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On the Lower Limit of Boson Masses »
in a Class of Cosmological Models = - -

As has been concludedé by some authors, there cannot
exist bosons, for which m” < mg~ = m? being the
boson rest mass, in the De Sitter worls of the radius r
and consequently in a certain class of cosmological
models. The significance of this bound is discussed and anf
objection against it is given on the ground of a strict
calculation and study of the properties of two-point
functions of2 the quantum scalar field with m°< mg

and m2> mo .
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 In the papers by Nachtmannll/and B¥rner and Dllrr/zl

‘ f
on quantum field theory (QFT) in the De Sitter world (5_('3)
there is the assertion, that the possible values of the

squared rest mass of the scalar particle in . 3 have

a lower positive limit:

m* > m& =94 | e
where T is the radius of O, and the units for
which C=#% =2 are used. There is an analogous limit
for vector flelds, too /2/.

On the other hand,‘ quantization of the free scalar
field had been performed by Chernikov and the author 2/
under the naive supposition that in 'SI{,B m*p-0as well
as in - Ei,;:, s and this supposition gives no rise to-
difficulties. In addition,the results of the paper 37
are particularly "simple for pv - =0. At the same time
arguments leading to the bound (1) ( see Sec.3) are of
purely mathematical mtare and physical consequences of

breaking of this bound are not apparent. ‘Therefore ‘in the
present paper the commutator and the propagator of the

free scalar field in Si)3 will be calculated in'a

strict manner with the aim to find physical arguments for.
. I3 L

rejecting masses for which O M~ <M, | But the

result will be that there is no sufficient reason for -
‘this. :

The problem of theé lower bound of MY ( 0 or mE )

may seen as nonessential for the followlng two reasons.



Firstly, the substitution of the radius of the Universe
~ 100 1ight years into (1) instead of“ﬁL gives W1‘,~1()"56
i.e. M2 15 negligibvle. Secbndly; :51 3 1is not a realistic
cosmological model and’ the problem of existence of”’ massless

particles in gé343 may seen\abstract.
Against this one can give the ‘following: obJections.‘

' Firstly there is an example of the physical system for
which any differenoe of the mass from zero is essentialo
Namely, the quantum theory of the massless Yang-Mills field
is not a limiting case of the massive.fielu theory/4/.
Possibly some interactions have an analogous . property:under
any small breaking of conformal symmetry. Secondly it will

be clear further that-the bound of the type (1) arises in

a rather wide class of cosmological models. At last, we are.

interested in ‘the possibilityvof principle of observable
-qualitative manifestations of vanishing a eurvature‘in

arT. The f;gs is an appropriate model to look for these
manifestations, because its group of motions :5_0(1, ) 1is
ten—parametrie as'the Poincare group, -but essentielly differs
from the latter by the structure. This reflects.the topological
nonequivalence of f;i aand the Minkowsky space-time(E;1 3)
Alreedy the canonical quantization of the free:scalar
field in 1,3 results in consequences which, ‘in a‘'certain -
sense, do not depend on the numerical value of T /3/ They

are directly related to the problem of - bound (1);and-therefore
we will briefly consider them in the fqllgwingﬁsection,

We shall use the same notations as in the paper’zlwith
seldom exception and we shall notvexp;ain‘them im evident

cases. ' : e



P, The Conformal Covariant Scalar Field Equation

In the paper’sl it was showzi that the corpuscular inter-
' pretation of the free quantum scalar field in ‘SL3 can be

achieved onlj if the field equation in an arbitrary Riemannian
space-time ( 1{3 ) will be =

/- | @
(O+R/e+m*)¥=0, |

where

9 ‘
D T- b*(ﬁ 30‘(‘3 ) (-a :‘. ,S—:id ) oL} '3,3/“‘ = 011’2,3 i
instead of the: conventlonal one
(D +wmi)Y =0, , (3

This conclusion is based on that in the theorylslwi‘th Eq; @)

‘the one-partlcle states correspond in the quasiclassic s:.tua—
tion to the motion along a geodesic line in 54 3com:rary

%o the theory with Eq. (3).

