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1, Introduction

Many recent investigations show that duality is a
consequence of some symmetry of the scattering amplitude.

Starting with the papers 15253

the real projective
transformations, which form the group jL (ZIK),became a
powerful tool for studying the dual amplitudes. It is most
natural to place exactly these transformations in the
basis of the dual symmetry. An additional reason for
choosing the group \SI,QZ,K) 1s the possiblility of
defining a representations of thils group in the space

4,5

of coherent states s which allow the operatorial

factorization of the dual 4 point amplitude 6,7 .

In the present paper we find out a definite group sense
of duality for the two-particle amplitude with usual
analytical properties. In particular, we show, that duali-
ty follows as a consequence of the assumption for symmetry
of the amplitude with respect to the unitary irreducible
representations of CSZ.CZ,K) o« This allows us to give
an integral representation of the dual amplitude. It does
not contradict the analyticity amd could be exploited

for combining both duality and unitarity of the amplitude.
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Let T(s,'/:,u) denote the seuw crossing symmetrical

elastic scattering amplitude for two identical scalar par-

ticles, We assume, that 7_(5)75, w) satisfies the dispersion

relation without subtractions:
o © (' 6) (1.1
. ‘) fu(u't
(sbu)e L [ SL8) gorg 4 [ 2lB70 fy
7| e Js+g’_ e da’ s
g 4

is the particle mass, §, f} “w are the

where /u.

Mandelstam varlables and
s+tru= 4/« ?

It is convenient to introduce the following dimensionless

variables?®
c=a(s-9u*) (1.2)
T = alt+d ) |
w=alu-4x%),

Here @ 1s an arbitrary constant with dimensionality %‘ .

Obviously
G+ T+ w=1//u=a_ 1.3
I1f we denote !

(6-; == o F]
Ataga=T(g T )
eq. (1.1) leads to
@ o
s, = L .__9’____L(°,’Ir ’ f 4 !
-/4( ,f}w) 7 Py 5(6' +-J-lf- ;’(Nwt' /(47 ,’

0 0

(1.4 )



where

§, (5 e)= (1.5

-k
P (G +4m5 Z g ut)
$ulw) 2= £, (Lrppt 2 -8 0%).
The relation (1.3) allows us to eliminate «’ and w’
in dq. (1.4). Then we obtain

Y'a-z (1.6)
Ats;er=4 /_f&m. Ao Bleie)
-’ )
-o00
Here we have introduced the following notation
Az)= ./4(6’, T, @a‘a-r-r) (
1.7)

filoz)= ¢, (! )

plae)= ¢, (4u'a-o"z,c),
Eq, (1.6) shows, that /4(0',1) has two cuts along the real
axis in the complex &  plane. The first one goes from =0
to o=+00 and the discontinuity of /(a‘;f) on this cut
is ;71(0‘, z) .+ The second one goes from s':‘ys«‘a'f to 6=-
and the corresponding disoontinuity is % (¢,c).
As far as the position of the second branch-point depends on
T ¢ we consider only those T , which satisfy
(1.8

[//u‘a. -0, )

i.e. we consider only the case, when both cuts do not

overlap. Hence /(o’} ) 1s an analytical function on the



real axls between both branch-points. If we consider those

o’ only, for which
Z
Yuta-7 < &0,
then in eq. (1.6) we have in the first integral

Re (’-6) >0

and in the second one

Ro (6-a7)>0.

Thege last two inequalities allow us to replace both
denominators with

1
- A c-o-1
:/)( a/)(
' -0

4

in the first integral and correspondingly with

{
l 6“'0‘"4
— = /X oA
-6’
o

in the second one. Then instead of eq. (1.6) we get:

S I |
-6-4 ~
/(G;Z‘)zojﬁ(x,r))( o x +/ez(x}r))(°— 4,/)( ,

where
o /
g ()=t o (e, x " ds’
0
Yura-t
ez(xrt)"r_ ¢ (d",-;)"‘fldo,l.
-0

(1.9)

(1.10)

(1.11)

(1.12)

G.p)

(1.14)

(1.15)



Now we recall, that 5)'(6',c) and f’z(f'r) are the discon-

tinuities of the amplitude along the ocuts, i.e.
§,(77)= [ A(sei0z) -Ale-o,7)] 50,

6000 = [ Meige)-Alo-i0,0)]  edhpta-e.

’ ’

The terms xo“ and X do not insert any new cuts in the
integrand of eq. (1.15). Consequently, ?, (x,r) and ?z x,z)

can be represented as contour integrals

—d , (1.16)
f‘ (X'r)—jgi /(‘::—)xf/o,l
’ .
/ ) -’ (1o17)
f‘(x,f)zmcﬂ(o‘, )X /0")
3
where the contours C, and C, are shown on Pig. (1 )
t Im o
¢, Ya-e c, Res
Fig.1l

Now we oan deform C, and C, making them
coincident and parallel to the imaé:l.nary axis, ( As far as
J(c‘r)atisfios -the dispersion relation without subtraotions,
the contributions of the integral over the infinite circle
are equal to zero). Then by compariscn of eg. (1.16) and
(1.17) we get



(;L, 7:):: ?Z()&,f), (1.18)‘

This last equation allows us to transform eq. (1.14) into

the form:

(1.19)
j(‘f)—/f(xr)x
fpla-T< Reo < 0.
Instead of eq. (1.16) we get
{00 (1,20)
) { ¢
?‘(x,f)=——.—//(6;r)x Ads Ypua-c<cc 0.
c- ‘o0
Eqs. (1.19) and (1.20) show that the amplitude A (5 7) 1s
the Mellin transform of ¢(x, z) and vice versal ¢ (x,2)
is an inverse Mellin transform of the emplitude.
Here we list some gimple properties of ?(x,z’)
( in what follows we drop out the index ne . The first one
is a consequence of the G > w crossing-symmetry of

the amplitude:

21
Atse)= Alw, ). .20

Using ®qse (1.19), (1.21) and (1.3) we get the following
functional equatlion .

2
a-T

?(x,t):)(qj‘ P(_}l‘__)-&).

