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l. lntroduction

Stimulated by the scaling described in connection with the SLAC-
MIT experlment /1/on the deep inelastic electroproduction, Fritzsch
and Gell-Mann/2/ have proposed a possible extension of the algebra
of equal time.commutators of axial and vector currents to light-
like distances. The new ingredients, which appear in the right-hand
side of the commutators at light-like distances, are bilocal genera-
lizations of the axial and vector currents. In order to close the new
algebraic system guided by the free quark model they proposed an al-
gebra for these bilocal operators. Recently,. Gross and Treiman /3/
have pointed out that the commutation relations obtainedin the free-
quark model are preserved in the gluon-quark model with cut-off if
the coordinates of the currents involvedinthese relations are distri-
buted on a light-like ray. In another paper /4/ , Gross and Treiman
have shown that the algebra of bilocal operators (ABO) controls the"
cross sections of the deep inelastic processes involving two currents
in an )asymptotlc region defined as a special double limit (see Sec-

¢+ tion 1l :

The disconnected part of the bllocal operators is measured by
vacuum processes like y* »'hadrons. Similarly the ¢ -number part
of the commutators of the ABO is measured by vacuum processes
like y* + y* 5 hadrons or y* -y* +hadrons.

It is well known /5.6/  that the imaginary part of the forward
photon-photon scattering amplitude can be studied by the measure-
ment e. g of the process

‘e + e » e + e + hadrons ()



If we require the electEons to be scattered into very near to forward
directions i.e. the virtual photons are almost real, the process can
be approximated by the Feynman diagram given in Figure I. The

contributions of this diagram, however can be studied at high photon - -

masses as well. Generally, the process (l) is.descrlbed by 10 Feyn-
man diagrams, 8 of them refer to the production of C -odd hadronic
states and can be calculated.The remaining two correspond to C-even
hadronic states and formally describe the forward andbackward scat-
tering, respectively. If the electrons scatter into small angles (in
c¢.m. system of the electrons 6, < 20° ) only the diagram of Figure |
remains. For the square of the c.m. energy we have the inequality

2 .
qe? .. ,
2 S ST =1,2‘). A (2)

S = 4E° > ———i ——
Sin2 0; /2

Therefore if we wish to study off-mass shell photon-photon scatter-

‘"q at high photon masses ( - 92 2 5 GeV? ) we should increase the
;Jr;%f?\ ' en%rgy. ( Ebeom > 30 GeV) to compensate the factor'Sin?6/2
"Cabibbo et al. / /proposed a parton model for the reaction
" e++e-- hadrons. According to this model the cross section at
high photon mass is determinedby the parton-antiparton _contribu-
tions. Therefore,we may make the conjecture that at high photon

masses and energies the forward photon-photon scattering can be.

approximated by the parton-antiparton contributions /8/ . For spin
1/2 partons we would obtain : :

L 2o 2p2 . )
Oy (y*+y* - hadrons ) a=92P ; (EQ: ) oy, (}:'+ y optp ).(3) ‘

where @_ is the charge of the par{ons and “o ~* denotes a definite
helicity state of the virtual photons. In_the quark model

v 2 1 ,4 1 44 _ _2

Using the ABO in a gluon-quark model with cut-off, we can obtain
this result only in a special double limit/4/ (see Sec. ll), which

shows that we must define carefully how to reach the region of high
92, q2 and P2 . , . '
- " In"Section |l we rewiev the results obtained by the dominance
of the light cone singularities (LCS) and by the use of the ABO. In
Section IIl the contributions of spin 0 and spin 1/2 bare particles to
the process y*+y* + hadrons are calculated. Various asymptotic
regions are discussed with the help of LCS and the ABOto see under-
which conditions the parton-antiparton contributions may be regarded
as a good approximation. In Section IV we investigate the prospects
of future experimental tests. In Appendix A the invariant functions
for the process y*+y* + hadrons are defined and discussed, in Ap-
pendix ‘B we give the complete expressions for the parton-antiparton
contributions and in Appendix C the cross sectionfor the process (I)
is calculated in a double limit. ,

Il. Light Cone Kinematics -

Let us consider the amplitude of the generalized Compton
scattering with two incoming hermitian SU(3) x SU (3) currents,

with m incoming and n outgoing hadrons (see Fig. 2).

