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1. Intro duct ion 

Many recent investigations show that duality is a 

consequence of some symmetry of the scattering amplitude. 

Starting with the papers l, 2,J the real projective 

transformations, which form the group ,5L (2
1

.1\.),became a 

powerful tool for studying the dual amplitudes. It is most 

natural to place exactly these transformations in the 

basis of the dual symmetry. An additional reason for 

choosing the group 5L (2,1\) is the possibility of 

defining a representations of this group in the space 

of coherent states 4 ' 5 , which allow the operatorial 

factorization of the dual /11 point amplitude 6 ' 7 ~ 

In the present paper we find out a definite group sense 

of duality for the two-particle amplitude with usual 

analytical properties. In particular, we show, that duali­

ty follows as a consequence of the assumption for symmetry 

of the amplitude with respect to the unitary irreducible 

representations of .5}.,(,2.){) • This allows us to give 

an integral representation of the dual amplitude. It does 

not contradict the analyticity and could be exploited 

for combining both duality and unitarity of the amplitude. 
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2. M~ !.!1... t ra!!!ll' 2.!:[1_2.! ~~~ 2!!:.!:!~;!,Bg_!!!!!;tl11~ 

Let Tc"" 1::, u.) denote the s- u. crossing symmetrical 

elastic scattering amplitude for two identical scalar par­

ticles. we assume, that TC.s, -/;
1 

u..) satisfies the dispersion 

relation without subtractions: 

00 00 

Tr~ t,u..)= ,:.} ~s (s; t) 
'.1/ 5 1

- s 
ds'+ _1 j Y"'"(/.1.'~ t) 

1f I (.t--U. 

f_~-~.t !.;<" 

where _/)- is the particle mass, 51 /;J u.. 

Mandelstam variables and 

!) + /; .,.. u, = 4/ .z. 

(1.1) 

cl (4 I f 

are the 

It is convenient to introduce the following dimensionless 

variables: 

<>= a (.5- ~A) 

'1: =a( t+ 8.JA") 
w = a( u.- If./".:). 

(1.2) 

Here a is an arbitrary constant with dimensionality jCA . 
Obviously 

o+-tl:+W=~za. 

If we denote 

..,J(~~w)= T(a;_ ,..~~{--~'-,~+f..u") 

eq. (1.1) leads to 

00 

.,A(tr,7:
1
w)= _Lj f'tY(.,;T:) 

11 tr'- ~ 
0 

4 

00 

oi<:J'+-'-j-L ((,.);z-) 
If c.J'-w 

0 

tfw~, 

Cl.J) 

(1.4 ) 

where 

ftr(~;'C")= f's(-f+'tu~! -8/'") 

() /w' '&")·- o (..!JI.!-+1( .a r 8 ") > ... l' / - )u. a- v- "a- ~ . 
The relation (l.J) allows us to eliminate 

in eq. (1.4). Then we obtain 

00 

~(ct; c-) =..LJ r. (!T; Z") 
1(' p 6''- G" 

~~-t 

o/5'+11 grt1':c-J w- <r- 6'' 
-oo 

drf"' • 

Here we have introduced the following notation 

.Aro;d=.A(5i 'S tu~a-cr-c) 

ft(cr;d:::. ~cr (cr; t') 

f.t (cr;d = f .... ( 'Vc za.- ,..~ ~ 't"). 

Eq. (1.6) shows, that .A(t>,-c-) has two cuts alon. 

axis in the complex ~ plane. The first one g 

to <r=+OO and the discontinuity of _A.(a;·r:') on 

is f, ( ~ '&") • The second one goes from IS"::. ~~co.­

and the corresponding discontinuity is f..t ( ~ c 

As far as the position of the second branch-poi 

'ir , we consider only those 1; , which satisf 

Lf_/'.l.tX--'1;' < 07 

i.e. we consider only the case, when both cuts 

overlap. Hence ,A ( ~ Z') is an analytical funct 
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relation without subtractions: 
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where / is the particle mass, s, t1 U­

Mandelstam variables and 

~-r t +- u.:: 4/ .z_ 
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clu 
1 

' 

are the 

It is convenient to introduce the following dimensionless 

variables= 

o= a (.s- ~") 

'1:' =a( t+ 8_JA·') 

w = a( u.- it./'.~.). 

(1.2) 

Here a is an arbitrary constant with dimensionality ~~ . 

Obviously 

0 -+- q: + uJ==-~ za. 
Cl.J) 

If we denote 

.A-r~ ~w)= T( ~ "'1r~-f-~'-, ~rf-u") 
eq. (1.1) leads to 

IX) 

J/.(tS,-r:,w)= _f_J 5'~rl~;1:) 
11 G''- ~ 

0 

00 

do'+-Lj-t... (w;'&') 
~~ I 

c.J - w 
0 

tlw ', 

(1.4 ) 

4 

where 

ftr(~;cJ= r$(.~"+tu~;; -8/'") (1.5) 

() lw' c)= r> (JJl!-+1( " 't' 8 &) ) .... ~, / J ... a- V' .. a;- ~ . 
The relation (l.J) allows us to eliminate w and (A.)' 

in eq. (1.4). Then we obtain 

00 

_,lrrr; d =_LJ!; (u-: ~) 
11 p 5''- G"' 

tu"'a-z:­
d6'~( g{cr;c-J 

if/-- I v-6" 
-oo 

drf"' . 

Here we have introduced the following notation 

~(~d=.A(~ 'S t-u"a-cr-r:) 

f1(tr)~J= fer (cr~ -r:) 

~ (cr/d = f"' ( 'Vc ta.- 6"'~ ~ 1:'), 

(1.6) 

(1. 7) 

Eq. (1.6) shows, that .A(tOjt:') has two cuts along the real 

axis in the complex U' plane. The first one goes from U'= 0 

to G"':+OO and the discontinuity of .A(o;<) on this cut 

is r, ( ~ -r:) • The second one goes from 6":.~"""-1:" to t>:.-oo 

and the corresponding discontinuity is f.t (a; c) .. 

As far as the position of the second branch-point depends on 

7: , we consider only those 't: , which satisfy 

Lf./'.l a- -r: ( 0 ~ 

i.e. we consider only the case, when both cuts do not 

overlap. Hence .,!(~t:') is an analytical function on the 
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real axis between both branch-points. If we consider those 

cJ" only, for which 

'IJA.J.a-t:< o.( 0 
./ ,? 

then in eq. (1.6) we have in the first integral 

fZq_ ( IY'
1

- v) > 0 

and in the second one 

& ( (}- 6"') > 0. 

These last two inequalities allow us to replace both 

denominators with 
J 

1 }x ~'-<r-1 Jx 
fl 

6''- rr 

in the first integral and correspondingly with 

f 
1 j 6"- cr'- I 
-= X dx 

(}- 6' 
p 

in the second one. Then instead of eq. C1.6) we get: 

J. I j 

A( ( - ~-t j a- ~ 
A a;~)= .Jrfcx,r:)x Jx... o (x t:).X - J ~< , 

0 \A 1 

where 0 
00 

~,(x,-r-):~ jqf(<t:)X ~~J6'' 
0 

'I_,MJ,(I.- r: 

~..r.(x,~)=-; J f4 (<r~-r;))I-~'J6'~. 
-Of> 

& 

(1.9) 

(1.10) 

(1.11) 

(1.12) 

(lJJ) 

(1.14) 

(I.I5) 

Now we recall, that f1 (cr,~) and f..z.(a-,-r-) are th 

tinuities of the amplitude along the cuts, i.e. 

The terms 

integrand 

~~ (~-r-)= ./. [..A(r;+-<O,r)- .A(u-<O,"C")} 

f,_(~r:)= ~-T[A{cr+i~t)-.A(6"-iO., ~)] 
a"' -rr' 

X and X do not insert any new cut 

of eoq. (1.15). Consequently, ff(x,~) a 

can be represented as contour integrals 

f, (~<,r: )= .~: 4 }.A(~: r: )J< r' el d"' 

c, 
f j r' f"{x,'t')=-= '1i. A(D";c)x- /u' 

,.. • C..r. " 
where the contours C, and C..r. are shown on Pi 

1m.,-

c" Y•-c- c, krr 

Fig.l 

Now we cau deform C1 and C.t making them 

coincident and parallel to the imaginary axis. ( 

.A(IS'1r)aatisf1.es the dispersion relation without s 

the contributions o! the integral over the infini 

are equal to zero). Then by ·comparison of eq. (1. 

(1.17) we get 
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eal axis between both branch-points. If we consider those 

if only, for which 

If ,u.la-?: < 0' < 0 
./ ~ 

hen in eq. (1.6) we have in the first integral 

~ ( a--'- (}) > 0 

.nd in the s eo ond one 

& (v-<r')>O. 

hese last two inequalities allow us to replace both 

enominators with 
J 

~ }x ~'- cr- I J x 

tl 
(}'- rJ 

n the first integral and correspondingly with 

f 
1 j 6"'-~'- .( 
-= X olx 

(}- 6' 
() 

n the second one. Then instead of eq. C1.6) we get: 

~ j 

A ( -6"-~ j ~-~ 
A(c;;,r)=.Jf'.(x,r:)x rlx-r o(J~-c-)X J1< 1 

f \~ I 
0 (} 

here 

00 I 

~,(x,-r-)::~ J~1 (tr~r:)xt1' J~' 
0 
llj.~fl..-t 

~"(x,-r):.; J f..r. (<f'~-r:;))l-<r'dl5''. 
-oo 

6 

(1.9) 

(1.10) 

(1.11) 

(1.12) 

(1.!3) 

(1.14) 

(I.I5) 

Now we recall, that f
1

(G",-c-) and f..z.(~1 1:") are the discon-

tinuities of the amplitude along the outs, i.e. 

v->0 ... ~~ (a;'t'")= .. ~ [.A(.;.-<o,r) -.A(rr-.:o,r:')} 

fA.(~~)=~~ [ A(u+l~ ~)-.A( tr-iO~ c-)] <>'< t(_;-t"a-7:', 

The terms a'' -rr' 
X and X do not insert any new cuts in the 

integrand of eoq. (1.15). Consequently, ~.(x,-r) and f.z (x,'l:") 

can be represented as contour integrals 

f. (x,-c- )= .~.: 4 /A{~: 'C')J< r'eirr' 
c, 

f j r' f.Jx,-r)::o:--;?7 ACo;c-)x- Ju' 
.... JI. c.~ ; 

where the contours C, and C~ are shown on Fig. 
1rnr 

c.z Y•-c- c, 4tr 

Fig.l 

Now we O&ll. deform C, and C,. making them 

(1.16) 

(1.17) 

(1 0 ) 

coincident and parallel to the imaginary axis. ( As far as 

J4(tr,r)satisfies the dispersion relation without subtractions, 

the contributions of the integral over the infinite circle 

are equal to zero). Then by ·comparison of eq. (1.16) am 

(1.17) we get 
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o (.1..- 1 -r:)= o (x 1 -r:). 
)1 )<. ).z 

(1.18) 

This last equation allows us to transform eq. (1.14) 1nto 

the form: 
00 

fl{~-r;-)= h (x,'C)x-a--~of;x. 
0 , 

~'a.-'C<. f{t~<.O. 

Instead of eq. (1.16) we get 

(;.;-lot' 

. {j_.f (J' 
f (.x, -c-)=--:- Jf ( 6'.t:) X io-

f L1f' I 

~za-t:<c<. 0. 

c-<ao 
Eqs. (1.19) and C1.20) show that the amplitude _A(~?:) is 

the Mellin transform of r/''"' r:) and vice versa.: ~ .. (x,-r:) 

is a.n inverse Mellin transform of the amplitude. 

Here we list some simple properties of f ( X 1 r:) 

( in what follows we drop out the index "1" ). The first one 

is a consequence of the o......,.. w crossing-symmetry of 

the amplitude: 
(1.21) 

.Atrr,-c)= _A(w, r:). 

Using 11qs. (1.19), (1.21) and (l.J) we get the following 

functional equation 

~'a-r 
f{x,t:)=X f(+,r:.). (1. 22) 

8 

It shows, that the behaviour of 9Cx,-r::) a.t the poir 
and vice vers~ 

determines the behaviour for x-oa 

( see :b:q. (1.19) ) the behaviour of '! (x1 d for x­

fixes the position and the kind of the right-hand 

ritY of ._.A(Gjr:) • If, for instance f(x,c),.-.::-o .x-"'f<1 

then the r.h. branch point shifts to the left. 

This fad contradicts our assumption, that _A(tf c / 

is an analytical function on the interval (~'a.-t 
Therefore such a behaviour of rc .x, -r;) for )\- {, 

eliminated. On the other hand, if o(.xt:")_... ;<..,(.f ) J A-"0 

( ~ > o ), the same singularity shifts to the rie 

extending the analyticity interval. A similar si1 

takes place in the narrow-resonance approximatioJ 

the simple poles on the real axis are the onlY s 

of .A ( ~I •r:') • 
Without loss of generality we assume,tha.t f 

has no power singularities and does not go to zE 

power of x • In the case of narrow-resonance 

tion one has to replace in eqs. (1.19) and (1.2
1 

6"" -(<1"-1)-1 a--/; res 
) and X with X and x 

The constant d fixes the displacement of th 

pole with respect to the threshold '-1/',~.a.. 
which we obtain after such a replacement yield! 

.AC~1 -r:) and ha.s no zeros for X= 0 • In orde: 

the formulae further we use (1.19) and C1.20) 
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o (_j_, -c)= o (x,-c). 
)1 ~ ) .z 

(1.18) 

This last equation allows us to transform eq. (1.14) into 

the form: 
00 

/J ( - rr- 1 1 
..../i ( ~ 7:' )= .J f. (x,-~) X or X 

0 f 

i--'a.-r< &~<0. 

(1.19). 

Instead of eq. (1.16) we get 

t,..;-/Ot' (1.20) 

. fj.( ($' f (x, ~) = -. Jf (t>'.r) X ,.{u-
1 21,' ( 

~~a-c<c< 0. 

c-<ot:J 

Eqs. (1.19) and C1.20) show that the amplitude _A(~?:) is 

the Mellin transform of ~/x.,r:) and vice versa: ~-~ (x,-c) 

is an inverse Mellin transform of the amplitude. 

Here we list some simple properties of f ( x, r) 

( in what follows we drop out the index "1" ). The first one 

is a consequence of the o......,. w crossing-symmetry of 

the amplitude: 

.Atcr,-c)= .A(w1 r:). 
(1.21) 

Using ~qs. (1.19), (1.21) and (l.J) we get the following 

functional equation 

'0"4-t: 
f (x,r)= X p(+,~). (1.22) 

8 

\ kf~~· 

It shows, that the behaviour of f(x,?:) at the point x=O 

determines the behaviour for x.-oa and vice versa. But 

( see l:q. (1.19) ) the behaviour of '! Lx,r) for .11-0 

fixes the position and the kind of the right-hand singula-

rity of Jf(fSir:) • If, for instance yrx,-c)- x-"'f<-c-> (ot>o) 

" '• 

>4 .... 0 .J 

then the r.h. branch point shifts to the left. 

This fad contradicts our assumption, that ~(~-c) 
is an analytical function on the interval ( J{_;<

1

a.- r:, O ). 

Therefore such a behaviour of f( x, "C) for x - 0 is 

eliminated. On the other hand, if o (x,-c-) -r x"' f <d ) A....PQ 

( ~ > o ), the same singularity shifts to the right, thus 

extending the analyticity interval. A similar situation 

takes place in the narrow-resonance a pproxima t ions, whe re 

the simple poles on the real axis are the only singularities 

of .A ( ~~ ·r:'). 
Without loss of generality we assume, that for x .... C f(x,r) 

has no power singularities and does not go to zero as a 

power of x • In the case of narrow-resonance approxima-

) ( ) 
-6'"- !1. 

tion one has to replace in eqs. (1.19 and 1.20 X 
.,- -(<1'-1)-1 a--~ and x with X and x J respectively. 

