ОБЪЕДИНЕННЫЙ
ИНСТИТУТ яДЕРНЫХ ИССЛЕДОВАНИЙ
Дубна.

E2 - 6043

milidimm
 emprys.rixtisis

ААБОРАТОРИЯ TEOPETヘ̛ЧELKOЙ ОИЗИKИ
A.T.Filippov, V.S.Gogokhia

APPROXIMATE METHODS
? FOR SOLVING SCHROEDINGER EQUATION WITH MARGINALLY SINGULAR POTENTIAL

1971

A.T.Filippov, V.S.Gogokhia*

APPROXIMATE METHODS FOR SOLVING SCHROEDINGER EQUATION WITH MARGINALLY SINGULAR POTENTIAL

Submitted to $Я \Phi$

SUMMARY

The renormalization theory for the Schroedinger equation with marginally singular poteatials is outlined. The singular potentials are shown to be classified naturally into renormalizable and nonrenormalizable ones by the structure of the perturbative series (with a small-distance cut-off) analogous to that of field theories.

Approximate methods for solving the Schroedinger equation with the singuiar potential $G_{o} V(r)$ are discussed. These enable one to find the wave function as a series of powers of $\left.g_{0}^{\nu}(\operatorname{lng})_{0}\right)^{n}$ where $n \quad$ is an integer and v is in general non-integer (a modified perturbation theory). The most powerful method for constructing such a series is the "asymptotic" perturbation theory in which the first approximation for the wave function has the exact asymptotic oenaviour for $r=0$. By developing more simple method which may be used in fiield theory problems as well, we sugbest the new method for reconstruction of modified perturbation theory employing only iinite number of perturjation theory terms.

I. Introduction

${ }_{i}$ fter the general recipes for eliminating divergences from the perturbation expansion in renormalizable field theories (R-tneories) have been formulated, tne mean point in quantum field theory investigations became the problem of łinding the way out of the framevork of perturbation theory $/ 1 /$. On the one hand, this was necescary for applications to strong interaction physics, on the other, the standard renormalization procedure failes to eliminate divergences in the theory of weak interaction and in nany other ineld theories, which are of the physical interest but nonrenormalizaide (if-theories). In this connection, nany times a conjecture ras expressed that the very ner: ideas ale required to describe it-theories or, altomatively, they do not exist at all in Nature. It is quite possible, however, that
 tions, if one either abandons perturbation theory or finds certain modification of it. To this end it is useful to study first so:ne pri-
nitive exactly solvable model, in which it is possiole to understand the nature of the difference otween iv and i-theories and to compare the exact solutions with perturbative ones. The startine point of our work is the iormulation of this model. ifter the general aiscussion of the model ve will present the method ior constructing a modilied perturbation expansion. We hope that this one can be used for calculating hicher-order approximations in the theory of weak interactions as well as in other \mathbb{N}-theories.

Let us consider nonrelativistic Schroedinger equation

$$
\begin{equation*}
\frac{d^{2} u}{d r^{2}}+\left[k^{2}-\frac{l(l+1)}{r^{2}}-g_{0} V(r)\right] u(r)=0 \tag{1.1}
\end{equation*}
$$

where a potential at sufiiciently small Z is finite, nonvanishing and monotinic. The potential $g_{0} V(r)$ is called regular if $\int_{0}^{r_{0}} d r r|V(r)|<\infty$. If $\int_{0}^{r_{0}} d z \quad z|V(r)|=\infty$, the potential is singular by definition. Let

$$
\begin{align*}
& u_{0}^{(1)}(z)=f_{l}(k r) \equiv(k z)^{1 / 2} J_{\ell+1 / 2}(k z) \underset{z \rightarrow 0}{\sim} r^{l+1}, \tag{1.2a}\\
& u_{0}^{(2)}(z)=n_{\ell}(k z) \equiv(k r)^{1 / 2} N_{\ell+k_{2}}(k r) \underset{r \rightarrow 0}{\sim} r^{-l} \tag{1.2b}
\end{align*}
$$

Ce two linearly-independent solutions of Bq . (1.1) for $g_{0}=0$. Then the model can be obtained by replacing sq . (1.1) and the boundary condition $u(z) \underset{\tau \rightarrow 0}{\longrightarrow} 0$ by the integral equation

$$
\begin{equation*}
u(\tau)=Z u_{0}^{(1)}(\tau)-g_{0} \int_{0}^{\tau} d \rho V(\rho) \frac{u_{0}^{(1)}(\tau) u_{0}^{(2)}(\rho)-u_{0}^{(1)}(\rho) u_{0}^{(2)}(\tau)}{W\left[u_{0}^{(1)}, u_{0}^{(2)}\right]} u(\rho) \tag{1.3}
\end{equation*}
$$

iiere Z is the normalization factor, and

$$
W\left[u_{0}^{(1)}, u_{0}^{(2)}\right]=u_{0}^{(1)} u_{0}^{(2)^{\prime}}-u_{0}^{(1)^{\prime}} u_{0}^{(2)}=2 k / \pi
$$

For $k=0$ this equation has the form

$$
u(r)=Z r^{\ell+1}+\frac{g_{0}}{2 l+1} \int_{0}^{r} d \rho V(\rho)\left[r^{l+1} \rho^{-l}-\rho^{l+1} r^{-l}\right] u(\rho)
$$

