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On the Lower Limit of Boson Masses 
in a Class of Cosmological Models 
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-. 
As has been concluded by some authors, there cannot 

exist bosons, for which ni
2 < mg- -J!-, m2 being the 

boson rest mass, in the De Sitter ~orls of the radius r 
and consequently in a certain class of cosmological 
models. The significance of this bound is discussed and ar 
objection against it is given on the ground of a strict 
calculation and study of the 'properties of two-point 
functions of the quantum scalar field with m2 < mg 
and m 2 > m 

0
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difficulties. In 
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this. 

The problem 

may seen as none 



I. 

In the papers by Nachtmann111and Berner and DUrr 121 

on quantum field theory (Q'FT) in the De Sitter world (5'1..,3) 
there is the assertion, that the possible values of the 

squared rest mass of the scalar particle in s:l. ~ have 
' ' 

a lower positive limit: 

n,.t :z. . 9/ !l. ,, .. ~ mo = """ ) 
where "z:. is the radius of ~:1. ~ and the units for 

J 

which C.-= 1i = :i are used. There is an analogous limit 

for vector fields,too/21. 

On the other hand, quantization of the free soalar 

field had been performed by Chernikov and the author/J/ 
I 

under the naive supposition that in C. rn. 2.~0 as well 1-'i, 3 

as in E:l,J , an~ this supposition gives no rise to · 

difficulties. In addition,the results of the paper 13 / 

are particularly simple for ;n.., =0. At the same time 

arguments leading to the bound (1) ( see Sec.J) are of 

purely mathematical natare and physical consequences of 

breaking of this bound are not apparent. Therefore·in the 
present paper the commutator and the propagator of the 

free scalar field in c' will be calculated in.·a tJt/~ 
strict manner with the aim to find physical arguaents for 

rejecting masses for which 0 ~ ln.. a.<. m.!- • But the 

result will be that there is no sufficient reason for 
this. 

The problem of the lower bound of m1. ( 0 or rrzf . ) 
may seen as nonessential for the following two reasons. 

3 



Firstly, the substitution of the radius ,of the Universe 

"'1010 light years into (1) instead of · "t. gives 1'11o~ 10-563-
i.e. m~· is negligible. Secondly, $1, 3 is not. a realistic 

cosmological model and· the problem of existenc·e of ma'ssless 

particles in . $4,·3 may s'eem abstract. 
Against this one can give the following ·objectio~s. · 

Firstly
1
there is an example of the physical system for 

which any difference of the mass from zero is essential• 

Namely, the quantum theory of the massiess Yang-Mills field 

is ·not a. limiting case of the massive :fiela 'the~ry/4 1. 
Possi~ly some interactions have an analogous property ·und~r 

any small breaking of conformal symmetry. Secondl~ it will 

be clear further that·the bound of. the type (1) arises in 

a. rather wide class of cosmoloeical models. At·last, we are. 

inter.ested in the possibility of principle of observable 
qualitative manifestations of vanishing a curvature' in 

GFT. The 51 , 3 is. an appropriate model to look for these 

manifestations, because it.s group of motions.,50(1,Lf) is 

ten-parametric a.s the Poincar(;l group, but eSl)~ntially:.~iffers 

from the latter by the structure. This reflects the topological 

nonequivalence of - S:1, ~and the Minkowsky s:pace-time(E.t,3). 

Already the canonical quantization of the free scalar 

field 1n 5:~., 3 results in consequences which, in a· certain · 

sense, do not depend on the numerical value of '7; /J I. They 

are directly related tci the problem of bound (l) and therefore 
we will briefly consider them .in the following . .section. 

We shall use the same notations as in the paperlJ/with. 
seldom exception and we shall not explain them in ~vident 

cases. • 

4 

2. The Conf 

In the paper/3 
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. 2. The Conformal Covariant Scalar Field Equation 

In the paperl'lit was shown that the corpuscular inter­
pretation of ~he free quantum. scalar field in 5~, 3 can be 

achieved only if the field equation in an arbitrary Riemannian 

space-time ( ~3 ) wiil be *) 

( 0 i" R.f 6 + 'm. t) 'f = 0} 
(2) 

where 

·o ..:-. i cl r..- c\"!0" ) ~ - d = v=;- d..~v-;, " v~ ' rJgt. .==- ~c( ' 

instead of the·conventional one 

(0+"'-'t)'f==O. 0) 

This conclusion is based on that in the theory15Iwith Eq.(2) 

the o11e-particle states correspond in the quasiclassi'c situa­

tion to the motion along a geodesic line in ~~~contrary , 
to the theory with Eq. (3). 

