M-65
ОБЪЕДИНЕННЫЙ
ИНСТИТУТ
ядЕРНыХ ИССЛЕДОВАНИЙ Дубна $329 / 2-72$

E2 - 6180

M.Micu

BOUNDS FOR K 1_{3} DECAY PARAMETERS

1971

E2 - 6180

M.Micu ${ }^{\times /}$

BOUNDS FOR K ${ }_{13}$ DECAY PARAMETERS

Submitted to Nuclear Physics

Мику М.
Оrраничения для параметров распада $K_{\ell з}$
Определен экстремум интеграла $\int_{7}^{\infty} f(x)|F(x)|^{2} d x$, если значения функции $F(x)$ известны в трех заданных точках. Результат применяется к анализу $K_{\ell_{3}}$ распада, причем функция $F(x)$ выражается через $\psi^{(}\left(q^{2}\right)+f\left(q^{2}\right) q^{2 /\left(m_{k}^{2}-m_{\pi}^{2}\right)}$, где $f_{+}\left(q^{2}\right)$ есть формфакторы, описываюшие матричный элемент от дивергенций несохраняюшего странность векторного тока.

Препринт Объединенного института ядерных исследований. Дубна, 1971

Micu M.

Bounds for $K_{\ell_{3}}$ Decay Parameters

The extremum of the integral $\int_{f}^{\infty} f(x)|F(x)|^{2} d x$, is determined for the case when the values taken by the function $F(x)$ at three points are known. The result is applied to the $K_{\ell_{3}}$ problem, the function $F(x)$ being replaced by th ϕ
 strangeness changing vector current.

Preprint. Joint Institute for Nuclear Research. Dubna, 1971

I. Introduction

The present experimental data concerning the parameters
 certain, large experimental errors being reported for the parameters λ_{+}and ξ. For this reason, it would be useful to restrict, in some way, through theoretical consideration, the possible values of these parameters.

Firstly, Li and Pagels $/ 3 \%$, using the fact that the Fourier transform $\Delta\left(q^{2}\right)$ of the vacuum expectation value $\langle 0| D^{+}(x) D^{-}(0)+|0\rangle$ is known '4 at the point $9^{2}=0$ obtained that $\left|12.3 \lambda_{+}+\xi\right| \leq 0.29$. Later Okubo ${ }^{/ 5 /}$ and Li and Pagels $/ 6$, using the method of Meiman $/ 7$, gave a bound for the parameter $f_{+}(0)$. The method was improved by Okubo $/ 8 /$ who obtained a lower bound for $\Delta(0)$ in terms of the form factor $f_{+}\left(q^{2}\right)+f_{-}\left(q^{2}\right) q^{2} /\left(m_{K}^{2}-m_{\pi}^{2}\right)$ and of an arbitrary number of its derivatives all taken at zero momentum transfer.

Recently Radescu/9/, by using a method based on a direct application of the principle of maximum for holomorphic functions, has obtained new bounds and rederived the results from papers $/ 5,6 /$.

The Gallan-Treiman relation / 10 / gives for zeromass mesons the form factor of divergence of strangeness changing vector current at $\mathbf{q}^{2}=\boldsymbol{m}_{k}^{2} \quad$ momentum transfer. For physical $\pi \mathrm{me}-$ son this formula is
$f_{+}\left(m_{K}^{2}\right)+f_{-}\left(m_{K}^{2}\right)=\frac{f_{K}}{f_{T}}+$ on mass shell corrections,
where the unknown on shell corrections are expected to be of order m_{π}^{2} / m_{k}^{2}. Since the experimental errors assigned to λ_{+} and ξ and the errors involved in the evaluation of $\Delta(0) / 8 /$ are larger than these unknown on shell corrections, it would be useful to take into account eq. (I) in a bound formula.

The purpose of this paper is twofold, firstly, to rederive by using the method of Meiman $/ 7 /$, all known bounds $/ 5,6,9$ /
secondly to improve these bounds by taking into account the Gal-lan-Treiman formula in the form of eq. (1). Section 2 deals with the form factor for $K_{\ell_{3}}$ decay and with the vacuum expectation value giving the basic inequality from which all the bounds are obtained. In section 3 we obtain a formula for the bound when the form factor is known at three points. In section 4 the comparison with the experimental data and with the result from papers $15,6,9 /$ is made.
2. Form Factors and Vacuum Expectation Value