J,f’f= if'd“x o iax <p, LA | T (J;(—;'), J#G(—%)) 1 Pg.B >, (5)

where T* denotes covariant time ordered product together with
sea-gull terms, Jg is the corresponding SU(3) x suU(3) current,

q = ——;——(q, -q,), index “c’” denotes that we study the’connected mat-

rix element. We would like to find the kinematical region, where the
amplitude is controlled by the LCS of the operator products of the
currents. :
The integral obtains the main contributions from the LCS if
the phase of the exponential is large everywherebut the neighbourhood
of the light cone and if the phase of the matrix element cannot cancel

- it. To avoid large phases inthe matrix elements and to fulfil the con-

ditions required by the validity of the Wilson's expansion we must
keep the momenta of the hadrons fixed. (The Wilson expansion is
assumed to be valid between states of fixed momenta 79/ "). Due to



" the tFan:sI‘atiVOnaI" in‘va'rian'ce, however, the non-diagonal mgtri)g ele-
ments will have.large phases of type c(q; +q;)x.But this kind of
phases cannot cancel the phase of the exponential if we treat the mb-
menta of the currents q; and g, symmetrically. Therefore, we con-
jecture that the LCS will dominate the matrix element in the light
cone limit given (by definition)as
' T g e ' 2, .2
. LC lim =lim * “f’f“!zz;*” ' 97/ 9; )
E ,,»_f;an'd',all the hadron momenta - are fixed } . . < - (6)

The four-momentum_conservation requires thatPa; , Pa,, rq; ,rqp =
as their ratios to [ ¢?| remain fixed, therefore we canuse the same

arguments for the dominance of the LCS in that case as those we have

for the structure functions of the deep inelastic electroproduction.

‘In conclusion the integral (5) obtains the main contributions in the

limit (6) from the region, where o

2 o LI i=1,2). -
x‘. < Max S . (i ,h )‘ (7)
et | ~
M
We can rewrite this result usihg the light cone generalizations: of the
Wilson's expansion 710,11/ |t has been shown in papers/3.4/ thatthe

product of two local operators can be expanded at light-like separa-
- tions into a series of bilocal operators of different twist, e.g.

xX+Yy

Mg

CT(X_—)') VT (X_YI

min

A(x) B(y) =

r

) (8

i
-

where v '(xf_y”x;-y ) are bilocal operators regular at (x-y)2-0, :

_is the-twist of the local operators appearingin the Taylor-expansion

at the point (x-y)# = 0 of V7 x/ and €7 (x-y) are C-number

_—_;/-_:I';\-é_'{v:/i-s:t_;);;_I-o_c-_a-l—c_);_)eratOr is defined as the difference of its
?ime?S)O") (d) and spin(J): 7 = d-J, d is measured in mass units
- (see /4 ) S T , .

functions, which contain the LCS of the operator product. If we as-
sume éisilatational invariance at the light cone /2/" | the strength of
the LCS can be determined by investigating the dimensions of the
local operators involved. It is easy to see that

dA+dB —7‘_

Cr(x—y) = [ (x-y )% —ie ] 2 (9)

where d, and dg are the dimensions of the operators Aand B, res-
pectively. It is clear that the operator product near light-like se-
parations can be approximated by the bilocal operators of lowest
twist. Therefore the result obtained above can be reformulated as
follows: In the LC limit the amplitude (5) is controlled by the lowest
twist bilocal operators. (See Fig. 3).

In a gluon-quark model with cut-off /3/’, the matrix element of

. the time order product of the electromagnetic currents at x2-0 can

be written as

le)

. Q Q
SR ATV, (FIV, (-5 ) o, B>

g (10)
@ (4,00 1p B > 0% D (x)
vpa - B »

x F
where & denotes that the equation is valid only near the light cone,

Dr(x) = —— (6(d - —— 1, (10a)

47 7 x?

