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Investigation of the High Energy Behaviour 
.of the "Meson-Nucleon" Scattering Amplitude 
·1n Scalar Model by Functional Method 

The high energy "meson-nucleon" scattering amplitude 
is investigated in the scalar model £n, = g i/1 2

¢ by the 

functional method. The sum of the ~nfinite class of 
diagrams in which the "meson" interactswith the "nucleon" 
turning into a virtual "nucleon-antinucleon" pair can be 
presented in a modified eikonal form. 
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Recently the covariant perturbation theory has successfully 

been us~d in high energy physics. Although the problem of the con­
vergence of the renormalized perturbation series is open the sum­
mation of certain classes of the Feynman graphs describing the 
high energy particle scattering is carried out. The choice of some 
or other· infinite series of diagrams is based on a preliminary in­
_vestigation of the asymptotics of the characteristic Feynman graphs 
of this series or on the comparison of the final result with experi­

ment. The investigation along this lines has a claim on obtaining 
a physical picture of the high energy interaction in the framework 
of the notions of the usual field theory; In this field there are va­
rious methods for investigating the asymptotic behaviour of some 
Feynman graphs and for summing them. The following methods 

appear to be the most known ones. 
The approach based on the Feynman a -parametrization and 

the Mellin integral transformation was used by Efremov 111, Pol­
kinghorne/2/ et al. to obtain the universal rules for determining the 
asymptotics of the Feynman graphs in various filed theory models. 
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This method was found to be convenient for summing the contribu­

tions of some graphs aimed at the study of the analytic properties 

of the scattering amp I itude in the complex plane of the angular mo­

menta 131 and, consequently, in the high-energy asymptotic domain. 

In some cases, it is possible to simplify the calculation of 

the asymptotics of the Feynman . integrals by using the Sudakov's 

technique based on the expansion of the virtual momenta of integ­

ration over the high-energy particle momenta. This method has 

been used to consider many processes of quantum electrodyna­
mics/5/. 

Many studies are performed by means of the infinite momen­

tum frame/6/_ This approach may beviewedasthe choice of a mo­
re convenient Lorentz co-ordinate system. 

On the basis of the study of the scattering amplitude, in the 

framework of perturbation theory, Cheng and wu/7/ have proposed 

an "impact" picture of high-energy processes and, hence, modi­
fied Feynman rules. 

The method of functional integration is also extensively used 
in the investigation of high-energy scattering amplitudes/8/. To 

estimate the functional integrals a special approach has been sug­

gested which is well demonstrated from the physical point of view 

in the region of high energies and smal I momentum transfer and 

named the straight-line path approximation 191 . The important 

advantage of this approach compared with the above-mentioned me­

_thods is the possibility of obtaining immediately, in a closed form, 
the sum of the-considered class of diagrams. 

A 

It should be noted that so far al I the enumerated methods,but 

the ti rst one, have no fundamental mathematical grounds and in these 

I ines only fragmentary results have been obtained I 10/ . 

These methods have been used to sum several infinite clas­

ses of perturbation diagrams. On the basis of these results the 

high-energy interaction of "nucleons" can be represented as fol­

lows. In the first approximation the scattered "nucleons" behave 

I ike point ones and the interaction between them is described by 

the Yukawa potential. In perturbation theory, this is due to the lad­

der and cross-ladder diagrams in the s -channel (s ➔ =). The 

sumn:iation of these graphs results in a quanta I eikonal formula /8/. 

If we digress from the nucleon spin and will consider the exchange 

of only scalar mesons (model £. = gtjJ 2 cp ), then the scattering 
,nt 

amplitude will behave like a constant at high energies. The total 

cross section decreases as -~ and in the entir;;ikonal formula 
s 

only the Born term is predominant. In these respects, the model 
* 2 

with vector exchange f. = ; g : A ifJ a ifJ + g2, A ifJ * t/,! is more sa-
'"' µ ~l µ 

tisfactory. In this model the total cross section tends to a constant 

if we restrict ourselves totheconsiderationofvarious ladder diag­
rams /11/ . 