An important distinction between Eqs. (2) and (3) consists 

in conformal covariance for ~=0 of the former15/ '·i.e. if 

the given 1(;,3 and 1{3 with metric tensors ;}cA.~ and f{o~.[l 
are mutually conformal 

f<K~ (?:) =S:l·c-x) ~O(f?>(3:.)r (4) 

n ( ~) being some function, and if tf is a solution .of 

( 0 t RIb) lf = D <5) 

.,-T """ -J. in · V1,'3 , then if' =fl. 'f is a solution of the same equation 

in ~.3 • From general and conformal covariance of Eq. (5) 

. it follows its conformal invariance, i.e. if "1&;3 admits 

~) More exactly Eq. (2) is the simplest equation satisfying 

the requirements of the paper/3/. 



conformal coordinate transformations: 

'x·o~.=j.~(x): J-~~~)<::;iJ..~~: ~~rs.Coc;'::: .":{(~)~c(p(~) , (6) 

where W(r:t::) is an appropriate function, and if !f(x) 

is. a solution of (5) then 1'1'(~)-= w(~) 'f[fJx.~ 
is a solution of the same equation. 

The following two properties of Eq. (2) are due to -its 

conformal covariance: 

1. The commutator of the quantum field satisf~ing Eq. (2) 

is not zero only on the light cone in an arbitrary conformally 

flat ~.~ when ft'l.-=-0 ( See als~ Sec. 4). This means the 

validity of Huygens' principle. There is no suCh property in· 
the theory with Eq. (J). 

2. Variation of the Lagrangian, corresponding to Eq. (2) 

with resp~ct to ~<(~ gives the symmetric energy-momentum 

tensor: 

To~.~ = 1:~ -t- t ( Ro~.p. + Vo~. V'f-> - <Jo{.~ o) 4'~ . c 7) 
where · V'01.. means covariant differentiation .I l':x.p 
is the canonical energy-momentum tensor,. i.e. 

To(.r- -== 'Vc~. 'f ~fi If- t ~.tf-> (~J'(~r lf '().,'f- m.'"~ R/o)'f: 
OWing to Eq. (2) 

v-""tclp. ;: o , V'"'To~.r = o, 
' t:o(. :1. t2. :L 

Ol. -== 2:' ""'- tf • 

(8) 
(9) 

Let us assume that there is a group of conformal transformations 

of · \{,~ • Equation 

6 

v ... t,. 1- 'i7~ 
for vector field ;::. 

of the group i._fo"-'d 

of Eqs. (a), (9)> a col 
space-like hypersurf~ 

M =Jot~ 
' s:. 

corresponds to each 

conserved only when . 
when ~ '{ define_s. az 

of M is 'not changE 

So conserved quantitj 

conformal transforma1 

formula (ll). 
Though the termf 

origin the term R 'f 1 
even in ri, 3 'whE 

The tensor .C.p i~ 

energy-momentum tense 

Having been added thE 

to ToLf' they show 

matrix elements in az 

.is renormalizable *). 
equations as a ~ourcE 

the scalar field in .... ~.- . ~-

~) In paperflOI 
racting'fields of 
•new improved" only 1 



.. 

'• 

and if If (-:x: ) 

f[fc:x:~ 

2) are due to -its 

d satisfying Eq. (2) 

rbitrary conformally 

4). This means the 

.o auch property in 

spending to Eq. (2) 

o energy-momentum 

' ) 2. 
·P. 0 lf ) 
1rentiat1on .I 
L. e. 

( 7) 

~f> 

(8) 
(9) 

~ormai transformations 

I· 
j 

v ... t,. -t-v,.c-.:::: 2/9"',. . c1o) 
for vector field l:c~.. and a function j(oc) defines generators 

of the group ,:.~tt..d.J.. • Thee. for #'>'l. -= 0 J as a consequences 

of Eqs. (8),(9~ ~conserved (independent of a choice of 
space-like hypersurfaoe ~ ) quantity 

M = 1 olo"'',t6To(.p. cu) 
l. 

corresponds to each solution of Eq. (10). If Ito'\. -:f: 0 , M is · 

conserved only when ~~ satisfies Eq. (10) with f =0, i.e. 

when t:' ~ defines an infinitesimal motion. Then the value 

of M is 'not changed by substitution To<.(O instead of 1;-'P . 
So conserved quantities corresponding to both motions and 

conformal transformations are uniformly defined by the same 

formula (ll). 
Though the terms additional to -cp. in (7) have as an 

origin the term R'f /6 in Eq. (2)' nevertheless ~'1-:f: T:tf> 
even in E:i, 3 where R- ~ 0 and Eq. (2) and (J) coincide (1). 