An important distinction between Egs. (2) and (3) consists

in conformal covar:l.ance for =0 of the former’sl, i.e, if

the given V3" and V3 with metric tensors 3’“[5 and 9“)3

are mutually conformal :
go&p (=) = Ql('x) 3’“# (=), )

_(2.('-‘) being some function, and if L{? is a solution of

<D+ Rle)Y=0 o (5)

~
‘[7 -4
in 13 s then ‘)0='Q Y is a solution of the same equation

in '\/} 3 « From general and conformal covarJ.ance of Eq. (5)

it follows its conformal invariance, i.e, if V;_; admits

%) More exactly Eq. (2) is the simplest equation satisfying
the requirementé of the paper 131 .



conformal coordinate transformations: =

£
‘x f(x) 3/‘*{*( <) ';Bmotg;pgts() w(&)gdp(&)

where CO(OQ) is an appropriate function: a.nd 1f ‘P(ac)

is.a solution of (5) then /‘P('.’.C) oJ(tt) gf)[,i(x?]
is a solution of the same equation. A
The :following two properties of Eqe (2) are due to ﬂ.ts
confomal cova.riance- - - ,'
1. The oommutator of the quantum field sa.tisfying Eq. (2)
is not zero only on the light cone in a.n arbitrary con.formally
flat V when \ m:O ( gee also Sece 4), This means the

validity of Huygens' prinoiple. There s no such property in~ ‘
the theory with Eq, (3). -

"2, Variation of the Lagranglan, corresponding to Eq. (2)
. with réspect to ‘8‘}5 gives the -symmetric ener gy-momentum

tensor: R
-t_oklz, 7113 iy (Rcl.p + v‘* (éfol.(a. G) q’z (7)
where V. means covaria.nt di.-‘?.-‘.’erentia,tion).‘T;(I5

is the oanonical energy—momentum tensor, i.e.

2
Tup = 2 W Ol X (g %,tp e R6) P
owing to Eq. (2) _
. V 'td.P, =0 V*TaP =0 ’ ) . ' (8)
T 4 ' (9
t& —\'E "1- ‘P .
Let ‘us assume ‘that there is a group of- conforma.'l. transfomations

of ’V‘, « Bquation



Vulp t Ve lu = 21[3.4 (10)
for vector field g‘* and a fu.notion j-(uc) defines generators

of the group . L;“'B,g ". Then. for b = O as a consequenoes

of Eqgse. (8),(9) a oonserved ( independent of a choioe of
space~like hypersurface ) qua.ntity

M_:J_dﬁ‘i;f‘t‘ﬁ | (11)
oorresponds to eac);h solution of Eq. (10). If m # O, Mis’
oonserved only when ;"‘ satisfies Eq. (10) with 9‘* =0y 1.e.
when ;“ defines an infinitesimal motion, Then the value
of M is ‘not oha.nged by substitution T:‘F’ instead of ’1:,4’5
So oonserved quantities oorrespondingv to both motions and

” conformal trénsformé.tions are uniformly defined by the ‘same

fomula (11). .
Though the terms additional to 'T;F’ in (7) have as an

origin the term R‘f/f; in Eq. (2), nevertheless T, #7;

even in Ei 3  Where R = O and Eq. (2) and (3) coinoide (1).
The tensor é,‘P in Ei 3 is nothing dut the,new improved

energy-momentum tensor” of Callan, ‘Coleman and Jackiw ,6/
Having been added the temm (9 Dy — huw [I)P? |
to T-LP they show that the temsor thus obtained has finite
matrix elements in any perturbation order, if the interaction
is renormalizable *). Substituting 7:(’3 into the Einstein
equations as a _sourc.e of gravitation they come to Bq. (2) for

the scalar field in W,a « Then 't.cg was essentially

*) In paper’l°' the energy—momentuﬁ tensor of several ‘1nte-
. racting fields of spin 0,1/2, 1 is considered but it is really
"new improved® only in terms related to the scalar fields.

.



