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"InAthe'fheoreticalrinvestigationsnor the high enorgy had-

rroh Scatterihg thére exlsts now a tendency to regard hadrohs-

in such collisions as composite systems with internal degrees

of freedom. There are quark, dropletcl) partonc ) models, each
of them has a oertain sucoess in the description of the’ high
energy: hadron soattering. That -is why the results of V.Matveev
and A.Tavkhelidze,paper(B)blsed on the assumption adbout the com
herent nature of the interacting hadron excited states,are of

reat interest. In that paper the prooesses of the hadron soat-
‘tering are desérided by means of the four-dimensional relativis— -
tic oscillator ooherent wave funotions.

- Here we" shall try to show how it is possible to conneot.
‘the quark models and the coherent state method for the high ener-
gy hadron scattering, This paper is a brief version of the JINR
preprint <4)

,Considor first the caoe of‘@esons. We start from tho‘equae'

tion

{P Ny V((x x,))j)V(X,Xz) =0. : (1)

This equation describes the motion of the quark (1) and anti-
quark (2) in a meson and corresponds to the 1limit in whioh the
violation of -spin and U3 symmetry 1s neglected. The metrio"is"

et Gl xEza

. ) . -
P = : B L= 0,7,2 ‘
X ‘jxa 9XJ4°( 4 7 .3
N /



To separate'the motion of the meson as a whole and the relative

motion of the quark and antiquark we make the' substitution

X, =X+F , X2=X-7.
Hence o - L & 7 . 7. AP
NS Y VN B VIR
':where“) A . g ‘ 1 2
' ' /Z = ﬂjzu'3X4 o f’ "Z‘d 27,

‘Cpnsider the motlon of a meson as a'whéie éﬁ&vput
Wesn = i)

.JThen.. ' : . . B S

_{MZ+7 '+ 2.V(9;’)]}u(;_):0)

where //2:'/92 is the squared meson mass. There exists an
essential difficulty in solving such equations, For instanoe,
consider the simple case when the potential function V- corres—

o ponds to the-harmonic oscillator
2V(45%) = P+ c .

For thls potential . ) | -
{f1 + C<r( __i + w* g ) ;ii (—.__— + u:jj?b}?ﬂ(})ffo_

It 1s clear that the .solution will be either noncovariant or

‘unnormalizable in the usual sense. Bearing in mind thils situati-

: . 9 : :
%*) Symbol ﬁ? differs operator ¢ 7 2x, from fixed momentum
of the meson, which we denote by'/o.



on we put .

= t' .
_;’" ;”' 3

oonsidering that ;7 - is a real variable and define the norm
<<7ij/> as- an 1ntegral o o

} / 0] wz) dy, ds, d5, 4, -

With suoh a definition of the norm the solution 1s norma.'l.izable,

NZZE (] [eer o(;)

Having done the substitution &) in eq. (2) we obtain
gyt _ ' 2° . 2,2 T L
{ree-Z (g v g)frm=e. @

In this case we obtain the covarlant form of the wave fimotion
'a.nd the equidistant positive speotrum for M + Introduoe the

qua.ntum a.mplitudes for the ha.rmonic osoilla.tor

a»_'w;u"'»‘?o(" C(+’ w;d"‘?o( ) -
N T e

and put. Ye =z Y- /‘/,z‘ Eq. (4) will be as follows
oo Z g dacH)pie @

It -can be seen that the ground state of the system }V lo)
is the state with the norm equa.l to unity, o

<0|0> 1.



and satisfies the relation

ad l0> , o= 07,2,3,

Having considered the general exclted state, which contains n

quanta » =

.
C- A ¥ w

€ dpe s, Gy dy - .
R [ZJ: e S gt "'°> -

it 1s easy to see that the norm oan be negative, for instance,

the state with one time quantum

Y= d, 10> |
¥, ¥> =<0l @, dyf 0> = <olds @l 0> = 0,05 =-

Integration over;the imaginary sxis ;o‘ which ensures covarian-
ce and positivity of the Mz spectrum, causes neéativity of the
norm. Thus it is clear that the norm of the states (7) will be
positive if there are no oreation operators a° of the time ‘
 quanta in these states. ’

In this way we get the condition

3 "
‘“Z;; eo( eo&‘_jl..‘ =0,

Jn

, (8
where € is a time-like vector, for instance, € =p . Condition .
(8) ensures the absence of . time quanta in the expression y/,so
that the ‘norm will be positive.