The tensor t_f> in Ed.,'!> is nothing but the,.new improved 

energy-momentum tensor 11 of Callan, ·coleman and Jaokiw 161. 
Having been added the term (()/()., - ~;.<!/ 0 )'f!l. 

to 1r~~ they show that the tensor thus obtained has finite 

matrix elements in any perturbation order, if the interaction 

is renormalizable *). Substituting ~~ into the Einstein 

equations as a ~ouroe of gravitation they come to Eq. (2) for 

the scalar field in Vt,s . Then t: .. p. was essentially -.-·-· - ~ -
~) In paper/~Oithe energy-moment~ tensor of several inte-
raoting'fields of spin O,l/2, 1 is considered but it is really 
11new improved" only in terms related to the scalar fieldi. 

7 



· used for investigation· of broken· conformal " sy.mmetry/7 I. 

It is important to emphasize o~ce more that GFT'~- c' 
. . - ~.~ 

results in .the necessity of passing from (J) to (2) /J/ in an 

arbitrary ~~~ • Though the differen~e is very small in ·any 

observable gravitational field it is of principal interest by 

itself, and at the same time its consequences· play a certain 

role in current problems of elementary_ particle dynamics even 

without immediate acco~t of gravitation. 

-J. ~L\!A!,2_rE!!£1;!,.2n of:J.h.!L§caiar~ticle :l.n S~,l 
~LHL~~~. 

In coordinates 'C, 1 i. used in 

val_ of 54.,?> has the form 

paper /JI*J the inter-

·. cL s'11 ';:; c!,sll'C ( oJ.cr:.2. '":" WCj ol.fL cl.:~j) 'j L I r-= 1.,i./3 I C12) 
- rrA < '1:·"- CJ1!2., 

~he;e w4"i (i) is the metric tensor; of .)-dimensional sphere 

( $3.) of unit radius, r' are curvilinear coordinates on s3 . I:f one introduces homogeneous- coordinates . kcl:("f) 

on ~3 i.e. a. ~ 1,2,J,4 and·> (ka...C"r,J)~i ~ then 
1 Q.. - . I 

WiJ. ':: [ CJiko.. di k.a.. Remote 'future'!· and past'~·of ··- p~_ 5 • oorres-
o.... Q It II I ~ 

ponds to '"C" = ± Tr(i.,. -!: 

One obtains the following system of linear-independent solu­
tions of Eq. (2) in $1 , 3 by sepa,ration of var'Jables/J/_ 

te;6 [cc,-k({~ = ~-r u.t_J.('t'} Ps~[tc1~ · 
5-=o,i.,i.;.:. ; o==-J., .•. ,(S-t1-Yz.. 

(lJ) 

' .. 

It') The time-like ooordinat~ ~ was denoted there by e. 

8 

T~'" are basis 
of degree S • - Th1 

-are expressed throul 

u,;_j.('t") = ;! vnSt 

where f : 1 (1 - t/1. 
' • ..,. I 

The U.s can 

on the cut .Pv,_ a; 

LL:!:. ('t") = fC.os'( f<.s~ 
.H. t ;tJr res-

Expressing P;(-x) , 
Wipple' s formula/a, 

.:t. rc1-,r.·s),r, . 
U:.s-f rci:j"·U) vn~tf')r($-J-I+J 

where 

9(<t:)::. --~ 
As was shown i 

tive ( negat:i.ve)-f 
oients of field qpe 

creation and annihi 

numbers • .S, () _ in 

Let us turn to 

of the· De ·sitter gx 

$0
0

(f,4)< Ir~educ 
rally det~rmined b;y 



11 ·;· sy.mmetr/7 I. 
!. that ~F~, in. . ('I 

'· ' .. ::\~ 
I to (2) /J/ in an 

-· ' ; '• .. 
i ver! s~all in. ·any 

.ncipal interest by 

:es· play a certain 

;icle dynamics even 

Particle in t1· .:>t,l 

1a~~r IJI*) the inter-

-dimensional sphere 

~near coordinates on 

linates · k,«:('f) 

~J)~i···, ·then 

. "· .c.! 1ast·'of ' t--1 , 5 _' corres-

~near-independent solu- , 
If Variables/Jf,. 

'· •.'· .. · 
(lJ) 

.. 
!d 'there by e. 