<p, . AL 0

2
P2 (x,0,+)

02 - 2
eyya (x,0) = ‘BVB'Q (X,O:"v)l-icvyaﬁ

(10b)

vpaBB = 9va IuB * gl,'gg#a 9, 9ap

. x/2

Vo (x,0,-) =] [*Z‘*?UQZ ?;lg"f*f’gz“" ® (ex/2)=(x » )1, (106)
%2

A8 0,000 = 10 (3) vy, @26 LTy — 1, (108)
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’ l;[l(x)a is the quark fleld B,l is the gluon ~field, A, s are the Gell-
Mann's matrlces g is the quark-gluon coupling constant and VOZ
and A° are the corresponding bilocal operators */

C.alculatmg the cross sections for the corresponding deep-in-
elastic processes summing up for all the hadronic final states we

obtain

: A ' S A s LC lim
do o ‘:_‘, TV#; (q,,qz,.'..) TV,#,(q,,qz )(277) 8(q +9,~ —p)ECtim] Iim n

—_— dix diy d4z eTT9x- Y",_-fp." a,a bF»'(x) afp (y) x . (12)

D +'Q? ; - ‘--02 o . :
X<PB IB |[ GV’P”B(Y ’ _2/2)1 GV a (X",Z/Z)’] [P IB ZC 4

i.e. if we can circumwent the difficulties caused by the dlsconnected
and semi-disconnected pieces (see e.g:/7?/), these cross sections
are controlled by the commutators of the bilocal operators. We note
that if the currents interact at thepoint x; , x, and y; ., v2.res-
pectively, then x=x;~x2 , y=y; =y, and z =x,+x, =y; ~ vy, .

The commutators of the bilocal operators have further singu-
larities at the various light-like separations of the coordinates of
the currents. Fritzsch and Gell-Mann/2/ conjectured, recently Gross
and Treiman have proved /3/ in a gluon-model with cut-off, that if
the points x,, x,,y, , y2 are distributed on a light-like ray, extract-
ing all the relevant LCS, we can obtain a closed algebra of the cur-
rents and the lowest twist bilocal operators.

The cross section (12) will be dominated by the contributions
of this light-like ray if having taken the LC limit now P2+ « as
'q2/ q% being fixed. To see that, we repeat the arguments given
|n "the paper/4/ If P2 4o and Pq/q2 is fixed, thenPH mut be an
infinite four-vector. The integral obtains the main contributions
‘where the phases gx, qv, Pz are f|n|te lntroducmg the Ilght—

</ 1t may happen that the current conservatlon reqmres to add

correction terms to the formulae of egs. (10) (See Ref. /30



like vector ny —q"/q we get that nx and n‘y must be equal to zero

and the scalar products gx and qy must be finite.Taking into ac- -

~ count that P 1 is an infinite four-vector we obtain that x#, y#, z¢tand -
. nH are para|le| approximately. g.e.d. To the double limit defined
,above we: refer as to GT limit: : :

6T (’imi;l = fim{ P25 o ; q’2/ q; fix }Zimv { LC fim }. . (13)

Negleétlng for a moment the disconnected contributions, in the GT
~limit we. can wrlte for the Cross sectlon (l2) (See Fig. 4). :

: GT llm“ 4 ( ) iP o
.- d(lr N ——— s f d 4x d“y d“z elalx~y) e=iPz ['S; , pvaape X
« " D, (x) a“‘u*(y)af’u (222 )«
‘( e B V04 'OA( Y 0 ) | B | (14)
¥ Xpg B | 2 +z,0,=/iPg .8 > +

¥ 15 similar iérms ,

‘where D(x) =v-4— r(x )a(xl), si is constructed by use of the pro-

) ducts of the matrix tensor and the addr’uonal I5 terms d|ffer from'm

e .each other only in the sugn of x,y and z . o
~For the process yiey* hadrons the question of dlsconnected ‘

: ‘con’mbutlons does not arise. Therefore the C-number part of the al-

gebra of bilocal operator (ABO) is measured by the GT limit of the- |

lmaglnary part of the amplltude of the forward photon-photon scatter-
mg (see Fig.5). ‘

; - Assuming - that the vacuum expecta’tlon values of the bllocal
L operators are- also dictated by a gluon-quark model = with cut-off

e we get that the parton result given by the eq. (3) can be reproduced

in the GT limit with the help of the ABO. (Fig. 5).