(a model of such a kinc̄ has veen iirst sūbested in i.ef. ${ }^{2 / 2 /}$ on the basis of studying the LoẼnov-l'avkhelidze quasipotential equation ${ }^{1 / 3 /}$). Integrating iq. (1.3) or (1.4), one may derive the solution $u(\gamma)$ in the form of a series of powers of the coupling constant g_{0}. In the case of the regular potential $V(r)$ each term oi the expansion is expressed in terms of convergent integrals, futhermore the solution proves to be an analytic function of g_{0} in some vicinity of the point $g_{0}=0$. The perturbation expansion converges uniformly at sufiiciently small values of g_{0} and $r^{1 / 4}$. The asymptotic form of $u(z)$ for $r \rightarrow 0$ coincides with that of the zeroth approximation $Z u_{0}^{(1)}(v)$. In the case of singular poteatials one easily finds (e. 8. irom Ig. (1.4)) that even the first iteration pioduces the divergent expressions. One can try to remove these divercences oy renorializations (as in field theory). Uith this aim, we replace the singular potential $V(r)$ by the regularized one $V(r)=\theta(r-\varepsilon) V(r)$ and try to eliminate all divergences Irom perturbation expansion by a suitable choice of the renormalization constant Z. In the next section we vill describe the potentials for which it $1 s$ possible.

〔. Kenormalizaoıe and Nonrenormalizable Singular Potentials

As was shown by one of us (A.T.F./5/), all the singular potentials are classified into two groups. Those singular potentials for which all divergences can be eliminated by renormalizations are called "renormalizable", otherwise "nonrenormalizaole". For renormalizaule potentials, the perturbation expansion of $u_{\varepsilon}(r)$ can be represented in the form

$$
\begin{equation*}
u_{\varepsilon}(r)=Z_{\varepsilon}\left\{\sum_{m=0}^{\infty} g_{0}^{m} w_{m}(\varepsilon)\right\}\left\{\sum_{n=0}^{\infty} g_{0}^{n} v_{n}^{\varepsilon}(r)\right\}, \tag{2.1}
\end{equation*}
$$

where the functions $v_{n}^{\varepsilon}(z)$ tend to the finite limits $v_{n}(\gamma)$ as $\varepsilon \rightarrow 0$ and $W_{m}(\varepsilon)$ do not depend on r and become infinite as $\varepsilon \rightarrow 0$. Cnoosine the renomalization constant Z_{e} as (Z does not depend on ε):

$$
Z_{\varepsilon}=Z\left\{\sum_{m=0}^{\infty} g_{0}^{m} w_{m}(\varepsilon)\right\}^{-1}=Z\left\{1-g_{0} w_{1}-g_{0}^{2}\left(w_{2}-w_{1}^{2}\right)+\ldots\right\},(2.2)
$$

we get the finite solution as a meries of powers of g_{0} :

$$
\begin{equation*}
u(z)=Z \sum_{n=0}^{\infty} g_{0}^{n} v_{n}(z) \tag{2.3}
\end{equation*}
$$

(on passing to the limit $\varepsilon \rightarrow 0$). As it turned out it is possible to obtain the solutions in the form (2.3) only for the potentials satisfying the renormalization criterion. This is as follows. The potential $V(r)$ is renormalizable if and only if $z^{2}|V(r)|<C r^{-\delta}$ as $r \rightarrow 0$, where δ is an arbitrarily small number*. The exact solution $u_{\varepsilon}(r)$ of Iq. (1.3) with the potential $V_{\varepsilon}(r)$ in any case can be represented in the form

$$
\begin{equation*}
u_{\varepsilon}(z)=z_{\varepsilon}\left[w_{1}(\varepsilon) u_{1}(r)+w_{2}(\varepsilon) u_{2}(r)\right] \tag{2.4}
\end{equation*}
$$