The Cabibbo theory describes leptonic decays of \boldsymbol{K} mesons in terms of the form factors $f_{ \pm}\left(q^{2}\right)$ defined by the matrix elements of strangeness changing vector currents
$<\pi(p) \left\lvert\, v_{\mu}(0)\left[\bar{K}^{0}(k)\right\rangle=-\frac{1}{\sqrt{2}}\left[f+\left(q^{2}\right)\left(k_{\mu}+p_{\mu}\right)+f\left(q^{2}\right)\left(k k^{-} p_{\mu}\right)\right]\right.$, where \boldsymbol{k} and \boldsymbol{p} represent the momentum of \bar{K}^{0}, respectively, π^{+}meson and $q^{2}=(k-p)^{2}$ is the square of momentum transfer.

The form factor $\left(m^{2}-m_{\pi}^{2}\right) f\left(q^{2}\right)$ of the divergence of vector currents $D^{ \pm}(x)=\partial_{\mu} \vee \vee_{\mu}^{ \pm}(x) \quad$ used in this paper is expressed in terms of the form factors $\quad f_{ \pm}\left(q^{2}\right)$ as

$$
\begin{equation*}
f\left(q^{2}\right)=f_{+}\left(q^{2}\right)+\frac{q^{2}}{m_{K}^{2} m_{\pi}^{2}} f\left(q^{2}\right) \tag{3}
\end{equation*}
$$

The experimental data concerning these form factors are presented as the first two terms in their series expansion around

$$
\begin{equation*}
q^{2}=0 \quad \text { value } \quad f_{ \pm}\left(q^{2}\right)=f_{ \pm}(0)\left[1+\frac{q^{2}}{m_{\pi}^{2}} \lambda\right] \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
f\left(q{ }^{2}\right)=f+(0)\left[1+\frac{q^{2}}{m_{K}^{2}-m_{\pi}^{2}}\left(12.3 \lambda_{+}+\xi\right)\right] \tag{5}
\end{equation*}
$$

where $\xi=f(0) / f_{+}(0)$.
In order to obtain bounds for these parameters it is necessa$r y$ to introduce the vacuum expectation value of the time ordered product $(D+x) D(0))_{\text {, }}$ whose Fourier transform is $\Delta\left(q^{2}\right)$
$\left.\Delta\left(q^{2}\right)=-i \int e^{1 q \times 0 \mid\left(D^{+}(x)\right.} D^{-}(0)\right)+0 D d^{4} x=\int \frac{p\left(q^{\prime 2}\right)}{q^{\prime 2}-q^{2}} d q^{\prime 2}$
with the spectral function $\rho\left(q^{2}\right)$ given by

$$
\begin{equation*}
\left.\rho\left(q^{2}\right)=(2 \pi)^{3} \sum_{n}<0\left|D^{+}(0)\right| n\right\rangle\langle n| D(0)|0\rangle \delta\left(q-p_{n}\right) . \tag{7}
\end{equation*}
$$

If we retain in eq. (6) only π, K system as intermediate state $|n\rangle$ the spectral function $\rho^{\pi \kappa}\left(q^{2}\right)$ is given by

$$
\begin{equation*}
\rho^{\pi K}\left(q^{2}\right)=\frac{3}{64 \pi^{2}} \frac{1}{q^{2}}\left[q^{2}-\left(m_{K}+m_{\pi}\right)^{2}\right]^{1 / 2}\left[q^{2}-\left(m_{K}-m_{\pi}\right)^{2}\right]^{1 / 2}\left[\left(m_{K}^{2}-m_{\pi}^{2}\right) f\left(q^{2}\right)\right]^{2} \tag{8}
\end{equation*}
$$

The contribution of each intermediate state in eq. (7) being positive, it results

$$
\begin{equation*}
p\left(q^{2}\right) \triangleright p^{\pi}{ }^{K}\left(q^{2}\right) \tag{9}
\end{equation*}
$$

Combining this resuit with eqs (6) and (8) we find the inequality

$$
\begin{equation*}
\frac{\Delta(0)}{\left(m_{K}^{2}-m_{\pi}^{2}\right)^{2}}>\frac{3}{64 \pi^{2}} \int_{\left(m_{K}+m_{\pi}\right)^{2}}^{\infty} \frac{d q}{q^{4}}\left[q^{2}-\left(m_{K} m_{\pi}\right)^{2}\right]^{1 / 2}\left[q^{2}-\left(m_{K}-m_{\pi}\right)^{2}\right]^{1 / 2}\left|f\left(q^{2}\right)\right|^{2} \tag{10}
\end{equation*}
$$

