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Po6aumK ll,, B11uopeK 3, E2-6328 

IToBeneHlle nyanbHhIX Moneneu Ha eBeTOBOM KOHyee 

ffoy'le!Ihl oeo6eHHOeTII OllHO'iaeTl!'iHhIX MaTpl!'iHhlX sneMeHTOB TOKOBh!X 

epaTopoB Ha eBeTOBOM KOHyee !Ip!! llBHHhIX eTpyKTypHhlX IPYHKUIIHX, ITp11 

~Te BpeMeHir-rrono6Horo HOel!TenH l!MeeTeH B03MOlKHOeTb 1!3MeHeHl!H Beny-

1,u oeo6eHHOeTI!, 3TII pe3ynbT8Thl !Ipl!MemnoTeH K MonenHM HaM6y, BeHe­

~HO II np. Bee Monen11 BellyT K He!Ipll'IIIHHhIM. KOMMyTaTopaM TOKOB, Ee;!! 

11epBou Monen11 l!MeeTeH OlKl!llaeMaH oeo6eHHoeTb no .xi. , He e'il!TBH He­

rynHpHyro qiyHKUll!O oT x 0 
, To Monenb_ BeHeuiraao BeneT K aerrp11'il!HHhIM 

MMyTaTopaM TOKOB 113-38 HenoKan113yeMOU !IpMPOllhl oeo6eHHoeTei1:, 

IlpenpHHT 061,e,QJtHeHHOro HHCTHTyTa HAepHbIX HCCJleAOBaHHit. 

k6Ha, 1972 

Robaschik D., Wieczorek E. E2-6328 

Light Cone Behaviour of Dual Models 

The determination of the light cone singularities 
one-particle matrix elements of current products from 

.ven structure functions is studied. Taking into account 
te time-like support we remark possible modifications 
'the leading singularity. We apply these considerations 
t the models of Nambu, Veneziano and loops incorporating 
:neziano terms. All models lead to acausal commutators. 
1ereas the first model shows the expected Xi. singularity 
1art from a singular function in x0 , the latter models 
ad to an acausal current commutator because of non-loca­
zable singularities. 

Preprint. Joint Institute for Nuclear Research. 
Duhna, 1972 
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1. Introduction 

Recently in many papers/l-G/ the connections bet­

ween light cone singularities of current products on 

the one side and the scaling or Regge limit on the other 

have.been investigated. The starting point in most ca­

ses is the given light cone singularity. We restrict 

ourselves to deep inelastic scattering_~n one-particle 

states (for simplicity we use scalar currents). 

The corresponding structure functions\v, i.e., the ab­

sorptive part,are connected with the matrix element of 

the current commutator by 

• • -1 ( -1.cpc 
<rtt1,">,1lo>1\p> = '·ht'l. )~ We,\ qp) clq _<

1
> 
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The experimental knowledge about 'w originates from deep 

inelastic e.-p scattering, that means from space-like 

values of 9 . However, the support properties of such 

a matrix element show, that a very important part of 

the integrations runs over time-like values of q . In 

the following it is shown, that the light cone sin­

gularities derived from the space-like part of the sup­

port may be modified by taking into account the full 

time-like support, too. Of course, if the electromagne­

tic current is causal, then the structure functions gi­

ven for space-like q are sufficient for the determina­

tion of the leading light cone singularity. In opposite 

to other works (H.Leutwyler and J. Stern121 , ·R.Jackiw 

et a1. 131) we make no assumptions on the x-space beha­

viour of the theory (e.g. causality and type of the sin­

gularity) from the beginning. Therefore in general it is . 
not allowed to use their support restriction. In sec­

tion 2 we consider methods for the determination of the 

leading light cone singular part of the matrix element 

from the given mom~ntum behaviour of \.Jcq~~p),Apart from 

regular cases we study the conditions under which the 

time-like support implies modifications. In section 3 

we investigate. the )( -space behaviour of some popular 

physical models which are formulated in the er -space. 

