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SUMMARY

The renormalization theory for the Schroedinger equation with
merginally singular poteantials is outlined. The singular potentials
are shovm to be classified naturally into renormalizable and nonre-
normnalizable ones by the structure of the perturbative series (with
a small-distance cut-off) analogous to that of field theories.

Approximate methods for solving the Schroedinger eguation with
the singular potential g.V(r) are discussed. These enable one %o
find the wave function as a series of powers of g (lngo)n where
n is an integer and Vv is in-general non-integer (a modified
perturvation théorj). The most powerful method for constructing such
a Serids is the "asympbotic" perturbation theory in which the first
approximation for the wave function has the exact asymptotic behaviour
for r=0. By developing more simple method which may be used in
field theory problems as well, we suggest the new method for recon-
struction of modified perturbation theory employing only iinite nun-

ber of periurdation theory terms.



I. Introduction

sfter the general recipes tor eliminating divergences from the
perturbation expansion in renormalizable field theories (R-tneories)
have been formuliated, tne mein point in quantum field btheory inves-
tigations became the problem of rinding the way out of the framework
of perturbation theory/1/. On the one hand, this was necescary for
applications to strong interaction physics, on the other, the stan~
dard renormalization procedure failes to eliminate divergences in the
theory of weak interaction and in many other .leld theories, vhich
are of the physical interest but nonrenormalizavle (W~-theories). ln
this conaection, many times a conjecture twas exnressed that the very
nev ideas aie required to describe ill-theories or altcrnatively, they
@o not exist at all in Hature. It is quite possible,however, that
for some ii-theories one¢ can learn to calculate the higher-order correc
tions, if one either abandons perturbation theory or finds certain

modification of it. Mo this end it is useful to study tirst some pri-



aitive exactly solvable model, in which it is possivle to understand
the nature of the difference petween W and ii~theories and to compare
the exact solutions with perturbative ones, The starting point of our
work is the iormulation of this model. after the general discussion
of the model we will present the method ior constructing a modiiied
perturbation expansion. We hope that this one can be used for calcu-
lating highef—order approximations in the theory of weak interactions
as well as in other N-theories.

Let us consider nonrelativistic Schroedinger equation

L

%—iuz + [Kz a+‘) — 8 V('l)]u('l) —O .1

where a potential at sufiiciently small ¢ 1is finite, nonvanishing
and monotinic. The potential 3,\“&) is called regular if

S:"olt | V(W|<oo, 12 S:"J‘t 2{V(1)}=0o0, the potential is singular by
definition. Let

y. ~ b+1
(1)(.,') ~JC(K1) (K'L) LJ[{'& (K'l.) r40 T ,
" ) (1.2a)
@ — = ~
We (V)= ng(K"-) (xv) vz (k1) T T (1.2b)
Be tvio linearly-independent solutions of Eg. (1.1) for gfo. Then the
model can be obtained by replacing Zg. (1.1) and the voundary condi-
tion (1)-—$ 0 by the rntegral equation
T-»0 g [(
* V W) US(P) — Uo(PUP(V)
u(r) = Zu"’('t) -9 Sd? ( ) W m mJ b((f). (1.5)

ilere 7 1s the normalization factor, and
m o [y
[uc.u‘m = uol U, — ug) U, =2 /T,
Tor k=0 this cduation has the form
’ -4 -
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o te1 ¢ t+1 -t
we) = 7784 +z§—+1 KJPV(P)['L P T ]u(?) (1.4)

[}

(a model of such a kind has veen iirst suggested in ief./z/ on the
basis of studying the Logunov-i'avkhelidze quasipotential equation/B/).
Integrating 2g. (1.3) or (1.4), one may derive the solution Y(L) in
the form of a series of powers of the coupling constant 90 . In the
case of the regular potential X/Cl) each term oi the expansion is
expressed in terms of convergent integrals, futhermore the solution
proves to be an analytic function of ¢, in some vicinity of the po-
int gz0. The perturbation expansion converges uniformly at sufiicifnt-
ly small values of &, and r/4/. The asymptotic form of W(1) fori
r—+ 0 coincides with that of the zeroth approximation Zuf,"('t). In
the case of singular potentials one easily finds (e.g. from 3q.. (1.4))
that even the first iteration pioduces the divergent expressions.