The constant 8 fixes the displacement of the first 

pole with respect to the threshold 4./.~-a. • The new f ()11 7:) 

which we obtain after such a replacement yields the same 

.A((;
1

-r;) and has no zeros for .X= 0 • In order to simplify 

the formulae further we use (1.19) and C1.20) and only in 
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the final results, if necessary , the narrow-resonance 

approximation (i.e. the replacement cr--cr- ~ ) should 

be assumed. 

Now from eq. (1.22) we see, that '? (x,t) -.X 
to< ~4- l: 

for .x- oo. 

Summing the results of this section we note, that the 

crossing-symmetrical scattering amplitude for two identical 

scalar particles, which satisfies the dispersion relation 

(1.1) in the region (1.9) can be represented in the form of 

Mellin integral (1.19), where ~(x, -c) ( eq. (1.20) satisfies 

the crossing-symmetry condition (1.22). 

2. ~i ty and the group .SL CZ,I!.). 

The Mellin transformation is a very convenient tool 

for investigation of the duality. As a matt.er of fact, 

the integral representations for the simple dual amplitudes 

have the form of the Mellin transform. In addition, the 

pole structure of these amplitudes leads to simple expressions 

for the function 'I (x, -c). 

In this section we consider duality from the point 

of view of irreducible representations of the group .SJ..(.z, P-). 

At first we define duality in a .ay,which is most convenient 

for our further discussion. The definition we are going 

to exploit is contained in a series of papers B-lJ , but 

we shall discuss it in the form, as given in 14 • It has 

been shown in this last paper, that ~ the scattering amplitude 

for two identical scalar IRrtial. es: 

10 

11 

1. is a meromorphic function; 

2. satisfies the crossing-symmetry condition; 

J. possesses Regge asymptotic; 

4. is such a function, that the finite energy 

rules l5-ll are saturated with poles only ( i.e. t 

pole terms in a channel equals the sum of asympto 

in the same channel, or so-called mathematical dual 

then the amplitude can be represented as a sum of E 

B-functions. As is well known, the set of these fol 

conditions determines the narrow-resonance approx1I 

of the amplitude. 
An attempt to take into account the presence 

kinematical out haB been done in the same paper. T 

this one has to g:1.ve ·q> the first condition and to 

fourth one 20 • The asymptotical power series for 

amplitude is determined by the pole terms too, bt 

ex:1.stence of the out leads to the emergence of s~ 

therms in the asymptotic. We see, that in this ca: 

finite energy sum rules lead to local connection 

asymptotic not only with the pole structure, but 

with branch points in the same channel. Such a wi 

tion could be used as a natural generalization of 

mathematical duality. On the basis of this more e 
definition the authors of the above-mentioned pal 

been able to write down a Mellin-type integral rE 

for the amplitude. The essence of their results, 

our notation ( Section l), consists in the stateJ 

II 



results, if necessary , the narrow-resonance 

( i.e. the replacement cr- u-- I ) should 

V.~a-r eq. (1.22) we see, that f (x,r:) -.X 

the results of this section we note, that the 

g-srmmetrical ecattering amplitude for two identical 

particles, which satisfies the dispersion relation 

in the region (1.9) can be represented in the form of 

integral (1.19), where f(x,r) ( eq. (1.20) satisfies 

ssing-symmetry condition (1.22). 

2. ~~~~~group . 5~.2:.(~ 

Mellin transformation is a very convenient tool 

stigation of the duality. As a matt.er of fact, 

egral representations for the simple dual amplitudes 

form of the Mellin transform. In addition, the 

cture of these amplitudes leads to simple expressions 
function f (x, r ). 

this section we consider duality from the point 

of irreducible representations of the group 51..(2,'-). 
·- -

we define duality in a way,which is most oonven!ent 

further discussion. The definition we are going 
8-lJ b t is contained in a series of papers , ut 

discuss it in the form, as given in 14 • It has 

in this last paper, that r the scattering amplitude 
identical scalar J;artial. es: 

10 

.,~,. 

1. is a meromorphic function; 

2. satisfies the crossing-symmetry condition; 

J. possesses Regge asymptotic; 

4. is such a function, that the finite energy sum 

rules 15- 11 are saturated with poles only ( i.e. the sum of 

pole terms in a channel equals the sum of asymptotic terms 

in the same channel, or so-called mathematical duality 19 ). 

then the amplitude can be represented as a sum of Euler's 

B-functions. As is well known, the set of these four· 

conditions determines the narrow-resonance approximation 

of the amplitude. 

An attempt to take into account the presence of the 

kinematical cut has been done in the same paper. To do 

this one has to give ·i~J the first condition and to change the 

fourth one 20 • The asymptotical power series for the 

amplitude is determined by the pole terms too, but the 

existence of the cut leads to the emergence of some logarithmic 

therms in the asymptotic. We see, that in this case the 

finite energy sum rules lead to local connection of the 

asymptotic not only with the pole structure, but also 

with branch points in the same channel. Such a wider connec­

tion could be used as a natural generalization of the common 

mathematical duality. On the basis of this more general 

definition the authors of the above-mentioned paper have 

been able to write down a Mellin-type integral representation 

for the amplitude. The essence of their results, expressed in 

our notation ( Section 1), consists in the statement, that the 



function ~(x,r) bas to be in the form: 

~..za.-'C 

S' (.X/Z: )= (it-.><.) j(2-) 
f+>< ' 

(2.1) 

·where /()) is an arbitrary function. (The crossing-symmetry 

condition, which leads to some simple requirement for fC~) 

is not under consideration here). The assumption, that 

/CjJ has a Taylor's expansion around the point j= 0 

leads to Ven~ziano-type amplitudes. If /~) has definite 

logarithmic behaviour at the same point, then the amplitu­

de has a cut in the s-plane. Eq. (2.1) is a straight 

consequence of the above-mentioned generalized mathematical 

duality. That is why we accept eq. (2.1) as a definition of 

dualit Y• 

The connection between the dual amplitudes aDd the group 

of the projective-transformations has been considered in 

many papers 1 ' 2 ' 5 ' 21- 25 • A lot of the properties of the 

amplitudes have been described by means of these transfor­

mations and their representations. The operatorial facto­

rization has revealed defi.ite group structure of the ampli­

tudes. We would like to note the papers 
26 

, where, in our 

opinion, a group sense of the Veneziano type amplitudes has 

been given. In particular, the author turns one's attention 

to the folloWing fact whioh is well known in the theory of the 

representations of the group .SLC.t, R) 2
7 ; there are 

12 

representations of the triangular matrices 

group, in which the Euler's B-function plaJ 

of the kernel in the integral operator of 1 

tation. This result is respectively generw 

the case of the Veneziano N-point ftmction. 

Let us analyse in some details this f< 

case Ii==4.Denote by t:.4 the subgroup of the 

matrices in $L(.i,~) ( we define it lat1 

given representation of ~;r there corr' 

global representation of the whole group ~ 

the kernel of the integral operator is in 

element of the global representations oper1 

the kernel ( i.e. the Euler's B- function) 

considered as a function, given on the sub 

Further we recall, that together with ~~ 

contains another, complementary subgroup 

triangular matrices.Each 

a coset with respect to 

as representative of this 

element of L::.'( 
.S,/.1 and can be 

ooset ( see APP 

Consequently every function,defined on t:. 
~ 

cons~dered as a function, defined on the s 

5~ \ ~.L (.21 1{) • Thus, one can state, that 

elastic scattering amplitude is a function 

on a certain homogeneous space 51'\~L(..Z,R.. 

group ~)., (.2,R) • It is known, that usua 

functions are also functions, defined on a 

spaoe, as far as the sphere is a homogenec 

with respect to the rotation group. That j 

the functions, defined on ~\ ~J.(.J.,It) sphe 
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tion f(x,r:) has to be in the form: 

~.za.-'C 

q; (x, -r: )= (it-~) j(~) 
f+>< ) (2.1) 

/(t) is an arbitrary function. (The crossing-symmetry 

tion, which leads to some simple requirement for j(~) 

under consideration here). The assumption, that 

has a Taylor's expansion around the point 1= 0 

s to Ven~ziano-type amplitudes. If /~) has definite 

same point, then the amplitu­

has a cut in the s-plane. Eq. (2.1) is a straight 

equence of the above-mentioned generalized mathematical 

That is why we accept eq. (2.1) as a definition of 

Y• 

connection between the dual amplitudes and the group 

the projective-transformations has been considered in 

papers 1 ' 2 ' 5 ' 21- 25 • A lot of the properties of the 

tudes have been described by means of these transfer­

tiona and their representations. The operatorial facto­

tion has revealed definite group structure of t~ ampli­

s. We would like to note the papers 26 , where, in our 

on, a group sense of the Veneziano type amplitudes has 

en given. In particular, the author turns one's attention 

the folloWing fact which is well known in the theory of the 

presentations of the group .SLC.t, fl.) 27 ; there are 

12 

representations of the triangular matrices sub­

group, in which the Euler's B-function plays the role 

of the kernel in the integral operator of these represen­

tation. This result is respectively generalized for 

the case of the Veneziano N-pointfunction. 

Let us analyse in some details this fact for the 

case N==4.Denote by ~/"the subgroup of the triangular 

matrices in $L(2,~) ( we define it later). To the 

given representation of ~JT there corresponds a 

global representation of the whole group 5L(2,~) • Then 

the kernel of the integral operator is in fact a matrix 

element of the global representations operator. Therefore 

the kernel ( i.e. the Euler's B- function) could be 

considered as a function, given on the subgroup Ll~ 

Further we recall, that together with ~ SL(2,~) 

contains another, complementary subgroup S/3 of 

triangular matrices.Each 

a coset with respect to 

as representative of this 

element of /jf determines 

6/-1 and can be chosen 

coset ( See Appendix A). 

Consequently every function,defined on ~~ can be 

considered as a function, defined on the set of coaets 

~ \ SL (21 R) • Thus, one can state, that the dual 
i'J 

elastic scattering amplitude is a function, defined 

on a certain homogeneous space .sl'\ .S.L(2,R.) of the 

group S.L (.l,R) • It is known, that usual Spherical 

functions are also functions, defined on a homogeneous 

space, as fQr as the sphere is a homogeneous space 

with respect to the rotation group. That is why we call 

the functions, defined on 7,\ ~).(.J,R.) spherical, too. 
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We shall construot such spherical functions and 

shall show that the functions C2.1) are spherical 

ones. 

By definition, SL (.2, 1!.) is the group of all real 

un1modulator 2 .11. .1, mattices. An arbitrary element 

~~ 5L(.z,i..) can be written in the form: 

J=(; ; ) at.. J' -jJf= /. 

(2.2) 

The above-mentioned subgroup 5~ 

angular matrices of the type: 

contains all tri-

~=c :) (2.J) 

Obviously ~ is an abbelian subgroup of .5J, (.l, I.). 

Let us consider the space of all :cosets 

7sj 
(2.4) 

It is easy to see, that two elements 

(

..l, 

a·= ,, ./J f) 
~4 

-( rJ.~ ~'~) \ a,.- s 
r~ ~. 

14 

~· .. :·~ •.. , ... 

belong to the same coset (2.4) if 

(.=fa .f1:::: a:. 
Therefore as representative of given coset ( 

accept the .matrix of the type: 

j= ( ~-· ;) 

The nn trices J fonn a subgroup of 5}.(..21 

have denoted by ~ r· 
Now, consider the space 2l of all fun 

defined on the real axis. To every J 6. 5/..(.J 

we put into correspondence an operator v,\. 
9 on fex)E: 11. according to the definition 

where 

that 

( One 

A f ~1Af( .t.x+r) V3 (.x)= 1(3x+-O j3x+f ' 

tl is an arbitrary number. It is eas; 

v~ 
I give a representation of SJ..U, ~~..; 

should note, that as far as JJ, conta: 

functions on the real axis, this representati, 

reducible). 

Let !lll. be the set of all functions 

defined on the group 5L(.1.1 1t) where 36 5)..(;. 
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we shall construct such spherical functions and 

show that the functions C2.1) are spherical 

By definition, 

tor 2 ><. .t 

.SL (.2, !!..) is the group of all real 

mat~ices. An arbitrary element 

(.2Jl .. ) can be written in the form: 

7=(; ;) 
(2.2) 

ot. J -jJ/= I. 

bove-mentioned subgroup s~ 

matrices of the tyte: 

contains all tri-

~=c :) 
~ is an abbelian subgroup of .5). U, ~ ). 

consider the space of all :cosets 

~~ 

easy to see, that two elements 

=(;: ./J f) 
s1 

-( "-.z. ~~)\ a).- s 
r~ "· 

(2 • .3) 

(2.4) 
' 

belong to the same coset (2.4) if 

f.=~ d1:::: ~· 

Therefore as representative of given coset (2.4) we can 

accept the .matrix of the type: 

!=( ~-· ;) 

(2.5) 

(2. 6) 

The m trices j form a subgroup of S.L(.2) I.) which we 
have denoted by C!. r· 

Now, consider the space 'J.l of all functions · fcx) 
defined on the real axis. To every J 6. 51.. (.2,R..) 

we put into correspondence an operator v,\. which acts 
. ! 

on fex)6 11. according to the definition 

where 

that 

it 
v.t 
I 

v; fcx>=l~xi-al).f(-:::~), 
is an arbitrary number. It is easy to check, 

give a representation of 51., (.2, It) in :U . 
( One should note, that as far as JJ, contains all 

(2. 7) 

functions on 

reducible). 
the real axis, this representation is in general 

Let 2JL be the set of all functions 'f (j) f) 
defined on the group .SLU.,!t) where 36 5)..(.1.

1
/t)J f6 'lL. 

15 



Obviously, every 'f'(J
1
f) corresponds to certain fcx)E. 3(. 

We assume 1f{3
1
f) to be a linear functional on U, 

which satisfies the following two conditions: 

lf(3, v: 0= 'f(a!Jh!,-~ f) h~ S/. (..t,'-) 
(2.8) 

lf(~,J):= 'f(eA), 
(2.9) 

where e 
is the unite element of :;;;., (:l,t.) 

and 5 is a matrix from .S;3 for which ;1-:. t. 
According to eq. (2.8) transforming -f we can 

• As far as f is 

, eq. (2.8) shows, 
vary the argument 3 of 

the "index'' of the function 

'f (j, f) 

'f c,, f) 
in a given point ( 1. e. 

that if we know the value of f(J1 f) 

for fixed ! 
), by means of the index transformation we 

can obtain its value in every other point. Obviously, this 

property is similar to the analogous one, which takes place 

for usual spherical functiqns. 

Let us consider the functional 'f (S~f;f). 
It follows from ~qs. (2.8) and (2.9) that 

'I(~,, f)= 'f(J,f). . (2.10) 

16 

~ 

Consequently, as a function of j 1 'f (f, f) 
on the space of cosets (2.4)1 i.e. 'f(J,f) 

its value when ~ varies inside a given 

eqs. (2.8) and (2.9) define !f r1, f J as SJ 

ons of the homogeneous space, which is equivale1 

of all the cosets (2.4). 

One can define two representations of 5t( 

1'he operators Th of the first one are de 

follows: 

Thf(1,n= rC1h~ f) 

and the operators /Z h of the second one( the 

transformation), respectively: 

R.h '! (1, f)= 'f C3, v;, v:.1 v~ 1- ) . 

Using eq. (2.8) we can find, that 

/{ h 'f (;,f)= 'f(jh-fl f). 