It was found that the eikonal picture of the .interaction holds 

for a more comp I icated_ exchange mechanism too 1121 (exchange of 

quanta of two types). This leads to a change in the effective potenti­

al, it becomes smoother at small distances. 
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In the framework of the scalar model, further investigations 
have given results which make it possible to consider of impor­
tance not the exchange of virtual mesons but the exchange of more 
complicated systems having the Regge behaviour ("multitower" 
exchange, exchange of reggeons). It is characteristic that this 

type of exchange may be dominant only for large values of the in­
teraction constant. The sum of ihe diagrams with such an exchange 

leads to the Regge-eikonal representation for the scattering amp Ii­
tude. /13/ . The importance of this result is as follows. Firstly, it 
confirms, in the framework of the field theory, the hypothesis on 
the presence of cuts in the Regge plane. Secondly, the reggeon ex­
change, even in the caseofscalarparticles, leads to the total cross 
section which increases with increasing energy: a ' - (Ins) 

2
and does 

not fall ~s anegativepowerof s contrarytothe case of the simple 
meson exchange. The remarkable feature of such a complex exchan­
ge is that Froissart bound is just saturated. 

The scattering of "nucleons" may be considered in this case 
as diffractional, each individual nucleon behaves like a black ball 

the radius of which increas~s logarithmically with energy. 

The account of the radiative corrections to the ladder diagrams 
with both the simple meson exchange and the Regge exchange leads 
to an additional space distribution of the nucleons within a distance 
of order_!_ ( m is the nucleon mass). In the scattering amplitude 
there app:ars in this case a factor ea, 1141 

The explanation of the experimental data by the models ob­
tained from the above-mentioned methods is g~ven in refs 115/ . 

··-

6 

t 
). 
;1. 
I 

II 

The study of the "meson-nucleon" scattering in perturba­
tion theory shows that in these processes of importance must be 
diagrams in which the "meson" turns into a virtual "nucleon-an­

tinucleon" pair, as is shown in Fig. I, ref. 1161 

f, :Ci><L 9, 

f2. , 91. 

Fig. I 

Next, in the framework of the scalar model f ;n,, = gij,2 ¢ we 
consider the high-energy "meson-nucleon" scattering using the 
functional integration and the straight-line path approximation/ 9/. 
We restrict ourselves to the summation ofthediagrams of the type 

presented in Fig. I x/. 
The general method of constructing the "meson-nucleon" am­

plitude in the framework of the functional approach is given in 
ref/ 17 1. In the present case it is more· convenient to perform 
calculations by another scheme. We first construct the "meson­
nucleon" Green function corresponding to the class of diagrams 

considered 

x/ In the paper by Cheng and Wu, the importance of the diag­
rams of this type in the sixth order in the interoctiqn constant was 
shown for the case of the vector particle playing the role of "me­
son" ( y -quantum, P -meson). Considering tho some diagrams in 
the framework of the scalar model we are intorostod in the struc­
ture of the scattering amplitude as a whole, at s , (p

1 
+ p

2 
)2 ➔ oo. 
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G (q,q /p p }-g2[ l~ d4 -iq1xl-iq2x2+ iplx31-ip x 

I 2 J ' 2 -- k= 
1 

xk e 2 4 

I ; 4 d4 i5 C i5 I 1 
exp - - rr d X y --- D ( X -Y) ) G ( X , x, ; ,;; ) X 

2 i5¢(x) o·¢ (y 3 

x G ( x
1 

, x 
3 

I ¢ ) G ( x 2 , x 4 1 cf; J ! ¢ = 0 • 

whereG(z
1

, z
2
i ¢ Jis the "nucleon" Green function in the external 

classic field ¢ . By means of the functional integral this function 

can be represented as fol lows 1181: 

00 -iTml 
G ( z , z I rf, )=i r d; e 

1 2 · 
0 

f (4) 
t- 2 v(7]) dT/) I i5 (z

1 
-Z 

0 

rr 4 r 
I l <JI' ] 

0 

; 

; 

exp l ; g [ d (: ¢ ( z 
I 

0 

2 
+-2[v(17)d17), 

0 
where 

b 

[i V ] b 
exp l - ; £ vi ( 11 J d 71 I o4 v 

a b 
r exp I -i r 112 ( TJ) d T/ I o4 V 

a 

After substituting (2) in (I) it is easy to carry out the variational 

differentiation 

G( f 4 -iq x iq x .L" 

q 1' q2 p 'p ) = 9 2 ( II d 4 x e I I - 2 2 ' 
1 

pl x 3 + ; P 2 x 4 
1 2 · k= 1 k 

J 00 

II (i { dr. 
. I 

i=I 0 

" 2 
_; T. m 4 T, 

e 1 {[o I' J 'Jex-! ig 2 { d 4 X d 4 y [j (x) + j (x)] 
Ci P' · I 2 

8 

(I) 