(1,22



It shows, that the behaviour of SJ(X/‘L‘) at the point x=0
determines the behaviour for x—+o0 and vice versa. But

( see Eg. (1.19) ) the behaviour of ¢ lxz) for x—=0
fixes the position and the kind of the right-hand singula~-

-a
rity of A(sz) o 1If, for instance f(x,'c);:zx for  (o£30),

then the r.h. branch point shifts to the left.
This fact contradicts our assumption, that /4(0‘/ T)
45 an analytical function on the interval (4u'a-7, o).
Therefore such a behaviour of f(x,-c) for x—»0 is
eliminated. On the other hand, 1f ¢(xe) =% A% f)
(>0 ), the same singularity shifts to the right, thus
extending the analyticity interval. A similar situation
takes place in the narrow=-resonance approximations, where
the simple poles on the real axis are the only singularities
oo A(s,T).

Without loss of generality we assume,that for x—C pxc)
has no power singularities and does not go to zero as a
power of X In the case of narrow-resonance approxima—

tion one has to replace in @gs. (1.19) and (1.20) x-a‘-—i

and  x°  with 81 ang x 7-6 | respectivelys

The oonstant 5 fixes the displacement of the first

pole with respect to the threshola #u‘a . The new ¢ (xT)
which we obtain after such a replacement yields the same
_A(¢,1) and has no zeros for )<=0 ., In order to simplify

the formulae further we use (1.19) and (1.20) and only in



the final results, if necessary , the narrow-resonance
approximation ( i.e. the replacement o — o £ ) should
be assumed.
fpu'a-z
Now from eq. (1.22) we see, that ¢ (x,z) — x
for X —+o00. '

Summing the results of this sectlion we note, that the
crossing-symmetrical scattering amplitude for two 1dentical
scalar particles, which satisfies the dispersion relation
(1.1) 1in the region (1.9) can be represented in the form of
Mellin integral (1.19), where ¢(xt)  ( eq. (1.20) satisfies

the orossing-symmetry condition (1.22).

2, Duality and thegroup SL(2ZR).

The Mellin transformation is a very convenient tool
for investigation of the duality. As a matter of fact,
the integral representations for the simple dual amplitudes
have the form of the Mellin transform. In additiocn, the
pole structure of these amplitudes leads to simple expressions
for the function g(;«,r).

In this sectlon we consider duality from the point
of view of irreducible representations of the group SL(2 R),
At first we define dua.liat} in a vfay,which 1s most convenient

for our further discussion. The definition we are going
8-13

14

to exploit 1is contalned in a series of papers s but

we shall discuss it in the form, as given in « It has
been shown 1n this last paper, that ¥ the scattering amplitude

for 'two identical scalar particles:



1. 1s a meromorphic funection;

2. satisfies the crossing-symmetry condition;

3. possesses Regge asymptotic;

4, 1s such a function, that the finite energy sum

15-18

rules are saturated with poles only ( i.e. the sum of

pole terms in a channel equals the sum of asymptotic terms
in the same channel, or so-called mathematical duality 19 ).
then the amplitude can be represented as a sum of Buler's
B-functions. 4s is well known, the set of these four
conditions determines the narrow-resonance approximation
of the amplitude.

An attempt to take into aocount the presence of the
kinematical cut has been done in the same paper. To do
this one has to give W the first condition and to change the
fourth one 20. The asymptotical power series for the
amplitude 1s determined by the pole terms too, but the
existence of the cut leads to the emergence of some logarithmic
therms in the asymptotic. We see, that in this case the
finite energy sum rules lead to local connection of the
asymptotic not only with the pole structure, but also
with branch points in the same channel. Suoh a wider connec-—
tion could be used as a mtural generalization of the common
mathematioal duality. On the basis of this more general
definition the authors of the above-mentioned paper have
been ;ble to write down a Mellin-type integral representation
for the amplitude. The easence of their results, expressed in
our notation ( Seotion 1), oonsists in the statement, that the



function ?(‘/t) has to be in the form?

Yutant

¢ (x,7)= (4+x) A

1+ )

(2.1)

‘where /(C}) i1s an arbitrary function. (The crossing-symmetry
condition, which leads to some simple requirement for f(y)
i1s not under consideration here). The assumption, that
/(y) has a Taylor's expansion around the point ;=0
leads to Venqziano-type amplitudes, If }Q}) has definite
logarithmic behaviour at the same point, then the amplitu-
de has a cut in the s—plane. Eq. (2,1) 1is a straight
consequence of the above-mentioned generalized mgthematical
duality. That is why we accept eq. (2.1) as a definition of
duality.

The connection between the dual amplitudes and the group
of the proJective-transformations has been considered in

1,2,5,21-25 5 1ot of the properties of the

many papers
amplitudes have been described by means of these transfor-
mations and their representations. The operatorial facto-
rization has revealed definaite group structure of the ampli-
tudes. We would 1like to note the papers 26 s where, in our
opinion, a group sense of the Veneziano type amplitudes has
been given. In particular, the author turns one's attentlon
to the following fact which is well known in the theory of the

representations of the group SL(2,R) 27 ; there are

12



representations of the triangular matrices sub-

group, 1n which the Euler's B-function plays the role

of the kernel in the integral operator of these represen-
tation. This result is respectively generalized for

the case of the Veneziano N-point function.

Let us analyse in some detalls this fact for the
case N==4,Denote by Afthe subgroup of the triangular
matrices in SL(A”,K) ( we define it later). To the
given representation of A/ there corresponds a
global representation of the whole group SL(Z,R) « ‘hen
the kernel of the integral operator is in fact a matrix
element of the global representations operator, Therefore
the kernel ( i,e. the Euler's B- function) could be
considered as a function, given on the subgroup A/. .
Further we recall, that together with Ay SL{(2,R)
contains another, complementary subgroup 6ﬂ of
triangular matrices.Each . element of Af determines
a coset with respect to ‘5/;' and can be chosen
as representative of this ooset ( See Appendix A).
Consequently every function,defined on Af can be
oonsidered as a function, definéd on the set of cosets

,5/’\61. (2,R) . Thus, one can state, that the dual
elastic soattering amplitude is a function, defined

on a certain homogeneous space 6/_,\ SL(2,R) of the
group SL(LR) , It is known, that usual Spherical
functions are also functions, defined on a homogeneous
spaoe, as far as the sphere i1s a homogeneous space
with respect to the rotation group. That is why we call
thfa functions, defined on .?o\ SL(2,R)  spherioal, too.

I3



We shall construot such spherical functions and
shall show that the functions (2.1) are spherical
ones.

By definition, SL(2,2) 1s the group of all real
unimodulator Zx .2 mattices. An a.rbitré.ry element
Je S54(2,R) can be written in the form:

AL ﬂ (2.2)

= LI - By =1
g s Al

The above-mentioned subgroup ‘S,o contains all tri-

angular matrices of the type:

1 (2.3)

S =
o 0 1

Obviousl S, is an abbelian subgroup of S4 (2, 2).
v s

Let us consider the space of all -cosets
s (2.4)
/s} { .