Consequently, if we know the value of a spheri 

at one point I 
, by means of the trans 

we can get its value at every other point. In 



, every f(J
1
f) corresponds to certain f<x>E- J(. 

ume lf <3, f) to be a linear functional on 2J.,, 

satisfies the following two conditions: 

If (3) v: 0= 'f(j~h5-: f) ht. SL (.z,P.) 
(2.8) 

If(~))= 'f(e.;f), 

e e is the unite element of ~).. (.2,t.) 

5 is a matrix from .S/.1 for which ~= '· 
According to eq. (2.8) transforming f we can 

(2.9) 

the argument 3 of 

11index" of the function 

'f(j,f) 

'I (f, f) 

• As far as f is 

, eq. (2.8) shows, 

t if we know the value of 'f r;, f) in a given point ( i.e. 

fixed ! ), by means of the index transformation we 

obtain its value in every other point. Obviously, this 

is similar to the analogous one, which takes place 

usual spherical functions. 

Let us consider the functional J? ( 5,/!f; f) . 
follows from _eqs. (2.8) and (2.9) that 

y;(~!~f>= lf(j,l). (2.10) 

Consequently, as a function of j
1 

y (f, f) 

on the space of cosets (2.4)1 i.e. 'f(f;f) 
is defined 

does not change 

its value when J! varies inside a given coset • Hence 

eqs. (2.8) and (2.9) define !f ("f) as spherical functi-

ons of the homogeneous space, which is equivalent to the set 

of all the cosets (2.4). 

One can define two representations of 5.1. Ct, ~) in.:Jlt 

1'he opa-at ors 

follows: 

Th of the first one are determined as 

Thr(~,n= r<Jh, f) 

and the operators fZ h of the second one( the 11 index" 

transform tion), respectively: 

R.h lf(7,f)= y<3, v;., v;, v: r-). 
Using eq. (2.8) we can find, that 

/{ h 'f (j, f)·= f(!h-~ f). 

Consequently, if we know the value of a spherical function 

(2.11) 

(2.12) 

C2.1J) 

at one point ~ , by means of the transformation Jeh 
we can get its value at every other point. In particular: 

17 
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f(J,f.J= rzrfrce,fJ. (2.14) 

Using eqs. (2.7),(2.8) 1 (2.9),<2.12) and (2.14) we get: 

'f(e, fc-<)-fJ'M1rAH,.a:+ 4))= 0 (2.15) 

:for arbitrary f(;<)~ 1/. • As :far as }?( e
1 

f) is not 

identically zero, from eq. (2.15) it :follows, in particular, 

00 

'f ( e, f J-jfcx) f C><)c/ x-= /( o ). 
- 1>0 

Then, in view of eqs. (2.14) and (2.12) we have 

lf(J~f)=[v~f v). VA fc;l)J 
.s 1 & ~==0. 

Transforming the r.h.s. of eq. (2.17) with the help of eq. 

C2. 7) we get: 

).. 

(2.16) 

(2.17) 

f(J,f)=lf+bl f(-,!o ). 
(2.18) 

II 

Since f (d' f) depends on S' and r only 1 

function of j it is const:ant on every one :from tl 

(2.4). When a .St(,;,, It) transformation is applied 

variables 'i and ( change according to the de 

(2.11). If we denote 

s~~ 

and choose r in tb. e fo:r:m 

r==-XJ 
we get 

). )..f 
lf(j, f): lf()(,~;f)=IJI jHxl ( i:)C.) 7 

where X changes in a linear fractional way by 1 

(2.11). Using the homogeneity of the two dimensioru 

space we fix t=J.: 
). 

'f(x,1;f):=f(;<1 f)=l~nd JC:x)· 

Then instead of eq. (2.11) we have 

Th 'f (xJ f)==-l~x+ d'\ >.v:>f-~x-ri , f) J \y1.x-~"S 
h ~ SL 



f(J,f)= R.r~tce,fJ. 
(2.14) 

eqs. (2.7),(2.a),C2.9),C2.12) and C2.14) we get: 

'f(eJ }(.~<)-f;JM-f!Af(o~/))= 0 (2.15) 

trary fc,J()€. 1L 
• As far as y(eJ f) is not 

ica1ly zero, from eq. (2.15) it follows, in particular, 

00 

'f ( e, f) -}!cx) f C><)o/ x =- Jr o ). (2.16) 
-00 

in view of eqs. (2.14) am C2.12) we have 

lf(J~f)=[v~~ v). v). fc:l>] 
.s 1 ~ ~=0. 

(2.17) 

orming the r.h.s, of eq, (2.17) with the help of eq, 
get: 

).. r rJ, f)=' r + ~ 1 f (-, :~" ). 
(2.18) 

.. 

Since 'f (d' f) depends on J and r only as a 

function of J- it is oonst:ant on every one from the cosets 

(2,4). When a .SL(,;,, It) transformation is applied, both 

variables ~ and ;t change according to the definition 

C2.11). If we denote 

So:. I 
and choose r in the fom 

r=xJ 
we get 

). ).f 
lf(j,f)=r(J<I'j;f>=IJI IH·XI c:"' )

7 

(2J9 ) 

where X changes in a linear fractional way by the operation 

(2.11). Using the homogeneity of the two dimensional (x,t) 

space we fix r=J: 

,l. 

'f(x,1;f)=:f(,x.,f)=/-1+xl Jf1:x). 

Then instead of eq. (2.11) we have 

). r.~M' f) . ~ 'f (x) f)= lt1x+ dl rv)(tod) 

(2,20) 

h 6SL(.2,11.) (2.21) 



Obviously, for ~:::Y«-~ the expression (2 .20) coincides 

with (2.1) and this proves our statement. Eq. (2.21) shows 

that both the spherical functions and the functions f 
are transformed in the same way. Now we notice, that in the 

whole set of functions f<x.) and y{J1 f) 
A 

subset of functions, which asymptotic is X · 

there exists a 

for .K-+Ot:l. 

On this subset both representations C2.7) and (2.21) are 

irreducible and equivalent. In what follows we assume, that 

they are irreducible and will not distinguish between them. 

Thus, in Section 2 we have shown, that the inverse 

Mellin transform ~(x,r) of the dual amplitude can be consi­

dered as a function, defined on the homogeneous space of the 

group .S/.. (.21 ~) • This space is' isomorphic to the 

cosets (2.4). By analogy with the usual sperical functions 

we call these functions spherical too. 

J. ~-basis_!p_!£!_~~cal.functio~Race 

In this section we introduce a basis in the space 

of our spherical functions. Tbis gives us the possibility 

of expressing an arbitrary i~erse Mellin transform f fA,-r:) 

of the dual amplitude as a superposition of the basis elements. 

For this purpose we first consider the ~J.,(.t.,A.) algebra. 

Its generators are easily obtained through successive 

differentiation With respect to all three parameters of the 

group. Here we use a parametrization, whiCh is similar to 

that from ref. 5 

20 

J.& 
e--r- .i.(..ti+-'3) .z. 

a(ot,,.La,..l:s)= 
t(-.t~+.t:s) u- _,;-~.J')e-~ 

The generators of the representation (2.11) are • 

follows: 

I =(;;T,(,t,,J~,"'l)) . 
.{ \ ')~~· qt,. =uLl.=atl-:::.0 

Thenwe have 

I =..!..x - J... ( -i+x.l)_l.. • ~ ~ ,X 
I =-l:.+x;f-

J. .1. ,x. 

11 = J- X+ 1 { 1-x")j;z 

and 1
1
, ~ 

1 
1

3 
satisfy the commutation relations 

[I.,IJ:- IJ, [I.., I:s ]= 11J r r,, r.J~ -1.~. . 
The simplest spherical function of the type (2. 2 

obtained by putting 

f(XJ~ )= ~ H+xi,A. 

It is easy to see, that 'f (xJ ~) 
of I 3 : 

21 
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Obviously, for A= Y•- '&' the expression (2 .20) coincides 

with (2.1) and this proves our statement. Eq. (2.21) shows 

that both the spherical functions and the functions J 
are transformed in the same way. Now we notice, that in the 

whole set of functions J<x) and 'f(J,f) 
,l subset of functions, which asymptotic is X · 

there exists a 

for .x- 0<'. 

On this subset both representations C2.7) and (2.21) are 

irreducible and equivalent. In what follows we assume, that 

they are irreducible and will not distiDguish between them. 

Thus, in Section 2 we have shown, that the inv.erse 

Mellin transform ~(x,c) of the dual amplitude can be consi­

dered as a function, defined on the homogeneous space of the 
group !jj_ ( .2, ~) • This space is' isomorphic to the 

cosets (2.4). By analogy with the usual sperioal functions 

we call these functions spherical too. 

J. !_ba!Wl.J:!i.....!!!!L~£!:1.£!.1. funQ!iO!L,..!J2a.Q.e 

In this section we introduce a basis in the space 

of our spherical functions. ~is gives us the possibility 

of expressing an arbitrary inverse Mellin transf~rm f(x,~) 

of the dual amplitude as a superposition of the basis elements. 

For this purpose we first consider the ~L(21 R) algebra. 

Its generators are easily obtained through successive 

differentiation with respect to all three parameters of the 

group. Here we use a parametrization, which is similar to 

that from ref. 5 

20 

.t& 
eT 

9(ot.,..L~,..L3)= 
..L (.t1+..t3) .z. 

u- ¥, ;-~;J~)e -{A 
(J.l) 

The generators of the representation (2.11) are defined as 
follows: 

r =( dT,t(tl,,.t~,.~l)) . 
i ")~~· of

1 
=oL,_=aL1=0 

Thenwe have 

I =..!.x - ...L { -i+..x.l)l-
• ~ .). ITX 

I,~.=-2 + x']x 

13 =}X+ 1 { 1-x")jx 

and I,,~ 1 l 3 satisfy the commutation relations 

li., IJ =-I], [t, t J= I1J [ t, L]::: -I.t . 
The simplest spherical function of the type (2.20) can be 

obtained by putting 

f(x.Juwv..J )= ~ l~+xiA. 

(J.2) 

(J.J) 

(J.4) 

(J.5) 

It is easy to see, that 'f (X; unv);) is an eigenfunction 
of IJ : 

21 



" 

I 'f(x ~}~~u;o(x ~) .) l .J, J ,) • 

Acting on r (.x, ~) with 11- I A. and 1. + 1 .... 
we get: 

(1,- IJ 'f (x1 ~)= 0 

(1,-rl )!.P(x~)=~ H.-;..IA/1-x) 
J,} J t1+-..... 

is an eigenfunction 

(J.6) 

(J. 7) 

(J.S) 

The function ( L + t) 'f(x.J ~) 
of 1 too, but its eigenvalue h ..11--t 

2. 
• Thus y;CxJ ~) 

J 
plays the role of the highest vector in the space,in which the 

generators (J.J) act.Now we introduce the notation: 
(J.9) 

e: ::s ycx) ~ )= ~ l1+xiA 

and apply the same procedure to the vector (J.S), getting 

a new eigenvector of ]
3 

and so on. As a result we obtain 

the vectors= 

eA. Cx.)=N H+xl>-ru-x )~ 
~ \1~x 

(J.lO) 

which satisfy the equations: 

.Ao e~::: c; -r.)e~ 

..A .. e: = (J'.-A)e~i' 1 (J.ll) 

A ,\ i\ ./t_e..,.. == Ker.-t 

22 

where we have introduced the notation 

_,.(= I.·l .. ..A- .. ~- I .. .A .... IJ. 

The form of the functions (J.lO) is similar tc 

of our spherical functions. All linear combination! 

form a space, which for IC.. integer is invariant 1 

to the action of the operators ().12). For "' e· 

satisfy the even crossing symmetry condition (1.22 

odd IC. - the odd crossing symmetry condition. 
A. 

If it is possible to ohoose e r. as a basie 

spherical functions space, then an arbitrary f ( x 

of the type (2.1) can be represented as a sum of 

we go from f ( x, -r;;) to ..A (<f., -c) this sum will be 
( as far as B. into the sum of EUer' s B-functi ons 

is the Mellin transform of e ~ ) : 

J
oo -<l"-4 }.( )lC. L d (-1)"' 
>" (4+x.) 11-~ h= n In ' 

-t-X l'l+rtsl<. 4• '· 
0 • .& 

f>(-~+r~,,-A+ 

). ( IS". 

Now the question arises whether or not we 01 

the representation (J.ll) of the .SL(.J, It) algebr• 

a global group representation. It this integrat1 

done,. then ~ Jt. would form a basis not only for A 

but for the group representation too ( the defiz 

generators guarantee,,that tbe last one ooinoid4 

We have mentioned, that 'A= ~"'a..--r:' , but , 

specify what kind of irreducible representation 
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I~ 'f (;><._, unv); )= J 'f (x_. ~). (J.6) 

ng on f {.x, ~) with I,- I,. and l, + 1,.~. 

(I,- IJ 'f <x) ~)= o (J.7) 

(l,1"I)'f(x,~)=~ l~i-x/Atf-x) 
t 1+-..... • 

(J.a) 

function ( L +I ... ) y;(x, ~) is an eigenfunction 

1 too, but its eigenvalue i~ 
~ -A--t 

2 
• Thus 'fCx, ~) 

the role of the highest veotor in the space 1 in which the 

tors (~.J) act.Now we introduce the notation: 

(J.9) 

e:::: 'f(x, eorvvt )= ~ 11+>< lA 

the &~me procedure to the vector (J.a), getting 

of ]
3 

and so on. As a result we obtain 

). ).. 
e,._(x)=NH+xl ft-x.)" 

\1~x 

satisfy the equations: 

_Ao e; = (2 -~)e; 
.. ,(e~ = c~~.-..t)e;H 

" ,.\ .A_ .e.,_ = K e ~e.-f 

22 

(J.lO) 

(J.ll) 

where we have introduced the notation 

..A-#>= I,+ 1,. .A_=~- I .. .A.= I,. ().12) 

The form of the functions (J.lO) is similar to that 
,.t 

of our spherical functions. All linear combinations of e k 

form a space, which for K integer is invariant with respect 

to the action of the operators (J.l2). For Jt.. even e~ 

satisfy the even crossing symmetry condition C1.22) and for 

odd 1'. - the odd crossing symmetry condition. 

If it is possible to choose e~ as a basis in the 

spherical functions space, then an arbitrary f ( .x., 7:") 

of the type (2.1) can be represented as a sum of e" . When 
II.. 

we go from f ( x, -z;) to A ( <Ji 'C") this sum will be transformed 

into the sum of Eller's B-functions 

is the Mellin transform of e: ) : ( as far as B-function 

J
00

-tr-f A( )II. > Kf(-f)n, 
:X (f+x.) .,1-x h=L.-;. n In I 

0 .foX l'l,+n"=l(. 4. t. 

5(-fr'.rt,
1
-A+<r+ nJ (J.lJ) 

).. < ll. 
., 

Now the question arises whether or not we can integrate 

the representation (J.ll) of the .SL(.J, R.) algebra and get 

a global group representation. It this integration could be 
..l 

done,' then e II. would form a basis not only for the algebra, 

but for the group representation too ( the definition of the 

generators suarantee,,that the last one ooinoides with (2.21) ). 

We have mentioned, that A== ~"a.-7:' , but we did not 

specify What kind of irreducible representation we are going 
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II 

to exploit. As a function of "l:'" A changes continuously. 

Hence, we have to determine (2.21) in a way, which allows 

continuous variation of A • ~he only unitary irreducible 

representations,v.hich satisfy these conditions are those 

with 

-.L. <,it-:: ~lcx.-1:"( 0. (J.l4) 

They form the so-called supplementary series of represen­

tations of the group ~}., (..t, It) 28 • For all other unitary 

series either tl takes integer values, or only 1m A 
changes continuously and hence they are not suitable for our 

purpose. 