where $u_{1}(\tau)$ and $u_{2}(\tau)$ are linearly independent solutions of $\mathbb{E q}$. (1.1) and w_{1}, w_{2} can be expressed in terms of $u_{1}, u_{2}, u_{1}^{\prime}$ and u_{2}^{\prime}. For the repulsive potential the solutions u_{1} and u_{2} can be chosen in such a way that $u_{1}(\tau) \underset{\tau \rightarrow 0}{\longrightarrow} 0, u_{2}(\tau) \underset{\tau \rightarrow 0}{ } \infty$, $W_{1}(\varepsilon) \underset{\varepsilon \rightarrow 0}{\longrightarrow} \infty \quad, w_{2}(\varepsilon) \underset{\varepsilon \rightarrow 0}{\longrightarrow} 0$. Then in the limit $\varepsilon \rightarrow 0$ we get $u_{\varepsilon}(r) \rightarrow\left[Z_{\varepsilon} w_{1}(\varepsilon)\right] u_{1}(r)$. Setting $Z_{\varepsilon}=Z / w_{1}(\varepsilon)$, we find that $u_{\varepsilon}(r) \underset{\varepsilon \rightarrow 0}{\longrightarrow} Z u_{1}(r)$, where $u_{1}(r)$ is the solution of Eq. (1.1) obeying the boundary condition $u_{r}(\tau) \underset{z \rightarrow 0}{ } 0$. This assertion is true for any repulsive singulat potential (for attracive one $w_{1}(\varepsilon) / w_{2}(\varepsilon)$ (23) The renormalization procedure produces the unique solution (2.3) not only for the repulsive renormalizable potentials but for attractive ones, as well.
does not approach any limit as $\varepsilon \rightarrow 0$). For the renormalizable potentials all functions $u_{1}, u_{2}, w_{1}, w_{2}$ can be expended in a series of porers of \dot{g}_{0}, each term of the expansion of $w_{2}(\varepsilon)$ approaching zero as $\mathcal{E} \rightarrow 0$. The latter makes it possible to remove all divergences from the perturbative expansion. In the case of nonrenorme lizaole potentials the functions u, \boldsymbol{U} prove to de nonexpansible in a series of powers of g_{0}, since the expansion of these functions for small g. contains, for example, the terms like $g_{0}^{\nu} \ln ^{n} g_{0}$ In the paper $/ 6 /$ one may find some exact solutions of Eq . (1.1) (with
$K=0$) for singular potentials
$V=r^{-2}\left(\ln \frac{z_{0}}{\tau}\right)^{-1}, \tau^{-2}\left(a \ln \frac{\tau_{0}}{r}+B \ln ^{2} \frac{\tau_{0}}{r}\right), a r^{-4}+b r^{-3}, \ldots$,
the studying of which enables one to understand better the connection between perturbation theory and the exact solutions and learn the character of a singularity in go at $g_{0}=0$. For f-potentials the exact solution has an essential singularity in g_{0} at $g_{0}=0$. If the potential is nonrenormalizable the solutions of Lq . (1.1) possess the branch-point, in g_{0} and so they cannot be expanded even in the asymptotic series of powers of g 。 . Finally, we write down the exact soluti ons of $\mathrm{Eq} .(1.1)$ (with $k=0$) for N-potentials of the form $g V=g^{2} r^{-2(n+1)}$

$$
\begin{align*}
& u^{(1)}(r)=c_{1} \sqrt{r} K_{\lambda / \pi}\left(g / n r^{n}\right), \tag{2.5a}\\
& u^{(2)}(r)=c_{2} \sqrt{r} I_{\lambda / n}\left(g / n r^{n}\right), \quad \lambda \equiv l+1 / 2 \tag{2.5b}
\end{align*}
$$

2. The "Asymptotic" Perturbation Theory

The vave function singularity in g_{0} at $g_{0}=0$ is closely connected with the presense of the essential singularity in r at $r=0$. The asymptotic form of the exact solution $u(\tau)$ as $r \rightarrow 0$, $u(z) \sim\left(\sqrt{2}\left[\lambda^{2}+z^{2} g_{0} V(z)\right]^{-1 / 4} \exp \left\{\int_{\tau_{0}}^{\tau} \frac{d \rho}{\rho}\left[\lambda^{2}+\rho^{2} g_{0} V(\rho)\right]^{1 / 2}\right\},(3.1)\right.$
differs from that of unperturbed wave function $u_{0}^{(1)}(\tau) \sim c r^{l+1}$. If the approximation method reproduces correctly the asyaptotic behaviour of the wave function as $r \rightarrow 0$, then, at the same time, it makes it possible to get the expansion of the solution for swall $\mathbf{8 0}_{0}$, which gives correctly singularities of the exact solution at $g_{0}=0$. An idea of the "asymptotic" perturbation theory is essentially based on this comment. If the potential $V(r)$ is broken up into two parts $V(x)=V_{S}(x)+V_{R}(z)$ in such a way that $V_{S}(x) / V_{R}(x) \rightarrow \infty$ then the solutions $u^{(1)}, u^{(2)}$ of Eq. (1.1), in which $V(r)$ is replaced by $V_{s}(r)$ and the term $k^{2} u(r)$ is neglected, have the correct asymptotic form. These are reasonable (for small τ) first approximations to the exact solution, and the latter can be derived by iterating the equation

$$
u(z)=u^{(1)}(\tau)+\int_{0}^{2} d \rho\left[k^{2}-g_{0} V_{R}(\rho)\right] \frac{k^{(1)}(r) u^{(2)}(\rho)-u^{(1)}(\rho) u^{(2)}(\tau)}{W\left[u^{(1)}, u^{(2)}\right]},(3.2)
$$

where $u^{(1)}(\tau) \underset{z \rightarrow 0}{\longrightarrow}$ and $u^{(2)}(z) \rightarrow \infty$. The resulting series conver ges uniformly for sufficiently small g, z and k if r /

$$
\int_{0}^{r_{0}} d r V_{R}(r)\left[V_{s}(p)\right]^{-1 / 2}<\infty, \quad r^{2} V(r)_{r \rightarrow 0}+\infty
$$

Now, let us demonstrate how the "asymptotic" perturbation theory does work, for example, in the case of the potential $g_{0} V(z)=g^{2} r^{-4}$. Solutions of siq. (1.1) for the S-wave have the form of (2.5) with $\lambda=1 / 2$ and $n=1$. Then, iterating Eq. (j.2) we get

$$
\begin{gather*}
\varphi(k, z)=c\left\{1-\frac{g}{z}+\frac{g^{2}}{2 z^{2}}+k^{2}\left[\frac{2}{3} g^{2} \ln g-\frac{2}{3} g^{2} \ln z+\right.\right. \\
\left.\left.+g^{2}\left(\frac{2}{3} \gamma+\frac{2}{3} \ln 2-\frac{5}{12}\right)+\frac{1}{2} g^{r}-\frac{1}{6} r^{2}+\ldots\right]+\ldots\right\} \tag{5.3}
\end{gather*}
$$

For $k^{2}=0$ this expansion coincides with the exact one, given by in. (cha). (Here and in what follows $\varphi \equiv u / u_{0}^{(1)}$).