. results in ‘the necessity of passing from (3) to (2) IBI in an

used for imrestiga.tion of broken ‘conformal T symmetry/7/

- It is important to emphasize once more’ tha.t GFT in 13
arbitrary Vs . Though the difference is very sma.‘Ll in a.m/
observable gravitational field it is of principal interest by
itself, and at the same time its consequences play a certain
"role.in current problems of elementary. particle dynamics .even

without immediate account. of gravitation. "

- 3. The Wave Function of. the_Scaisr___ t _1__ in S.s
and Tts Properties ' |

In ocoordinates 'C, '{‘.“ used in pe.perIB/a‘) the inter—
val of 43 has the form ’ ’
2.
,._oLs co.sﬂf-("l":"‘“’ ~olgl oLﬁ’} 3 X..iﬁ?; (12)

. -9 < T 9/2,
‘where’ w‘J (§) 1s the metric tensor 'of J-dimensional sphere

.

( 3 J of unit radius, ;" " are ourviiinear coordinates on
53 . If one introduces homogeneous coordinates: )éd'(’;)
on 53 f.e. @ = 1,2,3,4 and’ (R&C‘;)) 17, then”
.,J = ) o kkb R . Remote future ‘and past ‘of ,51 3 “gorres—
ponds to T— +(T/2, ' i IR s o

One obta.ins the following system of linear-independent solu~
tions of Bq. €2) in 5'1 5 by separation of variables!/

LP;s [T; k(ﬂ]"’ CosT ch_i(fc) sg.[k(‘)] o
. TS ‘ 2 13)
S sTodigu ;a6

*) The time-like ooordinate ‘C' was denoted there by 6.



sS 8¢" are basis orthonormal harmonlc polynomials in 4,
of degree S . They are labelled by index & . The u,ii

-are expressed through'a hypergeometric function

. ot
w;-,(f>~—\/rowrcs-,«ue T F(mr- w,su,———-’“) e

4 - :
where ﬂ--z-(i Vi-da’) = me | ug = (W)
The . LLS can be expressed in terms of Legendre functions

on the cut Px alev._ : .
Cost [(srmy ]t 2l G-f«i)/ﬁ ety LN
whuo =38 el € I e
Expressing F(’&) Q ('1) through a (c+ie) and using

Wipple's formula’at one has

i (1 - - I)Vm[e(,c)ei"'m/z’ e( ) t"sll'.'/z‘] -H (Eib-%t) (15)

W, 1
[{@mes) €—a

where

o) = {o ise

" As was shown 1n131 ‘f’“ (‘(’s:') are ana.logues of posi-

tive ( negative)— frequency exponentials in E;t 3 and coeffi~
clents of field operator expansions in basls (13) are the

creatlion and annihilation operators of particles with quantum
numbers .. 5,6 . 1in- 513., ) o ,

Let us turn to representations of the oonnected component
of the De Sitter group containing unity . It 1s often denoted as
SO (1,4): Irreducible representations of 50 (1,4) are gene-
rally determined by eigenva.lues of the two Casinir operators 34



and 32 « For 'the_;representetions under consiid‘era’tion in ‘the

' space.of séalar funotions Jj= g Uz :“0 ¢ degenerafe'
representations) e oty

Consequently ‘using the ‘set of solutions (12) of Eq. (2)

for fixed m " one may construot a 11near ma.nifold 1n which

' an irreducible representation of SO ( 1 4) is realized.

Partioularly such a. manifold 1s spanned- by ‘PSG.' for:all- SG'

. ‘I‘he unitary 1rreducib1e representa.tions -of SO (1, 4) ‘are

_known to form three series: principal, supplementa.ry, discrete

. ( see e. g [9 10’) In the degenerate ca.se under consideration
' (U -0)we nave : . , . '

principal series, if 11'22'7/ 1/y )' 1.e.u 5 1/;_"'!.1\ A?O

Supplementary series, if 0<4‘TI"<1/1/ i.e. 4-/2 >j“>0

discrete series,if P =en(nd), = 0,4, R
An eosential distinction between the principa.l and supplementary
series consists in the asymptotic behaviour of u: (‘t')

for [T] — /g )

1) for 'H’L > 1/y , ies M= 4/2" "‘A- A’d

wh, i(fc) con.st coser Cos (A(L CosT — otfu) t L'FA/Z ) _
o (o) = @rg (o) CGAY +80 2

2) for tnicd/y ,  lee. O<MK< 4/2,
wi, @ = consteCostr, ' _
Using these expressions and well known relations for the Legendre
functions one may show that ‘ '
e ) Sl -t ) e, mi >4,
(4 - 2P oty J O TR L TR T T (1
Sd’m\]——j' kf.‘ac' (mimi)\fsc(m)mz)= (16)