It is convenient to rewrite it, by a change of variable, in the form

$$
\begin{equation*}
\frac{\Delta(0)}{\left(m^{2}-m_{\pi}^{2}\right)^{2}}>\frac{3}{64 \pi^{2}} \int_{1}^{\infty} \frac{d x}{x^{2}}(x-1)^{1 / 2}\left(x-\omega^{2}\right)^{1 / 2}|F(x)|^{2} \tag{II}
\end{equation*}
$$

where

$$
\begin{gather*}
\omega=\frac{m_{K}-m_{\pi}}{m_{K}+m_{\pi}}=0.57, \tag{I2}\\
F(x)=f\left(\left(m_{K^{+}} m_{\pi}\right)^{2} x\right) . \tag{I3}
\end{gather*}
$$

Mathur and Okubo /4/, using the symmetry breaking Hamiltonian, introduced by Gell-Mann, Oakes and Renner /11/ obtained a value for $\Delta\left(q^{2}\right)$ at $q^{2}=0$ momentum transfer

$$
\begin{equation*}
\Delta^{1 / 2}(0)=1.01 \mathrm{~m}_{\pi} \mathrm{f}_{\pi} \tag{14}
\end{equation*}
$$

but other evaluations $/ 8$ / give larger values. For this reason it is convenient to write

$$
\begin{equation*}
\Delta^{1 / 2}(0)=1.01 m_{\pi} f_{\pi} M, \tag{I5}
\end{equation*}
$$

where M shows the departure from the value (14). All evaluations from paper $/ 8 /$, give M smaller than 2.3.

The present experimental data concerning the decay parameters are:

Chounet and Gaillard/1/report

$$
\begin{align*}
& \lambda_{+}=0.045 \pm 0.015 \\
& \xi=-0.85 \pm 0.20 . \tag{I6}
\end{align*}
$$

Collaboration $/ 2 /$, with fixed λ_{+}finds the value for

$$
\begin{align*}
& \lambda_{+}=0.029 \text { as world average value, } \\
& \xi=-0.65 屯 0.13 . \tag{17}
\end{align*}
$$

X2 Collaboration $/ 2 /$, with λ_{+}free parameter, gives

$$
\begin{align*}
& \lambda_{+}=0.060 \pm 0.019, \\
& \xi=-1.0 \pm 0.5 . \tag{18}
\end{align*}
$$

At zero momentum transfer $f_{+}(0)$ has a value between 0.85 and 0.95. From experimental data $/ 1 /$ we have

$$
\begin{equation*}
\frac{f_{K}}{f_{\pi} f_{+}(0)}=1.28 \tag{I9}
\end{equation*}
$$

in the approximation of a single Cabibbo angle.

3. Derivation of Bound Formula

The integral (II) for which it is necessary to find a lower bound has the form

$$
\begin{equation*}
I=\frac{1}{\pi} \int_{1}^{\infty}\left(x+a_{1}\right)^{a_{1}} \ldots\left(x+a_{n}\right)_{n}^{a}|F(x)|^{2} d x \tag{20}
\end{equation*}
$$

where it is supposed that the integral exists and the integrand is positive. In addition $F(x)$ is a function satisfying the following conditions:
analytic in all x plane except for a cut from 1 to ∞ bounded at infinity by some power of $x^{1 / 2}$, nonzero on the cut excepting a finite number of points, its value is known at some points x_{1}

The conformal transformation

$$
\begin{equation*}
z=-\frac{t-i}{t+i} \tag{2I}
\end{equation*}
$$

with

$$
\begin{align*}
& t=(x-1)^{1 / 2} \tag{22}\\
& \operatorname{tg} \frac{\theta}{2}=t \tag{23}
\end{align*}
$$

brings the cut plane into the interior of the unit circle $|\mathrm{z}|<1$ and the integral (20) becomes

$$
\begin{equation*}
I=\frac{1}{\pi} \int_{-\pi}^{\pi} p(\theta)\left|G\left(e^{i \theta}\right)\right|^{2} d \theta, \tag{24}
\end{equation*}
$$

where

$$
\begin{equation*}
G\left(e^{1 \theta}\right)=F(x) \tag{25}
\end{equation*}
$$

$$
\begin{equation*}
p(\theta)=\frac{1}{2}|t|\left(t^{2}+1\right)\left[1+a+t^{2}\right]^{a} \ldots \ldots\left[1+a+t^{2}\right]^{a} n . \tag{26}
\end{equation*}
$$