Let f. (J<.) and lf,~. (J<.) belong to the space of functions, 

Tlhich are transformed with the help of the representations from 
B 28 

the supplementary series. y means of the formula 
00 ""' 

(lfu y) r(-~-1 )_!:i~ )'x-iA-,t 'f, (x) 'f.J. {J) 
(J.l5) 

one can introduce in this space an invariant scalar product, 

which satisfies the con:lition ( 'f, 'f)) 0 . ( Here Y means 

complex conjugation). This fact allows us to verify whether 

or not the vector (J.lO) belbng to the space~ the global 

representation of the group. If we calculate (e~, e~) 
we shall find, that the integral in the r.h.s. of (J.l5) 

diverges. Consequently, for positive integer ~ the 
A vectors e K do not belong to the space of these represen-

tations. 

Therefore we can make the following conclusion. We have 

24 

seen, that the meromorphic approximation and sM 

tical duality assumption lead to a series of EiJ 

B-functions for the amplitude. l'his is a decamp< 

basis of the representation of the .5L(.1.)Z) all 

why the inverse Mellin transform y (.x, ~) for 

amplitude is not a spherical function. The fact 

eigenvalues of IjA.are real 1 shows once more, 

algebra representation (J.ll) cannot b3 integra 

space of vectors (J.lO). Actually, if the group 

(2.21) is unitary, it follows from our definiti 

that .A
0

, .A+ and .A_ should be skew-Hermitiar: 

and _A are real linear combinations of I. I 
- J .a. 

Then, if the representation (J.ll) of the algel 

be integrated, .Ao could not have real eigen, 

Therefore, the vectors (J.lO) do not form· 

spherical function space. However, the last r, 

the eigenvalues of v4o shows the way, in Whi 

could be obtained. Taking into account, that 

(J.ll) can be arbitrary complex number, we ass 

1--IC-=.(.)1 
.). 

Thus _A;, becomes a skew-Hermitian operator. 

this assumption leads to some complications, l 

because of the branch-point X-= 1,. , the fun' 

are not determined uniquely. Second, for arbi· 
}.. 

the vectors e... do not have definite orossi 
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o exploit. As a function of~ A changes continuously. 

e, we have to determine (2.21) in a way, which allows 

of A. • ~he only unitary irreducible 

presentations,vmich satisfy these conditions are those 

ith 

-..L<!l=~la.-~< 0. 
(J.l4) 

They form the so-called supplementary aeries of represen­

group 5J.. (1., R..) 28 • For all other unitary 

s either ~ takes integer values, or only ~ A 
s continuously and hence they are not suitable for our 

'f,<.~<.) and ~(x) belong to the space of functions, 

h are transformed with the help of the representations from 

e supplementary series. By means af the formula 28 

. ) L i i. 0 -A-.L 
(lfu'f;. =r(-A-f)_{...Jjfll)l-;1 ftlx)'f~{l) (J.l5) 

can introduce in this space an invariant scalar product, 

satisfies the con:lition (1f,'f)>O • (Here Y' means 

conjugation). This fact allows us to verify whether 

the vector (J.10) belong to the space~ the global 

of the group. If we calculate (e~, e~) 

shall find, that the integral in the r.h.s. of (J.15) 

erges. Consequently, for positive integer K the 
A 

tors e K do not belong to the .space of these represan­
ons. 

Therefore we can make the following conclusion. We have 

24 

seen, that the meromorphic approximation and simple mathema­

tical duality assumption lead to a series of Eiler's 

lLfunctions for the amplitude. l'his is a decomposition in the 

basis of the representation of the .SL(-2,/l..) algebra. 1'hat is 

why the inverse Mellin transform f (.x, ~) for such an 

amplitude is not a spherical functwn. The fact, that the 

eigenvalues of Ij""'A,are real,shows once more, that the 

algebra representation (J.ll) cannot btl .i.ntegrated in the 

space of vectors (J.lO). Actually, if the group representation 

(2.21) is unitary, it follows from our definition (J.2), 

that .A .A+ and .A should be skew-Hermitian (...A A 
OJ - OJ + 

and A_ are real linear combinations of I,, l.a_ and 1
1 

) • 

Then, if the representation (J.ll) of the algebra could 

be integrated, -4. could not have real eigenvalues. 

Therefore, the vectors (J.lO) do not form' a basis in the 

spherical function space. However, the last remark concerning 

the eigenvalues of v40 shows the way, in Which this basis 

could be obtained. faking into account, that ~ in eq. 

(J.ll) can be arbitrary complex number, we assume 

__l-K= .C.}I 
.,1. 

(J.l6) 

Thus ..A;, becomes a skew-Hermitian operator. Nevertheless, 

this assumption leads to some complications, First of all, 

because of the branch-point X-= i , the functions (J.lO) 

are not determined uniquely. Second, for arbitrary ~ 
~ 

the vectors e"' do not have definite crossing symmetry 
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I ~ 

properties. That is why we have to redefine the functions 

(J.lO). ( One encounters similar complications in Regge theory 

by analytical continuation of Legendre-poly~lials from integer 

to arbitrary indices). If we substitute K from (J.l6) into 

(J.lO), we can choose such a branch of the multivalued 

function, which still keeps the crossing-symmetry properties 
A of e~ . As far as the new vectors depend on the index 

v we denote them e~ and define: 

~ 

I 
I( ( {- x"")-;: {.J..::.:L) <. .J 

A+ ~ f+x 

ev- = 

! Al(x~-i)f(2..=...!..)1.v 
X+1 

Pdd (J.l7) 

lx\) 1 ~ 

where (+) and (_) concern the cross-even and cross-odd funct­

ions, correspondingly. In what follows we omit this signs, 

having in mind the cross-even functions only. ~very further 

result could be easily obtained for the cross-odd functions, 

too ( see Appendix B). 

Let us consider the most important properties of the 

functions (J.l7): 

1. The orthonormality condition. Using the definition 

(J.l5) of the scalar product we get 

( e~ e~ )= /V()..~",)fc~.-y.~.)~ 
'• ) ;>. 

(J.lB) 

where 

,#{A,v)= INl.l .2A+!. ~f(,)..,._.z)[J 1/lJ+ ~t{)..+..z.)]lrt; +i>~+~)l.a. 

28 

·; 
,\it 
·" 

t 
1 

•' 

,'i, 

Obviously, for different y the vectors 
~ 

e~ 

orthogonal. Using the inequality (J.l4) we can ge 

AI( A, v.) > 0. 

Taking into account, that 

.l .t.x-t -1il)l 
lrcXi"'J>I = ..t~ 111 e 

I;I,..QO 

we find out the asymptotic behaviour of .A'(A, y1 ) 

large \V11: 

J A+l Atf 
,#"(A,v,) ~ .111.NI), 111,1 ~fl>.+.z). 

1>',1 ...... 

2. Completeness. Consider the function 
00 

'f(x)= _j;-y C(-J)e:<x). 
-~ 

The integral from the nh.s. of eq. (J.22) conve1 

of the integration interval if the integral 

()(> 

fl.; /C(>'J/ 
-oO 

converges. (1 e~c~<) I does not depend on ,) 
every modulo-integrable function c (..,) there 

function If ( x) , defined by eq. ( J. 22). We sh 
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ties. That is why we have to redefine the functions 

( One encounters similar complications in Regge theor,y 

ical continuation of Legendre-polyno.mials from integer 

trary indices). If we substitute K from (J.l6) into 

), we can choose such a branch of the multivalued 

keeps the crossing-symmetry properties 

• As far as the new vectors depend on the index 

e denote them e~ and define: 

2.. 

{

A' ( 1-J<-7.) z l~),i'J 
i\. + ~ f +A 

e,)- = 
~ . 

! .A/(J<z-4) T(2.:J_) 'v 
X+1 

J)lj<J (J.l7) 

lxl>1 ~ 

(+) and (_) concern the cross-even and cross-odd funct­

correspondingly. In what follows we omit this signs, 

in mind the cross-even functions only. ~very further 

t could be easily obtained for the cross-odd functions, 

see Appendix B). 

Let us consider the most important properties of the 

ions (J.l7): 

1. The orthonormality condition. Using the definitfon 

) of the scalar product we get 

( e~ e~ )= A/(A~v.)f(.;,->',~.), 
'f ) ~ 

CJ.ls) 

v)= INI.l .tA+!. ~f<>.+-;)[vh gt)l+ ~f(>.+..z.)]lr( 2 +..:>~+~X''. 