It is easy to see, that two elements

°‘l By .0‘1 /53\

s, W\ 1 5»)



belong to the same coset (2.4) if

/;2/1 J}.—.J‘ (2.5)

2
Therefore as representative of given coset (2.4) we can

accept the matrix of the type:

_ (5" o (2.6)
¢= r s

The matrices j form a subgroup of OL(2,K)  which we
have denoted by A/.
Now, consider the space 2/  of al1 funotions - f(x)
defined on the real axis. To every fs Si(2,R)
we put into correspondence an operator V"~ which acts
on fix)e 2L  acoording to the definition
. Ao (2.1
VJ f(x):f/bu-ﬂ f(/g—x:%)’
where A is an arbitrary number. It is easy to check,
that V;' glve a representation of SL(2,R) in 2.
( One should note, that as far as 2 . contains all
functions on the real axis, this representation is in general
reducible),
Let be the set of all functions (g, f)
defined on the group SL(2,R) where geStZR), (e U.



Obviously, every *f(j,f) corresponds to certaln fooe U.
We assume q?(gn() to be a linear functional on U,
which satisfies the following two conditions:

y(g,v: §)=1p(gshs 9 heSLAR) (o oy

s, $)= y(ef), (2.9)

where @  1is the unite element of OL(2R)
and S 1is a matrix from S, for which /3= 4.

According to ed. (2.8) transforming f we can
vary the argument ¢ of Y(]: f) . As far as § 1s
the "index" of the function y’(], £) o oeae (2.8) shows,
that if we know the value of )o(dv,f) in a given point ( 1.e.

for fixed 0@ ), by means of the index transformation we
can obtain its value in every other point. obviously, this
property is similar to the analogous 0Ne, which takes place
for usual spherical functiqns.

Let us consider the functional ¥ (Safs £).
1t follows from eqs. (2.8) and (2.9) that

y(%/,)‘)-: yo(j,f) .

(2.10)



Consequently, as a function of jg 5&(}3 f) is defined
on the space of cosets (2.4), 1.e. }o(],f) does not change
its value when 6; varies inside a given coset . Hence
eqs. (2.8) and (2.9) define jp(;ﬂ £) as spherical functi-
ons of the homogeneous space, which 1s equivalent to the set
of all the cosets (2.4).

One can define two representations of SL(Z,R) in 2
The operators 'T; of the first one are determined as

follows:

Th‘f(%“:?’(fh'” (2.11)
and the operators R'h of the second one( the "“index"

transforma tion), respectively:

(2,12)

R (3= VA VAV £).

Using eq. (2.8) we can find, that
(2,13

R,elgf)=w(gt" f)

Consequently, if we know the value of a spherical function
at one point / sy by means of the transformation /ah
we can get its value at every other point. In particular:

17



y(j,)[)'—‘ RZ-«Y’(&H. (2.14)

Using eqs. (2.7),(2.8),(2.9),(2.12) and (2.l4) we get?

Y(Q, Hﬂ)-'/’”'r‘}(ﬁ)): 0 (2.15)
for arbitrary f(x)eﬂ « As far as }o(e’ )C) is not

identically zero, from eq. (2.15) it follows, in particular,
oo
50(9, 7()=/J(x)/(x)0/x= ][(0)_ (2.16)

Then, in view of egs. (2.14) and (2.12) we have

P P=[VAV Vo] e

=0,

Transforming the r.h.s. of eq. (2.17) with the help of eq.

(2.7) we get ? -

PO R=Irl (L)

(2.18)



Since y(oi,f) depends on 5— and / only as a
function of it is oonst:ant on every one from the cosets
(2.4). When a SL(2,R) transformation is applied, both
variables 5 and /’ change according to the definition
(2.11). If we denote

5= ¥
and choose / in the fom

f =

we get

(229 )

iy f)=pxyf)=

where X changes in a linear fractional way by the operation
(2.11). Using the homogeneity of the two dimensional ()(,‘y)
spaoe we fix y:l

(2,20)

Pl = g = enl f s

Then instead of eq. (2.11) we have

A X+
: T‘h&f(x,{)‘—‘-l/h*«ﬂ f7j§‘ ) heSL@R) (5 01)



Obviously, for ,\:Va-f the expression (2.20) coincides

with (2.1) and this proves our statement. Eq. (2.21) shows
that both the spherlcal functions and the functions }
are transformed 1n the same way. Now we notice, that in the
whole set of functions )((x) and )ﬂ(},f) there exists a
subset of functions, which asymptotic is X =~ for x-+eca.
on this subset both representations (2.7) and (2.21) are
irreducible and equlvalent. In what follows we assume, that
they are irreducible and will not distinguish between them.
Thus, in Sectlon 2 we have shown, that the invyrse
Mellin transform g(x,t) of the dual amplitude can be consi-
dered as a functlon, defined on the homogeneous space of the
group 94 (2,R) | This space is' isomorphic to the ‘
cosets (2.4).' By analogy with the usual sperical functions
we call these functlons spherical too.

3. A _basis _in the spherical function space

In this section we introduce a basis in the space
of our spherical functions. This glves us the possibility
of expressing an arbitrary im‘erse Mellin transform g(x,t)
of the dual amplitude as a superposition of the basis elements,
For thils purpose we first consider the SL(2ZR) algebra.
Its generators are easily obtained through successive
differentiation with respect to all three parameters of the
group. Here we use a parametrization, which 1s similar to'

that from ref. ° :



g(dn"l;,‘(l = (3.0

The generators of the representation (2.21) are defined as

I ~< DTJ(""'I‘I"{’)) (3.2)
¢ P dmdymoty=0"

follows:

Thenwe have
A
II»=-T+X7)< (3.3)

and _["L' 13 satisfy the commutation relations

LL--L, [LL]-L, [L1)--1 00

The simplest spherical function of the type (2.20) can be
obtained by putting

(.5)
P (x,consk )= consk [10xl’ >

It is easy to see, that }0()( Mwé) is an eigenfunction
of I

2



Is\f(x,,w«wt)'=2’\—'f(x,mwé)_ (3.6)

Acting on }O(x,wwsf) with 11-1; and L*—l‘

we get:

(I|—IA)Y()‘/M)=0 3.7

Al gx (3.8)
(I;I‘)Y()()M):M 1 ex] (_11_;.:)

The function <[‘f11)&0(x,mw£) is an eigenfunction

; . A
of I_s too, but its eigenvalue 1% 7-1 . Thus 50()(/ M)
plays the role of the highest vector in the space,in which the

generators (3.3) act.Now we introduce the notation:

(3.9)
6:\5-.' >0()<, compt )= wrwflhx\/\

and apply the same progedure to the vector (3.8), getting

a new elgenvector of 13 and so on. ig o result we obtaln

the vectors?

ei(x)=N|4+X‘A(%—E-:—>‘ (3.10)
which satisfy the equations: .