To conclude thls Section we briefly discuss the approximate
methods commonly used for the partial summation of the perturibative expansion in quantum field theory. In R-theoreies the method is often used of sumang the leading logarithmic terms ${ }^{\prime \prime}$. . In the model under consideration it is not difficult to sum up all bighest divergencies for any k-potential. To this end, it sufiices to neglect the last term in the right member of iq. (1.3) with the potential V_{ε}. (This term does not give contribution to the highest divergences in each order of perturbation theory). The solutuion of this "shortened" equation is

$$
\begin{equation*}
u_{\varepsilon}^{p}(r)=Z_{\varepsilon} u_{0}^{(1)}(r) \exp \left\{-\frac{g_{0}}{W} \int_{\varepsilon}^{r} d \rho V(\rho) u_{0}^{(1)}(\rho) u_{o}^{(2)}(\rho)\right\} \tag{3.4}
\end{equation*}
$$

This solutuion is an entire function of g_{0} and its asymptotic form differs decidedly from Eq. (3.1). Further, the approximation (3.4) can be tested in applying to N-potentials. In N-theories such an approximation was used by the authors of kef. $/ 8 /$, and is known as the "peratization" method. However, in this case as well, Fq. (3.4) has no relation to the exact solution.

4. Differential Interpolation Method

The idea of the differential interpolation method (Dlif) is based on the existence of the representation (2.4) for the exact solution $u_{\varepsilon}(\imath)$. We will show first that $w_{i}(\varepsilon)$ and $w_{2}(\varepsilon)$ satisfy a simple differential equation with respect to the variable ε. This equation is tightly connected with the Schroedinger equition (1.1). To formulate the method in the form which is assumed to be applicable to more complicatied problems of field theory, only a finite number of the terms of the perturbative expansion for $u_{k}(r)$ are supposed to be known. Then we guess the difierential interpolating equation (the cut-off parameter, $\varepsilon \equiv D^{-1}$, being the independent variable) which is satisfied by the know terms of the perturbative
expansion. Jomparing term by term the expansion of the general solution of the equation with the known perturbative expansion we obtain an expression for arbitrary coofficients (depending on r) included in the general solution of interpolating equstion. In the expression derived in such a way we perform the renormalization and liaiting process $\mathcal{E} \rightarrow 0$. The limlt renormalized expression includes terms nonanalytic in g and provides us with the finite number of the modified perrurbation theory terms.

By comparing the above results to the expansions of exact solutions we will demonstrate the efficiency of the method. However, we have not yet found the general proof of convergence of the DIM approximations to the exact solution*.

Now let us precisely formulate DIM in the case $k=0^{* *}$. To this end we first derive the exact differential equation with respect to ε for $u_{\epsilon}(r)$. For this purpose we cut integral of Eq. (1.4) at the lower limit. Then, for $K=0$ the equation

$$
u_{\varepsilon}(\tau)=Z_{\varepsilon} \tau^{l+1}+\frac{g_{0}}{2 l+1} \int_{\varepsilon}^{r} d \rho V(\rho)\left[r^{l+1} \rho^{-l}-\rho^{\ell+1} r^{-l}\right] u_{\varepsilon}^{(\rho)}(4.1)
$$

is equivalent to the differeatial equation (1.1) with the boundary

$$
\begin{align*}
& \text { conditions } \\
& u_{\varepsilon}(\varepsilon)=Z_{\varepsilon} \varepsilon^{\ell+1}, \quad d u_{\varepsilon} / d r Z_{\varepsilon=\varepsilon}(l+1) \varepsilon^{l} . \tag{4.2}
\end{align*}
$$

Now, it follows that the exact solution $u_{\varepsilon}(\tau)$ can be written in the form of (2.4). This is as follows:

$$
\begin{align*}
& \text { of (2.4). This is as follows: } \tag{4.3}\\
& u_{\varepsilon}(r)=Z_{\varepsilon}\left\{w_{1}(\varepsilon) u_{1}(\tau)+w_{2}(\varepsilon) u_{2}(\tau)\right\}
\end{align*}
$$

[^0]where
\[

$$
\begin{align*}
& w_{1}(\varepsilon)=\varepsilon^{l+1} u_{2}^{\prime}(\varepsilon)-(l+1) \varepsilon^{l} u_{2}(\varepsilon) \tag{4.4a}\\
& w_{2}(\varepsilon)=\varepsilon^{l+1} u_{1}^{\prime}(\varepsilon)-(l+1) \varepsilon^{l} u_{1}(\varepsilon) \tag{4.4b}
\end{align*}
$$
\]