28 

tl' /\.,,,, ' 
-~ 

,', 
~ . ,., 

.· '/••.· r 
:'/!': 
\ 

''•'. 

~~~·'1;. ,,, 
.:-",·: '\ 

:,:;~;,1~: 
:<:~fl 

.::if' 

~ 
1 

~ .. 

Obviously, for different y the vectors 
~ 

e'~ 

orthogonal. Using the inequality (J.l4) we can get= 

)I( i\) v,) > o. 

Taking into account, that 

J. .tx- { -1il)l 
/rcx-~-,1 >1 =- 2.~ 'JI e 

,,, ... oo 

are 

we find out the asymptotic behaviour of A' ( ,l..J ¥1 ) for 

large \)111: 

J. ..\+3 At-~ 
,#(A,v,) ~ !flAil) ,,..,, ~f(>.+-.z). ,..,,,.., ... 

2. Completeness. Consider the function 
00 

'f (x)·= ,/;-; C(·l)e: (x). 
-oO 

(J.l9) 

(J.20) 

(3.21) 

( J. 22) 

The integral from the ~.s. of eq. (J.22) converges at the ends 

of the integration interval if the integral 

co 

fl.Y /C(-IJ/ 
-..o 

(J.2J) 

converges. (I e~Lx)j does not depend on ,J) . Thus, to 

every modulo-integrable function c ('II) there corresponds a 

function ljJ (x) 1 defined by eq. (J.22). We shall show, that 
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f (X) is spherical function. first of al.l we substitute 

e~ (x) from (J.l) into (J. 22) anrl get 
"i 7 ~ I·,; cJ.24) 

y;Cx)= )/Vcc·JJii-x4
1.z 1::: ~) 

-oo 

i.e. indeed J (x) 

we have to show, that 

is a function of the type (2.20). Second 

(f
1
1j') exists. Substituting (J.24) 

into (J,lJ) and tru{ing into account the orthonormality 

condition we obtain 
00 

( lf, y)= /ch lcc·nl".!V(A, v). 
-00 

(J. 25) 

The convergence of this integral is guaranteed by (J.21) and 

(J.2J). Because of the inequality (J,l9) ('f
1 
'f) is positive. 

In this way we have proved, that the functions jP(X) 

are spherical • 

The orthogonality of 
,:.). ey (x) allows us to express c ('1) 

through '/ (x). 'r o do this we form the scalar product 

(y>(x)Je~CxJ) and get: 

i ~ )' 
C(11) ··" .. , Cy;1et1 

(J. 26) 

It is easy to see, that for arbitrary spherical function 

f(x) the integral in the r.h. s. of (J. 26) converges. 
,\ 

Thus the vectors e., (.x) form a complete set in the 

space of the spherical functions, which are transformed 

according to the unitary irreducible representation (2,21) of 

5.l(.2)R..) • Vie note, however, that the functions e~(x) 
themselves do not belong to this space. 
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This result shows, that by means of the in 

the inverse Mellin transform J (;<, -r:) of the d· 

can be represented as a superposition of the ve 

J. The reality condition. Eq. (J,22) defin 

as a complex function of the real argument X 

hand, the inverse Mellin transform r (x,~-r:) of 

amplitude is a real function. Consequently we h 

some conditions on C(v) which prov~de the r 

Using the identity: 

.e;>.. = e).. 
-v v 

we can write of (J,22) into the form 
00 

r(x)= j;-v[C(v}e:lX)+ C(-v)e:(;c)], 

t1 

'rhus, the condition, which leads to real yCx) 

C(-v)= ccv). 

In particular, for real cU) we have 

C(-·,1) = C<v) 

and 
00 

'f(X}= 'f(-.x)= fl.Y C(-,I)L e:(x) t- e~Cx) J 
{) ' 
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'f (x) is 

" e.., (x) from 

spherical function. :First of aJ.l we substitute 

(J.l) into (J. 22) ann get 

7 t I "j) cJ. 24) 
y;Cx)= )IYcc·n/h~t;.l 1::: J 

-co 

i.e. indeed y(x) 

we have to show, that 

is a function of the type (2.20). Second 

('f~'f) exists. Substituting (J.24) 

into (J.lJ) and tru{ing into account the orthonormality 

condition we obtain 
co 

( y, y)= /J¥ lcwl''k(A, v). 
-00 

(J. 25) 

The convergence of this integral is guaranteed by (J.21) and 

(J. 2J). Because of the inequality (J.l9) ('f, '/') is positive. 

In this way we have proved, that the functions jPCx) 

are spherical. 

The orthogonality of 
A 

e.,(x) allows us to express C(~) 

through 'f (x). To do this we form the scalar product 

('f(>< )/ e ~ (x)) and get: 

c ( ~ ) = . ! , . , ( )0~ e ~ ) 
(J. 26) 

It is easy to see, that for arbitrary spherical function 

'f(x) the integral in the r.h.s. of (J.26) converges. 
A Thus the vectors e., (x) form a complete set in the 

space of the spherical functions, which are transformed 

according to the unitary irreducible representation (2.21) of 

.Si-(.2.,1!..) • We note, however, that the functions e~(.x) 
themselves do not belong to this space. 

21 

'\' 

. ,';:;, 
.•l·ifl 

;·.·i •. i·~ •. i~ ... ~. .J.y., . 
<··;\' 

· .. ;l··i}.;:' ,:(!:7 ', 

~.~~ ' ' 
·.!.,~ ,1· 

I ··~ :i ;I .. ~~ l 
~::~~'; 

·.~ 

l 

'' 1~.~&~ 

This result shows, that by means of the integral (J.22) 

the inverse Mellin transform J (;<, -r:) of the dual amplitude 
A can be represented as a superposition of the vectors e :Y (x). 

J. The reality condition. Eq. (J.22) defines <jl(x) 

as a complex function of the real argument X On the other 

hand, the inverse Mellin transform r<x~~) of the physbal 

amplitude is a real function. Consequently we have to impose 

some conditions on C(v) which provmde the reality cf 1/(x.). 

Using the identity: 

.e ;t = e~c 
-v v 

we can write of (J.22) into the form 
00 

yJ(x)= j;¥[c(vJe:(x)+ c(-v)e;c"'J]. 
t1 

Thus, the condition, which leads to real f (x) 

C(-v)= CC-I). 

In particular, for real C(v) we have 

C(-.Y): CCv) 

and 
00 

'fCX)= 'f (-x)= ft.Y C(y) L e:(x) + e~ (x) J 
t1 . 
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(J.29) 
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4. Let us briefly consider the "index" transformation 

~ (2.12), applied to the basis vectors 
h 

e A t.x> .. 
operators /?. h are integral opera tors w1 th kernel 

According to eq. (2.13) we have 

oO 

j ( R" (v y' h) t+ I I 

J,/ 1\~+(~y~ h) 

R.:- <•,•:•')( e;•·> ... ) = 
f\ __ c~)Y;h> e1 tx>_ 

-oo 

where 

and 

). 

= 1-flxi- ..L/ 

e ax.-r ~( ) 
)I -jJx +-,L + 

,A( lx-() e. y ~)( +-qi.. -

~ . ) -e)ltx + - " e 
11 

Cx) 

.:\ ;. e -1 (x ) - = e y ( )() 

/X I~ 1. 

lx I)! 

h~ (;;) h-i~ (J -1) -r ~ . 

• The 

R (v_, >~;h). 

(J.Jl) 

The form of the kernel I?_ and the proof of eq. 

(J.ll) are given in Appendix c. 

30 

Let us sum the results of this Section. We have s 

that the simple mathematical duality, which leads to 'i 

type x models, is a consequence of the assumption, tt 

~(~~)is a function from the space of the nonintegr~ 

representations of 5L (,.2/ It) algebra. '.Che spherical J 

which we have obtained starting from the more general 

definition (2.1) of mathematical duality, can be trea· 

elements of a space, in which acts a. unitary represe: 

SLCI,R.). Therefore the definition (2.1) and the sta 

that ~(X/T:) belong to this space are equivalent. ~hi 

allows us to state, that the inYerse Mellin transform 

of the dual amplitude can be represented in the form 

or (J.JO). 

4. ~~!!.!LE~~!:!!L!!.~~~_!~~ 

In Section J for the inverse Mellin transform 

of the scattering amplitude we have found the decomp1 

f (.><, -d= ):vcMe; <x>, 
-oo 

where A= ·~;let-~ 
XX 

and C(v) satisfy the conditio: 

c(-v)= C(v). 

-----------------
x i.e. the meromorphic approximation for the scatter 
amplitude when the last one is represented as an aJ 
finite sum of B-funotions ( finite number of sateJll1 

xx As far as A (!.r.'t") 

.S L ( 2.1 R ) ' C ( v) 

is an invariant of the represe 
could depend on Jt.. too • 
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• Let us briefly consider the "index" transformation 
A 

.12), applied to the basis vectors e y (~) • The 

1\. are integral operators with kernel R (v y 1 h) 
h " ) . 

to eq. (2.1J) we have 

( 

R"- (v y' h) 
++ I I 

J/ 
R.~+(Y, y~ h) 

ll:-( ,, •; h))( e ;<•) +) = 

1\ __ t.,)>';h> e.;CJ<>_ 

,.l 
:= (-,!-3x+ .,t/ 

A ( ix- t., 
e )I b..sx-+-ol /_. I 

,.! 
ell (x)+ = " ell (x) 

.:\ A e.., (x)_ = ev (x) 

/XI~ 1. 

lx I) i 

b(; ;) h -1 = ( J" -t) -r ~ . 

(J.Jl) 

form of the kernel ~ and the proof of eq. 

are given in Appendix c. 
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~(~;_~· 

Let us sum the results of this Section. We have seen, 

that the simple mathematical duality, which leads to Veneziano 

type x models, is a consequence of the assumption, that 

~(x,~) is a fUnction from the space of the nonintegrable 

representations of 5LC2,~1t) algebra. '~he spherical functions, 

which we have obtained starting from the more general 

definition (2.1) of mathematical duality, can be treated as 

elements of a space, in which acts a. unitary representation of 

SL(.J,Il.). Therefore the definition (2.1) and the statement, 

that rcl<,"r") belong to this space are equivalent. ihis 

allows us to state, that the inverse Mellin transform r!.·V~) 

of the dual amplitude can be represented in the form (J.28) 

or (J.JO). 

4. Mellin tr~!?!.2!:!!!..2.~!L.2~sis_y~~ 

In ~action J for the inverse Mellin transform ycx,~) 

of the scattering amplitude we have found the decomposition 

f (~-r:-J== }}Jc(-~>e: (;t.)) 

-oo (4.1) 

where i\ = ~.zct- 't' 
/()( 

and C(Y) satisfy the condition: 

C(-Y)= C{Y). 

x i.e. the meromorphic approximation for the scattering 
amplitude when the last one is represented as an arbitrary 
finite sum of B-funotions ( finite number of satel(Htes). 

xx As far as A (1.~.1:') is an invariant of the representation of 
5L(2.1 R.), C(v) could depend on A. too. 
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If we go from y(x,'C') to the amplitude by means of eq. (1.19) 

we get 

where 

00 

J'f(<S, ~)=ft-.; ccv) T., (G""1 -c)/ 
-oo 

00 

T.., ( rt, -r:) ,Px 
tJ 

VI V.'ca:- c - tr- I. 
C.. Y (x) X 

Both equations (4,3) and the reverse one 
, ~t-ioo 

~~4-C f j a" e v (.X)=--. T; (~l:)x Jo-
2~1. 

(4.2) 

(4.J) 

(4.4) 

give 
c-<"" 

the Mellin transformation for the basis vectors (J.l7). 

Eq. (4.2) is an expansion of the amplitude with respect t.o the 

functions (4.J), Here we formulate some statements concerning 

Tv(trj'C} and J/(10~). 
r,In t}le space of the vectors T11 (0"/r:·) acts a unitary 

irreducible representation of SL (.21 ~) which is equivalent 

to (2.21). It is realized by means of integral operators, which 

are considered in details in 27 ( See Appendix c). 
2. Eq. (4. 2) shows, that ,A(~-r:) is an element from the 

space of the vectors Ty ( cs::, -r:) • Consequently we have a. 
I 

unitary irreducible representation of 5L(.21 R.) which trans-

forms .,A(o;<) and ip-.~.a-'t' is an imariant of this representa-

tion. 

J, Using eli.• (J.l5) we can define an imariant scalar 

product in the space of the vectors (4,J) too. To do this we 

substitute in eq. (J.l5) the Mellin transform of f 1 lx) and lfzlx) 

32 

00 
+ ( ->-f r .. (,5) = J lf,l~<) A ")\, 

0 

()() 

lf,- (s.) = }y/-x) A -s-1 Jx. 
Q 

From here we get 
1 ,.,..00 -j T ~ ..!.1i i lj j, ( ~) )C. d !:> 

c ... ,,..., 
lf.t. (x)= e..,., tiO 

.L; i }lf;c~)(-A)~$ 
, .. ,(1() 

After some simple calculations we get from ( 

2-+to<> 

~J {K __ (A;~,i) K_+(A;.!o,~J.· (y 
(ff) ~J= ds (y ;c~)1 'f;c~ _ _ _ 

l<._..(~_;.s,s.) K--(~js..~) ~ 

l. -l«< 
.t 

-t 
where 1,-(~) denotes complex conjugation of 

function, and the kernels I( __ , K_+ are a 

K (A·~ .s)= -J b(&+-f):;H, 
-+ ~ " .z~r(-}..-1) 

/<. O.·s .:S)= -I lD(.s+t-~-1)+-B(.;HJ-) 
-- ,I I rt( \ ) 0 ,1 -Z1it -1\-1 
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If we go from y(x,-r:) to the amplitude by means of eq. (1.19) 

00 

J(tr, -r') = fty CCv) T, (~ -r:) / 
-00 

ere 
00 

T /; 0'~1cll-C -IS'-~ 
.y (~~)=/ax c... .y (x) x 

(/ 

Both equations (4.J) and the reverse one 
. ,.,.,00 

t--~o:--r: f j tr e. v (.x)=--. T; (~t:')x dO' 
21f ~ 

c-it>O 

(4.2) 

(4. J) 

(4.4) 

give the Mellin transformation for the basis vectors (J.l7). 

Eq. (4.2) is an expansion of the amplitude with respect t.o the 

functions (4.J). Here we formulate some statements concerning 

'cc-rJ and Jt(~,;). '" ) 
r.In the space of the vectors T,,,(""-r:) acts a unitary 

irreducible representation of Sf_ (.2,1!-) which is equivalent 

to (2.21). It is realized by means of integral operators, which 

are considered in details in 27 ( See Appendix c). 

2. Eq. (4. 2) shows, that ,.-1(~-r) is an element from the 

space of the vectors T.v ( ~ -r) • Consequently we have a. 

unitary irreducible representa ticn of 5L(.J.1 R..) whfch trans­

forms v4(o;-r') and ~.&A.-7:' is animariant of this representa­

tion. 

J. Using e~. (J.l5) we can define an iil'lariant scalar 

product in the space of the vectors (4.J) too. To do this we 