~“-in turn, the ABO can be tested by measuring the C-even part;

“of the Cross sechon dio /dq21 dqz d P? of the process (I) in
i ~_,the reglon o . S

 '$ ' >>: | qzl | > P‘Z >> m; (iS)



III Parton Antlparton Contrlbutlons Various Limits

| where ~/ Q4> o3 s SN
i o < > = t . spi J s
The lmaglnary part of the. amplltude of the forward photon- } _ A pa,r ons. ot =pin e ,
-photon scattering is determlned by a dlmens|onless fourth-rank ] IR T : - —-—‘———'— ; i
‘fensor(see FIQQS) y O o @ =v/l,p=P/21 , v = g q; and ’=\/V -q% q2. bemg the .
_ _ : . ' o flux of the incoming photons the functions w (o,p )iare glven in
w#v pve (9,,9,) =4n E (27)48 (P -q, ) fd“x NEEN oy Appendix B. The functions’ W (w) are as fo||ows-, '
' ' 5., ~ for, sp|n 0 partons :
x<N l T (5) (-—")|0> fd‘ye“’°*<Nir°(J(J)J (__Y_))w o , R | 4 |
. : L a0, 1 0 : Lo
A | | ; (16a) . Wer (o) = Tw(rn; (0). = (rr) (‘") = ' e (19a)
=dn [d4x d4y d4z elalx=y)eiPz <0 [‘T‘(JV‘,(_LE_Z), J (- _Z.‘ZLZ_)) 7 b SRR : b T SRR
B - S . : : . _ 0 V@ - Ty
“where T< denotes the covariant time-ordered product together with . ‘”‘r,}((f’ ) - (TS) (“’ - "5—‘ _f T gt (19¢c)
sea-gull terms, J,(x) is the electromagnetic currents of hadrons. o el L =20 ‘
Using Lorentz, gauge, P, T, PT. invariance this tensor can be ex- R W () - f,vd ? (mu-..,] ) ’ - '
panded in terms of eight real invariant functions. We choose an or- RO Tsso el = ) dE — ((—"“_‘02{_;2272 s (19d)
thogonal helicity basis, s|m|Iar to that proposed in paper /s/ P : LT e R
, ; - B ‘_ : E for spri‘n' I/Z parto'ns:
‘w#VJI,l"" (q”‘qz ) =2 E;P,#'f/' (ql'qz) v, (qf’qzz’ 9 qz)’ } | | . : ’ S v
' : : g A : 1 !~ 2 2 o
. (17) j (w) ('T/Tz, (w) =f - a il ”“’ +z%) (20a)
where : L S S SRR S JE I o
a =TT, (TT),, (TT)_,(TS) ,(TS)_,(TS) (TS), o B s ', TG
CA2W . (w) = - 2 gy L
‘The explmt form of the tensors g BMBV togetherwuth some , (T”rw). : _f, ol z2:_'dz oo (20p) -
properties of the func’uons W, (q2,q2 .9, 9, ) can be found. |n Ap— . S e T e S
_fpendlx Al : ‘ = " all the others = 0 o R : .
The parton- an’uparton contributions, for spin 1/2 and spin 0 : CL T e (20e) (o
massless partons (see Flg 6) can be expressed as follows - S R ST S
: way(qr'qz'”) JEO/Z <"Q_J>._’[, wa(w) ff’~wa (‘("’p":‘)]-.' .(IB) T, «/ Forqq,z=:0 (i =1,2) o =ias P?: « and 9292, @ o



It is obvious from egs. (18)-(20) that the spin of the parton_sis im-
portant. Since the particles are massless their contributions are
scale invariant and diverge logarithmically at - (infrared-type
divergence).. _ , : :
, We would like to see’in which asymptotic regions the parton-
~antiparton contributions (18) may be regarded as a good approxima-
_ tion for the amplitude (16). In eq. (3) we did not specify uniquely how
to reach the asymptotic region of q2, g2 and P2.In the previous
section discussing the GT limit (I3) we flave however seen that it
is very important to define the asymptotic regions uniquely.
Let us consider the following limit ’

i) LC fimit (see eq. (6)) | . (6)
Cag2w» oml, (i=12), o

. 1i) GT Iimit (see eq. (13)) | (Ié)

_qf > P2‘>> mzﬂ ’
i) A limit = lim f—q,z,—qzz,PZ-»oo ; qlz/qi, 'P2/qf fixed }

a2 P2 > m2 ’ ) ) (2”

q,. — . .
iV)Ab. ’imif = lim ’—qgv)oo R Pz/qf.fixed } lim § PZ’ —q21—>,oo ; '

i , R

. '~§22,q$/P2 fixed | ‘
- (22
P2 _g2 .. _g2s5 g2 i ( )
r — 9, ’ 9; m-_ .

v) A limit = lim § LC limit } lim { P, ; q12,q§ fixet{i »

2 mz . . (23)

2
P> ~-q; 22 .

 To see the relevance of the parton-antiparton contributions we will = -
compare them with the contributions from the LCS. T