(2) 

(3) 

i 
t 

~ 

J 
~I 
f · 

I 
I 

. I 

i 
) 
1, 

i 
" i 
f 

<i 
I 

', 1-
" I 
\ r 

-~{ 
.i . ( ,-: 

I . . ~ 
\' 

i I. 

,, 

c (4) ;1 - (4) Tl 
D (x-y) i (y) Io (x -x -2 {v (11)d1])0 (x-x -2{v (7])d7])-

3 3 I 
0

1 1 3 
0

2 

( 4) T 3 xo (x -x -2 f1' (7]) d11 
2 · 4 3 

0 

where the currents of three "nucleons" are 

; I (4) ; 1 

i
1 

(z) = ( d(:
1 

o (z-x
3 

+2 [ v
1 

(7J) dT/ ) , 
0 f1 

; ( z) 
2 

'2 (4) ;2 , r d t o ( z - x, + 2 f I' ( T/ ) a I/ ) , 
· 2 · 2 

o l2 

73 °(4) T3 
i (z) ={dto (z-x +2fv(7J)d7J ). 
3 - 3 2 /: 3 

0 ~3 

For subsequent formulas to be symmetrical with respect to both 

the virtual "nucleons" into which the "meson" turns it is conve­

nient to make the following replacement of the variables: 

x, = y I !· Yi , 

x3 = y l - Y2 . 

It is easy to perform the integration ,)Ver d4 y2 and d4 x 
4 

using the 

8- functions in (3): •' 

G ( q , q I p , p ) = g 2 r d4 y r d 4 X e ; y I ( p 1 - q I) I ; x2 ( p 2 - q 2 ) 

I 2 7 2- · 7 2 

3 "' -ir.m 2 
4 r. d 4 k l Tl 

D ( i { d r. e 1 
{ [ i5 i'. ] t ) r-- exp I 2; [ k + -( p + q J ] ( v ( T/) d 11 + 

. i=I O / . / 0 . ( 2 77 )4 4 1 1 0 I 

(4) 
T r

3 
+ 2; [ k - _J_ ( p + q ) ] {

2 
v ( 1/) d 1/ - 2 i p J i- ( 1/) d 1/ I x 

4 I J 0 2 2
0

3 

xexp lig 2 I[d 4x d 4 y [j (x) + i (x)] Dc(x-y) j (y) I; 
1 2 3 

where now 
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Tl (4) Tl 
i. ( z) = J d ( o ( z - Y. + J v ( 71) [ 0 ( 17 - f } - 0 ( ~I -11 ) ] d 71 ) , ( i = 1, 2} , 
, n t , t , 

T'J T3 i (z) = 1 d( o (z-x +2(v (71)d71 ). 
3 i, 3 2 (3 3 

The following replacement of the functional variables 

v 1 (71) =v;(11J + ~ (p 1 + q 1) + k, 

v (71) =v' (71)-
4
1 (p + q) + k, 

2 2 1 1 

V (71) =v'(71) -P • 
3 3 2 

makes .it possible to eliminate the terms linear in v; in the expo­

nent of. the exponential in (4). 
Further it is necessary to subtract from the considered 

"meson-nucleon" Green function the contribution of the disconnect-

ed diagram of Fig. 2. ,-~. 
fl ~-- A 

1 ~---:--- - ·;1 
Fig. 2 

The resulting Green function is then denoted as G ( q,, q2q P1, P2}: 

_ ly(p-q)+lx(p-q) 
G ( q q ·1 p p ) ·= g2 ·r d4y d4 X e ' l ' 2 2 2 

,' 2 1' 2 · 1 2 

3 00 -1m2T d 4k 1 2 
Il (i JdT e i ([o 4 v Yi)(-.- exp I i[k +-(p + q )] T + 

f= 1 o i . i o . ( 2rr J' 4 1 1 1 

+i[k-..!.(p +q )] 2 T +ip 2 T lig 2 (J[i (x)+j(x}]Dc(x-y)i(y)dxdy x 
411 2 23 · 1 2 3 