It was noticed in paper( )that the transversality
condition is a criterion for choosing the physically

permissuble states.



To derive the formula for the high energy two-meson scat-
tering amplitude we chose the potentia.l which describes that
" scattering in the form (3) ’

& & Cﬁﬂv o
W 226y, s, g s

o) A A
VJ,(e = /Z((/Dlj’(x‘ %)+ 8, Xe)/o/+

+ é/J’X X,/+ X(x xé,),a)/o ©)

= B/(4 Sa ~1})e Lt xl)B )+
(A, a"(x et s ~ %) 2)A.

He;e /D/ X; oorrespom;.s to the first meson (I) /0) Xg’ to thp
. second meson (II). G L2 are the constants characterizing
the interaption between quark (J = 1) or antiquark (J = 2) in
the first meson (I) and quark (t 1) or antiquark (E- 2) in
the seoqnd meson (II). The Born scattering amplitude T 'is de-—
fined by the matrix element W(I'-ZU of the interaction poten-

tlal between the states _
’ _ =lpxr pixl .
% %= 00>

o o , Cegre gix’
%1 = <00 e T

namely

(27%) §(g+9'-p-pY) 75,8 =

_ L tgrrg ) L) opws pia! . .
__J<0'Iole(7x‘f7xw )e‘(fx+Px }0/0> 0{/\'0{»\","

where

S=pepi® , L= Pt



Substituting the integrélvrepresentétioﬁ of'thé' 8-~ funotion
into (9, ter simple calculations, we obtain the Matveev and
vTavkhelidze formula

7—’(.5‘('}-—:(5 a)ée“"

:ﬁhere :
)

ciz .

vzt €=

- This result can be generalized to the baryon oase, In this case
we shall start from the following equation

" e zorimiag casec -
, 2 0k ) e (X Ks) e (K= K | _
{%G*W '»sf "ﬂﬂ%&a%¢uw

‘ ”To separate the motion of the baryons as a whole and the relative"'

';motion we 1ntroduce the variables B

’XJ X+; ’ ZEJ

ey /)+f? o
| , @

Ly - fﬁ | L

and the corresponding‘momenta

: _ .2
AL LD - 2 =g o
,z =0 % Z‘,/,I?Z“" 2y, I* Fc 923 E

: In'this‘ﬁay equation (10) can be written in the form



Q2

" with real /y., 2y ~:a.ndideﬁ.ne the norm by the integral:-
Jl e e dyde.
—-—od ’. . ) : .
Consider the particular case of the: csoillator potential
V(y% 2Y = L ytaec [ woc s cost

a.nd 1ntroduce the corresponding quantum a.mplitudes
+

g (fa ), deg(E0m )
Goflgarin), LemlEas)

B& meé.ns" o-f} thgsg anplitudes Véq. (1-2) takes the fnrm |
{ M- _Ho‘+3c¢ .,(i J (aiag 4, K) / f= 0. an

It is seen that the . genera.l form of the eigenfunotions for this
equation is '

S . PR + '
= Z_ .€.3;..j,‘l_/,‘“/“: ai;'lggig /”é’:"o)

(JI'/I =942,3) /“ . ; (14)



and the corresponding mass square values
2 2
//sz(1+yffﬂ

To ensure the abcense of the time quanta in (13) the correspon—
ding transversality conditions can be written as 1n the meson
Acase. '

"In the general ‘case of the potential L’ﬂy 1-2,)to obtain :
two—baryon'elastic amplitude we assume that before collision both .
particles have the lowest mass in their spectrum, i.e, their sta- :
tes are’ o . —opx! -

= /0x>> , € | 0p >
and after collision

_{7)( -(.7’/\’,

lox> , € " log> -

The shape of the poténtiai \A/ is chosen the same as in the

meson case, N o
A B T A ’ :
/., X, 1is related to the first particle (I) and P, ¥,  to

the second one (II).\If the first particle 1s a meson, j = 1,2

and

of the first particle is a baryon, j = 1,2,3 and
A& =‘X+'fi , N
whexre }; are expressed through the variables ¥, in (11).