- 1 

I 
~~~ are basis orthonormal harmonic polynomials in ~ 

of degree 5 • They are labelled by index o • The . u...i-1 

are expressed through a hypergeometric function 

where M = ~ (.1.- V-1-'l-tn2.' J . 11'1. := m. "t. u- - (u-+ )-f'o-" J .., J J s- s • 
.f. 

(14) 

The ~s can be expressed in terms of Legendre functions 
,_ . 3\ 

on the cut .Pv and Qv : . 
U-:!:._ ('t') :::::' rcos'( f{ht<tilli/2-ii. 'S\(!.-Jvd.)/:1- rpi[L-fi5~~'t'+&.()#.-~(S,'...-)1 

.H t.:t.rr r(S-f'+.t)j U S+i{t.li. r Jr~•'ft.. · 1 
Expressing ~('X) 

1 
Q.~(-::x:.) through a:(a:.-+~E:) and using 

Wipple 1 s formula/a/ one has 

(15) 

where 

{
1 

G(<t) ::. o 

As was shown in /J/ Cf ;5" ( 'f5-;_) are analogues of posi-

tive ( negative)- frequency exponentials in f:i,3 and coeffi­
cients of field qperator expansions in basis (D) are the 

creation and annihilation operators of particles with quantum 

numbers .. sl ~ in . S:l,~ . 
Let us turn to representations of the connected component 

of the' De Sitter group containing unity • It is often denoted as 

$0
0

(1,4).; Irreducible representations of 500 (1,4) are gene­

rally det~rmined by eigenvalues of the two Casimir operato~s ~~ 

9 



and ~2. .• For the representations .under consideration in 'the 

space_.of scalar functions ~1.;;0 

representations). 

3,_ ::: 0 · ( degenerate 

Consequently; using the set of s·oluti~ns (12) of Eq. (2) . 
• ' ' • J' ' '''i 1 '· '· 

for fixed ful. one may construct a linear manifold in which 

an irreducible representation of s·oo ( 1,4) is realized. 
. ., , . + 

Particularly .such a. manifold is spanned· by If SO' for all· S,Ci ~ 

· ·The· unitary irreducible representations· of S 0
0
(1,4)"are 

. . 

. known to form three series: principal, supplementary, di-screte. 

( see e~g. 19 ,101 ). In the degenerate case under consideration 

(:/1 ~o)we have ; 

principal series, if trt.t;r if'f , i.·e~ .f:i ~ i/J..- l.A 1 A7j-O, 

Supplementary series, if O<mL<.illf, :i.~e. 1.(2 >r'>o, . 
, . 2 

discrete series, if tn :::::-'- n. ( 11..-t.f) ,. YL.:= 0, 1, ... 

An essential distinction between the principal and supplementary 
. ~ 

series consists in the asymptotic behaviour ·of U. -
5 

(7:) 

for Icc I _,. fff/2 : , 

1) for 1-'c'L..t.::> iftt , i.e • .r-:::. J.;:z.- ~A~J\.-;:.0 

u., -t (<t) ~ co·K.~ t . Cos ~lz.-c ·cos (1\. ~ 'cosT- ci.~) ± · t.Ti/1./z ) 
S-i ~ 

cJ.. \r> = a.~~[rcs-~H)r(iAb +f.~~ -• 
2) for f'n. 2.< -1/4 l. - i.e. 0 < J4 <. if~ ' · 

U.~.:i ('C) : COI1.St•Co.s~'l:', 
Using these expressions and well known relations for the Legendre 

functions one may show that 

~ J 4 . r- ~- ' (,· 2. 'f... {S'(-tn. .t - fn .t. ) tn.2. .2. 1.1. 
lAI £l!. v-~ '1:,() \.::c;fu,d (ox ·ttt_ .t )- · .. . i. .· .. ,_ > .. :1• m1 > 7'-l C a - . s• J ."- - 16) 

. · · o0 ·' . o~-....... . 1.1 ...., Tn:1 -< !'-1 

' 

10 ' 

11 
ll 

~~ 
II_ 

/-., 

Where the integratic 
·.• 
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~-=-0 L 
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500 (1,4) which arE 

functions ·lf:~ (0:. 
discrete nor to ,sup] 

as a limiting case 1 

.An arbitrary s1 

function f(~ ma: - . . f.C~J= > r f~~<S 
. . ...._:., _t,o-.. 

where ·h.s6-, f~<S(1 
. the measure f(1ni.J 

. This expan_sion is a· 

perties of lf s~ (!X 
and is. a consequen!l' 

position .. of the.-: qua 



tnsideration in :the 

::: 0 · ( degenerate 

LS • (12) of. Eq. (2) . 
J' ,l 

~ maztl:f old in which 

.4) is realized • . .. + 
:If So :fo_r all S,G", 

LS of S 0
0
(1,4) ·are 

llementary, di·screte · 

mder consideration 

.h::: tjJ. -l.'A ,A?o, 
1.f2 > r-_. o, 

? o; 1., ... : 

lpal and supplementary 

~ 'of U.. ~ (<t:) 