A, e’: = (j',_\-—k)ef

/44»@?: = (p’l)etu (3.11)

-/4—@1 = Kef—l ’



where we have introduced the notation

A, - I«*I; J-=L‘L A1 (3.12)

The form of the functions (3,10) is similar to that
of our spherical functions. 411 linear combinations of ZA
form a space, which for K integer 1s invariant with respect
to the action of the operators (3.12). For k&  even e:
satisfy the even orossing symmetry condition (1.22) and for
odd K — the odd orossing symmetry condition.

If it 1s possidble to ohoose e’:

spherioe.l funotions space, then an arbitrary f(x z-')

as a basis in the

of the type (2.1) can be represented as a sum of e « When
we go from ?(x,c) to ./4(6';1’) this sum will be tra.nsformed
into the sum of Eiler's B-funotions ( as far as B-function

1s the Mellin transform of ¢ ).

00

. len™
j"c (m)( JX—Z_J_Q—"b“‘*"u"‘*“"c) (3.12)

0 n+n=K n, ! n‘!
Al o,

Now the question arises whethewr or not we can integrate
the representation (3.11) of the \SL(J,.R.) algebra and get
a global group representation. If this integration ococuld be
done, then Z: would form a basis not only for the algebra,
but for the group representation too ( the definition of the
generators guarantees,that the last ome ooincides with (2,21) ).

We have mentioned, that A=%u'a-7 , but we d1d not
speoify what kind of irreducidle represe’ntation we are going



to exploit. As a function of = A changes contihuously.
Hence, we have to determine (2.21) in a way, which allows
continuous variation of A . Yhe only unitary irreducibdle
representations,which satisfy these conditions are those
with

_,3</1=4/«‘a-r< 0. (3.14)

They form the so-called supplementary series of represen—
tations of the group 9SL(Z, R) 28 | For all other unitary
series either A takes integer values, or only Jm A
changes continuously and hence they are not suitable for our
purpose.

Let Y, (x) and %(x) belong to the space of funotions,
which are transformed with the help of the representations from

the supplementary serles. By means of the formula 28

(V“Yl)“/_( » )//;ﬁ/)x J, %“")YA(J)

one can introduce in this space an invariant scalar product,

(3.15)

which satisfies the condition (%50)> 0 . ( Here ;5 means

complex conjugation). This fact allows us to verify whether

or not the vector (3.19) belgng to the spacedaf the global
(e} el

representation of the group. If we calculate 6,‘_' ek

we shall find, that the integral in the r.h.s. of (3.15)

diverges. Consequently, for positive integer K the

A
vectors - € do not belong to the space of these represen—

K
tations.

Therefore we can make the following conclusion. We have



seen, that the meromorphic approximation and simple mathema-
tical duality assumption lead to a series of Eiler's
B-functions for the amplitude. ‘his is a decomposition in the
basis of the representation of the SL(2Z,R) algebra. that is
why the inverse Mellin transform ?(x,t) for such an
amplitude is not a spherical function. The fact, that the
eigenvalues of I;=4are real,shows onoe more, that the
algebra representation (3.11) cannot bz integrated in the
space of veotors (3.10). Actually, if the group representation
(2.21) 1s unitary, it follows from our definition (3.2)
that ¢4 ,4 and _#_  should be skew-Hermitian (VA LA,
and J4 are real linear combinations of I I and I3 ).
l'hen, if the representation (3.11) of the algebra could
be integrated, .jﬂ could not have real eigenvalues.
Therefore, the vectors (3.10) do not form a basis in the
spherical function space., However, the last remark concerning
the eigenvalues of ,4, shows the way, in which this basis
could be obtained. Taking into account, that K in eq.

(3.11) can be arbitrary complex number, we assume

A

—_—h= LY

2 : (3.16)

Thus «AL becomes & skew-Hermitian operator. Nevertheless,
this assumption leads to some complications, First of all,
because of the branch-point x=14 , the functions (3.10)
are not determined uniquely. Second, for arbitrary k

A
the vectors ¢

X do not have definite crossing symmetry

25



properties. That is why we have to redefine the functions
(3,10). ( One encounters similar complications in Regge theory
by analytical continuation of Legendre-polynomials from integer
to arbltrary indices). If we substitute K from (3.16) into
(3.10), we can choose such a branch of the ﬁultivalued
function, which still keeps the crossing-symmetry properties

of et . As far as the new vectors depend on the index

Yy we denote them eﬁ and define®

Nl

f+x

A (1-x%) ("‘)” 1< 4 (3.17)

At
€,

I

*H(-1)* ( ) 1x1>1)

where (4+) and (=) concern the cross-even and cross-~odd funct-—
ions, correspondingly. In what follows we omit this signs,
having in mind the cross-even functions only. Byery further
result could be easily obtained for the cross-odd funotions,
too ( see Appendix B).

Let us consider the most important properties of the
functions (3.17):

1. The orthonormality condition. Using the definition
(3.15) of the scalar product we get

(e:‘).', e;“):: /V(/\)v,)g(v,-y‘), (3,18)

where

M= 2™ i S e |ch v+ s f eIl



A
Obviously, for different Y the vectors e), are
orthogonal. Using the inequality (3.14) we can get'

N(AV,)>0. (3.19)

Taking into account, that
2 2x-1 -ﬂl}l (3.29)
[Flxeey)] == 2q140 " e

we find out the asymptotic behaviour of (A v,) for

large Vl:
i A3 Asd (3.21)
AA) = 4M 2 ) wmL(re2)
[RAS Lo 2
2, Completeness, Consider the function
(3.22)

o0
yz(x)z A/y cwe:‘ (),

The integral from the rh.s. of eq. (3.22) converges at the ends
of the integration interval if the integral

(-4
ﬂv lewl]
" (3.23)

