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The high energy "meson-nucleon" scattering amplitude
is investigated in the scalar model &inr =9 ¢2¢ by the
functional method. The sum of the infinite class of
diagrams in which the "meson" interactswith the "nucleon®
turning into a virtual "nucleon-antinucleon® pair can be
presented in a modified eikonal form. ‘
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Recently the covariant perturbation theory has successfully
been used in high energy physics. Although the problem of the con-
vergence of the renormalized perturbation series is open the sum-
mation of certain classes of the Feynman graphs describing the
high energy particle scattering is carried out. The choice of some
or other infinite series of diagrams is based on a preliminary in-

vestigation of the asymptotics of the characteristic Feynman graphs

of this series or on the comparison of the final result with experi-
ment. The investigation along this lines has a claim on obtaining
a physical picture of the high energy interaction in the framework
of the notions of the usual field theory. In this field there are va-
rious methods for investigating the asymptotic behaviour of some
Feynman graphs and for summing them. The following methods
appear to be the most known ones.

The approach based on the Feynman  « -parametrization and
the Mellin integral transformation was used by Efremov”/, Pol-
kinghorne/2/ et al. to obtain the universal rules for determining the
asymptotics of the Feynman graphsinvarious filed theory models.



This method was found to be convenient for summing the contribu-
tions of some graphs aimed at the study of the analytic properties
of the scattering amplitude in the complexplane of the angular mo-
menta/3/and, consequently, in the high-energy asymptotic domain.

In some cases, it is possible to simplify the calculation of
the asympfotics of the Feynman _integrals by using the Sudakov’s
technique based on the expansion of the virtual momenta of integ-
ration over the high-energy particle momenta. This method has

been used to consider many processes of quantum electrodyna-
mics/5/ .

Many studies are performed by means of the infinite momen-
tum frame/6/. This approach may be viewed as the choice of a mo-
re convenient Lorentz co-ordinate system.,

On the basis of the study of the scattering amplitude, in the

framework of perturbation theory, Cheng and Wu/7/ have proposed

an "'impact’’ picture of high-energy processes and, hence, modi-
fied Feynman rules. :

The method of functional integration is also extensively used
in the investigation of high-energy scattering amplitudes/8/. To
estimate the functional integrals a special approach has been sug-
gested which is well demonstrated from the physical point of view
in the region of high energies and small momentum transfer and

named the straight-line path approximation % The important
advantage of this approach compared with the above-mentioned me-
thods is the possibility of obtaining immediately, in a closed form,
the sum of the-considered class of diagrams. '

It should be noted that so far all the enumerated methods,but
the firstone, have no fundamental mathematical grounds and in these
. /
lines only fragmentary results have been obtained/10/

These methods have been used to sum several infinite clas-
ses of perturbation diagrams. On the basis of these results the
high-energy interaction of '‘nucleons’’ can be represented as fol-
lows. In the first approximation the scattered "'nucleons’’ behave
like point ones and the interaction between them is described by

the Yukawa potential. In perturbation theory, this is due to the lad-
der and cross-ladder diagrams in the s-channel (s » ). The
summation of these graphs results in aquantal eikonal formula/8/.
If we digress from the nucleon spin and will consider the exchange
of O}IIY scalar mesons {model £, =gy’ ¢ ), then the scattering
amplitude will behave like a constant at high eng_l_jgies. The total
cross section decreases as ‘s]' and in the entire eikonal formula
only the Born term is predominant. In these regpe::tst the model
with vector exchange £,,-09: A[l v :');L G+ @Ay yiismoresa-
tisfactory. In this model the total cross section tends to a constant
if we restrict ourselves to the consideration of various ladder diag-
rams /11/ '

It was found that the eikonal picture of the .interaction hoids
for a more complicated exchange mechanism too“2/(exchange of
quanta of two types). This leads to achange in the effective potenti-
al, it becomes smoother at small distances.