They may have connections to deep inelastic scattering 

or not. In any· case they lead to acausal or even non 
' localizable field theories. The model of Nambu shows the 

expected x~ singularity apart from a singular factor 

4 
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in ~ 0
, whereas the Veneziano amplitude and the inclusion 

of Veneziano terms into loop diagrams lead to non-loca­

lizable singularities. With respect to the Veneziano am­

plitude we have used the simplest off-shell extrapolation 

which is given.by means of the kinematical variables. Of , 

course there are many possible extrapolations, however 

this is a very natural one and has been used e.g. by 

Lovelace in his~-n model. On the other side it is this 

ex~rapolation which underlies the construction of dual 

loop amplitudes. For our finally discussed loop amplitude 

we have the same explicitly given off-shell dependence as 

for ordinary Feynman-diagrams. 

2. Determination of the Light Cone Singularities 
/ 

a) Support Properties and Scaling Variables 

Instead of the full current commutator we study 

at first the Wightman like function 

M • • ( -1.C\')( 
(><,.,X0

) =-<p\1,,o1(o)lp):. ti.) cl9 e. 'wcq\qP) c2> 

'\0>0 
•only.Its support is determined from the representation 

\,./ (9\ q0) = '111'1 ~ ~ ( p+~ -p1\) ( P 11lo) \ 'n) < 1\.11 Co)I P> (3) 

It follows that \,J~ o for (P+<:1)1 : ~ ~ S0 where S
0 

d~notes the 

threshold in the s channel. The support includes regions 

of space-like and time-like q. In the rest system of p 
I 

[p= (m,o,o,·o)] we have 
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q1. ~ So - 2 '\'T\, C\o - ..,..,_,. (4) 

Performing the angle integration we may write 

' . -1.fti:;X I. T - I. Y 5 (10 ~ • . 0 ' • 

Mcxz.,x 0 )=-;,rr)d<\o cl1:1,C}e. (eC:l--~ I_½ )Wcq\qo) c > 
0 . 

with '¼=\q\ , 'Y:-\°tl. 
The support properties _allow the regularization of this 

expression by continuation-into the lower X
0 

half plane 

Xo➔ X0-td. It seems to be useful to introduce the vari­

able W I W: q0-CJ, which allows a regularization of both in­

tegrations 

co -
• ( -).W ( -,...Cl, -VC¼ 

Mcx\>< 0 )=-i;-r)dw'L ~d'¼~{e. -~ ) Wcqz.,qo) (6) 
--wn. CtY'J 

where ~=a.,.~"l(CI u: d-t-\.(XO-t-T) V; !+~b<o-1"'), 
I ,-- I 

The support properties determine the integration bounda-

ries 

-'\"n."-W<.CO 
- J 

MOv)c \ So-('M.+W)~ 1 0) 6 '?t, .C:: co 
2. ("f'I'\ +w) (7) 

We mention that the intervals -'1'11.,WLO and o=v.1~00 cor­

respond to space-like and time-like regions of~ , res­

pectively. Asymptotically w approaches the usual scaling 
qi. . D . 

variable W = --- . ~to(\. '\'a.~tor -m. 
2'h\qti 
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b) Determination of the singularity at x 1 - o 

From an inspection of the expression (6) we learn 

that the C\, -integral defines 

00 

G ~ ( ..1 _,,...'!, -"~ 
(x\Xo,w)-; T) ~~':I- (e. - e, ) \vcC\\q 0 ) (8) 

Ctw> 

which is a holomorphic function of.the variables~,. and 
2. . xo f6r 1Yr.x0< o and 'J-n,. x to (take ipto account that 

G ( x,.
1
x0 ,wJ appears as an even function of 't' ) • Dividing 

the~ - integral into. a finite and an infinite part for 

the corresponding expressions of the function H , 

M=M,~M1 it becomes obvious, that M1 is an entire 

function of xi. , provided that the -following w -integra­

tion exists in the conventional /r~gularization (i.e. an 

exponential growing inw has to be excluded). Therefore 

- M1, contains all of the singularities in x"l which are 

independent of the lower boundary of the 1 -integration. 

For d>o both integrations are absolutely convergent, so 

that we can perform the 1 -integration at first. This 

procedure implies that it is sufficient for determining 

the xl. singularity to take the ~ -asymptotics of 'W at 

every fixed w. 