A
converges.(le,;(x)' does not depend on V) . Thus, to
every modulo-integrable function c(v) - there corresponds a

function y?(x) , defined by eq. (3.22). We shall show, that



50()() is spherical function. First of all we substitute
Z:(x) from (3.1 into (3.22) ana get
iy (3.24>

1+X

e A
97()(): ﬂv cof-a2t [ A2X

2

i.e. indeed }0()() is a function of the type (2,20). Second
we have to show, that (y’, )0) exists. Substituting (3.24)
into (3.13) and taking into account the orthonormality
condition we obtain

(y,y)= v el # (3, 9). (3.25)

The convergence of this integral 1s guaranteed by (3.21) and
(3.23). Because of the lnequality (3.19) (%yz) is positive.
In this way we have proved, that the functions }”(X)
are spherical.
A

The orthogonality of 5,, (x) allows us to express ¢ (v)
through }o(x). T o do this we form the scalar product
(poo, e:(x)) and get?
oy A (3.26)

COI= F)o,eg)

It is easy to see, that for arbitrary spherical function
)o(x) the integral in the r.h.s. of (3.26) converges.

Thus the vectors e;\(x) form a complete set in the
space of the spherical functions, which are transformed
according to the unitary irreducible representation (2.21) of

5L4(2,) . We note, however, that the functions ei (x)
themselves do not belong to this space.
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This result shows, that by means of the integral (3.22)

the inverse Mellin transform y()‘, T) of the dual amplitude

can be represented as a superposition of the vectors

3. The reality condition. Eq. (3.22) defines

as a complex function of the real argument X

P ()

A

> (x).

On the other

hand, the inverse Mellin transform 57()(’1:) of the physkal

amplitude 1s a real function. Consequently we have to impose

some conditions on C(v) which provide the reality o 70()().

Using the identity:

we can write of (3.22) into the form
m - rp——
A
px)= A/v[ccv)e, )+ €W e:(x)] ,
7]
Thus, the condition, which leads to real y(x)
Cl-v)=Cw).

In particular, for real c¢(v) we have

C(-Y) = CW)

and

oo
Pix)= y’(-x)=//y con| e;‘u) + e:,‘cx)_]'
0
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(3.27)

(3.28)

(3.29)

(3.3 0)



4. Let us briefly consider the "index" transformation

' A
Rh (2.12), applied to the basls vectors €, ) . The
operators Kh are integral operators wlth kernel K (v)y; h)_

According to eq. (2.13) we have

A , A a
K”cv,v, h)  R_(3,v;h) €(x),

AV \ . =
I R R o €00 (3.30)
A Sx -
Al €
=|-pxe 4] St [
A ,fgs-{)
6y—ﬁx+,l. -/,
where
A A
€,(x), = € (x) Ix1<14
A
el =€ 00 x>t
and
h=(7 ”) ;,-*;("“ -/’)
yo - L)
The form of the kernel R and the proof of eq.

(3.11) are given in Appendix C.



Let us sum the results of this Sectlon. We have seen,
that the simple mathematical duality, which leads to Veneziano

x models, 18 a consequence of the assumption, that

type
g(x,f) is a function from the space of the nonintegrable
representations of 51.(,2,&) algebra. Yhe spherical functions,
which we have obtalned starting from the more general
definition (2.1) of mathematical duality, can be treated as
elements of a space, in which acts a unitary representation of
SL(2,R), Therefore the definition (2.1) and the statement,
that ¢(x,T) bvelong to this space are equivalent. This
allows us to state, that the inverse Mellin transform 59()‘,1:‘)
of the dual amplitude can be represented in the form (3.28)

or (3.30).

4, Mellin transform of the basis vectors

In Section 3 for the inverse Mellin transform f(x,f)

of the scattering amplitude we have found the decomposition

px,0)= Zycme,’) ),

-00

(4.1)
XX
where /\:4 ‘d-i‘ and C(v sattsfy the condition:?
e )

C-¥)=Clv),

X j.e. the meromorphic approximation for the scattering

amplitude when the last one 1s represented as an arbitrary

finite sum of B~funotioms ( finite number of satelilites).

XX ps far as (\(l.e.t) is an invariant of the representation of
SL(zZR)y c(v) oould depend on A too.



If we go from 57(";1"') to the amplitude by means of eq (1.19)

we get
J oo (4.2)
(o’,r)—.—./{ycw)T,(ﬁ‘,f),
-00
where

g —e-t :
T(o‘t).—-%/x ‘a x)x°‘4‘ (4.3)

Both equations (4.3> and the reverse one
c+ico
/“"
€, =5 /T(O’t)x ds
C-coo

give the Mellin transformation for the basis veotors (3.17).

(4.4)

(4.2) is an expansion of the amplitude with respect to the
functions (4.3). Here we formulate some statements concerning
T (e and A(o,T).

1, Jn the space of the veotors T (o'fc) acts a unitary
irreducible representation of SL (,2,/1) which is equivalent
to (2.21). It is realized by means of integral operators, which
are considered in details in 27 ( See Appendix c).

2. Eq. (4.2) shows, that A(s,z) 1s an element from the
space of the vectors 7:,(031:') . Consequently we have a
unitary irreducible represen‘tation of SL(ﬁ,k) which trans-
forms JI(G;() and /{/'.‘u—r ig aninmvariant of this representa-
tion.

3. Using eq. (3.15) we can define an invariant scalar
product in the space of the vectors (4.3) too. To do this we
substitute in eqs (3.15) the Mellin transform of ¥, (x) and AGY,
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[
y‘f(f:): _/Sﬂ‘ (x) A~ -’-4¢/,\
4

(4.5)
7 1
- -5-
Y. (5)=j}";("‘) x dx .
4
From here we get Crien
4 e
27< /Wz(s)x‘sa’b x>0 (4.6)
y’ (X)-—— Cc-(on .
4 [22F -]
- S
Y00 x)ds  x<o,
e~do
After some simple calculations we get from (3.15)=
%Hw '
Rosd) K, (3 [p](E) 4.7
(9, 0)= |ds (pieo,gres Y
keolye8) Ko Os3)\pr(3) ,
%--(aa
where Y}(S) denotes complex conjugation of the form of
function, and the kernels K__) K_,. are as follows:
K_ (A;8,8)=—2f Bs+1,5¢4
e z//"(-)\-) ( )
/(__(A 53)—__'_ 4 <) Sog - J
wrLa [Pt G| G



_The r.h.s. of eq. (4.7)expresses the scalar product of two
elements from the space of the vectors 71, (o;z) . One should

note, that
T:(«)r)s T, (5% . (4.9)

T, (e,00=T, (52,

Substituting the hst ones into egq. (4. 7) we get the orthonor-
mality condition for T, (e, ):

A tioo (4.10)
- koo Koo\ Ty,
(T,”TJ)-_-. dG(Tfl)TVJ) _ -'—'-/V(I\,V.)S(/,‘&)
e ke J\T, Z
%—-t'oo

where A (A7) 1s given by eq. (3.18).