l.l\..,1\.>0 

:c- oi~) :t t1ill.fo ) 

CAH +f.~ 2, . 
:/~ ' 

~tiona :for the Legendre 

f-_.m;: )) f!t~• mi >ifq c16) 

·.' o:S·mi ·.-< i/4 

' 

Where the integration is performed over the whole S:t,.3. 
/ . 

Special consid.eration is necessary f?r the case. in. ..f.:: 0 

Thm 

(17) 

However the basis .of the irreducible'representa.tion :from the 

discrete .series corresponding to n,-=. 0 

All .~~~~ are square-integrable. The representations of 

500 (1,4) which are r·ealized in the linear spaces spanned by· 

:functions · 'f;<> ( OC j 0) or t.f';;. (X j 0) belong neither to 

discrete nor to supplementary series and should be considered .. 

as a limiting .case of the latter. 

An arbitrary square integrable ov.er C. t-J:t, 3 
:function f(tx:J may be represented as 

. f(,c:): [c.~ (so <f"u-('J!) + Jdj'(tn,_);u { :f~(m~)~;(Xj11?')t 

! f~- (-h"tz") lf~ c~j tn~) ~ ~ (18) 

where fk.so, · f~\5"( m·'") are constants of· expansion.and 

. the .measure f(1tti.) is such that df(ftt.~ = 0 , .if +Yti.<..J.h, . . 
. This expansion.is strictly assooi~ted with the asymptotic pro-

. ~ . 
pert:tes of lf s~ (t;.;t!;m) . and square :tnt egrability of lfk.S~ . 
and isa oonseque.no~_of the;well-known·assertion.that.the deoom­

posit:ton· of the.: quasiregular representation of . .S 0.(1,4) into 

II 



the irreducible ones contains only the discrete and principal 

series ( ~~ee, e.g. /lo/). 

The difference between 'f ± (Xj tn1
) for 1'rt.t? dfq 

and m 1< i/J.l ,expressed by Eqs. (16), (20) or, more exactly, 

the non-unitarity of representations with tt-t..t< .J.f~ with 

respect to the scalar product defined as an invariant-integral 

over 5.!,'3 was a reason /l' 2/ to conclude that in St,3 
the squared masses of scalar particles cannot be less, than 

'l. t1. AL 2 .. · · 
1tto 

1 
~Q -:.J./'{'C.

1
if Eq. (2) is used and ~.2...:: 9/l.frc_'l. 

1 
i.e. the 

bound (1) takes place, if one.chooses Eq. (J). However, in the 

aspect under consideration of importance is only the fact that 
J.. 

Wl.o > 0 • It means that the massless particles are 'forbidden 

in· ~i.~( and some other cosmological models) taking into 

account global space-time properties in QFT. 

Now,let is try to look for physical manifestations of 
. ~~ ~· 

invalidity, of the mass for which ~ ~~o • It is rather hard 

to explain what the author'means by "physical manifestations" 
'2. 0 . since in his opinion they do not exist when ~ ~ • They could 

be,for example, an acausal behaviour of the field commutator 
more strong (compared to the conventional ones) .singularities 

of Green functions. We pass to the comparison of properties of 

fields with ~ < I'Y\.~ and Wl...'J.. > M.! from this viewpoint. 

4. ~2:'t9.!!!i..~!!!!£ll~D.s_of.Jl!~~~r F!~ $1.~. 
In the papers }J,ll/ c.losed expressions for the scalar 

field commutator/J/ and Green functions/ll/ were given, but the 

latter were obtained by· somewhat formal calculation procedure. 

Then again, in these papers it was considered that m ~~ 0 
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,· 
' 

. ' -

in si,3 as well a~ 
point functions and 

and detailed maimer~ 

2)-(~.t;X:.)::: i< 

Then the field oommu 

'2)(0!1,~2.)"= 
\ • .: ._ L. ......... : .• 

.and Green_funotions, 
. :.·"' 

i)~(~1,~z.)= (<_oif(f 
can easily be obtai! 

After insertion 
1 ~ • < • • ; •• 

of the summation the 
(s+d· · 

1 i Psc;[kCrJ}PsJ~ 
6".::-f ' . ' 

'(:: ¥"(1.., i' .. ) .being ~ef 
one gets ,, 

Q\-( ) • CCJS 
.L/' ~!/~L z;t.; .$ 

This series is diver 
c>o 

Ll- = ) u.~~ 
· "s-;o 

then 'the ~eries (22) 

Poisson-Abel,· which 

To prov:e .the oo~.erg 

t+!.erJ and the i asy 

C/ · 1 i"' 