O'" 

W c9\C\o) -:::: 'l '3twJ + ... for ~➔ oo I w ~. (9) 

The strongest growing term in ~ corresponds to the 

le~ding x,. singularity. Insertion of the leading part 

into eq~ (6) gives 
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M (x\ Xo) 
~ x: H. 7 . (X

1
)o-u. ) dw i"'w('l<

0

-~d) 
-'\"t\ ~tW) 

(10) 

which is valid for all fixed X 0 -p O •near the light cone: 

From a physical point of view it is interesting that the 

limit i~«> , W fix, is equivalent to, the limit q1..., o0 , 

w fix. That means the X1 singularity is determined by 

the large mass behaviour as it is known from the two­

point function. However for the four point function this 

rule may be modified by the W -integration in irregular 

cases. More complicated is the case vlc~\'lo)<¥<_\.trc..,,~lw>• 

If Ocw, arrives the maximum at w:Wo then the contribu-. 

tion from the region w~w0 produces the leading singular 
part 

ties 

that 

5"c . x• We) T1. 
0 Mcx\Xo) ~ 

(X2.;CScwo).,.,_ (.~ c-x.J.>] ~ (11) 

Continuating our investigations of the general proper­

of expression (10) we have to note the possibility 
the function 

<IO 

( - ~W('.lc. 0-~o) f o,o) = x:T1. ) t\w ~ ta (w) (12) 

-"II,\ 

may be singular for x 0~0. The origin of such a singularity 

would be the behaviour of ~ (.w) for w~ oo , i.e. , the pro-

8 
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perties of \vcq\C\o) for time-like q . The knowledge of 

W(q1
1q0 ). for q1..::: o only is not sufficient to determine 

the function f ()(oJ • We remark that a singularity of fot0 ) 

does not imply a singularity in X 0 of the matrix element 

Mcx~~o) in general. Such fictious singularities of the 

matrix element inay appear by the way of exhibiting the 

leading singularity in X~, As an instructive example we 

take. 'W=- q;~ 0cq
0
, 0t<\-i.) • Formula (10) gives the leading 

s~nguJ,.arity 
' .. 

M ~ i. .1. 
X0 x2. for x2.~o (13) 

which is to be compared with the exact result 

M = 0rnn\. 5 ~l. ~02. - .1.. ~- i+ ~('l<c;-T) 1 
l X 2,-1- ~ + i. (xo+l") l (14) 

Taking X0=o in the latter expression we have 

M ~ .:1.. 
Tl (15) 

This example demonstrates another peculiar property of 

the singular case, namely the light cone singularity 

approached along x O = 0 is stronger as in the case 

X"l--'>0 , X 0-:/-0 • 

Considering {cxo) for Xo ~ 00 the position w =o 
in the remaining integral becomes important. Assuming 

~(IN)~ w-c (W➔ o) we have {cx0 ) ~ Xo~-T. (xo➔ 00). This 
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result is valid for regularizable w integration. There 

is a general connection between the behaviour of 1c>Co) 
for ,c0 , oo 

of Wtq\<\ 0 ) 

· Regge limit 

on the one side and the usual Regge limit 

on the other (compare also ref. 141). In the 

[<\,...., 00 , ~w ~i,x J we get 

,., er cs---c. .C.101 
VV ~ <_\. ~{W) ::::::, <\- ~ <:l- (16) 

by taking into account the zero w behaviour of ~Cw> ,t~lw)"' \\'~J 
Therefore from eq. (12) we obtain 

{c.x.o) ,_ X C'll.lO> 
0 to.,. Xo ➔ co (17) 

However, it may be that the next non-leading t.erm in the 

limit ~ "-7(10, w tuc becomes dominant for the Regge limit • 

This mechanism which ~llows a different ~ -behaviour in 

the Regge and in the scaling limit has been discussed by 
II /6/ . . Ruhl starting from the x-space properties. 

. The foregoing method breaks down if the remaining W 

integration is not, finite within the usual regul~rization. 