One can try to remove these divergences 0y reaormalizations (as in
field theory). Vith this aim, we replace the singular potemtial

Wr) by the regularized one V;(r)=9(r-£) Vir) and try to eliminate

all divergences from perturbation z=xXpansion by a suitable choice of

the renormalization constant 42, In the next section we will desciibe

the potentials for which it 1s possible.

£, Renormalizavie and Nonrenormalizable Singular Potentials

As was shown by one of us (A.T.F./S/), all the singular poten-
tials are claséified intq two groups. Those singular potentials for
vwhich all divergences can be eliminated by renormalizations are cal-
led "renormalizable", otherwise 'monrenormalizadle™. For renoraali-
zable potentials, the perturbation expansion of ui(z) can be repre-

gsented in the form
-5«
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o0 o0
m n &
_ c)}{ U, ('L)} 2.1)
U = 2 {go 9o whn@{ 2 & Uiy, (
where the functions U‘"‘("L) tend to the finite limits U,(1) as &->0
and W,,(€) do not depend on r and become infinite as &0,
Choosing the renormalization constant Zc as ( Z does not depend

on £ ):

Z, = Z{Zgw'(s)} —-Z{i R — o (W~ W)+, 1(22)

we get the finite solutlon as a Beries of powers of 3, H

u) = ZZ? Va(2) (2.3)

a=0
(on passing to the limit €-0 ). As it turned out it is possible to
obtain the solutions in the form (2.3) only for the potentials sgatis-
fying the renormalization criterion., This is as follows. The poten-
$ial V(r) is renormalizable if and only if 7?|V()|< C1™®  as
r -» O,vhere $ is an arbitrarily small number*. The exact solution
Ue(r) of Zg. (1.3) with the potential V,(r) in any case can be

represented in the form

U () = Z [WiE© U r) + urza)uzcr)] (204)
where U, (1) and U,(T) are linearly independent solutions of #g. (1.7

and Wy , W; can be expressed in terms of U, 6 U, , u_: and

/
U, ., For the repulsive potential the solutions «, and U, can be
chosen in such a way that W (1) ;3> o y  U(T) 3 oo,
Wi () —> o° y W,() O Then in the limit e£-»0 we get
€20 Ero :

u () —[Ze W @®] W (V). setting 2, =Z /Wi(e), we find that
u_t(-t,)z—-; ZuW,(1v), where U (1) is the solution of Eq. (1.1)
obeying the boundary condition u“(Uz-:; 0 . This assertion is true

for any repulsive singula® poteatial (for attractive one Wi(€)/ w; (e

* The renormalization procedure produces the unique solution
(2.3) not only for the repulsive renormalizable potentials but for

attractive ones, as well.

- 6-



does not approach any limit as & ~» @ ). For the renormalizable po-
tentials all functions W, , 4, , W, , W, can be expanded in a
series of powers of 96 y each term of the expansion of W, (&) ap-~
proaching zero as §—+»(0 . The latter makes it possible to remove all
divergences from the perturbative expansion. In the case of nonrenorme
lizaole potenbtials the functions U , W prove to be nonexpansib-
le in a scries of powers of 90 since the expansion of these func~-

tions for small ¢, conbtains, for example, the terms like 8: Qn,ug,

" In the paper/6/ one may find some exact solutions of Eq. (1.1)(with

K = Q) for singular potentials

V=1tlal)” 12(aled +80 T ) et + 62T

the studying of which enables one to understand better the connection
between perbturvation theory and the exact solutions and learn the
character of a singularity in 90 at &,= O. For kE-potentials the
exact solution has an essential singularity in 9o at g,= 0. If the
potential is nonrenormalizable the solutions of kg.(1.1) possess the
branch-point, in 9‘, and so they cannot be expanded even in the asymp-
totic series of powers of ¢, . Finall y; we write dovn the exact soluti
ons of ©[g.(1.1) (with K =0) for N-potentials of the fomg}”—‘gl"-_zm*”
uy =V Kx/n(ﬁ/m"), (2.58a)

Uy = 01 Ly (g/n?), A=LC+%. (.50

3., The "Asymptotic" Perturbation Theory

The wave function singularity in 90 at go = 0 1is closely con~
nected with the presense of the essential singularity in 7 at T =0.
The asymptotic form of the exact so%ution w(y) as >0,

Y% d 2 2] (5.1)
2 2 2 >
W ~ YT A+ zgoV(z)] exp{ S—gﬁ [7\ +¢ gt,V(?)] }
10
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+1
differs from that of unperturbed wave function ug)('z) ~C "(.e .