- In section Il we have seen that in the LC limit using a gluon- -

~quark model with cut-off, the LCS can be extracted, the LC limit

. exists and we get for the W, functions - : o

12



'w,:(q,,qez,y’),_"_Cli"via Wl (w0, P2). (24),
The functions W! (w, ‘P2)-are determined by the vacuum expecta-
~ tion values of the commutators of the bilocal operators of twist 2
(see. Fig. 5) As to the parton-antiparton contributions; thew J(p,» )
functions in eq. (I8) are irrelevant because-in this I|m|t p = 0 On
the other hand we do not expect the expression (18) to be a good ap-
proximation in the LC limit since at lowvalues of P2 . the resonance
contributions are important.

In the GT limit in a gluon model with cut off the tensor
Wpv ipv (ays qz) is completely determined by its free field
LCS i.e. by the spin 1/2 parton-antiparton contributions (20), as we
have seen in the previous Section. Wenotethat for the parton-an-
tiparton contributions the GT Ilimit gives the same result as the
LC limit as a consequence of their scaling property.

Let us investigate now the A limit (see ref.”’*"). The main
difference to the GT limit is that here the limitP? +« is done first.
It might happen that the matrix elements<N|T (J(x/2) F#(-—x/Z) 0> of
eq. (16a) have large phases cancelling the phase of the exponential.

Furthermore, we are in general not allowed to use the Wilson's ex-
pansion. Therefore we cannot argue as in the case of the GT limit.
- On the other hand we can read off from the formula (16b) that the
main contributions come from the region, where ! (x-y )2|<l/|q2 |
and [z2| <1/ P2 but we cannot say that the integral obtains the
main contributions from the region, where i, y¢ and zp are
distributed on a light-like ray. This does not mean, however, that
the dominance of this region is ruled out; there are weaker argu-
‘ments for the dominance of the all LCS. Nevertheless it will be in-
teresting to compare the parton- antiparton contributions (18) in this
limit with the experiment.

Inthe A,; limit, performing first the 5 limit -q2P24 « ;

q2/ P2 and 42 flxed we can extract the LCS of theoperator
product J (x) J N (see Fig. 5) .

wl‘V.F'V'(q]fqz )‘—ll—"—" Jdxdy eiq,x elqz(z-y) x

- (25)
%0 (247, )0 (yy=x0) 01 LL, ("), U, (y), 8, (x0)1|0>6"D(x),

13



‘where @uu% is the twist 2 bilocal operator defined by eq. (IOb).
Here again we cannot argue that the integral (25) is dominated only
by the LCS of the matrix element since y and z appear in the com-
bination (z - y).Therefore we cannot say that the integral obtaines the
main contributions from the region, where x#* , y* and zH! are pa-

“rallel and distributed on alight-like ray. If we accept the b limit -

- to exist we get the usual scalingin q7 and p2/ q2, q% beingfixed
(deep-inelastic electroproduction on photon-target/15/ ); it is not
permitted, however, to assume.at. the same time, that the parton-
antiparton contributions determinethe A, ; limitof Wy, y%" sin-
ce in the bj limit they diverge (w=1).

Finally, in the Ag [limit there is no argument for the re-
levance of the LCS and the parton-antiparton contributions (see e.g.

/144_ .

In cohclusion, amongthe limits 6T, LC, A, As; and Ar- on- -

ly the GT limit is controlled by the LCS completely. It might be in-
teresting, however, to confront the parton-antiparton contributions
- with the experiment in the A and the A,; limits as well.

IV. Prospects of Experimental Tests

In the Introduction it was pointed out that the process (i) can
be used to study the imaginary part of the forward photon-photon
scattering amplitude by measuring the C-even part of its cross sec-
_ tion at high beam energies ( > 30 GeV) and at small scattering
“angles ~* ( ¢, < 20 ). Since the beam energy should be increased

considerably t_f\e experiment will be done only remotely. We cannot
investigate the high mass behaviour in the near future because of
_a more serious reason: the value of corresponding cross section
is of order 107° cm? as we will see below. : ‘

In order to see the significance of the kinematical constant
determined by the GT limit (see eq..(I5) we think worth calculating

the corresponding cross section.