r l~' !-ri s•ij---=: 



1crete and principal 

or, more exactly, 

' #1. .t..::: d./1.{ VIi th . 

~ invariant-integral 

le that in s~,3 
1not be less, than 

· 9/lf'l-'-
1 

i •. e. the 

(J). However, in the 

Ls only the fact that 

~ioles are forbidden 

~ls) .taking into 

r. 
manifestations of 

.t .. It is rather hard 

Leal manifestations" 
. ?. 

en 11'\,: ~ 0. They could 

he field commutator 
1 ones) .singularities 

ison of properties of 

om this viewpoint. 

[!eld in SJ.,:!. • 
ns•for the scalar 

l/ were given, but the 

calculation procedure. 

ered that h1. f'?> () 

j 

in s.i,3 as well as in E1.,3 • Here we calculate these two­

point functions and analyse their properties in a more st,;-iot 
' ' 

and detailed manner. It.is sufficient to find 

Then the field commutator, 

'2)(~;~.,~,_,~. ~ L't~-x4.)J t.fc:x:LJ =<zf(!X1.X"2.)+SDt'l:~.,.:xz..J <20) 
\ • • !'· .. • : ._ .... -::-.:: 

and Green functions, for example, the causal ~ne 

1f(~1,~z.)= i.<oiT(tf~~)'t\'l:1VIo/=fX~J.·"l.t)~;xJ,!l?t)-e{r:,_-~J.)?$~!1~J.21) 
can easily be obtained, + · · .. 

After. insertion of eXl_l~ession (14) lf~ (x.) and use 

of the summation theorem for harmonic polynomials (, s~·e ·e.g/~J/) 
(s+tl· · ' · · ' '· 

1 f; Ps6" [kCrJ] Ps'"[~(r .. Jl= ;;: s,?!t~f' ,. 
. . .!!.. 

'(= rc-r ... i .. ).being defined by relatiOn_ C.osr ~ ~ -A,«.(1J.)/!.,_("f't..) '· ,, 
. C:C."":f. ' . } 

one gets 

oo· 

A-~ :; U.~(FJ.)U;~i.) CcJ(S·H.)y 
s~o · 

then'the ~eries (22) has~ a generalized sum in the sense'of 

Poisson-Abel, ~hioh is .equal 'tri '- C,., T.1 C,;,'Z'".t. ~ /1-

(22) 

(2J) 

,, . ,f!)rJ. ~-..r G>o LJ • 

To prov;e ,the oo~,er.ge~~e o~ (2J) ~ve .use the expre.ssion (15) for . .: 

£+1.Cz:-J and the i asymptot:l,c, fo:pn~ae, :~;. . 

F(1t,i-rf5+J.j i±;t~Ly=: i+O(~)}· rcst~~r~-tH.):!;; '+'OEt·).· 
1! ~). ;! -'... . ... ;, ': -~ .. J. .~ · ... 

13 



- . .!!! . -is(i:",-~) 

Then we get ..!1 (x~,x.t) = :=L { e s . + O(~JL 
i.e. the series converges if T:J.- '"C .2. ± '( 1= 0 

The geodesic distance between events (1:.:t 
1 
1'1.) and ("t:~,"fz.) 

c! *' r( . Jl · ,.,_ . Colf"-l>•·•c.t..S•oi' 
in ...:>.tr! is equal to ) 'X~, ~1..) = 'L 't.Ck'7 .J Cr ::> Cc»'l:i ~--c,._" 

·.:' 

Therefore the equation '1:'1 .-T.t ± '(::::: 0 ,determines the light 

cone. \Ve emphasize that there were .no limitations on -n-z_~ 
up to here. 

The ser1·es (2J) can. be summed. To this end expression (15) 

fo~:~~ and the summation theorem of adjoint Legendre functions 

sho~d be used. The intez:change of the transition to the limit 

~ =0 and the summation is possible in view of the convergence 

of (27) proved above. Finally we have 

A-(x1/x.l)-:::: :r' r.:- [,·..,. /? [-c;.(x:i,x.._)-1- i. (1:J.-I:.t.JE1 
. &t." fi~\ II!. ./'4 . . :J 

. J ~~o 

where. G(::xJ..~z)= CJ,. r(o;JeL~ .. ) • Itis easyto make 
"CJA- 'L · '()A-

oneself sure that ') := _ s,• .. Y __ and consequently 
( Ccs-r:i Co.rrt. ~ G 

$-(x~.,iXJ-)= ssr~.t Si .. J<1i. {r; ~';+{; f & + t.(rc-r.JE_}J 

. Taking into account relations between f.r (!.!?-) and that 

Pr(r;.) and {2_/'(l-) are defined on the complex plane 

with cuts along real axis correspondingly from -o. to -1. and 

from - oo to 1. 1 one may pass to the limit € = 0 • 
. ' ----------

5
)Thus the :function r(rxJ,X.I.) is imaginary when - 1. < G- <1 

i.e. when X.t and :.l:'.t. are space-like situated. In $ there 

G r ~3 
are events for. which <-1 and there exists no (x1 ,X.t.) 

because they cannot be connected by any geodesic line. 
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E. (T:,­:1) -(xJ,::t.t) = 8/i"'t 

L · ·a {e(~ + - ·- • ~. - JG . 
where c.fr)= ± 1 :r 
have 

. £('1:. 
