{p-1 / k} u(0),
\end{align*}
$$

There

$$
S_{p}=\left(\begin{array}{cc}
H_{p} & 0 \\
0 & H_{p}^{-1}
\end{array}\right) \quad \begin{array}{ccc}
f o r & \gamma^{\mu}=\left(\begin{array}{cc}
0 & 101 g^{\mu \mu} \\
\sigma \mu^{\mu} & 0
\end{array}\right) \\
(\mu=0,1,3)
\end{array}
$$

Thus we see that the expressions (50) and (51) permit to obtain from eq. (49) a quasipotential of the form (48), on passing to the two-oomponent spinors X_{σ} and ξ_{μ} (see 11).

In conclusion the authors would like to express their gratitude to $\mathrm{Drs}_{\text {. }}$ V.G.Kadyshevsky, I.T.Todorov, R,M.Mir-Kasimov, M.D.Mateev, A.D.Donkov, M. V.Saveliev, L.G.Eastavenko, H.N.Faustor, D.T.Stoganor, V. V.Babikov and V.M. Vinogrador for useful discussions.

Appendix

For completeness we give the orthogonality relations for kernel $\xi_{\sigma \sigma^{\prime}}(P, r)$ in both momentum and configurational spaces:
$\frac{1}{(2 \pi)^{3}} \sum_{\sigma^{3}=-1}^{s} \int_{0}^{\infty} d r\left(\Gamma^{2}+\sigma^{2}\right) d d \omega_{\underline{n}} \sum_{\sigma \sigma^{1}}^{t}(p, r) \xi_{\sigma^{\prime} \sigma^{\prime \prime}}\left(p^{\prime} r\right)=p \delta\left(p-p^{\prime}\right) \delta_{\sigma \sigma^{*}}$
$\frac{1}{(2 \pi)^{3}} \sum_{\sigma^{\prime}=5}^{J} \int \frac{d^{3} p}{p^{0}} \xi_{\sigma \sigma^{\prime}}\left(p_{1} r\right) \xi_{\sigma^{\prime} \sigma^{\prime \prime}}^{x}\left(p, r^{\prime}\right)=\frac{r^{2}}{\sigma^{2}+r^{2}} \delta\left(r-r^{\prime}\right) \delta_{\sigma^{\prime \prime}}$
Which follow from the Plancherel formula in ${ }^{9}$ and (29) and (32). It is obvious that our formulae in the zero spin case are the same as the formulae (1.6) and (17) in ${ }^{1}$.

References:

1. V.G.Kadyshevsky, R.M.Mir-Kasimov, H. B. Skachkov ,Nuovo C1m., 65A, 233 (1968); Yadern. Fiz.,9, 212 (1969); Yadern. Fize, 9, 462 (1969).
2. A.A.Logunov, $\bar{A} . N .{\text { Tavkhelidze .Nuovo } C_{1 \text { 四. }}, 29,380 \text { (1963). }}_{\text {. }}$.
3. V.G.Kadyshersky , Mucl. Phys., B6, 125 (1968).
4. V.G.Kadyshersky, A.N. Tavkhelidze .Problems of Theoretical Physics, Nauka, Mosoow, 1969. (In ${ }^{4}$ one can find a more complete list of the articles on the quasipotential approach).
5. I.S.Shapiro. Dokl.Akad. Nauk SSSR, 1_{106}, 647 (1956). Soviet Phys.Doklady,1, 91 (1956) ;JETP 43; 1116 (1959). (soviet $\mathrm{P}_{\text {hys. }}$.JETP, 16, 1219 (1963)); Pnys. Letters, $1,253^{1}$ (1962).
6. Chou Kuang-ohao, L.G.Zastavenko. JETP, 35, 1417 (1958); (Soviet Phys. JETP,10, 794 (1960)).
7. V.S.Popov .JETF, 37, 1116 (1959) (Soriet Phys. JETF, 10, 794 (1960)).
8. I.M.Gelfand, M.A.Natmark. Izv.Akad.Nauk SSSR, Ser.matem. 11, 411 (1947).
9. M.A.Naimark. I inear Representations of the Lorentz Group, Pergamon, New York, 1964).
10. M.D.Mateev, R.M.Mir-Kasimov, N.B.Skachkor .TMF, 10, 3 (1972).
ll. V.G.Kadyshersky, M.D.Mateer. Nuovo Cim. 55A, 275 (1968).
11. M.Freeman, M.D.Mateev, R.M.Mir-Kasimov. Nuol.Phys., B12, 197 (1969).

Received by Publishing Departement on August 3, 1972.