4. For the physical amplitude we choose c(v) to be
real. This assumption essentially simplifies our oonsidera-
tions without restriction of their generality. Indeed, in
Section 1 we have seen, that the thysioal amplitude defines

P(/Y,'C) for x>0 only. The simplest assumption for X0

is?
ct+ioo !

o
pxI= 2T /J(a,c) (x) do=  x<P,

c-{0

(4.11)

1.e. we postulate y()(,c) to be even function of X
and from here it follows, that C(v) are real and even too.
rhen, instead of eqs. (4.1) and (4.2) we get?



?(x’f)=0/a/)) C(V)(e: * e’fg)

(4.12)
and o
/4(6-,-7)_—_-,//,;“,)[7;[o;t)«r'T:v(o',r)J' (4.13)

o

Ag far as
A =A
€,= ¢, (4.14)
T (50)=T, (50

the quantities f()(,c)' and A(s,) , given by eqs. (4.12) and
(4.13) are real. They are the final expressions for the
expansion of the physical amplitude and its inverse Mellin

transform with respect to the spherical functions of the group

S5L(2,R).

5. Consider the function I, (g =)+ 1_,(¢ ),
Ypla-T
v

Substituting & from eq. (3.17) into eq. (4.3) we get:

L t
g M*"y -2

iv

1
-Z-1 ;
Togom fdex * ) W) v (el). )
g

Then

1
-4
T,(G,r)ﬂ:, (",1.’)=%/X X (1=x) £
g

(
+ (6___’“)- 4.16)
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(v -2y
4-5(')‘ (4-/;
is e th —_— e
It is easy to see, at (14-/;7 + e v 1s an even
function of /X and has a Taylor's expansion around

the point X= 0, thus leading to an infinite series of
Euler's B-functions for T;,-r-T_,; « This series shows, that in
the case of the meromorphio approximation we have to ohoose
a= 2’ ,'where o’ 1s the slope of the Regge-trajectories.
The main analytioal properties of T,,«o-T_v can be
obtained by means of the int egfal representation (4.16). 0Ob-—~
viously, they are meromorphio functlons of o and T
¢ their poles are analogous to the poles of the Venezlano-
type a.mplitudes). The asymptotic of the funotlons (4.16)
depends on V o That 1s why a definite asymptotiocal behaviour
of /(o‘,‘ ©) can be reached appropriately choosing c(¥).
In particular, if the integral (4.13) is uniformly oonvergent
and c(v) contains a term of the type:

1

Y&t (T, -T)

in the asymptotio of the amplitude we get the term:
:z_ (‘{/“a-c.p c',/t.—r )
P d 6

.

Thus the appropriate ohoice of C(v¥) provides an imagimary

correction to the linear Regge-trajectory.



6. The point ¢ =0 is a branch-point of the physical
amplitude, while for ¢=0 7:, hé.s only a simple pole.
This fact originates some dificulties when we have toc choose
€(v) -+ It has been shown '* that the behatiour of Al6;t)
near the point 6 = (0 and the behavioﬁ of ¢(x,r) near x=0

are connected. In particular, if .

Ao, <) ~ (-o*)f (4.17)

for 6= -p , then

-y (4.18)
o(x,2) ~ (~tmx) /!

for x— +( . 4s far as the integral (3.15) converges for
functions, the behaviour of which around the point x=0

1s (4.18), we can find C(v) glving the right behaviour of
the physical amplitude near its branch point.

Conclusion

Let us summarize our main results.

1. The analytical propertfes, expressed in the dispersion
relations (1.1> allow us to write down the scattering ampli-
tude A(s,t) as the Mellin transform (1.19) of the
function ¢(x,T)

2, The duality of ¢ (x,T) can be considered as a
consequence of some group-symmetry of the scattering amplitude.

Here this symmetry 1s given by the group SL(2,R) « It turns
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out, that the dual y(x,c) are spherical functions in the
‘sense of definitions (2.8) and (2.9). In the space of these
functions the unitary jrreducible representatlon of \SL(Z,R)
is realized (2.21).

3. Taking into account the crossing symmetry condition
we have introduced a basis in the spherical functions space
and this leads us to the integral representation (4.2)
for the scattering amplitude.

4. Except the vector é’a (X) , the meromorphic approxi~
mations of the dual amplitude, which are expressed through
finite number of Eulerts B- functions, are not elements of
the unitary space. Instead of the whole ~5L(1,K) symmetry
in this case we have symmetry with respect to the non-unitary
representation of the 5L(2,R) algebra.

on the basis of this results and expecilally from the
integral representation (4.2) the hope arises, that followlng
this way we could combine the duality and unitarity condi-

tions for the scattering amplitudeas

‘the authors express their deep gratitude to N.N.Bogolubov,
V.A.Matveev, B.M.Muradyan and i.T.Todorov for their interest

and the fruitful discussions.



APPENDIX A

1. Let h, and h be 2x2 matrices and h,h,e SL(2,2),

2
“ P, < A 40,0 =1 (a.2)
h,= 5 h2= 5
9 ho%) Lyt
If 6/’ 1s the subgroup, containing all the matrices of the
type ‘

(4 /g) ' (A.2)
0 9

then h, and A, are in the same coset %\SLCZ/L)

when

/" h‘_"é \5/ . (Aoj)

This last condition gives the following equations:

ho-pd=0,

(a.4)
94 51 —/;/3‘ =1 .
Using the comnection 44&—/&/5:1 . to eliminate A,
from (A.4) we get:
5; = 5; ’ (A.5)
yi=r;
(A.6)



50, all the matrices with equal elements of the second line
belong to the same coset. Let j be a matrix from a given
coset. Every other matrix g, from this coset can be

represented in the foxm?*

jz—\sy.

Obviously j is a two- parametric manifold. We shall show,

a7

that for the cosets under consideration we can choose ;

in the form

st o (A.8)
i:( ’ S J+0.
Eqse. (A.5) and (A.6) show, that every coset contains only one
matrix of this type. Multiplying i with arbitrary S¢& sﬁ

we pget?

