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1. Introduction

/

\ '
Recently in many papers 1-6/ the éonnections bet-
ween light cone singu}arities of current products on
the one side and the scaling or_Regge limit on the other
‘have'been investigated. The starting point in most ca-
ses is the given light cone singularity. We restrict
ourselves to deep inelastic scattering on one-particle

states (for simplicity we use scalar currents).

P P

The corresponding structure functions W , i.e., the ab-

sorptive part,are connected with the matrix element of

the current commutator by

<Py oo, dole> = jq;‘z Sﬁ-‘qx W, QP) dq '(l)



The experimental knowledge about W originates from deep

inelastic €-P scattering, that means.from space-like

* values of q . However, the support properties of such

a matrix element show, that a very important part of

the integrations runs over time-like values of q . In
the following it is shown, that the light cone sin-
gularities derived from the space-like part of the sup-
‘port may be modified by taking into account the full
time—like'éupport, too. Of course, if the electromagné—
tic current is causal, then the structure functions gi-
ven for'space~like q are sufficient for the determina-
tion of the leading light cone singularity. In opp051te_
to other works (H. Leutwyler and J. Stern/z/, R.Jackiw |
et al. /3/) we make no assumptlons on the x-space beha-
viour of the theory (e.g. causality and type of the sin-
gularity) from the beqinning. Therefore in general it is
not allowed to use their support restriction. In séc—
tion 2 we consider methods for the determination of the

leading light cone singular part of the matrix element

from the given momentum behaviour of \J(qﬂqp),Apart from -

regular cases we study‘the conditions under which the
time~like support implies modificatibns. In section 3
we investigate,the %X ~space behaviour of some popular
physical models which are formulated in the cq-épace.
- They may have connections to deep inelastic scattering»
or not. In anyfcase'fhey lead to acausal or even non ‘
localizable field theories.ﬁThe model of Nambu shows the

expected x‘singularity apart from a singular factor

T

in X° , whereas the Veneziano amplitude and the inclusion
of Veneziano terms into loop diagrams lead to ndn;loca-
lizable singularities. With respect to the Veneziano am-
plitude we have used the simplest off-shell extrapolation
which is given. by means of the kinematical variables. Of
course there aré many possible extrapolations, however
this is a very natural one and has been used e.g. by

Lovelace in his W-T model. On the other side it is this

.extraﬁolation which underlies the construction of dual

loop amplitudés. For our‘finally discussed loop amplitude

‘we have the same explicitly given off-shell dependence as.

. for ordinary Feynman- diagrams.

2. Determination of the Light Cone Singularities

a) Support Properties and Scaling Variables

Instead of the full current commutator we study

at .first the Wightman like function

-t )
L (g € wgan

9°>0

M(x",x°) =2<Pdlp> =

-only. Its support is‘determined from the representation

Weat gy = M1t 2 dprg-) <Pijmim>cntigies ()

It follows that ,\ﬁ/ao for (P+q)"_-.’s > s, where g denotes the
threshold in the s channel. The support includes regions

of space-like and time-like q In the rest system of p

Cp=(m,0,0,007]

we have
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Performing the angle integration we may write

"\-q \gr -ig¥
Moty = -2 §dﬂog"% EV- M wigay
with ¢=|§| v =ik, '
The support properties allow the regularization of this
expression by continuation -into the lower X, half plane
°d>x°—b6 It seems to be useful to introduce the vari-

able W W=q.,-q which allows a regularization of both in-

tegrations
@ - ®
-k -wg Xe A
M(xtlxta) = -I;"de% dq,q,(e. - ) W(qz’qo) (6)
-m Cw .

where A:é«-txol M= SXUXO+T) vz S+ i(x-1).
The support propertieé determine the integration bounda~-

ries
_ ‘ .
-mewee  Max w)"o)é(}.’.w
. ' 2(maw) . (7)

~ We mention that the intervals -m<w<0 and o0&weo@ cor-
respond to space-like and time-like regions of q , res-
pectively. Asymptotically w approaches the usual scaling

2 ) .
variable (o= -3 -wp to a Jactor -m,
2ma,

—

Q!,.,L...L.—wwgw{: EEARTEREY

b) Determination of the singularity at x*=0

Fromvén inspection‘of the expression (6) we learn
that the q,-integral defines
) oo
=4 -V%
G(xl Xo W) "—nggq_(% \W(q",qo) ’ (8 )