Examples are ~(w> ~ w-t , (w~o) or ~cw>~ e_w, (w-!>"°). Such 

cases may occur for quite acceptable functions W (q~ q0 ) 

which allow a usual Fourier transform. Examples of this 

type are the following 

8(w) -7> 
\. I - ':\~GO 
w - l!+w~ w~ 

..i. i. 
w 'l-

10 

M~ ~)(,1., 

xi. 

..,· 

... 

.. 
' 

[ 
I 
I 

r 
', 
I 

I 

'r 
1· 

I 

'W\•1 

vJ =-
9lw> <.\- 1.. 1.. M..., -n.½ (.•)(.l.J 

--t 
-'\+w1:1,"'- ,~oO w \ , x,. 

wl..w. 

vJ -= 
8(w) e. ,-

~ 1- ~ M~ Xo 

'l,(Hw_e,'r) ~,- w C¼ I . (.>'-1.J 1. (18) 
w t,,,c 

w 

W• 0<.wJ e: ,. .. 1 o-W M..., ro.-t-i." ,,., "-1+i.xoG" 
~ e. <:\,-0- w I 

• • St t-x ') 
-re. w fi,c 

. ~ ~!Co'Tf 

+ t' C. '2.-\-G") -1---
. (-,tl.) +· .. 
i,,co-1. 

ObvtOusly the d~vergence of thew integration transforms 

into a more complicated x~ singularity than it is ex­

pected from the~- asymptotics itself. To overcome_ this 

difficulty we have to study the origin of this divergen­

ce. In the first case our functi_on has the structure 

'vJ = 
BC q,) 

~C.C\,) + w 
wi.-\:.h. Ac<.l,)-,,o 

{o'" <_\. ➔ oo 

(19) 

It is needed to perform the.~ integration over the.ir­

regular region w ~ o at first 

)
~ -i.wxo Be.a.> B q,_ Ac,-, 

clw e, ----"- ,..,, CC½) ""J 
. . AC\)+W 

0 
(20) 

11 



and afterwards 

M ~ ~d\'t (crl\-_e-Y~) ~Beep~ A(«t). (21) 

A typical peculiarity of the irregular cases is the pos­

sibility·.that different leading light cone singularities 

give identical scaling limits. This should be compared 

with the result.of Ruhl/G/ for the Regge limit. 

c) Discussion of Current Commutators 

The one-particle matrix element of hermitian currents 

is given by 

I I t. I . t • 

Ccx) = (pltdt1t>,)lc;>l\r"> = <P\1t'l(>'1,co>IP)- <P,1<.-x>1to>\ p> (22) 

where translation invariance has been used. In terms of 

the Wightman-like functions the commutator is determined 

by 

C (JC)= M (><2.-tE,xo,SJx0.'\.l)- H (x ... +i.tcl(•)f,-xo-i.~) (23) 

From this representation we conclude that the fulfill­

ment of both conditions 

1. ~ Mcx2. Xo-·,6) exists for all real X
0 ,-.o J 

2 2. M{x~ >C0 ) = M tx~ -><o) for real Xo , X ';,t O 

leads to a causal commutator. The importance of the first 

condition is demonstrated by the simple example M:x;cx1j 1 

The evaluation of the corresponding Ccic, gives 

12 

I 
:1 

! 

t 
-w· 
a 
, ":v/ 

r g'.,t 

,,}-· 

C ( ~) [' <: ,t . ("(..._ • ., ..1 
{X) = 1"t' (.-1) Llt E(')(,0) 0()(1.),-;- ""-.!,JL O --

\.X.o) l'n-ll I C l<o> x1. 
. (24) 

. (_-\ _ (.-\)'I\} r ,1_ 1,_ _ 1\1. (' 'l\•I) f- J 
.,. Lx: ><,1. -, _ 1 C (>t0 ) Etxo1 0()( 1

) 
.,, 'I\ ,, • • 

(The singular terms i~ and ~1. are defined as principal 
values). 
A careful consideration using test functions shows that 

the upper two conditions are also necessary. If one 

starts from the assumption that the ·electromagnetic cur­

rent behaves causally (as did H.Leutwyler, J.Stern121 

and R.Jacki~ et al./3/) the skew symmetry of the com­

mutator requires·an ansatz of the following type 

(' (.1\) ~ 
C (,C.) = t(1<•> o (x.1-> i C><o) (25) 