+

oo Ok <y

0



Where the 1ntegration 1s performed over the whole S:t 3.
k Specia.l consideration 1s necessary for the case m, =0

'I‘hm

; an
\P e () 0) —(.S+1) cosq: exp{n(sﬂ)r‘g ﬁr. ,
However the basis .of the irreducible’ representat;on from the
discrete serles corresponding to L= 0 ° is formed by the’
_functicns ‘ o ;

m@{

(5+:L) “eosT cos(su_)ft JSG. E z_)(- s—-'.ﬂu_
~=0 s+ *cost smcswrj S, 1f s=2n,

A1l ’\(pr\,Sg' are square-integrable. The representatlions of
SO(’, (1‘,4)' which are realized in the linear spaces spanned by "
functions ""'”P:G- (x;0) = or bse (OC;O) " belong neither to
discrete nor to supplementary series and should be oonsidered .
‘as a l:i.miting case of the latter.

‘An arbitrary sqtia.reinte’gré.blerv.er de,S

function '}:Cx) may be represented as

-[-(x)" >: g_f fase Guse () +de(m‘)> {% RC AT

=@ 3,

‘ - y P <t ‘ I
ff)‘sr(fﬁ)‘?sr(%*")g,_ SO G X))
where {" _ o fE .(fn‘) o ‘are constants of expansion.and
wssy T ss . P ‘
‘the measure P(1%)  1s such that dP(m*)=0 , 12 +r<dfy
. 'I‘his expansion 1s.str1ctly associa.ted with the asymptofic Pro=
perties of LP (95 471) and square integrability of ('Dusc‘

and 13 a_consequence of the well—known assertion that .the decom-

position ‘of -the. quasiregular representation,of, 50_(1,4) into



the 1rreducib1e ones conta.ins only the discrete a.nd principal
series ( see, e.g. Ilo[). : .

The difference between ¢ * (x; f'n-‘t) for > 1/y
-and 'l"ﬁ.2<4-/4 ,expressed by Eqs. (16),(29) or, more exactly,
_.the non-unitarity of representations with 4?114 4/‘{ with

respect to the scalar product def;l.ned as an lnvarilant-integral

over 54_13 was a reason/1’2I to conclude that in 5'4,3
"the squared masses of scalar particles cannot be less, than

| m? m?"#{zzif Eq. (2) is used and ¥m&= g > , lee. the
bound (1) takes place, if one. chooses Eq. (3). However, in the
aspect under consideration of importance 1s only the fact that
me >0 . It means that the massless partiocles aie ‘forbidden
in - 5‘43( and some other cosmologlcal models) taking into

»

account global space-time properties in QF'.[‘.
Now,let 1s try to look for physical manifeotat:lons of
invalidity, of the mass for whioh m2 <Mo . It 1s rather hard
to‘ explain what the author means by "physical manifestations"
since in his opinion they do not exist when m*>20, They could

be,for example, an acausal behaviour of the fleld commutator
more strong ( compared to the conventional ones) -singularities

of Green functions. We pass to the comparison of propertles of

fields with hﬁ?’( m% and w> >VV\<‘,7' from this viewpolnt.

4. Two-Point Functions of the Scalar Field in ), 4.

In the papers B11/ closed expressionms for the scalar

hi/

latter were obtalned by somewhat formal calculation procedure,

field commutatorlj/ and Green functions were glven, but the

Then again, in these papers 1kt was considered- that "'1-2? 9

12



in 5 3 s well as in’ Ea. 3 Here we caloulate these two-
point functions and e.na.lyse their properties in a more striot
and detailed manner. It is sufficient to find .