; _"/ We note that the process e' e™»y 'iuhadron ¢ makes it
{)ossnble to study the Fhoton—photon scattering at the same high pho-
. ton masses using colli :

Its cross section, however, is smaller thanthose for the process (I).
The scattering of highly virtual photons canbe studied as well, using
the process ete= e*e—+ hadrons under the same kinematical con-
straints which are put on the process (I). ‘ R

14

dingbeams of lower energies ( Epeam > 3GeV).

Let us consider the C-even part of the cross section for the
process (I). It can be expressed as follows (see Fig. 1)

dio ™ T gt 1 dx dy .
, 2 n, 2e)
’dqlz dqg dP2 7 q2q?2 R NI

where x = E;/ Vs, y=5,/vs, & is defined by a Gram-determinant as
k0 okTer

k

_ Cev e ! '

menta of the electrons and M is a trace given as

A=-4s § , f , k° , f° denote the four-mo-

T (0, 0) k™ Gk ) Wy uue ey, )
3 E | (27)
= -:‘- "Fa (X:Y,Slyqlzrqzz IV) wa (,qzllqzzl v ) ’

where ¢'* and kM are the contributions of the electron lines

»(e.g.i : k.”f"i-l(“ ky vk ko =g, (ki) the coefficient func-

tions. F.  and the region of the integration R .are given in Ap- .
pendix C. - '

~ In the GT limit. we can perform the integration and obtain
simple asymptotic expression in leading order of s/ q2 . As an
illustration we give the contribution of the structure function W7
at the points where 92 ~ 44

d3oc 6a4 04‘ mZ(mZ-l)En S o Ve (o)
—~ < > w +
2 2 gp2 - . 2 g2)2 2 2 L .
dq? dq2 "dP2 . 7 (q2 q2)2 2| q2+q2] (28)

+

Note that the cross section increases Iogarithmically'with
s . At the point s = 5.10® GeV?, -q?~10GeV?, P2~ 3GeV?,
assuming resolution of 10% for Aq2/ q2 and AP?/ P2 we obtain in -
gluon quark model - o

Ao ~ 1077 cm’. (29)

15



W

If the sea-gull contributions are important, the cross section can
increase up to the value 5.10 -38 cm2

Finally we give some comments on the prospects of testmg
the ABO.

The ABO, as we have seen in Section ll, controls processes

where at least two currents with high mass are involved. Conse-
quently their cross sections will have a damping factor like

a? G a

(qzq (qf)z ‘ ,
will be smaller than 1077 cm? (1q 1%10 GeV2 , Aq?/ q%~10%).

It might be the case that the LC dominates the amplltude when on-
ly one of the currents has high mass.

This does not test however the validity of the ABO even when

we would find the predictions of ABO in agreement with the expe-

riment. Therefore the measurement of the process (1) will give us,
although remotly one of the best possibilities to test the ABO.
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at the Summer Institute in Hamburg in July 1971.
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Appendix A

In this Appendix we present an expansion of the tensor

po,p v 91.9;,) proposed (see /5/) and list some of its propertles
The invariant functions are defined as

. _ a 2
w;u/,pv ((I,:qz) —az E’,_,,,#',,'(q,,qz) wa (qf,q, v ), (A.l)
where

pe,p v’

rr ('qi,qz)=RFVRFV 4 (A.2)
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2)2 or It leads us to expect that the cross sections -

Y

.

/x

/ #V llV ’ v’ : 7 ’ :
_ Y Y g g BY_ o g
w, v’ RV u?’ v .'V
E(T” (q,.9,) = RFVRFY _R¥ RH
o (A.4)
QrQu’ . QrQY’ -
EF Y (q g )=t (I pw’, 272 M’
, —_— A.
(TS)+ 2 2 012 Qg - ( 5)
' Qr Q# L T
EP Y (g ) e L g 2292 pu o, (AB)
1" "2
(Ts) - 2 Q2 ‘ Q2
1. 2
EMVEY e ) - (Q QY R™ . q* Q RV gt ¥ RV
(Ts), 9.9 ) = ——— 19, L +Q7Q, R "+
i 0202 X
v Q7@ '
, , (A7)
+ QF QY RFY )
pv,pu’v’ 1 ‘v’ ‘ v .y
e ,q,) = (@*a” R*+ " Q" R* V- ¢ @V R*V-
Ta v Q2q? b2 P e
1 2
ot ar R (A.8)
1 2
.. Qr qr’ Q¥ QY
py, p v _ : v
St ey, - S h9)
1 2 ‘
and
Q= qf -~ — qf, Q= ql;-—VTqZV’ 9,Q,-0 (i=12);
1 72
pv__ghv o[l ov o2 ooV o2 L (e,
R g ’2[q1q1q2+q2q2 9 ~v(afay+ abal )]
y R ’ ’2— 2 2 2
. = q,qz ’ = Vv —q1 q2
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the indices T and S refer to transversal and longitudinal photons,
respectively. We notice, that the tensors E S have the pro-
pertles ’ '