~ 
with a symmetric function fcx~,Consequently the scaling 

function 

+co 
..-\ ( -1 '-"' ll.o _.,.. 0 

~tw> = in ) f.\Xi, e Xe l (>to) 
(26) 

-Oo 

is also symmetric or _skew symmetric, respectively and 

the experimental data given for -'h\.c.w<O determine ~l'w) 

for o.c.w 4 W\. too. If in the contrary case one would like 

to test causality, the knowledge of ~Cw) in the full 

support -'l'I\GW.c.co is needed in order to prove the fulfillment 

of the two conditions. We remark the surprising fact, 

that in the case of a causal commutator with a leading 

light cone singularity of non-integer type the support 
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of <atw) is not compact. This follows from the sym-

~etry of Hcx~Xo) and consequently of ~CXo\ (compare eq. 

( 12) ) • 

From investigations of the two-point function we 
. . 'l. 

know that non-localizable behaviour (e.g. W,-,e,o..'i > <t1 > 0 -) 

leads to an acausal commutator. The sante should be true 

for the four-point function. Therefore the symmetry and 

regularity condition should be completed by the property 

of localizability. Whatever the result-may be1 - a causal 

or an· acausal commutator - the function Mcx.~xo) is always 

well defined. There are examples for ~he validity of the 

reduction formulae in acausal theories, too. So it seems 

to be justified to take eq. (1) as basic relation con­

nectingx and p space functions in every case. 

3. Consideration of Special Models for y./ 

In this section we shall study the light cone sin­

gularities corresponding to some physical models or spe­

cial Feynman graphs. 

a) Nambu's Model for Deep Inelastic Scattering 

In the spirit of our simplifications we take for 

Wctq~ his function'«~ which is an absorptive part for 
virtual Compton scattering/?/ 

W-= . rcN-i1tq~, 

ro~+"> rc-i.~qi.> 

~ 

~ t'c\+~> rc1-\t,2., 1, 
l r < i+ (l-1i,2.> rq0 i (27) 

N =S-l"'I'- , j?. , l , h. parameters. 

14 
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Nambu's model is a resonance model containing poles only. 

The interpolated residua are taken as the.absorptive part 

For suitable values of the parameters~\~,~ the usual 

scaling behaviour for deep inelastic .scattering is ob­

tained. A~cording to our previous method we investigate 

the foregoing expression in the limit ~~Qo , 'W ¥w • The 

usual variables are expressible as 

s ~ [("l'rl.,.~>1. +2.C.n\+w>'\,l 

C\ 1 
=- 2. w 'l + w'l. 

9o-:'l+w 

The result is 

1.-r-!. 'Z.J-1, ·Lp-i 1:-lf' 
\./cci\q.,) ~ ~ z. lw\ (~+w) 2.. ('m+w-l~w) a. .A 
':\-.,. 00 

"'~ 

A, 1 c:.cw,11-

~ L\ 11 k:w \ 

~1. (2R.w~-'$')1l 

fo~ - lvt <"'..:: o 

~ W>O 

(28) 

(29) 

We choose O<~~t to avoid additional singularities of 

~Cw) in the physical region. The parameter~ is connected 

with the asymptotic behaviour of the formfactors (cq 1,-e. , 
~ = e-t- f • This formfactor behaviour is also contained in 
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the expression (29) by means of the limiting procedure 

~ ~ 00 , ~+w) 1 ic.iC • In this sense one formula allows 

different behaviours for the Bjorken, .Regge and form­

~actor · limits, respectively. For <t',-c the expression ( 2 7) 