oV(xJ.,.x.t) =. #; . 

c./, . . .l. 
:!) ,pc,~.,~.t)::. 8if 
. . \. . J ·{ 

- -1 

- SJr'C..~s.· .. rii d & .. 

Transition to the lim 
. . 

the corresponding :ruD 

a!Jo ( :x!J, X.:.) = 

CZJ: ( ~i, X.t)-:: 

Now consider· pr'c 

G =1. and · G- < l cl 

respectively, :[)-::::. C 

According to E~. (26) 

onl;r on the light coi 

conformal covariance 

flat space-time too •. 

that there· exist no c 
causal ~ld commutate 

from the~ difference, c 
solutions (17). are re 

tion~ of ~()D(l,4) l 

However, as is obviot 

section the massless 



-4) 

- + O(~JL 
t=O 
1~) and ("tz,"fz.) 
·Ct..G- (;,-:: Cosr- ~.·. r"'.s.:.r., 

t.. " en.~~'L.l. 
ietermines the light 

tations on 17-t..t, 

~ end expression (15) 

Lnt Legendre functions. 

1sition to .the limit 

ew of the convergence 

is easy to make 

and consequently 

f & + ~trcT.JEj7 
) 

f"' (!;t.) and th~t 
: the complex plane 

from -o. fn -1. and 

:ry when - J. < G- < 1. 
.tuated. In S,~ 3 there 
1xists no r< ::X1

1

1 X.t) 

1odesic line. 

I 
I ~-(::xJ,x.t) = ~~-r;&lJo- "[e(G-:~.JP./G-J+ 

+ z/rd-Sit\.fdt :G {~(i~G-JJ?p(--&)+B{T-ij~(G-)+i St~~Qr(GJl. 
where eEl:')::± l for 't' ~ {) • According .to (20), (2i) we 

have 

oV(xi,x,_) == £~~~~> d~ [e{9r-l) [?""(&~, 
:z:/·(::x.J.,':I!J.) ~ g;t.'-s· Ji ·cl~- a~ p_~ (- 6-+' £)= c '".f u- e~-to . .1 25) 

:::: sn-~:ts,· .. rr.1G [e(i~CJr)Er (-~) +e(G-1;[e-Z:r.t~_e(c,.)+~S,\tiJiQ/&~} 
~ansition to the limit r:. 0 ( M ~ 0) in Eqs. (24), (25) gives 

the corre spending functions for massless field : 

a?Jo (::r X ) :::: €(CC:4.-7:~) d(G-1) . 
' J, .t ~ ff/t.~ ' 

(26) 

,' 

ZJ: (x.t, X.t)-= L{;.r.e { 8@--i) + ~(G-1.Ti J (27) 

Now consider·properties of dO and 2;)<: • Since conditions 

cr =l-and. cr < 1 define the light cone and its exterior 
respectively, :{):::. 0 outside the light cone for any /H. .f.. 

According to Eq. (26) the massless field commutator is not zero 

only on the light cone. This property is a consequence of the 

conformal. covariance of Eq. (2) and occurs in any conformal 

flat space-time too. This is in contradiction w1 th the assertiorl
2
/ 

that there· exist no conformal covariant free field having'a 
ca~~al ~ld commutator in ~i.~ • This contradiction originates 

from the difference of starting points: conformal covariant 
solution~ (17) are rejected.in the paper 121 because representS.-· 

tions of ~Q (l,4) realized by these functions are non-unitary. 
0 . . . .. . . 

However, as is obvious from the papcr~JI and the present 

section the massless field operator constructed with use of (17) 
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ll:'s-_ 

·m ~c c 
results in OUo and oUo which coincide with 0

0 
and ..2)

0 

in fi,~ up to the substitution G-i _... .>..:z (.X J., ~.d 
1 

A being the distance between C(:.t 
1 

X,t E. E.i,3 , . 

It is easy to be convinced that the leading singularities 

of :2}, Z/ on the light cone are r.ep;resented by formulae (26), 

(27). There is no distinction between the regions fft...(? L/~ 
and 11-r. 2.. <:1./'( in this respect. 

At the exterior of the light cone G < 1 and 

~c -l P-; (-CTJ __ i. m.2. Fc~,J.-]';i.; ~J 
- 81/Lt .s'~rc:rvd.- a.~- - '-l.f17:.-.L s,·'"':r lf (i.- er J 

c ~ 

For G<i and -h-1~:>0, "2> ~r~) diminishes with 

increasing / G/ more rap:l,dly, than 0:. Eq. (27). This is 
. ' seen from the positivness of each term of the hypergeometric 

(28)' 

series in (28) for -1 < G- < J. and from the asymptotic expres­

sion for .P_: (:C-) · when (;. >> .i . 
At last we give an asympt9tic form of :f) for C ____,. o., 

( large distances between time-like situated a!:~, and D:'.t ) : 

if .r = t ... t·A, il.> o ( ttt.1 > ~) 