1 
xf d>.. exp lig 2 >.. J d 4 z,Jd 4 z

2
[;

1
(z

1
) + i2 (z 1)] Dc(z1 -z2 Ji/z2 ) I , 

0 

where 

(5) 

TJ (4) Tl 1 i (z) =· d( a (z-y +J [v (71) + 4 (p
1

+q
1
)+k][0(71-~ )-0((~)]d71), 

l 
0

. I IO l J J 

10 

½ ½ 1 . 
i (z) ={ d( B41

(z-y +([v (71)--(p+q)+k][0(71-()-0((-71}]d71), 
2 O 2 I O 2 4 1 1 2 ·2 · 

; ( z) 
3 

=) 
0 

T3 
d( a<41

(z-x +2 {'[v (71)-p ]d71). 
3 2 3 2 

0 

To obtain the "meson-nucleon" scattering amplitude it is neces­

sary to go over in eq. (5) to the mass shell along the external adges 

of the "nucleon" line (with respect to P and q ) and extract the 
2 2 

a -function of the law of conservation of four momentum. 

(2rr)4 fj(4) (p + p -q -q ) f(q ,q :1 p ,p ) = 
1 2 1 2 12 12 

(6) 
=lim'(p

2
-m

2
) (q 2 -m 2 )iG (q,q IP ,p) 

2 2 1 2 l 2 
p2,q2 ➔ m2 
2 2 

Using for this purpose the technique developed in ref.1 191we get: 

f(q ,q Ip ,p} =(-i)g4[ elb(p,-q1/ 
1 2 1 2 · cr'b J d4k 

(2rr) 4 

2 00 -ir, m2 
f [ 8

4 
v. ] Ti 4 +oo < n ( dT. e I 

J I [ 0 1'3 l_,., [=1 0 I I 0 

exp I i r [ k + L ( p + q ) ]2 + i r [ k _ .L ( p + q ) J 2. I . 
1 4·1 1 2 4 1 1 

(7) 

1 
·(d

4
x [i (x) + i (x)] Dc(x - z-b) ( d>.. exp lig2 >.. {{[j (x} + i (x}] 

. 1 2 . 2 ~ . l 2 

Dc(x-y) i (y} d 4x d 4 y I, 
3 
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with the currents 

T -
I 4/ z +b '1 1 i (x) =.( de f} (x - -- +( [v

1 
(11)+-(p1 +ci,)+k][0(11-e1 J-0(~-11J]d11), 

I O I 2 O 4 

i ( x) 
2 

j ( X) 
3 

T ;J. ( 4/ z + b T ;l 1 = 
1 

de o (x- -- + i[v ( 11 )-- (p+q )+k][0(11-i' )-0(t_2 -11Jl d71), 
2 2 2 4 11 "'2 

O • 0 

+= (41 . z b e3 
= ( de o (x-~-2{v(11Jd11+2i'(p2 0(-e3 J+C1i0(e3 ))). 

3 2 3 "3 
_,_, 0 

The formula (7) gives the exact value of the contribution to the 

scattering amplitude of the sum of the diagrams given in Fig. I. 

Further consideration wi 11 be carried out in the c.m.s. of 

col I iding particles at high energies ( s ➔ oo )and smal I momentum 

transfert = (p
1
-q

1
JI<s(forward scattering). The "nucleon" mass 

is put to be m , and the "meson" mass µ • The functional integrals 

over o v_ (j = 1,2, 3) are estimated in the following manner (the 

straight-line path approximation). All the expressions containing I 

v and ,, are replaced by their averages. F (v ) ➔ F where 
1 2 i 

- T, F= {[ av, ] ' F( v. ), (i=1,2) and the functional 1ariable v3 is omitted. 
I O I • 

In the diagram technique this corresponds to the dropping in all the 
"nucleon" propagators of the terms which are quadratic with res­

pect to the virtual momenta of the "mesons", but in the propaga­

tors of the "nucleon" loop the squares of these momenta will be 
retained. Now the formula (7) is ( for detailed calculations see 

Appendix): 