contains poles in the variable qi.. To overcome this 

difficulty we take '="~co along a ray with a small angle to 

the·real axis in the same manner as it is originally used 

by Veneziano and replace the quotient of the sinus func­

tions by a constant. The x -space behaviour may be read 

off from the following table. 

~~~ ,'1..-/r 1i. f 1'1="\ IR, C \ I '¥,. 1,. ,kt=~ I 't=\ ,b.~\ 
• 

wt.w l.t•\ I -1 

\-"oi»,W ' ,(.\If') 
~ '}lw) 

M 'tll0
J I ~ut 0 , 

.,,_1.~o 
(.X1) 1.t+\ xi 

~(W) 
LT -1-w %. I ~ 

W-,Q 

l (-,c•> )< o-i I _,. 
'lito.➔os 

Xo 

'ltw) -ir ~ 2.p,H,r-2. I -1 'ljl- '.!.. 
w l. 'W w 'W l. 

w~co 

'')Co) ~ ~-lV, 
Xe ~'IC. 

)(. }._ -l.\\ 
0 

x.~ o 

w lt~-l it, +1~-.l' -2r-_ '1~-~ 

t_\.V,.i,/ w kt\> w ..... , 'W C\) ....., l. it'\,) 

..,,~1)0 

The last line gives a hint that the complete matrix ele­

ment is regular at X0 =o. However the symmetry property 

is not satisfied so that we expect an acausal commutator. 

A suitable choosen parameter r reproduces the experimen­

tal realized scaling behaviour but the corresponding iight 

cone singularity is not the canonical one. 

b) Veneziano Model 

Here we investigate the crossing symmetric model 

Vcs."'->-= r3 <..-oe..s 1~<><t) + 13.t-o<l;-c,("") + Gl-0(..._,-o<-1:) (30) 

We want to study the ~-space behaviour of this well 

known model. For our considerations-we use the simplest 

off-shell extrapolation which is given by means of the 

kinematical variables 

·oes=o.t-bs o<t=a. s = ""1..1- c{+l~~o 

a<."' =- o.1- b~ \.\-= y...i.+qi. -l-ni90 
(31) 

This extrapolation has been used in other connection 

and underlies the construction of dual loop amplitudes. 

To get the absorptive part along the right hand cut 

we take the interpolated residua of the first and the 

second term 

w -:,.im. II' 0.. r r (. ... + 0. + =<s) 
- . C-0.) 

r (.,\+0Cs) 0.. 
+ <-nc<s re-°' ... ) (32) 

rlH~.s>r(-c<s·o( .. ) . 
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The first (s,-i:) -term leads to 

W ($,t) ~ ~ 9-Q.("rt\'tW) ·~ '{.➔ "° ) w ~ •• ( 33) 

There is no difference between the Regge and the Bjorken 

limit. The corresponding light cone singularity is 
r; -c:l.-2. p 
't(>< 0 J (xi.) with regular r<'<o). For the second (s.:,"')-

term a detailed consideration is required. 

~ + b-n.a. + l bl'n\-tW)O 
(.-\) ~ -r 

-)\'\.C:W.C.O 

cs "') - ~ 
'W ' ~ <?t, 1. Ac,-,w, ?VI"\ it (_lo.."° l.b'mz. - ~ bw4t) 0 I. WC:'1¥\ 

(34) 

't ➔ oo 

w~ 

Ur'N"h- -4'W( Clll 

where 

-lbl~-t-"")C\, "ll..l""-·"")1:\- 'tbw,-
Al'\,"")= l'm~w) \"'M-w\ \-lw\ (35) 

This term shows some strange features. At first it should 

be remarked, that the positive definiteness of the forward 

absorptive part is violated in the (S,u.)-term for - 'h\ """1t'"'. 

This may be viewed as a consequence of the well known 

ghost difficulties of this model. Furthermore for -.~.cw<"o 

and W>O Ac\,"')growth exponentially for ~.., oo. If we take 

18 

this (S,u.) -term seriously, we should. conclude, that the 

model behaves non-locally and consequently the current 

commutator is acausal. 

c) Diagrams with One Loop 

We expect essential.modifications if dual amplitu­

des are incorporated into more complicated diagrams by 

means of a loop integration. Especially we want to build 

in the s-t part Bt-~s -~t) of the Veneziano model into 
I 

a box diagram. T~is amplitude gains further interest 

from the £act that it is a part of a dual loop amplitude, 

·which itself is too difficult for an investigation in 