Cew)

which is a holomorphic function of the variables x* and
®° for Dwmx%o and jmxxzfo (take into account that
G(xﬁxopo appears as an even.function of ¥ ). Dividing
the g - integral into a finite and an infinite part for
the corresponding expressions of the functionM ,

M= Hfi’“z
function of x*, provided that the -following w -integra-

it becomes obvious, that M, is an entire

tion exists in the conventional“fégularization (i.e. an
exponential growing inw has to be ekcluded). Therefore
‘M, contains all of the singularities in x* which are
independent of the lower boundary of the q,—integration.
For 5>0 both integrations are absolutely convergent, so
that we can perform the 9 ~integration at first. This
procedure implies that it is sufficient for determining
thé x* singularity to take the ¢ —-asymptotics of W at
every fii{ed w o, -
Wtd0) = & Qo +-o for g0, whx. (g
The strongest growing term in q corresponds to the
leading >0'singularity. Insertion of the leading part

into eq. (6) gives



L)
M('X", Xo) ~ Z:(E;:’tl g dw ?:Lw{x -té) %(W) (10.).

- ~-m
which is valid for all flxed XgE 0 near the light cone.
From a phy51cal p01nt of view it is interesting that the
limit 9> , W fix, is equivalent to the limit q-»oo '
w fix. That means the xzsingularity is determined by
the large mass behaviour as it is known from the two-
point function. However for the four point function this
rule may be modified by the W -integration in irregular
cases., More complicated is the case W(q,q,)=~ q-s""%(m.
If Otw) arrives the maximum at w=Ww, then the contribu-
tion from the region wxw, produces the leading singular
part )
. x:-u,,., 4
(x?) w2 ooy (-x1 1%

M(x’-,xo) ~ (1)

Continuating our investigations of the general proper-

ties of expression (10) we have to note the p0551b111ty
that the function

0
~Lw(x°%§) g
Pexoy = x T+t g dw & 9w (12)
_—

may be singular for x,>0. The origin of such a singularity

would be the behaviour of 9 (w for w» e , ji.e., the pro-

R e

perties of \v(ngo for time-like q . The knowledge of

Wqt,40) »
the function goo). We remark that a singularity of 2(xd

for<f¢o only is not sufficient to determine

does not imply a singularity in X, of the matrix element
M(xﬂxo) in general. Such fictious singularities of the
matrix element may appear by the way of exhibiting the

1éading singularity'jjlxl,As an instructive example we

‘take . W= q;" Ocqy OtgY) , Formula (10) gives the leading

singularity

- 2

M~

X, 1, for X'z0 (13)

which is to be compared with the exact result

S v (Xe-T)

- A Xo
M = comot i T x’- Q,c% S+i(xotT) J . (14)

Taking X,=0 in the latter expression we have

M~ (15)

73
This example demonstrates another peculiar property of
the :singular case, namely the light cone singularity

approached along X¢=0 is stronger as in the case

X0, %X, %0 .

Cons:.derlng ‘g(xo) for Xy=>° the position w=o0
1h the remaining integral becomes important. Assuming

3(w)~w1 (W20) e have £(Xxo) ~Xo © (Xo>%), This



result is valid for regularizéble w integratidn. There
is a general connection between the behaviour of -Y(,‘,)‘ '
for x°->°° on the one side and the usual Regge limit

of W(q ,90) on the other (compare also ref. /4/) In the

"Regge limit [q—>ec0 6 qw %»x 1 we get

W g qon = ¢ gt o e

by taking into account the zero w behaviour of A Lo~ vy

Therefore from eq. (12) we obtain

‘g—(xo) ~ x:“o) .%or Xo <> oo

) San
* However, it may be that the next non-leadlng term in the
limit q_->°° w §ix

This mechanism which a‘llo'ws a different cl—behaviour in

becomes dominant for the Regge llmlt.

the Regge and in the scaling limit has been discussed by
rbh1/%/ starting from the X-space properties.