in the framework of the scalar model, further investigations
have given results which make it possible to consider of impor-
tance not the exchange of virtual mesons but the exchange of more
complicated systems having the Regge behaviour ("’‘multitower’’
exchange, exchange of reggeons). It is characteristic that this
type of exchange may be dominant only for large values of the in-
teraction constant. The sum of the diagrams with such an exchange
leads to the Regge-eikonal representation for the scatteringampli-
tude. /13/ . The importance of this result is as follows. Firstly, it
confirms, in the framework of the field theory, the hypothesis on
the presence of cuts in the Regge plane. Secondly, the reggeon ex-
change, even in the caseof scalar particles, leads to the total cross
section which increases with increasingenergy: o "~ (In s) “and does
not fall as anegativepowerof s contrarytothe case of the simple
meson exchange. The remarkable feature of such acomplex exchan-
- ge is that Froissart bound is just saturated.

The scattering of ‘"nucleons’’ may be considered in this case
as diffractional, each individual nucleon behaves like a black ball
the radius of which increases logarithmically with energy.

The accountof the radiative corrections to the ladder diagrams
with both the simple meson exchange and the Regge exchange leads
to an additional space distribution of the nucleons within a distance
of order — ( m is the nucleon mass). In the scattéring amplitude
there app’gars in this case a factor ear /1

The explanation of the experimental data by the models ob-
* tained from the above-mentioned methods is given in refs /15/ .
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The study of the ‘‘meson-nucleon’” scattering in perturba-

tion theory shows that in these processes of importance must be

diagrams in which the "“meson’’ turns into a vi;tual ""nucleon-an-
tinucleon’’ pair, as is shown in Fig. |, ref./16/
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Fig. |

Next, in the framework of the scalar model &, , = gy? ¢ we
consider the high-energy ‘’meson-nucleon’ scattering using the
functional integration and the straight-line path approximation/9/.
We restrict ourselves to the summation of the diagrams of the type
presented in Fig. | x/ | '

The general method of constructing the ""meson-nucleon’’ am-

“plitude in the framework of the functional approach is given in

ref.” 7/, In the present case it is more convenient to perform
calculations by another scheme. We first construct the ""meson-
nucleon’’ Green function corresponding to the class of diagrams
considered B

\

x/In the paper by Cheng and Wu, the importance of the diag-
rams of this type in the sixth order in the interaction constant was
shown for the case of the vector particle playing the role of "“me-
son’’ ( y -quantum, p -meson). Considering the same diagrams in
the framework of the scalar model we are interested in the struc-
ture. of the scattering amplitude as a whole, ats - (p +p, P o
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The following replacement of the functior;al variables
v, (n) =v (n) + -4—-(p, +4q) +k,

v (n) =v (n)-—;(p, +q) +k,

v, (n) =v'(n) -p, -
makes .it possible to eliminate the terms linear in v; in the expo-

nent of, the exponential in (4). .
Further it is necessary to subtract from the considered

""meson-nucleon’’ Green function the contribution of the disconnect-

ed diagram of Fig. 2.

R
Fig. 2
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To obtain the ‘“meson-nucleon’’ scattering amplitude it is neces-
sary to go over in eq. (5) to the mass shell along the external adges
of the "'nucleon’’ line (with respect to P, and q, ) and extract the
& -function of the law of conservation of four momentum.
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Using. for this purpose the technique developed in ref.” 19/we get:
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may be interpreted as a factor describing the internal structure

of the "meson".consisting of a "'nucleon-antinuclieon’’ loop. It is
just on these constituents of the "“meson’’ that proceeds the scat-
tering of the high energy ‘'nucleon’’, this process being described

The formula (7) gives the exact value of the contribution to the
scattering amplitude of the sum of the diagrams given in Fig. I.

curther consideration will be carried out in the c.m.s. of : b); the‘ amphtuc.j:ho: thte‘ellko:azl ff)rm. Asub'st::jlafry u}::‘egratlon otYer
lliding particles at high energies(s )and small momentum d“k, in (8) with factor ! (ki )is responsible for the summation
idin { '