CET ) s B e ) )
By use of crossing symmetry we obtain
W#V'#’V’(q',,qz) = W#’V'#V’(-q,,q2 ) (A.1)
~ and
v;a(;,;;q;,v )=+ W_ (q2q2=v ) , (A.12)

where wé have sign + for all the W, but W(rs),, and W(rs),,
‘which.are oddfunctions under crossing. Taking into account a proper-
ty of the T -product of the electromagnetic currents

fd"x» e i <NIT (4, ($) 4, (-5))10 > -

- } A3
= [d% e "qu[T(J#(é)JV (_LZ))‘1(’)> (A.13)
»v;/e obtain certain Bose-type symmetry given as
IJ.V,IJ.’V’ v , L .
W' (q,09,) = W B " (q ,q ). (A.14)

For the invariant functions this leads to symmetry in the photon mas-
ses. We can write

W (afqlv ) = W (aZa2,v ) (A.15)



for all wa’ but W__ when we obtain

(rs)!
2 2 2 ’ B
w(rs;_(qr"’z v ) o= 'w(TS)__(qz'q; v ) (A.I6)
~ that is W(r5)_must be proportional with the factor 9% - g ' .
As to the sign of W’ four of them are simply connecfed

with the total cross sections of photon-photon scattering as follows

- wTT= 16 7 lory

. (A:17)
Wers), = 1671 logg t05r ), (A.I8)
Wss= 1671 ogs . _ (A.19)

So they are positive functions, the others, however, do not have de-
finite sign.

Finally, measuring the process e +e*se” +e~ +hadrons wnth
unpolarized electron beams, the structure antisymmetric in pp”*
or/and v+’ do not contrlbute therefore by these measurementsw(rr)r,
and W(rs)r, cannot be studied.

" Appendix B

Here we give the functions W, (», p) defined by eq. (I8).
For spin O partons

J— 1 _ 2 » "
Wiplo,p) =/ dz -fl—z—--)——[pco(7-zz) -(0?-22)1 - (B.1)
. =1 (02-222 - ,_ " .

= B (1-22) ’

W{TT)(w p ) f dz - (20 (7 1/ Za)p) z2- —w(4co2—7)+p(3w2—1)]
R N PR LIL R : (B.2)

"',‘vyl_'_;_‘ _ 2~

(m(m,,),fdzfﬂ_ﬁ_f__’_,,,_v - .

B TP : & |



..__.o 1 (1_22)22 *2 (B 4) ‘
W(TS) (0,p) ’—‘_f, dz '(—a:z———z-z")—z- Qow’p -0 -p ) .
— : g2-q2 1 (1-2z2)z2 :
wo , - 1 2 ) .
.(TS)_(Q P) ‘ 21 _f, (cuz—zz)z ) (85)
' 1
W(';_S) (w,p) =-—2-1-\/w2—1 f rdz_,[(a,z_zz)(h,;)+
T -1 (w2-22)2
(B.6)
+2(7—;2) z? (1-2wp )] .
-0 ] 1 —— 1 1 2
W (0,p) = — V 02-1 dz —F*Z_ (B.7)
(rs), ©,p 5 © _fl z . :
— ' 1 .
Wis (0, p) =4 (@2-1) [ dz — 1 — 22(y22-0) (BS)
and for spin 1/2 partons (7-z7)% ' ‘
1 2
(w,p) =20 [ dz z [pw (1+22) = (0?4 22)]
-1 (cuz—zz)z : (B.9)
T ;
Wiy, (0.p) =20 [ —32— [(02-22)3+22- 220~ (1-22)2
-1 2)2
(0?-22) , (B.10)
% 1 ’
W 1

(0,p) =-do [ dz —— [(o?=2%)+(1=2 2% (0?- 221 1) ]