Iurther, using the schroedinger equation (1.1), the solutions of which are $U_{1}(\tau)$ and $u_{2}(\tau)$, and (4.4), one may easily show that $W_{1}(\varepsilon)$ and $W_{2}(\varepsilon)$ satisfy the equation

$$
\begin{equation*}
\frac{d^{2} w}{d \varepsilon^{2}}-\left[2 \frac{l+1}{\varepsilon}+\frac{V^{\prime}(\varepsilon)}{V(\varepsilon)}\right] \frac{d w}{d \varepsilon}=g_{0} V(\varepsilon) w(\varepsilon) \tag{4.5}
\end{equation*}
$$

Hence it follows that $u_{\varepsilon}(z)$ satisfies this equation as well and so DIM can be easily proved. [ndeed, Eq. (4.5) is equivalent to the recurrence relations

$$
\begin{equation*}
\frac{d^{2} u_{\varepsilon}^{(n+1)}}{d \varepsilon^{2}}-\left[2 \frac{\ell+1}{\varepsilon}+\frac{V^{\prime}(\varepsilon)}{V(\varepsilon)}\right] \frac{d u_{\varepsilon}^{(n+1)}}{d \varepsilon}=g_{0} V(\varepsilon) u_{\varepsilon}^{(n)} \tag{4.6}
\end{equation*}
$$

between the terms of the perturbative expansion

$$
\begin{equation*}
u_{\varepsilon}(r)=u_{c}^{(0)}(r)+u_{\varepsilon}^{(1)}(r)+u_{\varepsilon}^{(2)}(r)+\ldots \tag{4.7}
\end{equation*}
$$

So, to find the interpolating differeatial equation it is sufficient to know the recurrence relation (4.6). In our simple case two first terms of the expansion (4.7) are sufficient for reconstructing the exact equation (4.5). In other, more complicated cases (see e.g. DIM for $K \neq 0$), the recurrence relation has more complicated form, depends on the number of perturbative terms taken into account and defines only the approximate interpolating equation. With one constant of dinension of length available, the reccurrence relation for all problems of practical importance has the form $(g D)^{n} \sum_{k=0}^{N_{n}} C_{k}^{(0)} D^{k} \frac{\partial^{k} u^{(0)}}{\partial D^{k}}+(g D)^{n-1} \sum_{k=0}^{N_{n-1}} C_{k}^{(1)} D^{k} \frac{\partial^{k} u^{(1)}}{\partial D^{k}}+\ldots+\sum_{k=0}^{N_{0}} C_{k}^{(n)} D^{k} \frac{\partial^{k} u^{(n)}}{\partial D^{k}}=0$.
As soon as the relation is found, one immediately obtains the interpo. lating equation for u by dropping indices of $u^{(i)}$ in iq. (4.8). Then u may be represented as a sum $u=\sum u_{i}(D) u_{i}(z)$, where
$W_{i}(D)$ are exact solutions of the interpolating equation and can be found by comparison of the sum with perturoative eipansion (as explained aoove). Next two sections illustrate this general procedure by simple examples.

2. The Potential $g_{0} V(r)=g^{2} r^{-4}$.

Consider first the application of DIM' to the nonrenornalizaole sinĔular potential $g_{0} V(\tau)=g^{2} z^{-4}$ for $k=l=0$. In this case the perturbation series (4.1) is

$$
\begin{equation*}
\varphi(D, r)=Z_{D}\left\{1+g^{2}\left[\frac{D^{2}}{2}-\frac{D}{r}+\frac{1}{2 r^{2}}\right]+\ldots\right\}=\varphi^{(0)}+\varphi^{(1)}+\ldots \tag{5.1}
\end{equation*}
$$

and Eq. (4.8) reduces to the equation

$$
\begin{equation*}
(g D)^{2} c_{0}^{(0)} \varphi^{(0)}+C_{0}^{(1)} \varphi^{(1)}+C_{1}^{(1)} D \frac{\partial \varphi^{(1)}}{\partial D}+C_{2}^{(1)} D^{2} \frac{\partial \varphi^{(1)}}{\partial D}+\ldots=0 \tag{5.2}
\end{equation*}
$$

The terms of Eq. (5.1) satisfy Bq. (5.2) if $C_{0}^{(1)}=C_{1}^{(1)}=0, c_{0}^{(0)}=-C_{2}^{(1)}$. Hence, the terms of the series (5.1), obey the equation

$$
\begin{equation*}
D^{2} \frac{\partial^{2} \varphi}{\partial D^{2}}-g^{2} D^{2} \varphi=0 \tag{5.3}
\end{equation*}
$$

Two linearly independent solutions of this equation are $(g D)^{1_{2}} I_{y_{2}}(g D)$ and $(g D)^{1 / 2} K_{y_{2}}(g D)$. The relation (4.3) can be written here as follows

$$
\begin{equation*}
\varphi\left(D_{1} r\right)=Z_{D}\left\{(g D)^{1 / 2} I_{4_{2}}(g D) u_{1}(r)+(g D)^{v_{2}} K_{v_{2}}(g D) u_{2}(r)\right\} \tag{5.4}
\end{equation*}
$$

Now let us expand both terms in the right member of (5.4) in powers of g. Then to the g^{2}-order terms we get:

$$
\begin{align*}
\varphi(D, 2) & =Z_{D}\left\{[g D+\ldots]\left[u_{1}^{(0)}+g u_{1}^{(1)}+g^{2} u_{1}^{(2)}+\ldots\right]+\right. \tag{5.5}\\
+ & {\left.\left[1-g D+\frac{1}{2}(g D)^{2}+\ldots\right]\left[u_{2}^{(0)}+g^{2} u_{2}^{(1)}+\ldots\right]\right\} }
\end{align*}
$$

The perturbation expansion (5.1) satisfies Eq. (5.5) under the following conditions $u_{1}^{(0)}=u_{2}^{(0)}=1, u_{1}^{(1)}=-\frac{1}{2}, u_{1}^{(2)}=u_{2}^{(1)}=1 / 2 r^{2}$.