d\c~ x J= -~ t:(i:i-"f.:.J {r(iA) ~[eosfll.~~G-+~J+iLt~ v 1, 1. /~rr.-G-)~ 1 (', f(~ •/\) l~ '(t ·'~_1+(29) 
1._0<dl 'C <UL".fifT 1:+1~\. . ' -

. . + O(G--9L}} 
Lf ~ < d/fl ( +rc..t ~ ~/If ) 

2J(xj. ~ ) == c..c-r:1-TLJr(!c-.J"J c,.-1-.fi-+ O(c·J.+r I 
, _:1. Jtr,3tt 'C.t~l"r(:t-I'J .J 

(Jo) 

The asymptotic behaviour of :l)c. · is of course the same 

up to an evident difference in coefficients • 

. It is seen from (29)1 (Jl) that for -m-t-< i./If and 
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are decreasing aperiod 

One may assert the ~an 

But this difference·~ . . . 

which 0 < 1"tt~ < J./'f •· 

An example of a l 

is the case m.t<o 
the solution of the, C< 

initial data. lf(xJj_ 
- l. 

hypersurface L.. : 

'I'( <r,) =J/<J~(xJ{ 
Accordine to Eq. (Jo) 

and consequently lf( 

_r~o ( .ft!.2.< 0)·. I 

a signal as it propag 

this may be _called a 
~. ·o .. 

of -t\1. < · . This a1 

lack of massiess seal 

theory with Eq. (J)_ e 

bound (l) ( Sec~J) a 

5. 

Whether. the intt 

in the. generalized s1 
. . : :, . . f"'± : . 

. . proper_ties . of . U;s. ~ ; 
' ,' \ ' '.. " . ~' ' '· ·~- '·'' . ~":. ;" 

question about the v-~ 

.for Eq. (2) . ~nd m! 
other answer to it ~ 

','t_ 



ading singularities 

by f~rmulae (26), 

egions 1tt .(? L/~ 

:1 and 

diminishes with 

Eq. (27). This is 
1e.hypergeometric 

(28) 

te asymptotic expres-

)for G~e>o 

l (r.:i and !X' .t ) : 

{ll~ ~(}+~) + tLI.~ + (29) 

+O(er-Sit.)} 

(JO) 

of course the same. 

s. 

and 

are decreasing aperiodically. and, more . ~l.owly than for m_2 :> 1./4 . . 
One may ass.ert -the s.ap1e about . t~e .decrease of ZJC. out the cone.· 

But this diffcrence.can hardly be a reason for the fields,for 

which .. 0 < -t'n-!1. < d.(l.f, to be reje~ted. 
An example of a situation which is really unacceptable 

.:L ·' . . .. . ·. .. . . "" ," . 

is the case -h1- < 0 • As is "!ell known, £)(a-.t, ':l:'.t ). determines 

the solution of the cauchy problem for' Eq. (2) with arbitrary 

initial data. ':._(xJ/r. , ~~ 'fra::J/r. an ar~itrary space-lik~ 
hypersurft;'-ce L_ ; . . 

'f ( rx!j.} = -}Ld<5o((x) { .V(:x'.t,;):) clc, f(:J!~<£ ~ .. ~ol. £<ao1,~):P(~)J5:} 
According to Eq. (JO) '();;:~:i,o:~) <:~_!"'Ji'j~!('C,"C.t) ~.s,...--c 

and consequently l/(rl!~) is increasing unbounded in 1;iine, if 
2. ·'. . J' ~o ( m <: 0). In classical terms this means an increase of 

a signal as it propagates. In the spirit of the 'end of Sec;, J 
. ' 

this may be called a physical manifestation of unacceptability 

of "M1..f<O • This also means that the conclusion B.bout ihe 

laok of massiess s6al~r particles in 5~ 3 · 'follows ·from the 
' • ' > • ' , 

theory with Eq. (J) even if the arguments giving rise to the 

bound (l) ( Sec~J) are abandoned. 

5. !..~!!!!!ell~ati2,B 

Whether the integral (16) i;· divergent· o·~ convergent 

in the.generalized sense this depends on only asymptotic 

. p;ope:tie~. of . ~~ ~) ~or rt ,·......, '31/:z. ' • ~;herefore both the 
• 1i .·", •' •· .•. , .':, ·-: ,, . .• . •• ; 

question about .the validity of ·the bound (1) .( with M; = *'Lz. 
,for Eq. (2) ~nd ·m.~ = 9/t-lrz:.:~ ·. '±or Eq. J) an:a·'aome ·o; 

other answ~~ to it arise :1.~ -~ ·cosmolog:i.cai·~adel ·coinciding 

:.\ 
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asymptotically in time with ~~.a • It is known that the 

asymptotic space-time isotropization is a property of a rather 

Wide class of models ll21.· For example, it is sufficient for 

this that the dust-filled Universe be spherically symmetric. 
I . ' ' 

and the cosmological constant be positive. 

!!~~~!!£~ 
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