The foregoing method breaks down if the remaining W
integratibn is not finite within the usual regularization.
, (W20) or Qw~ Y, (W>%), Such

cases may occur for quite acceptable functions W(gtqo)

Examples are 3(»,,~W"

which allow a usual Fourier transform. Examples of this

type are the following

_ 8w _ M tonlx

i
- A+wgq i-vq: $ xt

A
w

10

-

Q) q'“-L L A A M~ D Q"‘) t-xh
- % w ] x>
T -

9 . B
— _Swe >y A A M~ =
Cgurwery Y o* (18)

v - 5
W = Owe > %rew M~ P(u-nc‘r ) (-xty 1¥ixg
q_.-4:' W o ! M AT
-]
v S e e ey L
Lx®-q

Obviously: the d;vergence of the w integration transforms
into a more complicated x* singularity than it is ex-

pected from the q- asymptotlcs itself. To overcome this A
difficulty we have to study the origin of ‘this dlvergen-~

ce. In the first case our function has the structure
W= Bcay
A(q) +w‘

for q > |

It is needed to perform the w integration over the ir-

fegular region w=a o at first -

S dw e e By

A~ B I a (20)

‘11



and afterwards
M~ Cdgq (€7%-"%) 4 Bqy by Acy), (21)

A typical peculiarity of the irregular cases is the pos-
' sibilityhthat different leading light cone singularities
give identical scaling limits. This should be compared
with the result of rin1/®/ for the Regge limit.

é) Discussion of Current Commutators

" The one~particle matrix element of hermitian currents

is given by
Y s e 0 ' .
Coxy = <PITY003olled = <PV 4 alpd - < LA 30| P> (22)

where translation invariance has been used. In terms of
the Wightman-like functions the commutator is deterﬁined,
by

C (%) = M (K"-LS(;O)&,X"—‘\.J ) Bnd H (x"+l€(,ms’- “o-‘\-s) (23) '

. t
From this representation we conclude that the fulfill-

ment of both conditions
1. %@2 M(x2 x¢-18) exists for all real X,
-
2. Mux3x,)=Mxy-%e) for real X xz;g o

leads to a causal commutator. The importance of the first
condition is demonstrated by the simple example hh:x;}x1f1

"The evaluation of the corresponding ¢ gives

12

;1_ -t 1 (n-1

C - M| in Seyr
%) 4T D )[ E(xe) (X)Q(o)" hem t - Cxer x>

(24)
A r n-
+ (A=) EZ: x R %"o\ Etxe) 80“)].

(n-yy!

(The singular terms %k and %& are defined as principal

values). °

A careful consideration using test functions shows that
the upper two conditions are also necessary. If one
starts from the assumption that the ‘electromagnetic cur-
rent behaves causally (as did‘H.Leutwyler, J.Stern/z/

and R.Jackiw et al./3/) the skew symmetry of the com-

mutator requires-an ansatz of the following type

™) ~

o £ (xo) (25)

C iy = Eixy 8

with a symmetric function g(nﬂ.Consequently the scaling
function i '

+0 . - o
Jiwr = %‘ g_dx, e e Xe" gcx’,) (26)

Zos _
is also symmetric or skew symmetric, respectively and
the experimental data given for -m<«w<{@ determine Giw)
for 94wsim too. If in the contrary case one would like

to test causality, the knowledge of %(w)in the full

support -mewsi®w 1is needed in order to prove the fulfillment

of the two conditions. We remark the surprising fact,

that in the case of a causai commutator with a leading

'light cone singulafity’of non-integer type the support

13



of 9w is not compact. This follows from the sym-
metry of M(x}y%,) and consequently of g(xé (compare eq.
(12)). , , .

From 1nvestlgat10ns of. the two-point functlon we
know that non-localizable behaviour (e. g.W'\'e,‘l 9'>0 )
leads to an acausal commutator. The same should be true
for the four-point function. Therefore the symmetry and
regularity condition should be completed by the property
of lecalizability; Whatever the result-may be - a causal
or an acausal commutator - the functionlﬂpﬁx»is always
well defined. There are examples for ithe validity of the
reduction formulae in acausal theories, too. So it seems
to be justified to take eq. (1) as'basic relation con-

necting x and p space functions in every case.