According to ref. $12 /$ the function $G(z)$ can be developed in a series of orthogonal polynomials $P_{n}(z)$

$$
\begin{equation*}
G(z)=\sum_{n=0}^{\infty} G_{n} p_{n}(z), \tag{27}
\end{equation*}
$$

where the coefficients G_{n} are given by

$$
\begin{equation*}
G_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} p(\theta) p_{n}^{*}\left(e^{i \theta}\right) G\left(e^{i \theta}\right) d \theta \tag{28}
\end{equation*}
$$

because the polynomials $p_{n}(z)$ are chosen to satisfy

$$
\begin{equation*}
\int_{-\pi}^{\pi} p(\theta) p^{*}\left(e^{i \theta}\right) p_{n}\left(e^{\theta}\right) d \theta=2 \pi \delta_{m n} . \tag{29}
\end{equation*}
$$

In terms of the coefficients G_{n}, the integral (24) takes the form of a series

$$
\begin{equation*}
1=2 \sum_{n=0}^{\infty} G_{n}^{*} G_{n} . \tag{30}
\end{equation*}
$$

When we look for the extremal value of the right-hand side of eq. (30) we must take into account that the function not arbitrary but it takes some value g_{i} at the points z_{i} i.e.

$$
\begin{equation*}
\sum_{n=0}^{\infty} G_{n} p_{n}\left(z_{1}\right)=g_{1}, \tag{3I}
\end{equation*}
$$

where the index i takes the values 0,1 , and 2 . We restricted ourselves to three points because the experimental data for the form factor $f\left(q^{2}\right)$ are not more than three.

The values G_{n} for which the extremum of the right-hand side of eq. (30) holds are obtained by using the Lagrange method, multiplying by λ, the relations (31), adding them and their complex conjugate relations to eq. (30), and equating to zero the derivative with respect to G_{n} and G_{n}^{*} of the result. Thus one obtains

$$
\begin{equation*}
G_{n}=\sum_{l} \lambda_{1} p_{n}(z ;) . \tag{32}
\end{equation*}
$$

The Lagrange multipliers λ_{i} can be found by introducing the values (32) into eqs (31) and finally a linear system of equations for unknown $\quad \lambda_{1}$ is obtained. The coefficients appearing in these equations are of the form $\sum_{n=0}^{\infty} p_{n}^{*}\left(z_{i}\right) p_{n}\left(x_{k}\right)$ and it can be expressed in terms of the weight function $p(\theta)$ from eq. (26) $/ 12 /$ according to

$$
\begin{equation*}
\sum_{n=0}^{\infty} p_{n}^{*}(a) p_{n}(z)=[(1-a * z) D *(a) D(z)]^{-1} \tag{33}
\end{equation*}
$$

where

$$
\begin{equation*}
D(z)=\exp \left[\frac{1}{4 \pi} \int_{-\pi}^{\pi} \log p(\theta) \frac{e^{1 \theta}+z}{e^{1 \theta-z}} d \theta\right] \tag{34}
\end{equation*}
$$

For the particular form (26) of weight functions $p(\theta)$ we have

$$
\begin{equation*}
\left.D(z)=\sqrt{2}(1-z)^{1 / 2}(1+z)^{-\frac{3}{2}-\sum_{i=1}^{n} a_{i} \prod_{i=1}^{n}[1-z+(1+z)} \sqrt{1+0}\right] . \tag{35}
\end{equation*}
$$

If we take $z_{0}=0, z_{1}$, a and $z_{2}=b$, where a and b are on the real axis inside the unit circle, the extremal value $I\left(g_{0}, g_{1}, g_{2}\right)$ is

$$
\begin{align*}
\frac{1}{2} I\left(g_{0}, g_{1}, g_{2}\right)= & \gamma_{0}^{2}+(1-a b)\left[\frac{\left(1-a^{2}\right)\left(1-b^{2}\right)}{a b(a-b)^{2}}\left(\gamma_{1}-\gamma_{2}\right)^{2}+\frac{1-b^{2}}{a b^{2}(a-b}\left(\gamma_{2}-\gamma_{0}\right)^{2}-\right. \\
& \left.-\frac{1-a^{2}}{a^{2} b(a-b)}\left(\gamma_{1}-\gamma_{0}\right)^{2}\right], \tag{36}
\end{align*}
$$