Inserting these relations into (5.4) and taking the limit $D \rightarrow \infty$ we get finally

$$
\begin{equation*}
\varphi(\infty, r)=Z\left\{1-\frac{g}{r}+\frac{g^{2}}{2 r^{2}}+\ldots\right\}, \tag{5.6}
\end{equation*}
$$

$n=1, \lambda=4_{2}$ where $Z=Z_{D}(g D)^{1 / 2} I_{1 / 2}(g D)$. It follow, from Eg. (2.5a), with, that decreasing exact solution has the form

$$
\begin{equation*}
\varphi(z)=c\left\{1-\frac{g}{r}+\frac{g^{2}}{2 r^{2}}+\ldots\right\} \tag{5.7}
\end{equation*}
$$

Normalizing (5.6) and (5.7) in the same way we get that square-root branch point (the terms of the order $g=\sqrt{g^{2}}$) is found by DIM correctly, and, up to the g^{2}-order terms, the interpolating solution $\varphi(\infty, \tau)$ coinoides with the exact solution $\varphi(\gamma)$.

Next, let us consider DIM in the case: $l=0, k \neq 0$. एnen $k \neq 0$ it is necessary to use Eq . (1.3) which takes the form

$$
u(D, k, z)=Z_{D} f_{0}(k z)-\frac{g^{2} \pi}{2 k} \int_{D^{-1}}^{\tau} \frac{d \rho}{\rho^{4}}\left[j_{0}(k r) n_{0}(k \rho)-j_{0}(k \rho) n_{0}(k z)\right] u(\rho),(5.8)
$$

on substituting $u_{0}^{(1)}(\tau)$ and $u_{0}^{(2)}(\tau)$ from Eq. (1.2) and making a cutoff at the lower limit. Iterating this equation within an accuracy of the g^{2}-order terms, the following perturbation expansion at large but finite cut-off parameter D is obtained:

$$
\begin{array}{r}
\varphi\left(D_{1} K_{1} \tau\right)=Z_{D}\left\{1+g^{2}\left[\frac{1}{2} D^{2}+K D n_{0}(k \tau) / f_{0}(K \tau)-\right.\right. \\
\left.\left.-\frac{2}{3} K^{2} \ln D+\Phi(K, \tau)\right]+\ldots\right\}=\varphi^{(0)}+\varphi^{(1)}+\ldots \tag{5.9}
\end{array}
$$

$$
\Phi(k, r)=-k \frac{n_{0}(k r)}{f_{0}(k r)}\left[r^{-1}+\frac{1}{3} k^{2} r+\ldots\right]-\left[\frac{1}{2 r^{2}}+\frac{2}{3} k^{2} \ln r+\ldots\right] .
$$

Proceeding further as in the case $k=0$ we might get the interpolating differential equation of the third order, which could be solved in terms of the reyer functions $/ 10$. In the case $k=0$ it is suitable, however, to change somewhat the interpolating equation (4.8). In particular, we may expand the coelificient of the zeroth
approximation in 9 series of K^{2}. Then we arrive at the following interpolating equation

$$
\begin{equation*}
c_{0}^{(0)}(g \Phi)^{2} \varphi^{(0)}+\tilde{c}_{0}^{(0)} g^{2} k^{2} \varphi^{(0)}+c_{0}^{(1)} \varphi^{(1)}+c_{1}^{(1)} \frac{\partial \varphi^{(1)}}{\partial \mathcal{D}}+c_{2}^{(1)} \mathcal{D}^{2} \frac{\partial^{2} \varphi^{(1)}}{\partial D^{2}}+\ldots=0 \tag{5.10}
\end{equation*}
$$

The expansion (5.9) obeys (5.10) only if

$$
c_{0}^{(1)}=c_{1}^{(1)}=0 ; \quad c_{0}^{(0)}=-c_{2}^{(0)} ; \quad c_{0}^{(0)}=-\frac{2}{3} c_{2}^{(1)}
$$

Thus, $\varphi\left(\mathscr{O}_{1}, \kappa, x\right)$ satisfies the second-order interpolating
equation

$$
\begin{equation*}
\mathscr{D}^{2} \frac{\partial^{2} \varphi}{\partial D^{2}}-g^{2}\left(\mathcal{D}^{2}+\frac{2}{3} K^{2}\right) \dot{\varphi}=0 \tag{5.11}
\end{equation*}
$$

the solutions of which are $(g D)^{1 / 2} I_{\nu}(g D)$ and $(g D)^{1 / 2} K_{\nu}(g D)$;
where

$$
\nu=\frac{1}{2}\left(1+\frac{8}{3} g^{2} k^{2}\right)^{1 / 2}=\frac{1}{2}\left(1+\frac{4}{3} g^{2} k^{2}+\ldots\right)
$$