If the approximation method reproduces correctly the asymptotic be-
haviour of the wave function as "L*bO} then}at the same time, it makes
it possible to get the expansion of the solution tor swmall §,, which
gives correctly singularities of the exact solution at g,= O. An
idea of the "asymptotic' perturbation theory is esseatially based on
this comment. If the potential V(r) is broken up into two parts

V(1) = V(1) + g(r) in such a way that V;('l)/vg(i =0

then the solutions U."), u® of Eq.(’l.’l), in which V() is replaced
by Vi(r) and the term Kk?U(Z) is neglected, have the correct
asymptotic form. These are reaéonable (for small ¢ ) first approxi-
nations to the exact solution, and the latter can be de:éived by 'itera-

ting the equation
2 © D) ~— 1y )
WO u®(e) —uUPYUTY
Uy = u(n)('l) + gdg [Kl ._30 V,;(?)] W[u“" LL(”J 1 (3.2)
] ]

(2
where WD ;—:O and W )('l)_l:’o ©© , The resulting series conver-

ges uniformly for sufficiently small 9 s, T and K if.‘/s/
Y‘. - -1
S d V&('L)[VS(P)} 2 ¢ oo 11V(1)1:-; + oo,
(-]

Now,let us demonstrate how the "asymptotic®” perturbation theory

J

does work, for example, in the case of the poteantial gov(") =g T
Solutions of ug. (1.1) tor the S-wave have the form of (2.5) with
A=1/2 and n=41 . Then, 1terating Fq. (5.2) we get

goy =c{t-F +fz v [ §g'lag -Fg7tnn +
S 2
+31(%X+%€n2—17-) +58T ~¢ T + ] -l—} .

For xZ= 0 this expansion coincides with the exact one, given by
iq. (2va). (Here and in what follows ¢ = w/u).
To conclude this Section we briefly discuss the approximate

-8 -



methods commonly used for the partial summation of the perturbative
expansion in quantum field theory. In R-theoreies the method is

often used of summing the leading logarithmic terms/7/. In the mo=-
del under consideration it is not difficult to sum up all highest di-
vergencies ifor any R-potential., To this end, it sufiices to neglect
the last term in the right member of ig. (1.3) with the potential V;
(This term does not yive contribution to the highest divergences in
each order of perturbation theory). The solutuion of this "shorte-

ned" equation is
T (O] )
Wi = Zaulwexe{ -3z | 48 VO el @), o

This solutuion is an entire functipn of 3, and its asymptotic form
differs decidedly from Eq. (3.1). Fur@hep, the approximation (3.4)
can be tested in applying to N-potentials. In N-theories such an ;p-
proximation was used by the authors of Ref./B/, and is known as the
"peratiz#fion" method. However, in this case as well, ©q.(3.4) has

no relation to the exact solution.

4, Differential Interpolation Method

The idea of the differential interpolation method (DL1i) is based

on the existence of the representation (2.4) for the exact solution

Ue(1). We will show first that Ww(¢) and W,() satisfy a
simple differential equation with respect t; the variable £ . -
This eduation i; tightly connected wifh th; Schfoediqger equ.tion
(1. To formulate the method in the form which is assumed to bé
appliéable to more complicated problems of field theory, only & fini-
te number of the terms of the perturbative expansioﬁ“fof tLe(tj
are supposed to be known. Then we guess the difierential interpolé«
ting equation (the cut-off parameter)& EsIfL) being the independent

variable) which is satisfied by the known terms of the perturbative

-9 -



expansion. Comparing term by term the expansion of the general so-
lution of the equation with the known perturbative eipansion ve ob-
tain an expression for arbitrary coefficients (depending on T )
included in the general solution of interpolating equstion. In the
expression derived in such a way we perform the renormalization and
liwiting process & —>(Q . The limit renormalized expression inclu-
des terms nonanalytic in a and provides us with the finite num-
per or the modified pervurbation theory terms.

By comparing the above results to the expansions of exact so-
lutions we will demonstrate the efficiency of the method. However,
we have not yet found the general proof of convergenoe of the DIM
approximations to the exact solution®. .