where

$$
\begin{equation*}
y_{1}=D\left(x_{1}\right) g_{1} \tag{37}
\end{equation*}
$$

In the limit $b=0$ the extremal (36) transforms into the extre$\mathrm{mal} /\left(g_{0}, g_{0}^{0}, g_{j}\right)$ that refers to the case when we know the function $g(z)$ at the points $z_{0}=0, z_{1}=a$ and its derivative g_{0}^{\prime} at the point $z_{0}=0$

$$
\begin{equation*}
\frac{1}{2} l\left(g_{0}, g_{0}^{\prime}, g_{1}\right)=\gamma_{0}^{2}+\frac{1}{a^{2}}\left[\gamma_{0}^{\prime}+\frac{1-a^{2}}{a}\left(\gamma_{0}-\gamma_{1}\right)\right]^{2}+\frac{1-a^{2}}{a^{2}}\left(\gamma_{0}-\gamma_{1}\right)^{2}, \tag{38}
\end{equation*}
$$

where

$$
\begin{equation*}
\gamma_{0}^{\prime}=\frac{d}{d z}\left(\left.D(z) G(z)\right|_{z=0} .\right. \tag{39}
\end{equation*}
$$

If in the extremum (38) the derivative g_{0}^{\prime} is not known its minimum value with respect to g_{0}^{\prime} gives the extremum $I\left(g_{0}, g\right)$ when we know the function $G(z)$ at two points

$$
\begin{equation*}
\frac{1}{2} I\left(g_{0}, g_{1}\right)=\gamma_{0}^{2}+\frac{1-a^{2}}{a^{2}}\left(\gamma_{0}-\gamma_{1}\right)^{2} \tag{40}
\end{equation*}
$$

In the limit $a=0$ the extremum (38) becomes

$$
\begin{equation*}
\frac{1}{2} I\left(g_{0}, g_{0}^{\prime}, g_{0}^{\prime \prime}\right)=\gamma_{0}^{2}+\gamma_{0}^{2}+\frac{1}{4} \gamma_{0}^{\prime 2} \tag{41}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\frac{1}{2} I\left(g_{0}, g_{0}^{\prime}\right)=\gamma_{0}^{2}+\gamma_{0}^{\prime 2} \tag{42}
\end{equation*}
$$

when the second derivative $g_{0}^{\prime \prime}$ is not known. Taking the minimum of eq. (42) for $a_{0} g_{0}+\beta g_{0}^{\prime}$ fixed, one obtains the extremum

$$
\begin{equation*}
I\left(\alpha g_{0}+\beta g_{0}^{\prime}\right)=2\left|\alpha g_{0}+\beta g_{0}^{\prime}\right|(D(0))^{2}\left[\left(a+\beta \frac{D^{\prime}(0)}{D(0)}\right)^{2}+\beta^{2}\right]-1 \tag{43}
\end{equation*}
$$

which gives for $a=1, \beta=0$
and

$$
\begin{equation*}
I\left(g_{0}\right)=2 g_{0}^{2}(D(0))^{2} \tag{44}
\end{equation*}
$$

$$
\begin{equation*}
I\left(g_{0}^{\prime}\right)=2 g_{0}^{2}(D(0))^{2}\left[1+\left(\frac{D^{\prime}(0)}{D(0)}\right)^{2}\right]^{-1} \tag{45}
\end{equation*}
$$ for $a=0, \beta=1$.

4. Application to $K_{\ell_{3}}$ Decay Parameters

Bounds on the $K_{\ell_{3}}$ decay parameters are obtained from ineq. (11) when its right-hand side is replaced through one expression from $(38),(40)-(45)$. The form of the function $D(z)$ corresponding to the integral (11) is obtained from eq. (35).

$$
\begin{equation*}
D(x)=\frac{1}{2 \sqrt{2}} \frac{1-z}{\sqrt{1+z}}\left[1-z+(1+z) \sqrt{1-\omega^{2}}\right]^{1 / 2} . \tag{46}
\end{equation*}
$$