substitute in eq. (J.l5) the Mellin transform of 'f/x) and ~(K) 

32 

()() 

+ ( ->-4 r .. (5) = j lfi (x) A J;.. 
0 

00 

'/;.-(s)= }y/-x) x -s- 1tix. 
9 

From here we get 
1 ,.,.,.., 
-; 'f' ~ .!.1i i If;, ( s) )1. d!;, )1. >0 ,_,, 

lf-& (x)= 

I )~+l~ ~ 
MiT "· (5) (-)(.) (;I~ x<O. 

, ... ,'., 
After some simple calculations we get from (J.l5): 

.l..+lo<> 
~ . 

(r~,~)= J5(y~c~)~'f,'~ _ j - T {K__lA;~,I) K_.,.(A;.s.,~J)(f;(~) 

K_J~is,~) K __ (Aj!:.,:;) y;· C'~J 
' 2.-l(J(I 

.t 

-.,. 
where 1,-(~) denotes complex conjugation of the form of 

function, and the kernels K __ , k_+ are as follows: 

K_+(A;~_,s)= -J ) 5(&+f);H) 
.u;r(-A-1 

!<. __ ()..;$,~)= -f. [B(s+1_,-A--t)~l3(§+t)-A-1)J 
..Z1if'(-A-1) • 
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1, It I 

The r.h.s. of eq. (4.7)expresses the scalar product of two 

elements from the space of the vectors ~ ( ~.,;) • One should 

note, that T: c~,-r:>= ~ <"i"") (4.9) 

T.,-(t:Y',?:) = T,<<r,-c>. 

Substituting the b.st ones into eq. C4.7) we get the orthonor­

mality condition for T, (cr,'t'); 

..a.,.·-
,1. ·-

(4.10) 

(T~1, T.;)==jdcf(T-;
11 
T)l.)( K __ 

K-+ 
+-,·,o 

K-+) ( T~~)=A'(A,.,4)b(Y,-II~~ 
K-- Ty .. 

where ~(A,v) is given by eq. (J.l8). 

4. For the.physical amplitude ~e choose C(v) to be 

real. This assumption essentially stmplifi~• our considera­

tions without restriction of their generality. Indeed, in 

Section 1 we have seen, that the pnysioal amplitude defines 

f(X,-r:) for X> 0 only. The simplest assumption for X<O 

is: 
e-~c'ID I 

fC.x,?:)=-:;}i jl(t:Y',-c:) (-x)tf'J<J .x < oj 
(4.11) 

c-ltt> 

i.e. we postulate f()(
1
'C) to be even function of X 

and from here it follows, that C(y) are real and even too. 

Then, instead of eqs. (4.1) and (4.2) we getl 
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r.:j:- !I 

and 

00 

f(x,-r:)= )1,; C(v}( e~ -t- e.~v) 
0 

DO 

_A (~-c-)= ft>J C(ll){ T, £a:, d-r ·;:, (ct/d.J. 
0 

il.s far as 

). -A 
e_v ,::; e)/ 

T_v(~'f)= T, (~,c) 

the quantities rC.x,~) and.A(6",'f1') , given by eqe 

C4.1J) are real. ~hey are the final expressions fo1 

expansion of the physical amplitude and its inverse 

transform with respect to the spherical functions c 

5/.,(.I,R.). 

5. Consider the function Ty(o;'t')~T-¥( 
t-'a.- 'C' Substituting ell from eq. (J.l7) into eq. 

f II' If!''«-.. . I ---1. .r +-•II -.1111 
~ (6','t')=)JX X .z. (t-x) (i+G') T ( 6"'-

Q 

Then 

- .J. -1 .J. 1-r.< 1-fi f £ ~l ill )·. 

T'.,(11/r:)+"T_'I(~1-.)-:::}x X (4:x) c+/.x.) +( 1+;; 
0 

+(15"'-w). 
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.h.s. of eq. (4.7)expr.esses the scalar product of two 

nts from the space of the vectors~(~~) • One should 

, that 

T+ (a-,~)= T, (~-c-) 
"' 

T-~-<"',-r:> = T, (<r, -c> . 

(4.9) 

tituting the hst ones into eq. (4.7) we get the orthonor­

ty condition for T,. (cr,'t')~ 
-}Ho0 (4.10) 

j _ )( K _ _ !<.-... ) ( T y ) 
, T}= de5'(T-,~, 1 Tt, -. " =A"'(A,v,)b(l,-11.£~ 

K-+ K__ ~ 
" {-- ,·.,o 

e ~(A1 v} is given by eq. (J.ls). 

4. For the,physical amplitude ~e choose C(~} to be 

• This assumption essentially simplifi~• our oonsidera­

without restriction of their generality. Indeed, in 

ion 1 we have seen, that the ~sioal amplitude defines 

-r:) for x>O only. The simplest assumption for X<O 

,.,~,110 

ycx,-r:>= ~J • .jl(6',-r:) (-x/Jcr .x< 0,) 
(4.11) 

t:-ltt> 

we postulate rcx,-c) to be even :function of )< 

from here it follows, that C(v) are real and even too. 

instead of eqs. (4.1) and (4.2) we get& 

34 

~,.!.lit(;.. 

and 

00 

f (x, -c)=)!,; C(vJ{ e ~ ~ e~v) 
0 

00 

_A ( <J; t:) -:fa',; C(rl )[T, l ~ -r:)+ "T:, (<1',-r:).J . 
0 

.li.s far as 

). - .1. e_y = e-~ 

T_yCif',t')= T, c~,-c) 

(4.12) 

(4.1J) 

(4.14) 

the quantities rCx
1
-e-) and .A(<f',~) , given by eqs •. (4.12) and 

C4.1J) are real. 'i'hey are the final expressions for the 

expansion of the physical amplitude and its inverse Mellin 

transform with respect to the spherical functions of the group 

5J.,(,t, R.). 

5. Consider the function TY {a; 't") ..- T_, ( ~..,; ). 
~Zcz.-'1: 

Substituting ell from eq. (J.l7) into eq. (4.J) we get: 

(4.15) 

f f!'zll-T . I _L-1. ..t 1-'11 -..llv 
~ (~-r:)=)JX X .z. (t-x) (i+~) i" ( 6'"- w). 

Q 

Then 

(4.16) 

f .£ ~[ )'., )-'"] - .J. - f .1. J..:_£ -1- r; + ~(rs,-r:)+T_'I(~,-c>::}x )( <4:x) c ... rl)<" +( 1-tr;' 
0 

+(cs--w). 
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... _.: -· 

It is easy to see, that ),;,., ( )-l~ 
(!.:;jj_ + 1-/X 
f+-~ 1+-r,; 

is an even 

function of {;( and has a Taylor's expansion around 

the point x.=O~ thus leading to an infinite series of 

Euler's B-functions· forT.,+- T_~ • This series shows, that in 

the case of the meromorphic approximation we have to choose . 
a= ,!,t' , where ~, is the slope of the Regge-trajectories. 

The main analytical properties of T.,-r T_Y can be 

obtained by means of the integral representation ( 4.16). Ob-

viously, they are meromorphio functions of ~ and 'l:" 

( their poles are analogous to the poles of tae veneziano­

type amplitudes). The asymptotic of the functions (4.16) 

depends on v • That is why a definite asymptotioal behaviour 

of A(~-r:) can be reached appropriately choosing C(Y). 

In particular, if the integral (4.1J) is uniformly convergent 

and C(V) contains a term of the type: 

1 
Y"+c.z('t".- T:") 

in the asymptotic of the amplitude we get the term: 

.L ('Vo"a-~+e Jc.-c) 
,t I ,...._., er 

Thus the appropriate choice of C(JI) provides an imaginary 

correction to the linear Regge-trajeotory. 

., 

6. The point u= 0 is a branch-point of the 

amplitude, while for cr:O T, has only a simpl 

This fact originates some dificulties when we have 

C(v} • It has been shown 14 that the beha~iour 
near the point cr .... 0 and the behaviour of rcx,-c 

are connected. In particular, if 

for ~-- 0 

i 
..A (~-c) ....._, (-a-) 

then 

pcx,·d ____, (-hl)(rr-~-

for X.....,.. + 0 • As far as the integral (J.l5) conve: 

functions, the behaviour of which around the point 

is (4.18), we can find C(Y) giving the right b1 

the physical amplitude near its branch point. 

£.f!!!E~!!?.B 

Let us summarize our main results • 

1. The analytical properties, expressed in th1 

relations C1.1) allow us to write down the scatter: 

tude .AC~'t) as the Mellin transform (1.19) of th1 

function i' ( x, -r) 

2. The duality of f (x,-c) can be considered ~ 

consequence of some grouP-symmetry of the scatteru 

Here this symmetry is given by the group 5L(.2,~) 
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( { rx)""' ( ;x)-'" It is easy to see, that ,:; + ::; is an even 

function of /X and has a Taylor's expansion around 

the point x=O_, thus leading to an infinite series of 

Euler's B-functions· forT,+- T_ 71 • This series shows, that in 

the case of the meromorphio approximation we have to choose . 
a=~~, , where oC' is the slope of the Regge-trajeotories. 

The main analytical properties of T 11 -r T_Y can be 

obtained by means of the integral representation ( 4.16). Ob-

viously, they are meromorphio functions of ~ and '1:'" 

( their poles are analogous to the poles of tae veneziano­

type amplitudes). The asymptotic of the functions (4.16) 

depends on v • That is why a definite asymptotioal behaviour 

of A(6';-r:) can be reached appropriately choosing C(v}. 

In particular, if the integral (4.1J) is uniformly convergent 

and C("Y) contains a term of the type: 

1 
Y~+C.l('t".-'t"") 

in the asymptotic of the amplitude we get the term: 

..L (If ,.,~«--r:+ c lc -r ) "' :/ . -o 
Thus the appropriate ohoioe of C(J~) provides an imaginary 

correction to the linear Regge-trajeotory. 

31! 

6. The point u= 0 is a branch-point of the physical 

amplitude, while for IT'=O T, has only a simple pole. 

This fact originates some difioulties when we have to choose 

C(v) • It has been shown 14 that the beha:tiour of _A(~-c) 
near the point o ... 0 and the behaviour Of y()<'

1
"C") near X =0 

are connected. In particular, if 

for u--- 0 

/ 
._A(a-_-c}--._., {-IS) 

then 

fCx,t:)--- (- hxrr-l 

for x- +0 • As far as the integral (J.l5) converges for 

functions, the behaviour of which around the point x=O 

(4.17) 

(4.18) 

is (4.18), we can find C(Y) giving the right behaviour of 

the physical amplitude near its branch point. 

£..Q!!Q~!£B 

Let us summarize our main results • 

l. The analytical properti'es, expressed in the dispersion 

relations C1.1) allow us to write down the scattering ampli­

tude .AC~r.:) as the Mellin transform (1.19) o:f' the 

function r (x, 't') 

2. The duality of f ()(1 ·r') can be considered as a 

consequence of some grouP-symmetry of the scattering amplitude. 

Here this symmetry is given by the group 5L(~,~) . It turns 
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) 1 it~ 

out, that the dual y<x,-c) are spherical functions in the 

sense of definitions l2.8) and (2.9). In the space of these 

functions the unitary irreducible representation of .S/.. (..Z,Jt) 

is realized (2. 21). 

J. Taking into account the crossing symmetry condition 

we have introduced a basis in the spherical functions space 

and this leads us to the integral representation (4.2) 

for the scattering amplitude. 
r. 

4. Except the vector e 0 ( x) 
, the meromorphic approxi-

mations of the dual amplitude, which are expressed through 

finite number of Euler's B- functions, are not elements of 

the unitary space. Instead of the whole SL (~ 1 fl.) symmetry 

in this case we have symmetry with respect to the non-unitary 

representation of the SL(J,R.) algebra. 

On the basis of thiS results and expecially from the 

integral representation (4.2) the hope arises, that following 

this way we could ~ombine the duality and unitarity condi-

tions for the scattering amplitude .. 

The authors express their deep gratitude to N.N.Bogolubov, 

V.A.Matveev, R.M.Muradyan and f.T.Todorov for their interest 

and the fruitful discussions. 

g~ru 

1. Let hf and hl. be 2x2 matrices and h 

h,=(~f ~) (~~ ~-) ot, J', -,o, r. = 1 
h.l =. 

~.l. e4 ~ -jl~f;. = t ,. ~4 ~ 

If 

type 
..s/-' is the subgroup, containing all the ma 

(; ~) 
then hf and 

when 

h~,. are in the same coset ~}1\5 

h, hA._, e ~ · 

This last condition gives the following equations 

I' £ - Y' 'F. = 0. , df ..& I ..1 I 

~S-Y..&=!· 
-' f u 1 rJ. 

Using the cow.eotion ...S. ~ -A[z = 1. 
from (A~4) we get: 

J: = ~ , 

f,=(; . 

to elimill 



are spherical functions in the 

definitions (2,8) and (2.9). In the space of these 

the unitary irreducible representation of ~~(~1 ~) 

ized (2.21). 

• Taking into account the crossing symmetry condition 

introduced a basis in the spherical functions space 

leads us to the integral representation (4.2) 

e scattering amplitude. 
,t 

4. Except the vector e 
0 

( )() , the meromorphic approxi-

ns of the dual amplitude, which are expressed through 

e number of Euler's B- functions, are not elements of 

tary space. Instead of the whole 5L(~ 1 ~) symmetry 

is case we have symmetry with respect to the non-unitary 

sentation of the SL(;,~) algebra. 

on the basis of this results and expecially from the 

representation (4.2) the hope arises, that following 

way we could crombine the duality and unitarity condi­

for the scattering amplitude~ 

The authors express their deep gratitude to N.N.Bogolubov, 

tveev, R,J.l.Muradyan and I.T.Todorov for their int~erest 

e fruitful discussions. 
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1. Let h. and hl.. be 2x2 matrices and h., h.af' S.L (..2, .(): 

h,=('"· "') (~~ "·) ot, J, -/1,,-. = J (A.l) hJ. =. y.l. e4 ~ -;/-l~f;. = f. . f. $4 ~ 

If ~ is the subgroup, containing all the matrices of the 
type 

(; ~) 
then h. and h, are in the same coset ~ \ SL.(.t.;!...) 
when 

h, h~-t e ~. 

~'his last condition gives the follo\ving equations: 

f,f.a-r;.~=o, 

d.S-y:&=!. 
:.1 t o 1 rl. 

Using the connection ~ ~ -A/i = 1. . 
from (.A~4) we get: 

J:=~, 

f,=~. 

31 

to eliminate A 

(A.2) 

(A.J) 

CA.4) 

(A.5) 

(A.6) 



'I 
:f 

I I II 

so, all the matrices with equal elements of the second line 

belong to the same coset. Let J' 
coset. ~very other matrix ~ 

represented in the form: 

!::. -sg. 

be a matrix from a given 