Nambu'spmodel is a resonance model containing.poles only.
The interpolated residua are taken as the absorptive part
For suitable values of the parameters P\t,h the usual
scaling behaviour for deep inelastic scattering is ob-
tained. According to our previous method we investigate
the foregoing expression in the limit Q> , W @w . The

usual variables are expressible as

s = [(m+§v>"+2(m+mq,]
l ! »‘
q = Zwg +w" V o (28)

" e

The result is

3. Consideration of Special ModeIS‘for\V -3 25-4 ap-% A -2p
\ ‘A/(qr. Q) ™ q.z‘ z |wl\ e (miw) z (m&-w—lhw); A
In this section we shall study the ‘light cone sin- %;:

gularities corresponding to some physical models. or spe- ‘ Conw : %or-«m<v:<0 (29)
. 1
cial Feynman graphs. g A=
3% U ke '
a) Nambu’s Model for Deep Inelastlc Scattering i D T EWE QOT W >0
. ¢ 3 Mt (Zb.wqr-y)ﬂ
In the spirit of our simplifications we take for :
W(q 90) his function Wy which is an absorptive part for
virtual Compton scattering We choose 0<i2$% to avoid additional singularities of
, , : : R SR 2 9(w) in the physical region. The parameter is co ted
W= iN-2eqy TN +) TCx-Ray _ ' P _ p i nnecte
= P Toana v with the asymptotic behaviour of the formfactors((c{")'e '
(Nea) (-2 v _ ' S )
), q) (¥ +F kg 1y Pey) (27) @=R+y. This formfactor behaviour is also contained in

N=zS-m* , R, ¥ ,» R parameters.




the expression (29) by means of the limiting procedure
qe% s @m+w g §ix . In this sense one formula allows
different behaviours for the Bjorken, .Regge and form-
factor*iimits, respectively. For<f>e the expression (27)
ébntains poles in the variable q* . To overcome this

difficulty we take g2 along a ray With a small angle to

. the ‘real axis in the same manner as it is originally used

by Veneziano and replace the quotient of the sinus func-

tions by a constant. The x';space behaviour may be read

bff‘from the following table.

¥ g ket |¥FL k=% Y= k¥ | Y=Y k=i

13-3

' -1
v\s-/."% 9w % dw

™ B | o
X*>Q , Lx’-)"""di ' YR

iy -1

‘éCW) ) ¥ -3 Cowih
wIe '
-1

'g("‘) x"-i Xo
wenos
1 _52‘ - 19-1

Fw W% ey : b *
W

-l -
Foxa) ot xgx F Uyxe Xe
Xo> 0

s
- g vip-X -1 S S ]
;’g{& Wk, W PR WG, A T

W
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The last line gives a hint that the complete matrix ele-
ment is reqgular at X,z 0. However the Symmetry property

is not satisfied so that we expect an acausal commutator.
A suitable choosen parameter y reproduces the experimen~
ﬁal realized scaling behaviour but the corresponding light

cone singularity is not the canonical one.

b) Veneziano Model

Here we investigate the crossing symmetric model

Vispy = Bg_—u,fa(t) + BC—'“;«,'“Q) + B-ny, ~xy) (30)

We want to study the x-space behaviour of this well
known model. For our considerations-we use the simplest
off~shell extrapolatlon which is given by means of the

kinematical variables

. ‘ T T
O(S=Q+bs Ky =Q S$=m qu—lmqo

X (31)
sy = a¥bu W= +qt-2mg,

This extrapolation has been used in other conneétion
and underlies the construction of dual loop amplitudes.
To get the absorptive part along the right hand cut

we take the interpolated residua of the first and the

second term

- . r‘ . - ’ 2
W = 2T p g Turarsy PP H M -wuy (32)
Faavus) Pt Nimo-ay)
17



The first (s,t) ~term leads to

(5% e
WL c,l,“(m,w)" R—cr g0 | w ?/w ) (33)
There is no difference between the Regge and the Bjorken
limit. The corresponding light cone singularity is
f(xey ()™ with regular $x..For the second (su)-

term a detailed consideration is required.

a4 b 3 Lb(maw) ~Mmew &0
Y Y
S iy , (34)

W ~ 9 /\(Q,v'l) wn n(Zaromt —Ybwg) o ewim

g

i |

e ™awg ®
where
~ Lo (miw)q olm-w)g Ybwq
Aqw = (maw) Im-wi {-2wl (35)