The second'particie is always considered as a barydn. In this ‘

- case for the Born émplitude we obtain

10



L[AV

;T;S f/ = - cc) ZE::(Q /L /C} /é/:
& SR @)

where £ kY = (o e o> -

Comparing this formula with that for mesons one can see that it
concerns both meson-meson and meson=baryon and baryon—baryon scat-
tering. As was. 1ndicated in paper 3 this Born amplitude

oould be used to oonstruct the corresponding quasipotential and
to‘obtain mqre"precise expression for the scattering,amplitu@e

by means oi‘the quasipptential equation, Howevef, it 1is possidle
to use:formula'(15) direotly,regarding’ 7" as the scattering
amplitude l.e, neglesting the correotions to the Born aproxima—

tion. Then, taking into account that

foegw=t

.we obtailn, as in paper(B)) the following expression for the to-

tal cross—section at high energy
' ' &)

e =2582"
."'é
_Ohg oan see that.here 1t is possible to 1nterpret' ;Z éav
total cross section of J-quark interaction with Z-—Qu;rk. In
this interpretation we obtain the additivity rule
. ¢ €)
Ctor = Z:o:"‘

e

(16)

which was considered formerly in a number of papers, and we shall :
discuss here neither the limits of application of this rule nor .

1ts comparison with experiment.

11



A"How.ever, we. ‘must notice that the necessit’j of malking (15)
and (16) more preoise j:s immediately seen as the principa.l equa.-'
tions conta.in neither symmetry violations oaused by spin and iso- '
~ topic structures nor the differ_ence,betv(een,.the effeotive A 4
and _V/O,vn quark masses, Neverthelese, if we use (1.5) then as. .
the elastic differential oross e‘ection, when §—> oo , is pro--

s

portiona.‘!. to o ; : PR

= ‘”’ s )

we obtain.

doy » |
w7 )” WED.

Here, as :follows from (5) (6) the functions F(f/, Fff/ :
correspond to the electromagnetic fcrmfactors of . interaoting par—
ticles (I), (1D Formula (17) obtained from other considerations
is a.dduced in (7). In the same pa.per there are i’ormulas a.na.logous'
to (15) in which the functions ;,6 (t) are instead of cons—-

tants CJ‘,L « It 1is easy to obtain such a generalization in our .
scheme. It is sufficient to- use non—loca.l interaotlon instead

:of S—interaction : f
(x)

; nl) A At ; T ’,AJ/\/
W=<¢ Z%m e V-( ‘/f{/gée({f-()+@;€({;' e//ﬁ)+ ‘

/

Nt

| (Pﬁ Iz xe/+¢ 2 x/P)é;

. where

2 ‘(.KX . . . .
(’}'(1») /,Z/ (/{/8 o(l( o

J,(

12 -




. Then repea.ting litera.lly our calculations we obtain :!.nstead of
a» . | |

Tst)= es-a) E;Z,'e ”‘/5({/ n‘)
Consider ’qné mdre operat.or potential W -which leads to the same
result (15) as the potential (9). The -suggested modification is

" to change the total momenta of pa.rticles f /3 by single quark

momenta. /:/./ ,é’ .

~rr . @ . . d), , )77
W ,}: 1,>§,€;e NNV,

/’

V,= 2 g v
"ft ~\o§=on“ \//(

‘ ed)

, 7 o .