from this coset can be 

CA.?) 

Obviously j is a two- parametric manifold. We shall show, 

that for the cosets under consideration we can choose 3 
in the form 

j~(~· n d=/=0. 
(A. B) 

Eqs. (A.5) and (A.6) show, that every coset contains only one 

matrix of this type. Multiplying J with arbitrary s~ ~ 

we get= 

(

$-1+;dr 

J= { ~f) 
(A.9) 

Thus we see, that for fixed ~ and S' all the matrices 

(A.9) belong to the same ~oset. Moreover, it is easy to 

check, that every matrix from .SL(.2,R.) can be repres:nted 

in the form (A.9).This completes the proof of our statement. 

II. The unitary representations of the group 6L Ct., I!.) 

are realized in the space of the functions fcx) of one 

40 

real variable. The operators ~ of these reprE 

are defined as follows: 

Th fc.xJ= ~ t(j)JI+aJI{JM~I!;-1 f($::f)) 
where t = o,l. For our purposes we use the c1 

Obviously, the connection between the invariant 

representation 6 and )... from eq. (2. 7) is 

There exist several series of unitary repr 

the group SL (J, t.); 

1. The principal series. In this case ~ 

imaginary number. ~he invariant scalar product 

co 

(},,tJ !t(xJt~(x)Jx. 
-oO 

Using this scalar product one can introduce th 

vectors, thus transforming the space into a Hi 

2. ~be supplementary series. In this casE 

and 

-I<. ..s < 1 s=/::0. 

The invariant scalar product is defined as fo: 

ot:~oO 

( UJ= n~·' f"· JJ;i•-l'-'f,..,., £ 
-..0 _..., 

It is just this series that we have applied j 

paper. 
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, all the matrices with equal elements of the second line 

ong to the same coset. Let j 

set. ~very other matrix l 
presented in the fonn: 

j-=- -sg. 

be a matrix from a given 

from this coset can be 

CA. 7) 

j is a two- parametric manifold. We shall show, 

the cosets under consideration we can choose j 
the form 

J=(~· n d 4=0. 
(A. B) 

• (A.5) and (A,6) show, that every coset contains only one 

this type. Multiplying j with arbitrary s~ ~ 

get: 

(
s-·+,ar 

J= { ~f) 
(A.9) 

s we see, that for fixed ( and a all the rna. trices 

9) belong to the same coset. Moreover, it is easy to 

, that every matrix from .SL(.2, R.) can be repres.i"nted 

form (A.9).This completes the proof of our statement. 

II. The unitary representations of the group 6LC~,~) 

e realized in the space of the functions fc.x) of one 

40 

real variable. The operators ~ of these representations 

are defined as follows: 

Th f<.xJ= ~ f.<pJ(+nlpM~I ~-· f($)<X:f), 
(A.lO) 

where t = o,l. For our purposes we use the case l..=O. 

Obviously, the connection between the invariant of the 

representation 6 and ).. from eq. (2. 7) is A= .s- !. 

There exist several series of unitary representations of 

the group SL (J, t.); 

1. The principal series. In this case b is arbitrary 

imaginary number. The invariant scalar product has the form: 

00 

( },, tJ ~~ (x) £, (x) Jr-. (A.u) 

-oo 

Using this scalar product one can introduce the norm of the 

vectors, thus transforming the space into a Hilbert space. 

2. ~be supplementary series. In this case 5 is real 

and 

-I<. ..s < ~ s+O. (A,l2) 

The invariant scalar product is defined as follows: 

oeJOO 

( f1J fz. )= r£~&> jJx JJJ lx-1r.s-
1

},V<> J;;;. 
_.,., _..., 

(A.lJ) 

It is just this series that we have applied in the present 

paper. 
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I 1 ' 11 I 

A more detailed information about the unitary representa­

tio:::ts c.r 5LC2.,fl.) is [;.Vailable in 28 • 

!l.ul!!!~!.l! 

In order to find out the scalar product of two cross- . 
Ar tl..-

even vectors e 'I and e )I one has to evaluate the integ-
I .2. A+ tl-t-

ral, which is obtained when substituting e)! and e y 
1 J, 

from (J.l7) into (J.l5): 

-.,.. 
(i+ eM)= /AI/t ~){ ~ f)l- (A-.lll-llJ f-~i11,fi-Y 1/f}tl./-C:>~, 

~.I Y'" ((-).-f)/ fAi 1 1tlf I 1+-, 
_ ... -110 . • 

CB.l) 

The domain of integration is decomposed into 12 subdomains, 

in which every one from the quantities x-v 1-xz ~ 
d I ) 1 +.~< ) 

1-t~z !...:.1.. do not change its sign. Consequently, (:e"+ e~-:-) 
d ) 1 + 1 .,, ) ''.1. 

appears as a sum of 12 integrals. The first of them: 

{ ~ • l 

Z. } ~ _)i-l +( )'II A )-iY, 1,(~.~)=__!!i_) 'JxfJ.,U<J) (~-xl) ~ '(~-iY(~-~ ~ 
r(-,H ' 1+... ··+1 

- f -f 

is eas.ily evaluated t~ough thb substitution 

)l ... ..!.::_;:;_ 
1+ u. 

.r-u. 
//=~ 

CB.2) 

(B.J) 

after whiOO. it takes the form 

1 (~ .; )- J.NI .l " Jl,-" .. -I ( r+'1 -) 1.).}1>0 '() f ,\• 

1 II .1. - r(-A-1) r,/u .U )Jv J' {-f-v) 
() (I 

As far as 

i 1('11,-Ji)-1 
.Jtlu -u = .-t1ff(>~,-Y.) 

() 

and 

f A I T ... ;~ _).-} 
)rfvt/ (1-v) =13(; +t'~+1,-A-1) 

d 

we have 

A+1 , 

1 (11, 11 )= ..t 1fl#l 8(1-+,·~+~,-A--t )J(Yf- >'.). 
f '..~. r(->-- .,) 

The second integral can be expressed through 11 : 

l¥1l - >o-1. 1 '"• T -'~ ft .A. • l • 

~ (JI,,YJ=-- ~'I 'dx(v-J() (t-Jt!) (.!:::!-' (1-•l) (~)= 
r(-A-1) ) 0 a I · of+ II} d 1+1 _, .., 

Making the &ubstitution 

l+u. 
x=­

f-u. 

into the integral 

-1-rwr -f-v.v :t= 

I.Nl.. -~-z .z. 1 ')I• r , ()I) J, ~ . lo 

~("llt1Y)=~ jJJt J~(JC-~) ()1~-1) (f.1 ) (/-1) ~ 
4 " 



A more detailed information about the unitary representa­

o::J.s ul 5LCzJl..) is c..vailable in 28 • 

~!ill.!u 

In order to find out the scalar product of two cross-
).+- ~+ 

e~ and e., 
1 .2. 

vectors one has to evaluate the integ-
, which is obtained when i\.+ A~ 

substituting e }I and e y 

(J.l7) into (J.l5): 
1 #/, 

-"" 
e).+)= 1-¥1l ~x ~"lx-l).-.t,,_xzlJ f-Ni~~,~~-v~(f)uf-')1' 

I Y.~- ((-A-f)/ )", , H., ~ 1+~ 
_.,. -uo . 

CB.l) 

domain of integration is decomposed into 12 subdomains, 

which every one from the quantities x-v 1-x.z 1-J< 
d J .) 1+J< ) 

.z tl do not change its sign. Consequently, f.e"+ e,:;) 
) 1+(f l' ,, ) '..1. 

s as a sum of 12 integrals. The first of them: 

{ .( . 
l } ~ }1-J. ~ )"" .A. )-·~ ~~ ~ )=~) 'Jx fj..,lxtf ( ~-JCl)Tf t-x '( t-1~y- (±.1.. 2 

r(-t~-1 , \ 1..... -tt1 - f - f 

'•. 
easily evaluated thl'ough the subst:ttution 

)1:. 1-u. 
1+ (.(. 
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;;= v-I.(. 

v+U 

CB.2) 

(B.J) 

after whim it takes the form 

). oO f 1 (.; v )- I.Nil.l (. c'(~-11)- f ( -J+i~ -A--t 
1 •• :.t- ,.., . ·) )Ju -u }/..rtf (-t-v) • 

() d 

As far as 

i /(>J,-):.)-1 
/rlu -u = ...tfff(.;,-}1.._) 

(B.4) 

0 

and 

f tl I -;r+i~ -A-.1 
}t/lfif (t-v) =..5(; +c'~+1,-A-1) 

(B. 5) 

() 

we have 

A+1 ~ 

1 (11, 11 )= ..!. !Tfl#l B(-5:-+,·~+~,-A--t)Srv,- >~.~.). 
I I .1. r(-).- 'f) 

(B.6) 

The second integral can be expressed through 1 . 
1 • 

1t A ' L ' l¥1l - ).-.1. " ' 11c l. -t~ 
~ c-~,,~J-r(-A-f) p, t/x(r)() (H<2 > (:::) U-t> (M-)= ~ (-~,-Yf) .CB. 7) _, _, 

MakiDg the substitution 

l+u. 
x=­

t-u.. 

into the 1nt egral 

J= 
-1 +- u.u­
f-v..v 

1._ I.NI~ f ? -~-z. i-1~ 1 )t'll, ~ ( -1_f'·~ 
J(-J,,Y:z)= r(-A-f) )J.x JJ1~-1) ()1£--1) ~:1 (/'-1) ~::f) 

1 .f 
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(B. a) 

CB.9) 



i. 

~ ; 

~ I 

II ,, I 

'-,. .... ~ 

we transform it into the form 
( 1 

..-( . ..t"IA-'\zj ·U>~,-v ... J-1 (, f-l"., -~-.e 
~l(Y,,V ... )= r{-A-1) ~u-u j)ITV (1-.r) • 

(B.lO) 

0 (/ 

As far as 

I I l(-1-Y)-1 Jd(,( u ' ~ -;::: 91f'{v,-v..)-iP_j_= ..tr,r_ (..),->'~) 
Q ~-~ ~ 

(B.ll) 

for 13 we get 

A+1 I~ 1
3

Cv,,"Y.1)= .J. ( 111~ 8(->.-1)~ -l~+1)J(v,->'.L). r -A-., - -

(B.l2) 

As before 
• I . A • 1( ) IA'I' {,_{ -~-l fl,{·t),,'( ~ )Tf..J.::.J-)-1~ (B.lJ) 

I("Y1/.~.=~_njdt(pt) (x~f) ~~ y-1 ~~+-1 =13 (-vJ.,->'J. 
, , 

It. is easy to see, that changing x~ x and J-"-) 

the next two integrals are :reduced to ~ and 1~ : 
- f -1 

j /N"Il /. I -A-.ZL ft_.H)'~ ~l •()_,·~ 
5 l~,"))J-:::.rc->--')_f:irlJ(r,.J lx-11\-;;; (l·t)l\J+, =~(-.,,~-~~) (B.l4) 

-1 -1 

J /.Nfl.. j ( -A1.Z *)( ')''y, &( 1_)_;11
L /~ .. ~J=f(-i>-f) IJJ)rl;t.(x-;) (x

2

-1J\);:, (1l·1) JiJ = ~ (- 1111 _..,).). (B.l5) 
-~) 

The integral. 

00 f A 

1 JN'I' }d./o ->--.l T(x-1 )iyt 4 (v, 1~)=- ~ 'cl;{}(-'f) (x'-1) -- (~-vl.) 
1- r(-A- t) 1 ,H 1 d 

1 - f 

after the substitution 

X:::;..!.!:...!3:_ 
f- v.. 

takes the form 

!f= 
1- u...r 

1 +- uv" 

A 2 " oo 1 ) .2 }All 1 1(-1,-Ji)--t ( A. 

1 (v11 Y.z. = n->.- 1) )Jua )Jvv ~ 
II o 

Using the equality 

00 
{ A '-1 -A-.z 

}rftr /J" -r-' J. ( 1 t-v) = 8 ( ~ -i ~ t1/ J 
() 

and taking into account eq. (B.11) we get 

j"J. (~,, yJ 
,.\+1 2. 

2 311 AI I 8(f -hi+ fJ ~ r i >'2 r · 
r(->- -1) 

In an analogous way one Dbtains 

1 a /1 f ->o-1. l.L )i>'. ..?. i-i,,1J:r~~L1)rxi1(r:-) (h<l)L l~~; (/- 1 )~(fr 
-1 ~ 

1 - f 

j /.N' j l. . (J' ( -A-l. .d.( 1 )i'/1 -4: /J.:..!­
/>~,vJ=f(-A-1)f""l'l(x-~) (1-;<l)L 1:; ({'-t) l):.., J 

.. , _,.. 
- ( ., ). . A. 

1 ( ) fN'Iz } f -A-.t ~ """"£~ .. 1 )o',. z. l- (.i::J.-) ~1111..1. =-) Jy. Jv (1-x) (.x -~) • u-, ) 
II/ rP-1 , )!+· "+J 

..... -1 



we transform it into the form 
{ 1 

.-1 . .,.t'\.vt'j i(>I,-Y.._)--1(, f-l~ -~-.e 
~3(Y,,v ... )= rt--H) &tli'U j)ITU (f-v) 

() (J • 

(B.lO) 

As far as 

I 1 i'(v->1 )-1 Jdu u ' .. ~ :t!{v,-v.J-i.9_J__= ..11[~ (,),-)14 ) 

0 ~-~ ~ 

(B.ll) 

for 13 we get 

1 
,\+1 I I~ 

3 ("Y,,..,~)= ,tr( !11; 8(->.-1)~ -b·;+-~)fcv,->'.~.). 
• )..-1 - -

(B.l2) 

As before 
00 1. • ,\ • ( 1 I.NI' {,_{ -~-.z 1 f x-t •II, ' r/. -1 )-o~ B.lJ) l((v,/)=~ _n;cl.dpt> (JC-1) (~+) (y -f) ~F = 13 (-v.l,--;.)_ 

I I 

It' is easy to see, that changing x~ x and ,_,_) 

the next two integrals are reduced to ~ and 1~ : 
- ( -1 

j /Ail' I I -A-.Z 1tJ-f.\''~ A./_ •()_,·~ 
s{~,Y)-=- r(-)..-t~id:fJJ(t") (x~t) \;;1"/ (/'·t)l ~ = ~ (-v,J-v) (B.l4) 

-f _, 

J IHiz. J ( -A-.z *Jt·t/1
• ~( -t_f'.11

' · /v,ll)=f(-A-f)jJ.J)J,.(x-~) (~ 2-1)\;;.fj (1•-1) ~) = ~(-v11 -v4). (B.l5) 
-()0) 

The integral 

()Of 

j (-J \1 ).:. l.VIl {, ~ {;<- f.\-t•-t)f(x-t )/111( _ ... )4-(J.:.L)-i)l.z: 
/. 

11 
.l. r(-A·t) }XI< )O.J 7 M 1 ~ 'J 1 +~ 

1 -, 

after the substitution 

)(,::::; 1+v.. 
f- (.,( 

takes the form 

!f= 
1- uv-

1 +-uti" 

A 2 1 oo 

1 ..2 /N'I I /(v,-li)--r { -f:-l~ -A-.l 
1- (v,l yJ= n-),-1) !Ju lt. )Jvv (1+cf) • 

0 

Using the equality 

00 
{ .l..j.y -A-.z (A , ) 

j/v-1/.z. ,~.(1~v) = 8 :;:-i~+1/J +i~r1; 
0 

and taking into account eq. CB.ll) we get 

(B.l6) 

(B.l7) 

(B.l8) 

(13.19) 

>.+1 ~ (B.2o) 

11 Cv,,v.J 2 
.... "~~~,1 8(_: -t~+t)1 t-'"2-H)J.:(v,-ll ... )_ 

In an analogous way one Dbtains 
t ct:) - A ' A ' 

1( ) INil. (I ( -)< 2. 7:lf I( )
1>'1 l:f_ ')·tl'..r. 

4 -i,,)l.l. =n-~-~>rxJ"-lCrxJ (1-"l) l.,:, (l1) \F1 = ~ <-~.->',)CB.2l) 
_, 1 

1 _, 

<1 /NJl. .(J.( -A-l. .tl..(t x)iY, 4-f.L.!.-)-t'v.L 
J/-lll'{)=f(->.-1)fl(i1(K-~) (t-/)' 1:J< (i:.t) l):..,' ::::: ~(-!{,-~ (B.22) _, _ ... 

L - ( ~ ), • ..4. ')I 1( ) fN'I ( ( -A-.t 1 -;:~)'Y,. "l-(±J-)-' •1 (B 2J) 
ftl ~ .. }l.L ::!.~l)< }JJ (rx) (;< -~) \.K+1 u-, ) 1+J ::. 1(-~>,,-.;.J. • 

..... - f 
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'! ,,,, 

. ~ 
~- ' ' 

The integral 
_, IX) .!. • 

1 
. Z. }' ( -hZ '~)~~, .A :t lY 

11 (-J,, 11)= r~~L1) '!! )"~ 0<-~ 1 (.x~d \~~~. (/-itt~:: J- .. 
_.., 1 

after the substitution 

takes the form 

1+'< J<.=-
1-U. J== 

v+u. -J-U 

~ J t l , 

• l'1 l j. ~+i-J -A-y · 1 (v v )= "' " dv-v-• .z.(4-v) 1 "lll,-ll .. )-1 
f1 'J J. f(->..-t) o a't-1. u = 

.r 

- -i .LA l-+'l.!.lf2l-A-1,j +h',+.j)-E>{-A-1A· tiY ... +-1) lp __l_ . 
r (-.>..- 1 ) ~ ~ "· - r.,. 

Finally 

-.f 00 ~ • " • 

(B.24) 

(B. 25) 

(B.26) 

1 .Nil. J Y. -).-;. z.( I )'JI, T~1 )-'".~, 
, =J__ Jx 'y(v-x) (,/:.1) ~ (~"-1) • == 1. t~ -Y1) (B 27 ) 
.1 r(-}.-1) I I ;WI I ~+·• 11 -;., • • 

-1>0 f 

Summing up all the expressiOilf }, , 'tJ... 1,;. we get; 

;.+ ~+-) . ,t A~ 11 IHI ._ [ . 
( e7o €-7.z. = ( ~ ) 5(-A-t)~ +iJ/1 +~)+8(->.-1,.0...-:Jit'H)+ 

I->.-" .J. ' J ~ (B.28) 
+&(~ -t/11 +~~ -tY,+f) rj(.J,-'J~). 

After some simple calculations this result takes the form: 

( 
~+ A-~-) ~ e v

4
, g y'- = .%(A/.;J tJ (v,- ~.1-) (B.29) 

46' 

where 

z. A+l .t[ .1 
AI'(A,v, )= l-+'/..2 /r(f-+1,,+-~)1 chf'>I,Ho~f(i-+J.)J >W. ~ 

In an analogous way one can show, that 

(e~- t~-)= .#cA,v,)Sc~.- )I~) ., ) ... / 

where 

I ..1. M~ J.[ I .... 17 f (A, v,) = /NJ :-2 /r(f+iY1+4)) C1!'/iY1 - G05flAr.J.)j <#n-f 

and 

( A+ tl.-) 0 e yi ) e ))' = . 

APPENDIX C 

L. Let {ex) transform according to some : 

(A.lO). Besides, let we have the Mellin transforr 
00 CX) 