this kinematical region for the moment 
.,_ 

" 
~ A---

P+i\-~ 

The corresponding amplitude 

Tcs,<\z.> = Sd"k _B(-o<J,-o<t•) B(-o<.i.,-aCt•> 

(~1.-"Ml.) \ (p+<\-~)a..- "n-.1.) 

t' = ( I\ _._,)i. 

(36) 

has according to the Cutkowsky rules the absorptive part 

'w-v ~c.\ 4 k ~"°l~a..-~1.> S+(cp+,-~,i.-nii., l Bc-G(,,-oct,>11. (37) 
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using the 8 and E functions we perform some integrations 

a·nd obtain 

M_;,. [""'+C\o,\t!\ 

\., 0(t-'1-w,,1.) w~-
2\ 

\ c.\. h. 0 . \ B l - o<~ , - aq ) I "l. 

'"'°""l'"",~11\ 

where 

h.; =- ~~~o t ~ Y 1- ~1. 

J 
t = 2l't\(~o-9o). 

~ 

(38) 

( 39) 

Introduci_ng the variable w we obtain for large 'I- at W 

fixed 

,~- -m+w '°"l'\.,. 
~ ---- + ----

0 - "2. 'l.(~-t,W) 

'I. 
+ "m~""-'W\ -t\ 

~o = 2 l{'\'1\-tW') 
(40) 

which are the proper boundaries of the ~o integration. 

If the t' threshold satisfies i~~"M1. (which will be 
' assumes in the following) the absorptive p~rt given by 

eq. (38) is positive definite for all values of 9~. 
As the simplest example we take for~ the simpl~ 

, 2. -1 
Feynman propagator (t - M ) with the result 

Vci,w) ~ ~ \ 

-~ 
1 

'n\-w-~ 
W\1'W 

.., 

!:1.l. 
""' 

,, 
'm.-~ -w - !!:l; 

'W\ "'Mt'W 
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'1 · 1 
'n\•W+ '?!!_ ·_ }1~-1111 

T'll ♦'w ..,., 1" 

(C\,➔ co,w~) 
• 

(41) 

11~ 

The corresponding leading singularity is h'l( 0 ·1 • 1xz. 
where ''"~l develops a logarithmic singularity for Xo·➔o. 

Of course this is not the complete result in the fourth 

order of perturbation theory, especially the disconnect­

ed Feynman graphs contribute to \/cl\\C\o) . In · >< -space 

they may change the symmetry properties but cannot weaken 

the light cone singularity. 

Turning to the loop diagrams with Veneziano terms 

we ?onvince ourselves t_hat the important contributions 

to the integral (38) come from the upper and lower boun­

daries •. At the upper boundary the integrand behaves like 

I Bia. ~ 
• 1. 

.,""' n-{d.s +«.t) 

-w-.~nce 
$ 

r l. ' 1.:>s 
(-c<.t) L l.l-W-.-rW)'i,.1 ~ (42) 

If we replace the first quotient by a constant then the 

k 6 integral from the region ~c~~! gives finally 

'W"' '.\. f!"tw) ~, r ( - 0-i_w,) t lV\ + W) 0-cw) ( 43) 

CS-c.w,"" 2.o(lt).., 1\- l°""'\.:,w + 'Mb l "W\+w - ""1. ) "M+W 

' 

which is valid for all w. For w~othe contribu~ion of the 

lower boundary is negligible, whereas for-~4w<c it be­

comes dominant. In this region we have 

\ 
1, j_ ·· . 4b S . PL.or.'""°' · R- -w \ 

131 .., ")W.LTI«s 0-X.f-. 1:1- l "M -i3 ~w .,. w -a ~ J 
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-------

which growths exponentially. This property carries over 

to the integrated expression (38). The conventional rule 

of dropping terms multiplied by~'i.,r1 n~; seems to be not . . 
applicable because of the exponential growth of the re-

maining part. Therefore we conclude that this loop diagT 

ram ieads to non-local matrix elements M and consequent-~-
ly to an acausal commutator. Possible contributions .of 

disconnected paths-which are not clear in a dual theory­

do not change this conclusions. This result is qui~e sur­

prising because the s-t term in the usual Veneziano model 

shows a potential behaviour. On the dther hand it is al­

ready known /8/ that this amplitude has an essential 

singularity in the variables. 

We thank Prof. A.N. Tavkhelidze for his interest in 

this work and many useful discussions. 
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