12 

-lbt(p -q 11. d2kj, 00 2 
((q1 ,q2 jp1 ,p2 ) =-r/s {e · cflb,J.. ( (

2
1r)2 £ dr

1
dr

2 
I (kl;r

1
,r

2
) 

2 - I b f e~ T. f ~ T2 
g i d e L e 1 1 - 'J.-L- - i-~ 

( exp I ; - f -- ---- [ e 4 + e 4 ] I - 1 J • 

(8) 

s < 2 "J2 e~ + µ2-; f 

~ 

The function 

jdr dr I (k
2

;r
1
r )=-1- [ drzdr, 

0 12 112 4 +r 
77 0 r, 2 

exp l-i(kJ+m
2
)r

1 
-i(kl +m

2
)r

2 
+ 

+im2
-~~ I 
T +r 

I 2 

may be interpret:d as a factor describing th_e internal structure 

of the "meson" consisting of a "nucleon-antinucleon" loop. It is 

just on these constituents of the "meson" that proceeds the scat­

tering of the high energy "nucleon", this process being described 

by the amplitude of the.eikonal form. A subsidiary integration over 

d 2 kl in (8) with factor I (k{) is responsible for the summation 
over all the states of the virtual loop. · 

This picture of the- "meson-nucleon" interaction is in ag­

reement with the notions of the high energy interaction of elementary 

particles in the framework of the Feynmann parton model 120 1and 
the "impact" picture by Cheng and Wu 17 I. 

Orie may expect here, as in the case of the "nucleon-nucleon" 
interaction, that the Reggion exchange would also lead to a noti­
ceable change of the high energy behaviour of the scattering ampli­

tude (8). (In theconsideredcasef(s,tJ➔ const ,at s ➔ oo and,conse­

quently, the cross section decreases ·as J_ ). The question as to 

whether the similar interaction mechanis~ is important for "nuc­
leon-nucleon" scattering remains still unclear 121 /. 
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In conclusion the authors consid~r it their pleasant duty to 

thank D.I. Blokhintsev, A.N. Tavkhelidze, S.P. Kuleshov, V.N. Per­

vushin and A.N. Sissakian for the interest in the work and stimulat­

ing discussions. 

Appendix 

We consider one of the terms in the exponent of the last ex­
ponential in eq. (7): 

A, ( v1 , v 3 )= g
2 f d

4
x d

4
y i

1
(x/v

1
) Dc(x-y) i

3 
(YI v

3 
). (A.I) 

We omit the functional variable v 
3 

and perform an "averaging" 

over v
1 

: 

2 
d4f exp( ibf+.f._;-+- ) 

4 4 T -g 
A = {[ o v ] 1 A (v ,v = 0) = -- { ------- 8(2p CJ 

1 1 1 1 3 · · 2 
0 ( 2 1T )3 f 2 - m2 + j l 

p 
sin [ T e ( -1 + k ) ] 

X 1 2 

n pl ,(-+ k) +ic 
2 

The vectors p 1 and p 2 in the c.m.s. of colliding particles have 

(A.2) 

the following coordinates P = (p ,0,0, P); p = (p ,0,0, -P) ;m - µ 
1 0 2 0 -

Taking this into account and using the o function we integrate 

over d £
0 

• After this the integral over de, takes the form ( e '=~e ): 
z z Po z 

14 

p p b
0 

b 
dP' exp 1-iP/-~L.. ( -+ _z) 

1 z· m P P 
-{-- 0 
s ( 21r ) n , 2 n 2 2 • 

l + l, + m -/£ 
z 

k o k PoP 
sin Ir [ f'( J +- +-z )-- +k, f.J I 

1 z p
0 

P m 

k k £ 1 k, 
f'(J+-o+_z) +m~ 

z Po P pop 

Fors= 4p 2 ➔ octhe main contribution comes from the integra-
o 

tion region at small e; and the b 0 , bz,ko ,kz dependence varii-

shes. Therefore, at s ➔ "" the formula (A.3) can be approximated 

bytheexpression: 1 02 2 . J-1 
-- ( l + m - If 

2s l 
As a result we have the first term in the eikonal phase in eq. 

(8). The second term is obtained by a simple replacement of r
1 

by 

r 2 • In just the same way we perform the calculation of the ex-

pression standing in front" of the integral over d;\ in (7). After 

this the formula (7) takes a modified eikonal form (8). 
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