We represent now $\varphi(0, k, z)$ in the form (4.3):

$$
\begin{equation*}
\varphi\left(D, K_{1} \tau\right)=Z_{D}\left\{(g \mathcal{D})^{1 / 2} I_{\nu}(g \mathcal{Z}) u_{1}(\tau)+(g \mathcal{D})^{1 / 2} K_{\nu}(g D) u_{2}(z)\right\} . \tag{5.12}
\end{equation*}
$$

Expanding both terms in the right member of (5.12) in powers of g, we get

$$
\begin{align*}
& \varphi\left(\mathcal{D}_{1} k_{1} x\right)=Z_{D}\left\{\left[g D+g^{3}\left(\frac{1}{6} \mathcal{D}^{3}+\frac{2}{3} k^{2}(\ln 2 g D+\gamma-2)\right)+\ldots\right]\left[u_{1}^{(0)}+g u_{1}^{(1)}+g^{2} u_{1}^{(2)}\right]\right] \\
& +\left[1-g D+g^{2}\left(\frac{1}{2} \mathscr{D}^{2}-\frac{2}{3} k^{2}(\ln 2 g \mathcal{D}+\gamma)\right)-g^{3}\left(\frac{1}{6} \theta^{3}+\frac{2}{3} k^{2} D(\ln 2 g D+\gamma-2)\right]\right. \\
& +\left[u_{2}^{(0)}+g u_{2}^{(1)}+g^{2} u_{2}^{(2)}+g^{3} u_{2}^{(3)}+\ldots\right] . \tag{5.13}
\end{align*}
$$

The comparison of (5.13) with (5.9) leads to the following relations between the terms of expansions $u_{1}(z)$ and $u_{2}(z)$

$$
\begin{align*}
u_{1}^{(0)} & =u_{2}^{(0)}=1, u_{2}^{(1)}=u_{2}^{(3)}=0, u_{1}^{(1)}=-k \operatorname{ctg} k r \\
u_{1}^{(2)} & =u_{2}^{(2)}=\left(\frac{1}{2} k \operatorname{ctg} k r-\frac{1}{2 r^{2}}\right)+ \tag{5.14}\\
& +\frac{2}{3} k^{2}\left(\ln 2 \frac{g}{2}+\gamma+\frac{1}{2} k z \operatorname{ctg} k z\right)+O\left(k^{4} z^{2}\right)
\end{align*}
$$

Substituting these relations into (5.12) and passing to the limit $\mathscr{D} \rightarrow \infty \quad$ we finally get

$$
\begin{align*}
& \rho(\infty, k, z)=Z\left\{1-\frac{8}{z}\left(1-\frac{1}{3} k^{2} r^{2}+O\left(k^{4} z^{4}\right)\right)+\right. \tag{5.15}\\
& \left.+\frac{g^{2}}{2 r^{2}}\left[1+\frac{4}{3} k^{2} z^{2}\left(\ln 2 \frac{g}{z}+\gamma\right)+O\left(k^{4} z^{4}\right)\right]+O\left(g^{2}\right)\right\}
\end{align*}
$$

(here $Z=Z_{D}(g D)^{1 / 2} I_{\nu}(g D)$). In (5.15) all terms have been expanded in k^{2} - Comparing (5.15) with the asymptotically exact solution (3.3), we find that the difference

$$
u(\infty, k, r)-u(z)=z \cdot k z \cdot \frac{1}{3} g^{2} k^{2}
$$

is small for sufficiently small g and k.
6. The Potential go $V(z)=g \tau^{-3}$

In the case of nonrenormalizable singular potentials the perturbative expansion of Eq. (4.1) with $\ell=K=0$ looks as follows

$$
\varphi(\Phi, z)=Z_{0}\left\{1+g\left(\Phi-\frac{1}{2} \ln \frac{\theta}{2}-\frac{1}{2}\right)+\ldots\right\}=\varphi^{(0)}+\varphi^{(1)}+\ldots .(6.1)
$$

Then Eq. (4.8) has the form

$$
\begin{equation*}
(g \Phi) C_{0}^{(0)} \varphi^{(0)}+C_{0}^{(1)} \varphi^{(1)}+C_{1}^{(1)} \Phi \frac{\partial \varphi^{(1)}}{\partial D}+C_{2}^{(1)} \mathcal{G}^{2} \frac{\partial^{2} \varphi^{(1)}}{\partial D^{2}}+\ldots=0 \tag{6.2}
\end{equation*}
$$

It is quite obvious that (6.1) satisfies (6.2) if $C_{0}^{(1)}=0$, $C_{1}^{(0)}=C_{2}^{(0)}=-C_{0}^{(0)}$. So, the terms of perturbative expansion (6.1) obey the equation

$$
\begin{aligned}
\mathscr{D}^{2} \frac{\partial^{2} \varphi}{\partial \mathscr{D}^{2}}+\Phi \frac{\partial \varphi}{\partial \mathscr{D}} & -g^{\mathcal{D} \varphi=0} \\
& -I 5-
\end{aligned}
$$

the solutions of hich are $I_{0}(2 \sqrt{g D})$ and $K_{0}(2 \sqrt{g D})$:
The representation (4.3) in this case can be witten as

$$
\begin{equation*}
\varphi\left(D_{1} \tau\right)=Z_{D}\left\{I_{0}(2 \sqrt{g D}) u_{1}(\tau)+K_{0}(2 \sqrt{g D}) u_{2}(\tau)\right\} \tag{0.4}
\end{equation*}
$$