Now let us precisely formulate DIM in the case k=0**. To this
end we first derive the exact differential equation with respect to

& for Ug (1), For this purpose we cut integral of Eq. (1.4) at

the lower limit. Then, for K =0 the equation
<

pei -0+ __Cy (@
u¢<m>=2ac“‘+f—i §°'9V(9)['t gl Ju
[3

is equivalent to the differeatial equation {(1.1) with the boundary

conditions e
= 1)€
ue(e)=Ze W, duc/dn =2 Ze (Bt e (4.2)

Now,it follows that the exact solution (xtCz) can be written in the
form of (2.4). This is as follows:

Ue () =Z€ {w“(e) w () + w,E) uz('t)} , (4.3)

*For some simplest cases DIM gives directly the exact solutions.

**+The case K+O0 is more complicated and requires a special
consideration: nevertheless, as will be shown below, a modification
of DIi exists which allows to get an interpolating solutlion even
for K3 0.

- 10 -



where ) ) '

w,(e) = et uje) ~E+E U0, (4.4a)
¢
w, @) = ¥y (e) —(R+1) £ Uy e). (4.4b)
Iurther, using the 3Schroedinger egquation (1.1)) the solutions of
which are U,(1) and uz('t),and (4.4), one may easily show that
Wi;() and W,(e) satisfy the equation

W 2t ViE) dw‘_— 9 V(E)w‘(s)

* V@

Hence it follows that U (1) satisfies this equation as well and so

(445)

DIM can be easily proved. I_ndeed,Eq. (4.5) is equivalent to the
recurrence relations
2z (n+{) oy digSMY : ”)
due [2 Get ve du, =g, V(&) Ue (4.6)
der - V) 1 de |

between the terms of the perturbative expansion

¢
u, () = u + U + u) +. (47)
So, to find the interpolating differeatial equation it is suf-

ficient to know the recurrence relation (4.6). In our simple case

fwo first terms of the expansion (4.7) are sufficient for reconstruce
ting the exact equation (4.5). In other, more complicated cases

(see e.g. DIM for K+#0 ), the recurrence relation has more complicat-
ed form,depends on the number of perturbative terms taken into ac-
count and defines only the approximate interpolating equation. With
one constant of dimnension of length available, Lhe reccurrence
relation for all problems of practical rnportance has the form

o KO - "'3 «
(9])) Z xD ’bb“ +(3D) Z K 'faapu Z , 3;‘—('4.8)

K=0

As soon as the relation is found, one immediately obtains the interpo-
lating equition for Y by dropping indices of u® in q.(4.8).
Then W may be represented as a sum u:Zw;(p) u;('c)’ vhere

- J] -



Uf((l)) are exact solutions of the interpolating equation and
can be found by comparison of the sum with perturoative expansion
(as explained above). Wext two sections illustrate this general

procédure by simple examples,

—ale?
5. The Potential goV(V) =g "

Consider first the application of DIM to the non:penor.:ualiza‘ole
. . . Vi 2 ~f P = .
singular potential Yo (’l)=87- for K=L=0, In this case the per-

turbation series (4.1) is
SR P
P(Dv) = ZD{1+9 [" T +21=]+"' $EPTH

and Eq., (4.8) reduces to the equatlon
(‘JD) C(a)(f(o) + Cm(f _‘_c(l)_‘Dra‘!7 + c(u)D l+ =0, (5.23

1,
The terms of Eq. (5.1) satisfy Zq. (5.2) if C(', (')=O Co)‘—':—('z('),
fdence, the terms of the series (5.1), obey the egquation

Dlﬁ% gDe=0. (5.3)
Two linearly independent solutions of this equation are- (3]))11 (g}))

and '{3]))'/2 sz(gl)). The relation (/-1-.3) can be written here as follows
; - ' - Gs)
$0=2,{@gn" I, (gD)u,v) +@»* K, (gD) ua(0)]

Now let us expand both terms in the right member of (5.4) in- powers

of 8 . Then to the 92 <order terms we get:

9O = Z; {[gb*r...][u“” +9ud +g u"’+...] +

(5.5)
rli=gb s ...][u"” +gud . J}

The perturbatlon expaasion (5.1) satisfies Zg. (5.5) under the fol-

lowing conditions ‘ (") i. u“‘=_ L, ull)_ ulll 1/‘2,1

-2 -
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Inserting these relations into (5.4) and taking the limit D-—> o0
we get finally 2
9>(c>.::~c)=2’4{1——9—+29—,t—z +... )) (5.6)
p=l iy, vhere Z= Zp(gl))'h I,/Z(QD) It follow. from Tg. (2.pa),
\VLW decieasing exact solution has *'he form
g =c{1-& + L+, }. (5.7)
Hormalizing (5.6) and (5.7) in the same way we get that square-root
branch point (the terms of the order § ==J§3 ) is found by DIM
correctly, and up to the 81 -order terms,the interpolating solu-
tion 4(°°,"t) coinoides with the exact solution @(T).
Next, let us cons:der DIM in the case: f,=0) K#0. Vhen K#0

it is necessary to use £q. (1.3) which takes the form
T

u®,K1)=2p (k) = 7 S [J (k1) ho(Kg)) do (K?)ﬂa(x'z)]u(?) (5.8)
m—i .
on substituting u"’(z) and U(z)('l) from Eq. (1.2) and making a cut-

off at the lower limit. Iterating this equ-tion within an accuracy

of the gz -order terms, the following perturbation expansion
at large but finite cut~off parameter D is obtained:
9Ok =2 {1 +82 [ 4D + KD no(xv/Jo(k1) —
— ® ) .
—%KzenDi-@(K,"‘)]*---}“ e+ P+ . (5.9)
where e“
No(K1) T, -1 2tnn .
P(k, 1) =~K Jo(,a) ['1- + K21+“] [2 K ] :

Proceeding iurther as in the case k=0 we might get the inter-
polating differential equation of the third order, which could be
solved in terms of the Meyer functions/qo/. In the case k=0 it is
suitable)however, to change somewhat the interpolating equation

(4.8). In particular, we may expand the coetlicient of the zeroth

- I3 -



approximation in g series of K% . Then we arrive at the following

interpolating equation

") 1 ") ) az (’)
(:,”(31)) cf ' ¢ c“” "Kztf""-l-c"’lf” +C”?—‘£~ +C‘z’9)273’% t.=0.

1
D (5.10)
The expansion (5.9) obeys (5.10) only if
(f) -
Co (l) =0; C(’) Cg) ; C(;" ‘3-C2) .
Thus, ?(‘ﬂ, K, 1) satisfies the second-order interpolating
equation

2 . V
o8 g 5% =

the solutions of which are (gﬂ)vzl,,(gv) and (99)& K.;(S‘D),‘

G.1)

where
v=4(+Fg) = (1 +39x +).

Ve represent now cf(D,K,'Z) in the form (4.3):

¢@k) = Zp{ gD [, (gD) w(1) +@D* K, 3D) w.) |  (5.12)

Expanding both terms in the right member— of (5.12) in powers of
g , we get
o) o) (2
PO,K1) = 2 {[33 +93(22% + 32t 24D + v-2)+ JJul+guy eg'u! 2]
+[1-9D +g2 (3D~ 2 k(29D +¥) g3(£93+§x‘$(&29<0+3—2)]'

@)

(£)) (5.13)
[u(l’) +gu +3 u, +33u2 +J 5

The comParison of (5.13) with (5.9) leads to the following re-

lations between the terms of expansions W, () and U (T)

- 4 -



a) [
oot = u =0, u =kl

u({z)z u‘:‘:(%xd:gk'i —2—‘;1) +

442
+—§-Kz(&2% F ¥+ KT dg k) + 0(«.7_)_

(5.14)

Substituting these relations into (5.12) and passing to the limit

P> oo we finally get
(oo, K1) = Z{i——a.f(i—g-xzz’w 0(|<”z")) +

) (5.15)
+:’£E[1 +§x2z1(&,2{’- +1)+ Oc*z )] + "(’2)}. |

(here Z=ZD(3'1>)V’~ I” (3D) ). In (5.15) all terms have been ex-
panded in k2 . Comparing (5.15) with the asymptotically exact
solution (3.3), we find that the difference.

U (oo, K1) — u(r) = Z-KZ: -é—g.zlcz
is small for sufficiently small ¢ and X .