5_44-/5/- /35, (A.9)

ANV

Thus we see, that for fixed /‘ and S all the matrices
(A.9) Dbelong to the same (coset. Moreover, it is easy to
check, that every matrix from 5L(2,R) can be represented

in the form (A.9).This completes the proof of owr statement.

II. The unitary representations of the group 61-(—2,2)
are realized in the space of the functions f(x) of one



real variable. The operators T of these representations

h
are defined as follows® v
(A.10)
X+
T, foo= sign (/Jx+8)l/3x+5| (z;:{:—
where € = 0,1. For our purposes we use the case &£€=0.

Obviously, the connection between the invariant of the
representation $ and A from eq. (2.7) is A=s-4.
There exist several series of unitary representations of

the group SL(2L);

1, The principal series. In this case & is arbitrary

imaginary number. ‘Phe imvariant scalar product has the fomm?
00
(.{u {Z ):/7(;(") )(‘ (X) JX- (A.ll)
- 00

Using this scalar product one can introduce the norm of the
vectors, thus transforming the space into a Hilbert space.

2. The supplementary series. In this case $ 1s real
and

-{<s< 4 s0. (4,12)

The invariant scalar product 1s defined as follows:

(f“]( I'( 5 ]Jx[d;lx-}l f ) { (). (A.13)

-0 =09

It is just this series that we have applied in the present

paper.
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A more detailed information about the unitary répresenta-

tions or SL(l, ﬂ) is available in 22 ,

Appendix B

In order to find out the scalar product of two cross-—
At A+
even vectors €, and €, ~one has to evaluate the integ-
1 2
At A+
ral, which is obtained when substituting € ¥ and é)‘,‘
1

from (3.17) into (3.15):

(8.1
M A+ i 2 2= 2 -1)
(e,‘,e,‘ =) ‘{"/I""' - ’L, el ,w .

-0 =00

The domain of integration is decomposed into 12 subdomains,

in which every one from the quantities X7, 4-x* A=x

) 1+x ’
{-q? 1 do not change its sign. Consequentl Av )
45 1oy g g q y,(e )@%
appears as a sum of 12 integrals. The first of them:
wi® % (
2
Jo)=2 //x,(/(x(y) () ( ) () (w B.2)
is easily evaluated thz;ough th&e ‘substitution
1-w J-u
x= = .
e Ao (B.3)
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after which it takes the form

g !
V% 1 <0,-Y)~1 A-H'»i ~ A<
L R

r-a- 1)
Ag far as
/) (B.4)
//u u = zﬂg(v,-v‘)
o
and
/ A, (B.5)
<t -A-2
//d'u “ - v) =B(.2"_+¢';5+4’_,\-1)
0 .
we have
j(y,,v_,_)—i-—(!ﬂ—B(—LﬂvH -A- 4)50-9 ). (B.6)

r{-x-1)
The secomd integral can be expressed through d1:

7(’» z)-————"" //Zh(,-x) (1 <) :::)"vh‘]‘) (“;) 7(’ «V,) (B.7)

Making the substitution

*= T ;= {-uu (B.8)
into the integral
4 (w1’ 7 -z 4
J(W,)’a)=r-;(—_::"“)‘ /Jx J’(X-J) x:1) (&= " ( +4) (B.9)
1 4



we transform 1t into the form

#\ iv-v)-1 A —A-2 (B.10)
j,;(",,vl,)"'l:f)“)/J ﬁu’d" (1-v)

As far as

TR (8.11)
‘%)= .
/da u© = f,’f(v,_&)_‘f‘jﬂﬁz jﬂf_(v,—yz))
0 I 2
for ;13 we get
Yk (B.12)
7 ¥, )= —'Z—-ZW—B(/\1 ————w‘+4)y(v—
As befare
4 -0 (B.13)
4 3 fy-1q 2 !
T *)“HT«') M*‘rﬂ vt e) 0 () =160

Tt is easy to see, that changing x—r X and ;""—J

the next two int egra.ls are reduced to j:, and 7
-~

Tw=ris J’*ﬁafﬁ) i) o' () L) 30

_f_

7 (v“v,‘

I"( (x]) (x 1§(X ) (, h) (]H) - 7( v,,—vz)‘ (5.15)



The integral

: 2 A2 A
11(‘)0%.)2{%%/0(17) (x’-!)z(:+4) ’]) (1+y) % (B.16)

after the substitution

B.
= 1tu 1- uv (B.37)
X= y= P d
1-u 1+us
takes the form
(B.
o )= 2 Y’ / ey 2o, e)
}(v,,vl = 0 A u ,IJJ (4+.r)
Using the equa.lity
‘,, -A-2 (Bolg)
‘//U'U' (.’H;-) = 5(—-—-” t+1 —-—+w1-1)
and taking into account eq. (B.ll) we get
(B.20)

A+1 2 )
3 0,1)= L B -nstyd rin )T o).

In an analogous way one obtains
{ o

1(*-")#?7”»’%/*‘/"‘:‘J‘*"A'z“-*‘) ) 00 5 2 g ek

n;=l_::ll1)}‘] (x]) (l/‘) wx)( 1) )-d jg(% &)(B .22)

1 -0

A .

Qo) )p,/d 0 b B e () 2 4 )

45



‘The integral
-1 @

R L I

after the substitution

o 174  vea (8.25)
1-u /’ J-u
takes the form
- IA/t A" <-v,)-1
g”(‘]uvz.)'r( - /JJ'}- “ v) ]J‘K u —
J
(B.26)
—_ ‘_z_ﬂ_lg( A-1,5 A iy +4) 5( A, ..+¢V 4-4):}‘]0 '
r(-x-1) A
Finally
) u‘l
12 F(,\ ')jdxpy(y'x (x 1) ( ) (’ ) 7*4) :7 ( V'). (B.27 )
-00
Summing up all the expressiong Z;j‘u'-' 7,1 we get?
2 L4 )
(e"u ) '_'("_;LT)_[b(‘t\'(/%-#l’,+4)+B(‘)"1,1’L-c')“+1)+
‘ (B,28
I R YN )
After some simple calculations this result takes the form:
A+ A+
(e,4 ey )—.: /V(/\,v,)j(»’,— ) (B.29)
2



where

2 Av3 2
A’(/\)l,): Wz lr(—_;‘—+lv,+4)l [Jiv,rmg:(,\u)]%{i-(/\'u),

In an analogous way one can show, that

(e:') e",i’): A A,) 8 (v, - %),

where
1M z 7
A D)= W2 i vine )] [ cho, = o) sin (a0

and

| (¥Zi+1 étﬁ: >== O'

APPENDIX C

(B.39)

(B.31)

(B.32)

(B.33)

L. Let {]x) transform according to some representation

(A.lo). Besides, let we have the Mellin transform of ;(x):

oo ) o -
] - -1
%(/u)=0/f(x)x““ a(xs_ofo/u),xf dx

| )0_9;):};(—;:))(}-'01)( Ej/(x))(/_“qalx ,
0 g0

(c.1)

where the function ;(x) can be expressed through y&_ and VZ:
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-
1
zﬁ/%‘/) xTdp 120 ,
f()(): C=600 C.2)
c-noo

T7a }y}(/.)(«) J/u x<0

c-{o0

re we have introduced the notationss

x = o) 27
+
x)

1le

(€.