ﬂ (944.:1‘:.)_— z.<ol‘-(’(ocr) “(’(:n,gw) -—i) (':r,‘,xi) ”‘_"(1"9)
Then the field commuta.tor, ' -

%(mi,il’z) =, LL"’(TL), ‘-((3‘:_)]:% (“‘1.,"'2.)"‘9) (%X, 'xr.) (20)

P S

[

and Green functions, for example, the oausa.l one .

zfc«.ri,aeL)- z<0WHh1)WrzD]¢ e, Lz)zbm, n—ecq-'zo%*crz, 1)

can easily be obtafned. : :
After insertion of expression (14) (fsﬁ_ (bc) A and use

of the summation theorem for harmonic’ polynomia.ls ( see e. /13/)

\Z. Jss[k(ﬂ)] :r[ﬁ(f,_)]_ Asd Jch‘i\‘;j(

Y= )’(?L.'fz_) being defined by rela.tiOn Cosb/ ?__ ‘ﬁ,_[ﬁ]éa_(’ﬂ)
one gets } SR . :

2 (Oi' x _; CosTy (s (22) '
T S g Sy 2 <5*4)“s@*)“ SEosiCy.

This serles is divergent efrerywhere, but if the series

"A ? u_,(zti}u C-,_) Cos(s*i)a’ C(23)

then 'the series (22) has a géneraiized Sum'in'thesense‘o‘f
o s s (e Ty Con T —
Poisson-Abel, whioh 1s equal ‘to - L0Ty CnTa T
’ ¢ y o=yt PR

To prove the oomrergenoe of (23) we use the expression (B) form

LU C'L') and the, a.symptotic formulae

Flotrs i 480 s, Tegfiem. 4,06




_lSC| L,.)

mesve g A5 25 { +0(&),
i.e. the series converges if. T.'i—"C',_ :ty,#a
The' geodesic distance between events (’ti '§,_) and (’Cz,'f,,)

Ce — St (L Soy
in .313 1s equal to )r('xs.mz)fc-ﬂ‘a‘";zﬁ"%_——;‘c:#

.‘Therefore the equation *q-rz Y¥=o0 - determines the light

’ cone. We empha.size that there were no limitations on fn
up to here. ’ : .

The series (23) can be summed. To this end expression (15)
for M,* ’and the summation theorem of adjoint Legendre funotions,

should be used. The interchange of the tra.nsition to the 1im1t
& =0 and the summation is possible in view of the convergence

of (27) proved above. Finally we have

A (xil'xz) — S Jh\\ &M P [ G’(mi;x-l)"' L (ti"'T.zJEJ

_ where G‘(.‘l’.{,m'z) Ch r(*‘-*& "+ 1t-1s easyto make

TP
oneself sure that (-B—A - Siw Y FBA and consequently
¥ - Cos'c CosT, VG '

n [ 6 i,

.Taking into account relations between P (*.?) a.nd tha.t
/l?ﬁ(‘g) - and a (i‘) are defined on the complex plane

with outs along real axis correspondingly from —ce to-{ and

D (xe, 2y )= =t

SH Tt Su‘pﬁ‘ '36 e->+

from -~ to 41, one may pass to the limit € = O~

% o , » v

)Thus the function F(‘”A,D":) is imaginary when — 1 <G <4
i.e. when Xy and Xp are space—like situated. In 5_13 there
are events for which G<-1 and there exists no r(mi;x-!)

because they cannot be connected by any geodesic line.

14



@-(9“4 /Xy )= Md—-[@((& i)P (CQ]+ |

it
e {ea G)P €6)+66-JP6)+ £ singiG, (cj}
where Eﬁ:)"_i,l for ,‘t'>‘0 . Acoording to (20), (21) we
have - ' o
D2y, xe) = %%::%l o [e(Cr-i)P (G)] N (20
D (0e4,%y ) =

i i d o .
B SW'LL&‘-./:T G gafo—f‘ ( G E)- (25)
= grersgs 76 (9 O, (0 + 0o R0 iy )

Pransition to the limit M20 (m= 0) in Eqs. (24), (25) gives

the corre sponding :_functions for massless field ,’

o(a.,(:f,,x_,)- f/c}‘_'z‘; 5'(6 i) ' - (26)
g (mi)x.z J{J"Lz' {S(G' 1)+ (G"i)-i} ] | (27)

< .
Now consider'properties‘of 08 a.nd Z) « Since conditions

G =1 ana' G <1 define the light cone and its exterior
respectively, D= O "~ outside the 1light cone for any fﬂ.‘?‘.