-3
6. The Potential oY1) =g7

In the case of nonrenormalizable singular potentials
the perturbafive expansion of Eq.(4.1) with l==0 1o0ks as

follows

g1y =2Zp§1+8(P e DR o 97‘0)+‘{7(')+..__v oy

Then Eq.(4.8) has the form

2. 0)

: to? s 1 (’) () }
@2)co ¢ + cé’y”+c,”’9§g— + g ll v =0. (6.2

292

]

It is quite obvious that (6.1) satisfies (6.2) if c- o,

C,m=cm=-'('om. So, the terms of perturbative expansion (6.1)

2
obey the equation

2 g ' _
228 v03f ~5P¥ =0,

?9* (6.2

- I5 -



the solutions of ~hich are IO(Z@) :;;Lnd KO(Z \65)

The representation (4.3%) in this case can be uritten as
PO) = ZD{L,@@) w) + K, (@5D) L],

ixpanding now the right-hand side of this representation in small

(5.4)

g we find:

900 = Zp{[L +9D +. J[ul+ gusd +glng Z'¢.] ‘L
6.5
+ [G ¥4 hgd) +9d(1-¥ - 1-4n 9D) +,,,][u§°’ +gu§"+.,,]} ,

Eq. (6.5) coincides w~ith (6.1) under the condition that
~ - ~ 0 { -4
UP=1,uP =0, uf ="'+ )+, U=4u? ul=21
Insertlng’fu;ther,these relations into (6.4) and passing to the

linit D —> 00 we finally get:
ploo> =2 {L gl tng +2(—F et}

(here Z = Zp Io@@) )e The exact solution of the schroedinger
equation is derived from Zq.(2.5a) v.th Yl:l = 1/2 :
P() =C{i +9[Ltlrg +2(v—Lenn -+ ) 6
Cowparing (6.6) with (6.7) we see that the dii‘ference,
g@) — (2 t) = o(g),
is amall for sufficiently small 8 . Tk}us in this case, the DIHM

approximation also is sufficiently close to the exact solution.

7. Conclusion

In conclusion we .ould like to make a remark on possible ap-
plications of the methods considered above. The asymptotic perturba-

tion theory may obviously be used ior solving singulal :ethe-Bal-

- I6 -
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/1,027 but,~&or the purpose of ootaining

peter and _dwards ecuat-.ons
10d:ified perturobation scries, 1t is unreasonably comlicated. This
enforces us to use the siapler a-iierential-interpolation macthod.
vhich can be expected, to give modified perturbation-theory teras
by use of finite numver ceias ol usual perturbation theory ..ith a
cut-ofi. e have cho.n she netiaod to be well-founded for the nodel
theory ol ..chroedinger equation .ith nonrenormalizable potential.

We hope it may be useful ifor calculating highexr-oruer cozrectlions

. in nonrenornalizable iield theories as well.

It is a pleasure for the authors to express thelr gratitude
to Prof. :...Tavkhelidze tor his 1nterest in the wrk and to

rrof, z.itearouzov for helpful discuscions.

References

1. WH.N.Bogolyubov and D.V.3hirkov. Inbtrocuction to the Theory of
suantized I'ields, lloscow, 1967.

2. &.T.Filippov. Phys.lett., 3, V8 (1964).

5. dsd.Logunov, i.ii,lcvihelidze. HWuovo Cimey 29, 380 (1963),30,134

(1963).

4, V.de Altaro, 7.ieg;¢. Potential Scatteiing, North-Holiand Publi-
shing ’ompany, Amsterdam, 1465,

5. =.T.Filippov. Proc. of the Symposium on non-local field theoyies
at ..zau. USSR, 1370. Preprint JIWR, 2-5400,Dubna (1370).

6. W.M.Frank, D.I.Land, R.M.Spector Rev.iod.Phys., 43, 56 (1971).

7. L.D.Landau, i.i.Abricosov, I.i.Khalatnikov. Docl.Acad.Nauk SuiR,
95, 7735 95, 1M77; 96, 261 (1954).

8. G.Feinberg, i.Pais. Phys.Rew. 131, 2724 (1963), 133 B477 (1964).
9. B.L.Ioffe. Zurn. @ksp. Teor. Fiz., 38, 1608 (1960).

10. H.Bateman, Ai.7rdelyi, Higher Transcendental Functiomns, v.1.,
New-York, Toronto,London, 1953 .

1. S.ia.drouzov, 4.T.Filippove Nuovo ~ime 38, 796 (1965).

12, B.i.Avouzov, 4.T.Filippov. Yurn.tksp.Teor Fiz., 49,990(1965).

Received by Publishing Department
- I7- on September 20, 1971.