Expanding now the right-hand side of this representation in siall g we find:

$$
\begin{aligned}
& \varphi(D, r)=Z_{D}\left\{[1+g D+\ldots]\left[u_{1}^{(0)}+g u_{1}^{(1)}+g \ln g \widetilde{u}_{1}^{(1)}+\ldots\right]+\right. \\
& \left.+\left[\left(-\gamma-\frac{1}{2} \ln g D\right)+g D\left(1-\gamma-\frac{1}{2} \ln g D\right)+\ldots\right]\left[u_{2}^{(0)}+g u_{2}^{(1)}+\ldots\right]\right\} .
\end{aligned}
$$

Eq. (6.5) coincides with (6.1) under the condition that $u_{1}^{(0)}=1, u_{2}^{(0)}=0, u_{1}^{(1)}=-r^{-1}(\ln r+1)+r^{-1} 2 \gamma, \tilde{u}_{1}^{(1)}=\frac{1}{2} u_{2}^{(1)}, u_{2}^{(1)}=2 r^{-1}$. Inserting, fuither, these relations into (6.4) and passing to the linit $D \rightarrow \infty$ we finally get:

$$
\begin{equation*}
\varphi(\infty, r)=z\left\{1+g\left[\frac{1}{r} \ln g+\frac{2}{r}\left(\gamma-\frac{1}{2} \ln r-\frac{1}{2}\right)\right]+\ldots\right\} \tag{6.6}
\end{equation*}
$$

(here $Z=Z_{D} I_{0}(2 \sqrt{g D})$). The exact solution of the schroedinger equation is derived from $\mathbb{E q} .(2.5 a) \mathrm{m}$ th $n=\lambda=1 / 2$;

$$
\varphi(r)=c\left\{1+g\left[\frac{1}{z} \ln g+\frac{2}{r}\left(\gamma-\frac{1}{2} \ln r-\frac{1}{2}\right)\right]+\ldots\right\} .(6.7)
$$

Coaparing (6.6) with (6.7) wie see that the difference,

$$
\varphi(r)-\varphi(\infty, r)=\rho(g)
$$

is amall for sufficiently small g. Thus in this case, the DIM approximation also is sufficiently close to the exact solution.

2. Conclusion

In conclusion we ..ould like to nake a remaik on possible applications of the methods considered above. The asyaptotic perturbation theory may obviously be used ior solving singular ethe-Dal-
peter and dwards eouat ons $/ 11,12 /$ but, "Ior the purpose of ootaining rodiried perturbation sexies, it is unreasonably comlicated. This enforces us to use the siapler anierential-interpolation metiod. which can be expected, to oive nodificed perturbation-theory teras by use of finite number weias of usual perturbation theoly i.ith a cut-ofic. ..e have shon the nebnod to be well-founded for the nocel theory oí ichroedinger equation .ith nonrenomalizable potential. We hope it may be useful ior calculating higher-orwer cozsections in nonrenoraalizaivle field theories as well.

It is a pleasure for the authors to express their gratituade to rof. :nc. Tavkhelidze for his interest in the ork and to Prof. . in. drouzov for helpful discussions.

Eeferences

1. H.N. Bogolyubov and D.T. Bhirkov. Tntrocuction to the Theory of uantized Iields, Noscow, 1967.
2. A. I. IFilippov. Phys. चett., 2, '/8 (1964).
3. i.A. Iogunov, A. i. avkhelidze. tuovo 0i.a., 29, 380 (1963),20,134 (1963).
4. V.de Alfaro, f. Aegé. Potential Scatteing, North-Holiand Puolishing fompany, Amsterdam, 196 ל.
5. ‥T.Filippov. Proc. of the Synposium on non-local field theories at s.zau. USSN, 1970. Preprint JINk, 2-5400, Dubna (1970).
6. H.M. Frank, D. I.Iand, R.M. Spector Rev. Mod.Pnys., 43, 56 (1971).
7. L. D. Landau, A.A.Abrioosov, I. R. Khalamikov. Docl.Acad.Nauk NeR, 25, 773; 95, 1177; 26, 261 (1954).
8. G.Feinberg, i. Pais. Phys. Kew., 131, 2724 (1963), 133 B477 (1964).
9. B. L. Ioffe. Žurn. Zksp. Teor. Fiz., 38, 1608 (1960).
10. H. Bateman, A. rdelyi, Hiegher Transcendental Functions, V.1., New-York, Toronto, Iondon, 1953 .
11. S. A. ix ouzov, A. T.Filippov. Nuovo Jim, 38,796 (1965).
12. B. i. Arouzov, A.T.Filippov. Kurn. Kkp. Teor Fiz., 49,990(1965).

Received by Publishing Department

[^0]: *For some simplest cases DIM gives directly the exact solutions.
 **The case $K \neq 0$ is more complicated and requires a special consideration; nevertheless, as will be shown below, a modification of DIM exists which allows to set an interpolating solution even for $k \neq 0$.