Acoording to Eq. (26) the massless fleld commutator is not z€ro
'only on the light ‘cone. This property i3 a consequence of the N
conformal cove.riance of Eq. (2) and ocou.r., in any conformal

flat space~time tco. This is in contradiction with the assertion, /

that there exist no confomal covariant free field having a
causa.l fleld commutator in 513 This . contradiction origina.tes

from the.difference of starting points: confoma.l covariant
solutions (17) are rejeoted in the paper! lbeca.use representa—'

tions of .SO (l 4) realized by these functions are non—unitary.
However, as is obvious from the paper,1 ‘ ~and the present

section the mssless field operator constructed with use of (17)

15



results in ‘o@o and ogc which coincide wi’th @ ’ a;nd’—zoc
in ti 3 up to the substitution G-1— 2 (x,, :r,)

A veing the distance between %y, X2 €. E13, :

) It 1s easy to be convinced that the lea.ding singula.rities
of $ '@ on the light cone are represented by formulae (26), v

(27). There is no distinction between the regions >4/
and 4 ><4/4 1in this respect. '

At the exterior of the light cone (+ <1 and

"i)c _ -L‘E;('C") S Lt F(m, i-_j‘*‘ﬁ‘i“'& ‘ .
| T SRS EVIG | AR TS d (1-6)

. p | .
For G <4 and 'Pflz?o, P2 @,g)diminishes with

. Il 5 . :
" increasing |G| more rapldly, than @o , Ea. (27). This is
seen from the positivness of each term of the hypergeometric

series in (28) for —_1 <G<4 and from the asymptotic expres—
sion for P CG—) when G >>1 . _ ,

At last we give an asymptotic form ofﬂfor @——3'09 .
( large di..tances between time-like situated Xy and Ky ):

if Ju;_zA A>0 (ti>7)

~ 4’ ‘SC T:.) F(LA) +A) 4
. & G'. L

L e e (e dy)

- -1- (30
0@&1& S(TI—LL)F(% /) G'lﬂ'f' '2+f' (
(@, 2) = 497% 2 g7 [(1-p) o) ‘_ «
The asymptotic behaviour of 70 "1is of course the same -
up to an evident difference in coefficients.

. It 1s seen from (29),(31) that for +r¥< 1/1{ and

6



are decreasing aperiodically and more slowly than for m2> 1/4 .
One may assert the same about the decrease of 2}" out the cone..‘
But this difference. can hardly be a reason for the fields for )
wvhich . 0<4"'t‘L <4/‘I to be reJected. ‘ o

An example Oi' a situation which is really unacceptable

1s the case m ‘<o . As 1s well known, (‘-'1'1,&1) determineu
the solutlon oi’ the Cauchy problem i’or Eq. (2) ‘with arbitrary

initial data S"(x)/ a“ P(m}/ an arbitrar,/ .;pace-like

'hyper.,uri'ace Z_ .

Lp(mi) "‘jdG (“‘){@(K‘i m)&‘ﬁ(sq’ fbo‘@(“'i,m)‘P(m)/ } :

According to Eq. (30) q__@_(i"_m—i)———)- f(\",‘t‘,_) Cos ™.

T, -

and consequently ‘-/(521) is increa;ing tinbounded in ‘time, 1if
o ( m7‘<0) ' In clas.sica.l ‘terms this means an increase of
a signal as it propa.gates. In the spirit of the end oi’ Sec,s 3
this may be called a physical manifestation of unacceptability
of M%< 0 . This also means that the conclusion about the
laok of massless sca.lar particles in’ S, g follows: from the
theory with Eq. (3) even ii the arguments giving rise to the

. bound (1) ( hec.B) are abandoned.

5. A Generalization

Whether the integral (16) is divergent o oonvergent
in the genera.lized sense this depends on only asymptotic ‘
) properties of LL CL‘) for l‘l'l-—‘r "T/:L ,,. 'l‘htrei’ore both the
question about the validity o:f.’ the bound (1) . with mo —'%/7_2-
_for Eq. (2) and m..,.. 9/1/7,2 for Eq. 3) and some or
‘ other a.nswer to it ari..»e in any cosmological model coinciding

¥
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asymptotically in time with :31,3 « It is known that the

asymptotic space-time 1sotropization is a property of a rather

“wide class of models

,121 For example, 1t is” sufficient for

this that the dust-filled Universe be spherically symmetric

and the cosmological constant be positive.‘
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