~~)= }/cx)XJA-~Jx = }f(x)X:-~ olx 
(} -t:><> 

( ) Joo .J<-i r _.)t-1 'f-'/ = f<-x);< Jx = j/Cx) X_ Jx 
1 

0 
_.,., 

where the function fcx) can be expressed throu~ 
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egral _, ~ 
z. )' J -A-.~ .a. ~~ ~ ' (Y,,v)=r~~L,) 'if rix ~-~) (.t~d'~::) ·~'--•/~;:-/'~ 

-DO f 

substitution 

x=...!:!:.!::.... 
1-IA ;= v+CA. -J-U 

the form 
). ..l t A • t 

.l IKI ( 1 r+"''z. -).-} · (v,, v .. J= )avv (4-v) 1 ~(~7,-ll..,}-1 
f(->.-1) 0 a1A u = 

.r 

A .1.1, 
.c.L lft'l L~(-A-i,}+<'>'f+-t)-5(-A-1/J tl11..,+1)1p_t-. 
r (-A- 1) 'J "· - r, 

ly 

l. j-1 ~00 -).-). .}_ )~" ~~)-li ~ z. x-1 ' " ..l -1 " ~) Jx "/rx) (.>C -1) ~+-; Cr1) ~.,.-t = ~1 t~,-v,). 
-oo f 

up all the expressions ~' J...>'" 1,2. we get :1 

,1+ .,i. A.+Z !If }HI'- [ 
~,J = ( 1 

) 5(-).-1)~ +iJI1 +,.)+B(->.-1r~-:v,+1)+ I ->.-1 .... 

+ &(.~ -tb,+t i- ,,,.,.,) J ~(~ .- >'.z.). 
some simple calculations this result takes the form: 

( 
tl+ ,\ ... ) ~ 

ev4 , f!.-y, = ..A/(A)Y4 )d(Y.-Y_,_) 

46 

(B.24) 

Cn.25) 

(B.26) 

(B.27 ) 

(B.28 ) 

(B.29) 

where 

l A+.l .l[ .1 
#(A,vf)=/-+'/ ..2 /r(f-+1>',~~>1 c),$'>1,+-4(t.+.J.)J>W.-f(Ar-l), (B.JO) 

In an analogous way one can show, that 

( A- A-) 1 )<"' e >~, ' .ell..~. = A/(A,v, o (~,- >'"')/ (D.Jl) 
where 

' .t A+l J.[ I ,] 
_AI (A,,,)= /All :.2 /r(ft-i,,n)j C111iY1 -u4-().r~1 ~f(A+.l) (l3.J2) 

and 

( A+ A-) 0 e-;, ) e ~~, = .. (B.JJ) 

APPENDIX C 

t. Let {Cx) transform according to some representation 

(A.lO). Besides, let we have the Mellin transform of fex): 
DO 00 .. 

· fr Jl·" j .)H 'f+ ~)= ./ T(J() .X J X=. {(x) X+ oiK 
" -t:>O 

) Joo .,!'-~ r ..)<-1 r-!/ = fc-x)x olx=)f(x)x_ Jx ' 
() --

Cc.1) 

where the function fcx) can be expressed through 'f+ and 'f_: 
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I t 

'I ''i 

, - ~ ' 

t=+~"" 

I j -~ ( t~ . ~ ~) X ~~ X ) 0 

;Cx)= .:.- .. •o 

G.+' OC) 

( -/' ;::;;-;-) 'f~ {_r) (-x) r'l x ( 0 . 

(c.2) 

G·tOO 

Here we have introduced the notations: 
(C,J) x-; = eC;<.) x ~ 

x ~ =- B(-.x )(-x )~ 
Let us consider the operation 

K .s-1 
h 

defined as follows' 

oO 

K 
.s-1 J .!o-1 .)A--1 " r! Sr):: T h f<><) x ±.. o1 x) 

(C.4) 

-cO 

''here 
T!.-~ h is given by eq. (A.lo), i.e. 

00 .s.-1 (, .s-1} p-i 
K ~ (f>~.JI,AHbl r~)x+ olx n lt -1>0 ';ax-t-o _ · 

(C.5) 

$-1 
Obviously the correspondence h-)( h defines a representation 

of S/..(.11 ~) • One can Ullite both equations (c.2) 'into the form: 

c...-tot> c+loo 

f(;<.>=f.T j'!'. \r)> ;'J .r;b J Y'- y.»: J )' . 
c.-ioO t;• iot' 

(C, 6) 

Expressing f(~:~) through (C.6) substituting it into eq. 

(C.5) we get 

48 

!:1-1 c.7i:c . 7 f•1 

1\" f!(~)=;},i J/;t'f+~J)Jx,\ ~;:f 
~ .. ,'oO -oo 

c..,./0/J 00 

+ _,!, j~y;_ yJJ<x:-'(~;;f)~/('> 
• -011 

c. --·IJ(J 

Thus we see, that 
G+ico 

K S~i lf-t' (f)= )d_, K:~( ( ~,.f; h) f~ ~ 
'-,·co 

"t-ioo 

+ jJ/' K-:~1 (~/;h)f_ y)) 
,· ... /()0 

where 
• oO 

K ~-~ ( f, .u ih)=~}x f--t /_ q/><+L~-~' 
+t ~ . 21il \ AJC+-d I 0 r +-

cO 

K ~-i C . h )=---4-fx f-1l"'.x+f-)-p 1; 
+- ~~) 21i -t \f.o.+ -

0 s-1 
In an analogous way for }( h 'f- (f) 

i c.+/()0 

K~- f- 1f)= jJ.JA;::,~; lf~~;h)y; 
.:-i.:o 

G 1-/00 

+-p/ r:. ~~ r f';/j h) r- y)) 
L•ICO 
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~+C. co 

1 j -./' ( {7ifT y;_y) X d)A 
j(x)= ,.,~ " 

G,+toc:> f.::.b'· (rl (-x)·/ 1J' 
ere we have introduced the notations: 

X/' - ()(;<.)X ..)t 
+ -

x ~ =- ()(-;< )(-x )~ 

X) 0 
(c.2) 

X <0 . 

(C.J) 

et us consider the operation 
K ~-1 

h 
defined as followsl 

00 

K 
_!.•1 J ~-1 _)A-i 

11 f! Sr)== T h fc,.) x ±.. olxJ 
(C.4) 

-oO 

where is given by eq. (A.lo), i.e. T
$.-t 

h 
f)O 

K '~' 'f, (f)"' i'~'"'!'-'f(,%t)<·< Jx. c"-'l 

.s-1 
Obviously the correspondence h- Jc:. I, defines a representation 

of S,L(.2,P.) • One can unite both equations (c.2) into the form: ·,1 

c._ht-loD /' Jc.+too -.)'t 

f(.x)=~ 10 (~)x- "J J.I+...L.; UJ (}A) x_ r1 JL 
.l.'fi-t I+/. +- ./ .2.1tt T- / ./ 

c.-ioa &- iob 

(C. 6) 

Expressing f(~:~) through (C.6) substituting it into eq. 

(C.5) we get 

48 

C.r<j,o oc:> 

K ':' 'I'! 1 r l=),;, j,y f.IJ'Jd, ~±r·• ~::fJ:11,,. , 1 ,., + 

c-,'oo -oo 

(;,~tOt' ClO 

+ 1 j I )' ( 1 f"
1
( ol.x +f)-:/' .5- 1 

;;i ?1- Y~CLXX!. jJx.ra - /fx+J) 
' -01> c. -,oo 

Thus we see, that 
c,+t'oo 

K!0:1lf+<f)= )d}f K:~( (~,.fjh)f4-~)+ 
'- ,'()0 

c.+ioo 

+ }dj< K-:~1 (~/;h)f- y)) 
t:·lt>O 

where 
• oO 

.S 1 1 J f- 1 (eiJ<+[_~-~ .S-
1 

I K · (f1 .Ujh)=~1i· X · A '<"' \;1xt-~\ ot>. ++ y ' "' ,t ;-'JC+Q + ' 
() 

f
oO ~-1 

~-1 y-1 .,l.X+ -p K (o . .M·h)::-1. x [.ol.x+L) lj3x+S\ dx. 
+- >~ } 21i" ~ -

() 5-1 
In an analogous way for }( If- (f) we get: 

h ' 
.s-'1 &+/ ()0 

K h f- If)= jJ.)A )(~: {ft~jh)y1-y} 1-

.:-i.;,o 
&.1-/00 

+-jl/ !:- :~ (~)"j h),_ y), 
<:-'co 
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(C.7) 

cc.a) 

Cc.9) 

Cc.1o) 



.i 

I I 1
) jl 

I 
' ~. ~ .. 

where 
00 

K.s-1 1 j f-1(-t>bctf)'i' ~-1 
-+(~~ih)= Uti 

0 
.X f'~tt-rf +- l-;1xtfl d)( 

(c.u) 

00 

v .S-i t J q-1(_ P~x-rr )/' s-1 
"'-- (fJ"jh)== .z-t·i X -_;3)1.+-S /-,f1x+-d'l Jx. 

d -

More information about the convergency conditions of the 

integrals and about the validity of all operations, which lead 

to eqs. (C.a)-(C.ll) is available in 27 • 

Eqs. (C.a) and (C.lO) determine the way in which the 

Mellin transform of }C~<.) is transformed. Essentially 

eqs. (C.9) and (C.ll) determine the matrix elements of this 

transformation. 

II. Let us find out the index-transformations C2.12) 
.\ and(21J) of the basis vectors e-J (x) (J.l7). For this 

;.. 
purpose we write down ey in the form: 

..d.. 'v e"cx) = 11-x.a/.J (i-x ) ... 
..; + 1+-.x + (C.l2) 

1.. -/.y 
A I .~ 1 .z(1-x) e (x) = ~-)( --.;..---
11 - I ~+X _ ) 

where for definitness consider X) 0 • ( The signs + and -

have the same meaning as in eq. (c.J) ). To the matrix 

h=(( ~) 
we put into correspondence the matrix 

50 

..... (.A 8) (d.-fl-r-t-s 
h = c ]) = f -~+(3-r+ ~ 

It is easy to ch&ek, that 

h=t/hl) 
where l is a· unitary matrix: 

(

-i 

t~ ~ 1 ;) 
Let us evaluate the expression 

00 

-u~..-/-1 tr~ 

~+f.!+-(+ 

t· e=-1. 

0 /1;.. (;<) - {jJv' 1<). (-..A-~-1' -ll..-:v. I-~) eA. 
rt h ~ v +- ++ .J. ) .1 ' v' 

-oQ 

00 

+-t ",..., ---l~ ---ol• n X ·jc~ ,jl il ( >- I A • L- 1) e A ( ) 
, -+ .2. ) ..z J "'' -

-00 

It follows from (C.g) and (C.ll) that 

GO A I :a_+ }.. f --- H>' ( 1\ G ).z. , I • --t 1 .J. ..Y !J-K (-.A..-<"1,-~-•Y•" )=~ u ++ 2 .J. ) 21i I 0 -B '/+If 
0 ~ + 

---f-o' -7'1"-C ..z. ;.. . "'-1 1 }.. :.vd l
o0 ,\ , 1 )l..ti 

K_+(-f-iv~-1--~v;h )=M.i ~ ~!3~+ 4 + 
0 • 

Substituting eqs. (C.l2) and (C.l7) into eq. ( 
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re 
()0 

$-1 f j f-1(-#(.x+r)'l s-f K_+(~J"ih): .l.fii o )( /'A+d + 1-,tJx+fl J>< 
Cc.n) 

00 

s-f t J q-1(_ t~x-rr)-.J" s-1 K __ (1)"jh)=2'h·i )( -_;3H-S /-,1-l)(rd'j J:x. 
p -

More information about the convergency conditions of the 

egrals and about the validity of all operations, which lead 

eqs. (C.s)-(C.ll) is available in 27 

Eqs. (C.s) and CC.lO) determine the way in which the 

llin transform of f(x) is transformed. Essentially 

• (C.9) and (C.ll) determine the matrix elements of this 

ormation. 

find out the index-transformations C2.12) 
.\ 

basis vectors e..y (x) (J.17). For this 
A el) in the form: 

A '!! e\x) = 11-x~{T(i-x) ... 
v + 1 +x + Cc.12) 

1.. ;.y 
A I ~ 1 t ( 1-x ) e (x) = ~-)( -v - l+)( 

~ - } 

for d efini tness consider X> 0 • ( The signs + and -

e the same meaning as in eq. Cc.J) ). To the matrix 

h=({ ~) 
put into correspondence the matrix 

50 

_ (.A 8) (ot.-(1-r-t-r 
h =- c ]) =f\-oL+j3-r+~ 

It is easy to check, that 

h=t/'hl, 
where f is a· unitary matrix: 

(

-i 

t= /r 1 :) 
Let us evaluate the expression 

oD 

-"'--;atrtr) 
~+/-'+-(+ 5' . 

e+ e=-l 

() e).(x)- { 1ill<).. (-.l:..-~t'-l!.-:v}(- 1)e). (x) +-
fl h ll +- ) ' * .2- ) .J. ' vi + _.., 

00 

+-t. "f'\ ---l~ ---ol• . X • ·jrJ ~vA ( >. 1 ..1 • ""h-1)etl. () , -+ .2. ) _2 ) 'I' -

-1>0 

It follows from (C.9) and (C.ll) that 

«' A • 1 l+tV }.. .... 1-r·1-,.,~ (.:P -c)~ ~ 
11 (-l..-<>'>4--•"·h- 1)=~ tL :J If I-B'fr4l Jv "++ .z "" ) 21i I 0 -B '( + 0 d 

0 q + 

oo A ._, 

~ 
).. ' I )-t\v l ~ • -.1 1 -:r--f-o• -.P~-C .J. " K_+(-f-ij~-1--,v;h )=M.i 3 ~Bd+ 4 + I B~rA\ JJ. 

0 • 

Cc.lJ) 

Cc.14) 

(C.l5) 

(C.l6) 

cc.l7) 

Substituting eqs. (C.12) and (C.l7) into eq. Cc.l6) we get' 
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r r 'I Iii 

'I 
. "·. 

,\ .2. f-IC f- -J:-1 J>;t-C. 
A. co ~ !J..+,.,, ~ 5o. 

Rhe-,~(xl ... = H-x1.1 jJJS(d- H-,.)t-e)~ (_&rA- + 1-B~+-~1 + 
0 

l.. 00 _.A_1 ..l..+tll ). 

+lh<
1 '.t fd 3 [(~-:;!)e:~)~ J. (-::+-; r /B~ ... ~, = 

0 

( 

1-x C )J +-i}l · .).. 
= e (~) Dw - l-f>(1-x)-t-A(-1+,c.)l + 

1+x -Bh + It 
1-H< + 

( 

1-x ~~ +c'll -re(x-l) ])-;;:;:- C J-8(-f-.x)t-.4(1..-x)l >. _ 
.x.t-.., -t-x It 

·-8-+ 
1+-X + ) L +tv 

" p12--c ~ =l-5(~-x)t/H1+x)l ~ 1
+-X 

-5 1-X +A 
1+X + 

Using the explicit expressions for A,B,C,D from eq. (C.lJ) we 

have: A JJ<-f ..2. 

). J,c-(" 1 - .ysx+-,t -
· )A+hl 

R. e: (x)+ =1-jlx+o£1 11-t- j-Jx+"'-1 ( + ~ -
h 1 -y.3x+~ + 

}.1 \ A 
=l-j3x+-oll 1-( fx-(J2.iT( i-~ )-lv ~)( +J. CJ)C -toL 

1. + fx -C.,. 
-(h<+..L + 

The comparison with eq. (C.l2) shows, that 

,.\ i\ ( Jx-{. ) Rhe~(x)+=h-1x+,Ll e, -f3x+d- .... 

52 

Cc.ls) 

Consequently the operation Rh defined 

with the index-transformation (2.12) 

In an analogous way for the operation 
co 

P e~ (x) = ;, ~JI' !C~. (-A--:¥' -..L-,·v· J;-1 f\h v - Je +- ~ ,) .2. l 
-..o 

6GI 

+-i !J,,I /(tl (-. .d.-:v~-. .d..- [y, h-1) et! )(I y -- .l- .l- / y• 

-00 

one oo.n find the equality 

R_h e~ (x)_ = l-j3.>~+oLlA e). ( Jx 
)I f1"' 

The equations (C.l6), Cc.l8),CC.l9),and (C.2 

(J.Jl) and 

R.i\ (vY'h)=K.l. (-A-t/ _J.._,·v· i 
++ ) ) ++ .2. ) ;2. ) 

f\+,l. (-v ¥' J,) = K.At(-.A-1)!,'-.A.-iv· h-
-JI - :L .2.) 

R~ (-v v' h)= t-. 11 
(-A--i/ -~-iv· ~ -t ) } +- 2 ) l. .) 

n~ (··"'h)_~~~ (-A-~>'· -.L-:v. h 
"-- .,., - -- .:L ) 2 ) 

It is seen, t&at the index-transformat 
from the transformation of the argument (c. 
through the replacement h ~ J;- 1 and trans 
fixing the constant c in eqs. Cc.B) and 
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.l.. co -' !J..+l>~ i\ ..Z. f -K ..i_:3 -:r-- 1 JJ;t-C. i\ 
hevrxl+= H-xJ.I jJJ~(:J- 1 ~,.)( 1+,.)J (&J+' + 1-B~+A\ + 

0 

50. 

j_ 00 ). 1 l...+t>l ). 
2. ( 1 r( 1 )()(-1) --;:- (-1>~-c '? \ 

+11-x.l.l J"'1o ·r:;1 x-:;.1 I BJ+A )+ JB~+If = 
0 

( 

1-x C ); +-i)l · >. 
e(-t-x) Dw- l-f>(1-x).rA(-1+x)l + 

1+X -Bh + ll-
1+-;c + 

)

L+c'll 
1 1-x ~ ).. 

+-e(.£.J-)(.J)-;,;;: - C 1-P>(.f-x)-t-.4(1-r.x)l _ 
X H 8 4::.!!... + ,4 

·- t+-x + ) l.. +'v 
.\ ])~-c .2. 

=/-5(.f-x)+,4(1+x)l ( 
1

+-X 

-5~+1f 
1+X + 

Using the explicit expressions for A,B,C,D from eq. (C.lJ) we 

have: 

f?....he:(x)+-=1-jlx+.,L({t-r fK-1" lA( 1- Jx-( ); +hi ~X+~ ~X+~ 
1+ d'x-C- = 

-;dx+"'- + 

=1-~x+-ollt./i-( rx-.()2/j( i- fr.-1 )-LY 
1 

~x+~ i?"~~ 
1.+ fx -r 

-j:Jx +.,I.. +-

comparison with eq. (C.l2) shows, that 

A i\ ( Sx-( ) R he~ (x)+ = 1-;1;..+-,,.d e v -f3x+d- +. Cc.ls) 
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Consequently the operation Rh defined with (C.l6), coincides 

with the index-transformation (2.12) and (2.1J). 

In an analogous way for the operation 
coo 

f.. ett(x) = 1. ~y'f<A (-A-:}1'-...d..-/v· 'j;-1)t'A (x) +-
h v - Je +- • " ,.2. ; v' ~ 

-IX) 

II<' 

+". l~.v'.ktl (-. .A-:)1~-. .d._,.:v,'h-f)et! (xJ )d -- .l. .l. ,I 'y• -

-00 

one oon find the equality 

...t A A \"' ) R. e (x L = 1-;1.>1+"' I e ( ax -l-
h y )I j1X+oL -

(C.l9) 

(C.2U) 

~'he equations (C.l6), Cc.l8), (C.l9), and (C.20) prove the formula 

(J.Jl) and 

R-;. ( y )) I h) = J( ~ (- A - t' )1 1 _J.. - ,·}1 • h- 1) ++ ) ) ++ ,). ) .2 ) 

f\~_(y,y; h)= K~t(- ~ -1v~ -f-iv; h- 1
) 

R..~ (v v' h)- f.. A (-_d_-iv' -~-t.·')), J;-1) 
-t ) ) - +- .2. ) l. ,) 

(C.21) 

n~ (-1 y1 t)- K._A (-A-i)l' -L-."y, h- 1) 
~-- ' ,n - -- :L / 2. / . 

It is seen, t~~t the index-transformation can be obtained 
from the transformation of the argument (c.s) and (C.ll) 
through the replacement h ~ J;- 1 and transposition 
fixing the constant c in eqs. Cc.B) and Cc.ll) equal to _a_. 

..l-
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