In the bound formulae $D(z)$ appears in the following combinations

$$
\begin{align*}
& D(0)=\frac{1}{2 \sqrt{2}}\left(1+\sqrt{1-\omega^{2}}\right)^{1 / 2}=0.477 \tag{47}\\
& \frac{D^{\prime}(0)}{D(0)}=-\left[1+\left(1+\sqrt{1-\omega^{2}}\right)^{-1}\right]=-1.55, \tag{48}
\end{align*}
$$

$$
\begin{equation*}
\frac{D(a)}{D(0)}=0.61 \tag{49}
\end{equation*}
$$

where a is the point corresponding to $\boldsymbol{q}^{2}=m_{K}^{2}$ according to eq. (21)

$$
\begin{equation*}
a=0.235 . \tag{50}
\end{equation*}
$$

The quantities g_{0}, g_{0}^{\prime} and g_{1} are:

$$
\begin{align*}
& g_{0}=f(0) \tag{5I}\\
& g_{0}^{\prime}=\frac{4}{\omega} f_{+}(0)\left(12.3 \lambda_{+}+\xi\right) \tag{52}\\
& g_{1}=1.28 f_{+}(0)+\text { on mass shell corrections. } \tag{53}
\end{align*}
$$

The extremum (44) gives the bound first obtained by Okubo/5/and later by Li and Pagels $/ 6$ / and Fladescu /9/

$$
\begin{equation*}
\frac{\Delta^{1 / 2}(0)}{m_{\mathrm{K}}^{2}-m_{\pi}^{2}}>\frac{1}{16} \sqrt{\frac{3}{\pi}(1}+\sqrt{\left.1-\omega^{2}\right)^{1 / 2}}\left|t_{+}(0)\right| \text {. } \tag{54}
\end{equation*}
$$

According to eqs (15) and (47), relation (54) becomes

$$
\begin{equation*}
M \geq\left|f_{+}(0)\right| . \tag{55}
\end{equation*}
$$

The extremum (45) gives an improvement of the bound found in paper ${ }^{/ 3 /}$ and now it is

$$
\begin{equation*}
M \geq \frac{4}{\omega}\left\{1+\left[1+\left(1+\sqrt{1-\omega^{2}}\right)^{-1}\right]^{2}\right\}^{-1 / 2} \tag{56}
\end{equation*}
$$

The extremum (38) gives the new bound

$$
\begin{align*}
& \frac{\omega a}{4}\left[\frac{M^{2}}{f^{2}(0)}-1-\frac{1-a^{2}}{a^{2}}\left(1-1.28 \frac{D(a)}{D(0)}\right)^{2}\right]^{1 / 2} \geq \tag{57}\\
& \left.\geq 112.3 \lambda_{+}+\xi+\frac{\omega}{4}\left[\frac{D^{\prime}(0)}{D(0)^{+}} \frac{1-a^{2}}{a}\left(1-1.28 \frac{D(a)}{D(0)}\right)\right] \right\rvert\,
\end{align*}
$$

where the left-hand side is smaller than 0.1 for all values of $\mathrm{M} / 8 /$. The right-hand side is $12.3 \lambda_{+}+\xi-0.09$ but when the on mass shell corrections of order 10% are added to eq. (53) the term - 0.09 must be replaced by some value in the interval 0.04 to - 0.16. Finally we have

$$
\begin{equation*}
-0.06 \leq 12.3 \lambda_{+}+\xi \leq 0.26 . \tag{58}
\end{equation*}
$$

This bound can be improved firstly, giving for M a realistic value, not the largest one as we did in the expression (58), and secondly, by evaluating the on shell corrections to the GallanTreiman relation (I).

The bound corresponding to the extremum (42) can be obtained from the bound (57) in the limit $a=1 \quad$. This bound was discovered first by Okubo $/ 8 /$.

> References
I. L.M. Chounet and M.K. Gaillard. Phys.Letters, 32B, 505 (1970).
2. X2 Collaboration, Phys.Rev., D3, 10 (1971).
3. L.F. Li and H. Pagels. Phys.Rev., D3, 2191 (1971).
4. V.S. Mathur and S. Okubo. Phys.Rev., 175,2195 (1968).
5. S. Okubo. Phys.Rev., D3, 2807 (1971).
6. L.F. Li and H. Pagels. Phys.Rev., D4, 255 (1971).
7. N.N. Meiman. J.E.T.F., 44, 1288 (1963).

English Translation, JETP, 17, 830 (1963).
8. S. Okubo. Preprint UR-875-342 (1971).
9. E.E. Radescu. Phys.Rev., to be published.
10. C.G. Gallan and S.B. Treiman. Phys.Rev.Letters, 16; 153 (1966).
II. M. Gell-Mann, R.J. Oakes and B. Renner. Phys.Rev., I75, 2195 (1968).
12. G. Szego. Orthogonal Polynomials. Chapters II and I2, Am. Math. Soc,, 1959.

> Received by Publishing Department on December 21, 1971.