"/‘ - ./.x ( J)(‘XJ -1,) + Sex;~4e) B ) +
o //g/ Loy 4.)¢ L ex -{,‘//;/; )P

‘where N = 2 1f the partiole is a meson and N = 3 if the partic-
le 15 a ba.ryon. It is easy to show that potential (18) leads to

the same Born eiastic amplitude as the potential (9).
Notice, ‘that 1t 1is possible to consider the- potentia.l w

as-an :!.ntera.ction through the quark currénts, Rea.lly putting in-
to (18) the four-dimensional & ~function

g . ' tx(x_’" —.X(I)X
(XJ C) (Zl)}y \ ' I 4
we obtain

~ T, ), 03! ¢'z¥," ex ) cxy) “l ;o
Wi ZE W g i in) b
@)fle T ' T aw

13



-Introduce the ’four-dixnen'siona.l ‘current de'nsities of J—quark -

']. X)=2 {/’ SCK- x,+5(x -y ] O

Then

/J (W R

VIn the meson case’

A/<0If’lo> =2<01p;10>= .‘Z<0lf’,+Pz]'D> /9
a.nd in the baryon case

/‘/<0/P/o> 2 <01p, 10> = 3<ol}’+f’z4/9 o> = P

It is seen that the coefficient N is chosen so that

< o JI(X)JX lo> ,D

g Consider the four-dimensional current density ' fourier - ‘
component o ‘ ) :
Q) wX "__ _4 » "% x_{' ¢'/zx,". . : o
| H ()€ AX=Z e e P ey
‘Then (19) can be writ'te‘n in the form
~ (LT, t] E} a) &)
w ):'(' f (x) . (-x) de .

. 1) .
But as follows from (21) j (IC) and j¢ (- ")__ are propor— -
tione.l according,ly to” xand e““ -\. On the other ha.nd, the’ -
. Born elastic amplitude of the particles €9) and (II) which had-

momenta i p 'b,efore interaction and 7/ 7 ~after it is

14



. S . , hJ(Lu)7 S
defined by the matrix’ component of the Fourler form bv ‘.

f - 1herefore the corresponding operator is

. 95 e LAZV dU LE) ' B el
(ZJ’# e <) ('K,).,, e

In the special referenoe system, when k - (23).
- operator (22) takes the. following form . )

: 4". _:v ('1.‘_[) ‘ﬂ) -, . R ‘

() JZ; G./j'e »Z 0‘) ] (‘/‘/. | @4

where ' .

T T ey Y ST, G
J(U=Z(qqz-fv e e p ) :

Vi [ ax | e

(I)

) ) v
| (X);f‘_z—/ {p (S’(X—x)+5’(X x)/?]

|

(25)

1)

[ (X)»' P {p y(x x’)+8(X WEJ.

As 1s seen, the operators (25) can be oonsidered as usual
three-dimensional quark current densities. Thus, in the special
reference system (23) the amplitude T is defined by the corres-

. ponding operator's (24) matrix element which is a linear combi—.i
nation of the Fourier—component products of the three-dimensio— ‘
nal quark current densities. '

150



1.
2,
3.

4.
Je

6.

Te.

References

N.Byers, C.N.Yang. Ph,vs.Rev., 142, 976 (1966).

R.P .Feynma.n. Phys.ﬁev.Lett., 23, 1415 (1969).

V.A.Ma.tveev, A.N.Tavkhelidzes JINR Preprint ‘E2=5141, Dubna
. : : . (1970).
H.H.boronnGos, Ilpenpuur OHANl P2-5682, ILvona, 1971,
H.H.BoronnGos, Hryen Ban Xséy, X.Croanos, B,B.CTpyMuncRuil,
AH.TaBxempse, B.il.lenecr, Mpempuur OUAN I-2075, JLyo6na, 1965,
LH.Foromdos. lpenpunz OMN P-2186, Iyowa, 1965.
Jedods Kokkedee. The Quark Model in Partlole Physics, N.BenJa-

min, New York.

Received by Publishing Department
. .on September 7y 1971.

16



