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1. Introduction

It 1s well-hnown that the commonly used classification
" of fleld theories into renormalizable and nonrenormalizable
ones 1is obtained by use “of perturbation theory, ‘and one may
- assume that thenfailure of perturbation theory for non-
‘renormalizable interactions 1s due to the impossibility

" of expanding S_matrix in a series of powers of coupling

"constant ¢ see e.g. 1/) It is therefore quite possible that.

by summing perturbative series one may obtain elther

‘ 7finite S—matrix or that which may - be made finite by

.adding a number of counterterms to” the Lagrangian. So the’

Vdistinotion between renormalizable and nonrenormalizable

' ‘vltheories may appear. to be the peculiar feature of pertur—v

bation. theory. This. possibility was clearly demonstrated

/2-6/ which considered  the ladder—type Edwardu/7/’

in refs.
equation for the vertex function._Due to a rather compli—,'

’cated structure of the equation these papers deal with
the special case of’ vanishinp 4—momentum of one of the

three particles. Here, the most general case of nonvani- : ij
1shing momenta of all three particles ‘1s considered, with
~the’example of a{Pﬂ' vertex. The solution of the integral
equation is shoﬂn to be obtainable by using an iteration
method All the iterations are finite and enable one to
_obtain the expression for the vertey in terms of a series‘&

‘4whioh in fact is'a proper modification of the usual per—"



turbative exba.hsion ( taking into account the nonanalytic

dependence on the coupling cons tant) .

2 The solution of the équation for the vertex function

. The Lagrangian of the wpT interaction has the form

i = .. ). * 7% ‘ o
wpr = Eijt Y AWPT, (1)
where o 1is the isospin index. The most general )
renresentation for the Q)PT' vertex can dbe written as
r' (p,K) = (217) ig. F(pk) 6 ELJKQ P; Kt . ' @

~ For notu.tions see the figure. Our cholce of variables is the
most convenient due to the symmetry of F(p,k) under the

reflection K —+»-K. , k ;
' " The ladder—~type Edwards equation 1s gepresented' in the

formof diagrams in the figure. The factor Z defines the
normalization of the vertex and in what follows it is

omitted. The analytic representation of the equa.tion in

the Euclidean metrios is - °

Firo=1 + [d% K(pgi% F@.K,

. K = _9_. [42px)~(pa(ka ] [P(xa) = P‘L)(Pk)]+4[(K¢L)(K,p+q,) -
@) [(PK)—PzK’][M + (k-42)][M 2 v g ][ (preY]

—iy,prallpkIK p+2)-K (P:P“Lﬂ

’



where X = MF =11 is the vector boson mass and m is the

mass of the pion.
In the Euclidean momentum space we choose the coordina-

te system with the forth axis a.long K¢+ Then

4, — o3 — il : ' .

d =9 dq/ J.Q.L , 48, = stin ' sm-ﬁidt{/iolﬁlti'ﬂ ;

0< 4,0, ¢, 054,821, 059 5°°;

. y @ = (X9)
cos . =4 ;

and the invariant function F(p,k) depending on p?, (pk) and
k% can be writ{:en ‘as F(pskX) = F(#,¢¥,)  ( dropping k2 )e
=0 eq. (3) is quite analogous to that of. o

- For ki
ef!zl and can be solved by the same metho‘d' the essence of

which is as follows. Yhe kernel K is broken up into
two marts K-"—Ko + K’ , vhere K, is the most sinfular

for large p and q¢

K.(pg)= gt [9260 ~Coalle’ 6 —Cepiek]
PV Ty T pet-piel ¢ (e T @

Then we solve the equation

:F@5=§WVfPﬁK°Fa] S ®



’ with : , - L » R

fir9) = 'F'Stl‘q K'.F , K=K Ke o oon @

:Introduclng tho notqtion R . ,,“ ) ,
{42, K. (n) - K.,D(P‘.ém:. T

one mwy rewrite €qe (5) a8

(8)

F(f’)'~' e+ [y ¢ Kw(p YFGY),

Cwith’ ' L *
?J‘i‘l w(P‘l)F 471 1}{8‘1‘1(1 )F(”)Jr 0
PR }

_ 8 .