(t::ansfe?f = (P =9 )§<s(forward scattering). The "nucleon™ mass 1 . e a'll':mitshe IS::: c:)fftr: V:rt”:" Io-o:.cleon” interaction is in ag-

i ' a;d the “‘meson’’ mass g . The functional integrals .p ‘ e "'m '.son u ! - n ag

's put fobe m - i i i (th reement with the notions of the highenergy interaction of elementary

over 3 v, (1= 1,23 )are estimatad in the following mamner ; ° $ articles in the framework of the Feynmann parton model-/20 /and
straight-lline path approximation). All the expressions containing % P

the "“impact’’ picture by Cheng and wu/7/, ‘
One may expect here, as inthe case of the ‘’nucleon-nucleon’”
- 7, . he functional rariable v, isomitted. . ¥ interaction, that the Reggion exchange\would also lead to a noti-
- F=flav 1" Flv, ) (:=1,.2) :::-‘d the :l's\;onds o e droppisng. ol the : ceable change of the high energy behaviour of the scattering ampli-
In the diagram technique this corr : . . e _
"nuclebn’g' propagators of the terms which are quadratic with res- ‘ tude (8). (In the conSIder.ed Qasel(s, t) ‘con:,at fr anc?, conse
: . e s but in the propaga— . quently, the cross section decreases -as S ). The question as to
pect to the virtual momenta of the “'mes fth:ese momenta will be ' whether the similar interaction mechanism is important for ‘nuc-
tors of the "‘nucleon’’ loop the squares O : -nucleon’’ i ins still unclear 721/ .
S ined. Now the formula (7) is ( for detailed calculations see leon nuclegn scattering remains still unclear / 21/

Appendix):

v, and v, are replaced by their averages. F (v )- F where

" >“ . ~ ) ]
12 o 13




In conclusion the authors consider it their pleasant duty to
thank D.l. Blokhintsev, A.N. Tavkhelidze, S.P. Kuleshov, V.N. Per-
vushin and A.N. Sissakian for the interest in the work and stimulat-
ing discussions.

Appendix
We consider one of the terms in the exponent of the last ex-
ponential in eq. (7):

A Cuyovy )=g? [ ¥ d¥y i (xjy, ) DE(x=y) iy (¥] v, ). (A1)

We omit the functional variable v, and perform an '‘averaging’’

3
over v,

2
d% exp(ibﬂ+——-e Ty )
4 ) A -0 —92 . 4 5(2p L
=f[o. V’]o (v, vy=0) = f ( 2‘)

(22)3 02 - m2 i

'sin[rl’(—pl+k)]
1 2

f(h+k} + ¢
2

The vectors p, and p, in the c.m.s. of colliding particles have
the following coordinates P, = (p, :0,0,p); p, =(p, .0.0, -p)im ~p .
Taking this into account and using the & function we integrate

over d{ . After this the integral over dt’ takes the form( Ez’=-m—fz):
Po

14

(A2) -

' pp b b k, P,P
dr- expl-i[’z’—;nf—(—p—g+ pz) } sinir[?(1+— ——) 0 ik 01}
1 T 0 Po --
- (A.3)
s (2n) [’2’2+I’i +m? i k;(, ko ng;
: s P Py P

Fors = 4pz - ~the main contribution comes from the integra-
tion region at small ¢; and the b, b,,k,.k, dependence varii-

shes. Therefore, at s - ~ the formula (A.3) can be approximated

by the expression: 1 (024 m? i) ,

2s
As a result we have the first term in the eikonal phase in eq.

~ (8). The second term is obtained by a simple replacement of 7, by

7, . In just the same way we perform the calculation of the ex-

. pression standing in front of the integral over d, in (7). After

this the formula (7) takes a modified eikonal form (8).
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