M= 6(-x )("

-

X

51
K h defined as follows?

Let us consider the operation

oo
5-1 54 /“4
Kh %(/)=/Th )((x))(i .;lx) (c.
-~ 00
where T is given by edq. (A.10), 1.8
P-4
]z\ )p (f)-—//bu-ﬂ ;;'%—*;L)xi' dx. (C.5)
h—-v K defines a representation

Obviously the co rrespondence

of Sl(l,k) . One can unite both equations (c. 2) into the form?

foomstr fpor st Jp-g 2 -9
c-(o0 c- (00

Expressing )‘(-;%%-’) ghrough (C.6) substituting 1t into eaq.

(C.5) we get



creo0
-1

K "F ()= z:ﬂ/ }ﬁ/) ”(‘)( (i("'[) lﬂm—cﬂ

/l *

¢-doo

Grloa

'4

Thus we see, that

VP (?)’j‘{f L A%
* Sk (g g ),

s
=00
where

1 ol)(+
=1 g push) =—~/ (e

(?/" )—zftf i ’@%)/ l/3x+5‘ a/x.

In an analogous way for K y (?) we get:

h ‘f (?)"J/ZCM (ﬁa/ﬂih)7¢rﬁ/‘) *

fﬁ/é%iu l:jjj (fz/ujl7))e-‘£/‘)/
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c.7)

(C.8)

(c.9)

(c.10)



where
(c.11)

oo
Py - .
K_,‘,(g,/“;h):l{:{ /)( (;;:*é() l-/3x+y' J)(
0

sz_‘i(g,f;h)z;,{ fxe (7%) ,—/m-é'} JX_
/

More information about the convergency conditions of the
integrals and about the valldity of all operations, which lead
to egs. (€.8)-(C.11) 1s available in 27 ,

Eqs. (C.8) and (C,10) determine the way in which the
Mellin transform of f(x) is transformed. Essentially
eqs. (C.9) and (C.11) determine the matrix elements of this
transformation.

II. Let us find out the index-transformations (2,12)
and(213) of the basis veotors e: (x) (3.17). For this
purpose we write down 6:\, in the form:?

2200, = h-xE (== )+

1+x (c.12)

A, Ny
ed )=V (_4,,&)
‘ =)

{+X

where for definitness consider X> 0 « ( The signs + and -
have the same meaning as in eq. (c.? )e To the matrix

-(42)

we put 1nto oorrespondence the matrix



;{— (j B)_‘L(a‘_/}—[*S —A—ﬁf/w; (.13
- Tz -n¢t8-3r+§' ,(5A,7r+§“ )

It is easy to check, that
~ + ~,
h=1¢"h ﬁ) (c.14)

where Z is a° unitary matrix:

-1 1
< +
¢= vz ( 1 4) £'e=1
Let us evaluate the expression

A / .
R, e,e),= /Jv w2y -2 T el )+

(C.15)

(C.16)

o0

: A . T ot
+4 [dv'K_, e LIt ')61, (x)_
-0

It follows from (C.9/ and (C.11) that

2 A—HV

) e g-iv j),-c (€.17)
KH( Aoy 2o )-m f(y J*”‘) -8y +A] ";

[+

A ~ 1) { -{-{y -DJ ’,‘—“‘v A
“A iy A vih Y=t ey St
K_ (J, 1) v y ‘<By+)q )+

Substituting eqs. (C.12) and (C.17) into eq. (C.16) we get?



+1me]” f”‘}ff X’m)(x;«)} : 1(%’7;’): ’5y+”\

— 9(42) D -B-x) +A (10| +
1+x -B.L:’_‘_-'- A

1+» +
-3—+¢'9
1-x 2
D= - A
"’9(——”‘) )4+x ¢ ]-5(4—x)+ﬁ(1+x)| —
X+ A f-x + /4_
- 87w + AL
_ If—‘)’
M D
=|-B(4—x)+ﬁ(4+x)| ——1;———
B +A +

Using the explicit expressions for A4,B,C,D from eq. (C.13) we

have: . A,
PLYIRE D S v
exfoi
E_:L =

ﬂx+oL +

R, €00, =l |1+ 2L

j} {- ih_lf AY
-_/fx +ol
y -

-ﬂx +A +

=1- x| ’1 /3“0,

The comparison with eg. (C.12) shows, that

R 8 (x) -|-/“"*oll € (i—;—[—> . (c.18’
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Consequently the operation /Zh defined with (C.16), coincides
with the index-transformation (2.12) and (2.13).

In an analogous way for the operation

(- ‘ -1
K e (x)_ _tf/yk L-in-Aovf )f (x)_+ c.19)
%)
+4 pv,k:‘- (_‘%_;,,')_é\__‘»v; i,v"') Zj/ (x)_
-00
one can find the equality
(.29

R, &) ). —1/5’“‘0‘l e (%ﬁ')_

The equations (C.16), (C.ls). (C.19), and (C.20) prove the formula

A . ~—
kH_(V)V;b)': K:\_" (——_A_-{y’) Ay, h 1)

A -
Roeboih) = RE (-2t F0)

’ A NN N
L h) = !\,,_("33:“") $-,h7) (c.21)

~

A A vt N -
R™ _(v'h) = K__(—_;‘T-‘y)__,l__,y/, h 1).

It is seen, that the index-transformation can be obtained
from the transformation of the argument (C.8) and (C. 11)
through the replacement h — I; 1 and transposition
fixing the constant ¢ in eqgs. (c.8) and (C.ll) equal to -4

——
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