(rr) 1 (w?-22)2 (B.11)
=%
(rs;(w,p) —4fd2(w2_22)z[_;’("22)(w2—z2)(w—p)+zz(w—Pzz)(mz—I)l '
(B.12)
2_ 52 . .
w('l/'zs)(w,P) ALTILY f’dz [(1-2%) (0?-2")-2(w?-1) 2]
! -1 (w2-22)2 (B.13)
B (o) = 2V Tl [ de LI 2y |
roy (o) =2V @ T fdx T (aBox T s 2or ) (g gy

20

— 1 ' —_— 2) 22 . :
W rs) (w,p) ==2Vw2~1 [dz — (w2 -224+1)
s -1 (0*-22)2
. ' ! 1; 2) 22
WS{; ((:),’») = 8p (02-1) [ dz L—f—-)-i-—
-1 (w2-22)2
Appendix C
The coefficients in formula (27) are the following
2
F = —I—L [1 +-—e(7)] [T+ —5e(2)]
s? _ " 212 212
o F s g L -1 F
(rr), = "r T T3 Tt 5, TssT 7 Trr
. 4] q2q :
. 1 T2
Firr, = F‘”’ra =0
2,2 2 .
Frrs) = ———3— [e(l) +e(2) + —— e(l)e(2) ]
+ 2 2 :
; . 41 !
q
F(TS)=- ——L—z—[e(l)—e(Z)]
- 412
svalgq 4v
F(TS)T =0T _‘—'2' ] F, + Fss
* 21 Va2 q2
: 1
2 2.2
q;95,s
412
where
, 2_ 2 2 2 2
e(l) = (1-2x) 24 (1=2x) =272 %1, P 12
' S

1 (1 ~2

e(2) = e(l, xey . a2+ af )
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(B.15) .

(B.16)

(C.1)
(c;z)_ i
(C.3)
(¢.4) |
(C.S) “

(C6)

C.7)

()

(c.9)



2
)

- 2 7 2
F b=-l-f k#P=—%(2x +31)(2y +=23) 4 (x+y =1/2+

’sz e . 8 - 8§ ; . s D
Tl AL (1- _:3. _-2y)_»(y1-—r -%;-_-zx ) x
X (2% + 2y =1 = ) -+ similar terms :

‘ s - » cos : (C.l)

k =k‘«k',+k'k _"-' , (k)
CwT et

The reglon of mtegratlon is determlned by the foIIowmg condltlons

i) Xy >0 ‘=1~ 2, y = 1-2
il) . ) X - 5—1_, - ; y < - — 2
iii) | A -_>i'}'o
| ._iv),si'n(':"e o < 2°° g
TI-=-—-—,—q——-’-—<;7,.and ll,_n_L«l

. i e : L x
i fﬁiTaklng into account the condltlons iv) ‘and that P2 << | g2 the

-~ condition -iii* can be studled at P2 0 in flrst order of 7],s Iin this
: _apprOX|mat|on we obtaln o ,

,~xy(2x+2y—1+—)+(x+ )(y+ )(2x+2y -1 +_P_)

:s . K s
,—2xyf(Ax+'—q—?') (,y.+,L;2) -2 (x +—'l’)2g-x.2(y +32)2 _(c2)
| s s ot st T ‘

e -—4’-'(2'x +2y <1+ PYs )io
"TXY [‘n,+n2.—(7,+x) (77 +y")]'>01'

The boundary of the physmal reglon |n x" and y‘ is a hyperbola
As 0 thls reglon goes to zero as S



T - Jd'dy’ =L o (C.lz)'. "

’(smce the main contrlbutlons come from the reglon where x’y -'f
- ~v77+7, later on we assume that 5, -7, ).
Keeplng only the Ieadlng terms in1°/ywe obtam that

dx dy
vA

J F ~ C fn i/;; B  A‘ (C.13)

for all the non-zero coefficients, e.g.

_ _ R C.l
Cry= G5 = c(sr)+ = bno? (02-1) ' (; 14)
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Fig. 2. Generalized Compton amplitude.
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Fig. 3. In the LC limit the generallzed Compton amplitude is con- .
trolled by the matrlx elements of the bilocal operators:
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Fig. 4. In the GT limit the cross sections of the relevant deep-in-
elastic processes are determined by the matrix elements of the bi-
local operators (neglecting the disconnected contributions).
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Fig. 5. Forward photon-photon scattering and the light cone singu-
larities. '
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Fig. 6. Parton-antiparton final states. a) spin 1/2 parton; b) spin

0 parton.