This term shows some strange features. At first it should
be remarked, that the positive definitenessof the forward
absorptive part is violated in the (su)-term for =~m&wdm,
This may be viewed as a consequence of the well known

ghost difficulties of this model. Furthermore for - m<w<o
and w>o A@wgrowth exponentially for Q- . If we take

18

this (su) ~term seriously, we éhould'conclude, that the
model behaves non—locally and consequently the current:

commutator is acausal.

c) Diagrams with One Loop

We expect essential modifications if dual amplitu-

des are incorporated into more complicated diagramé by

" means of a loop integration. Especially we want to build

in the s-t part B(-x,-«¢) of the Veneziano model into
a box diagram. Tbis amplitude gains further interest
from the fact that it is a part of a dual loop amplitude,

‘'which itself is too difficult for an investigation in

this kinematical region for the moment

e | -

LY h

>

-
Prq-k

The cdrresponding amplitude

ol = 4r) B~ o~
Tesqy = Sd“k Bl mxe) Bedy mden (36)
(2-m*) ((ptq-)*~ mt) -

+'= (q-k*
has according to the Cutkowsky rules the absorptive part

W~ (d*k Sg-ck‘—m‘) 8+(cp+q-h)‘-m*) | Be-ag,-agnt (37)

19



Using the €@ and § functions we perform some integrations
and obtain . ' ‘

.

Mim {’“*C\o)k:}

W o~ Deslimt S Ak, v,\gt_ds,_%)p - (38)
2q .
Mm{m,\i‘:’
where
T meqo % Rk - (39)
ko = ™o ¢ &' T - 2m(Re-90) .
1 2 s |
Introducing the variable w we obtain for large 9 at W
fixed
- iAW m* R AW _
- = - +¢ (40
Sl v S i aa et S

which are the proper boundaries of the R, integration.
If the 1’ threshold satisfies fﬁZNM‘ (which will be
assumes in the following) the abéorptive part given by
‘eq. (38) is positive definite for all values of q*.

' As the simplest example we take for B the simple

Feynman propagator Ctu M*)* with the result

\vﬁ' W) ~ Lowre 1 _ 1 . }
R % "“"w':‘:":w’ %-: m-wq-"."_‘:.'-\;-g.l
m+ (41)
~ . [y . %i’wl .
Q‘ m—%-w‘%w

50 .

The corresponding leading singularity is Q(*ﬂ '%il
where §(x,) develops a logarithmic singularity for x.—»o,
Of course this is not the complete result in the fourth
order of perturbation theory, eépecially the disconnect-
ed Feynman graphs contribute to \hqﬂq,) . In x -space
they may change the symmetry properties but cannot .weaken

the light cone singularity.

Turning to the loop diagrams with Veneziano terms
we gonvinCe ourselves that the important contributions

to the integral (38) come from the upper and lower boun-

daries.. At the upber’boundary the integrand behaves like

‘T

A" r(dg +AE ' ' 1%
1w wldg ¥4E) PLC-“‘E) Latmrwiq] (42)

8l

Yoy S
AT el

If we replace the first quotient by a constant then the
k, integral from the region R,z kY gives finally

-

W~ 378
Loy

. ™
Ciwy = 2A(g) = A-2mbw +mb (Mmrw 'm‘+w)

Cew .
(- TE2) Cmaw) 7 (43)

which is valid for all w . For wpsthe contribution of the
lower boundary is negligible, whereas for-m<w<c¢ it be-

comes dominant. In this region we have:

Bt~ A5, 700 by e, v w iy )

(44)

.21



which growths exponentially. This property carries over
to the integrated expression (38). The conventional rule
of dropping terms multiplied by'dhflnq; seems to be not

applicable because of the exponential growth of the re-
maining part. Therefore we conclude that this loop diags

ram leads to non-local matrlx elements M and consequent-
ly to an acausal commutator. Possible contrlbutlons .Oof

disconnected paths- which are not clear in a duval theory-
do not change this conclusions. This result is quite sur-
prising because the s-t term in the usual Veneziano model
shows a potential behaviour. On the dther hand it is.él—
ready known /8/ that this amplitude has an essential
singularity in the variable s.

We thank Prof. A.N. Tavkhelidze for his interest in

this work and many useful discussions.
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