Tyt DT X, 7

By différentiating eq. (8) is reduced to the differential
equation the Green's functlon of which can be easily .
found. '_['he resolvent kernel, R(P 12) of the integral

equation (8) may 'be easily cxpressed in tenns of the Green'

/21

function’ “/and so eq (8) is equivalent to -

F(r’ )---,jdq R(P «mm,
F(?l) - Fo (Pz) + golqz R(PZI‘I,Z)K’F . -
ilere F (pz) is the solution of eq. (8) for f(Pz)—l

- 4/1‘%x =2 G (¥x Y124, 2) Can
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wby 1terat10na. For larpe p2 all iterationq decrca 5@ fa ter“ -

,".‘ 30 . ‘ " ."
and qu is the Meijer funotionla/ Unlike eq. (3), thn

1ntegra1 equation (10) is rebular onnubh to be uolved

than T (p ) and’ so the asymptotic behaviour: of r(n“)(no

p? ~» 00 ) coincides with tit of F (»*) ( for the details

3

M"ee ref. /?/)

In the case Ki#0 eq. (3) o:in be solved by ‘the -

same method. . - : . ' . ‘<vm

_ _ The s implest way to do 50 i° to choose the noat uinvulqr
kernel in the form ECOO(P %f) S ¢ 4 4 )

e to revrite eq. (3) as follows

_Fagqg)e:f@iﬁgfrgaiAg,qﬂkoxﬁ1 i AL I

*4

“The inhomogeneous term now- is

e m«Hm e

whcre'

g %K F —jdwKF fa-q’ “oQFIq, .
SJKF+WJF W1&ﬁl,,%n@f

The anguhar variableu 4p; ,Pp in-en. (12) are

cOnsidered to be free paramotero ani therefore this

integral equation is in fact one—d;mgnsibnalo Thus,wthe

method develoﬁcd-for the ‘casc k;=0 is hpplioable and eq.

(12) can be solved by reducing it to the differentsrl -
. equatlon. It 15 not hard to verify that its solution is

.
i



CF(px) = Sf’l‘f R(p%9") {“(%'K)l‘{’ﬁ"r‘t N

Putting in here eq. (13) we find the 1ntegial equation.
F(px) = B¢ +

+ [dig” dy? Ry K490 FO), an
Bt

‘which is equivalent to eq. (3) but much less'sinoular. In

fact, all iterations of eq. (15) are finite due to the nice
auymptotio propertles of F. (pz) and of R(p ,qa). The

viterative solution of eg. (15) ‘can be written as

. oo , . .
Fplo= R + ) FGR, a6
n=1 ‘
where for p2 - oo F, decreaée faster than Fo(P2)~ So

it is reasonable to expect that, at least for p2 > o2 .,

the series (16) converges and the asymptotic behaviour
of F(p,k) is identical to that of F (p?) .

"3, Expansion of F(p,k) 1ﬁ a modified pérturbation series

It is not hard to verify ( of. ref{ /) that all

. _ . 2 :
corrections of the order of A are inoluded in the zeroth
' hanad

and first 1terations'
F(p,k) E ) +F, (Pk) =
= Fo(p?) ! SJI' 'dg RK F - an

o)



Since I"O(p?') does not depend on angular variables

one easily finds ( using eqs. (14) and (17) ) that
o / _ g e’ . o ‘
. ! -. o ‘ v ) -
where K =K-K, . 1t 1s not difficult to check that

gw g R, (wi F (1 {o("qy K'(p.9) RG)+ o) ey

- and using eq. (17) we find

F(P,k) = FO(P;H (dg K'F, + o(Af) (19)

How, employing eq. (11) we obtain
60— 1o B (e g ) w00
> (%) —:'L+T,(' x +4Y 3‘) , (20)

where ¥ = 0.577.1s the Euler constant. vThe second term in
" the right member ’of' eq.. (19) diverges logarithmically if we -
replacg Fio by 1. S0, to calculate its contribution to tl}e
X’"— order term of the modified perturbation theory we

employ the f}ollowing' trick. First, we extract from K/: the

. . . ]
most singul.ar part- Kw,
i 1 "B g :
K' =K. tK, | ESN

‘ T " .
and ca.lculate So“ K F exactly. Then the term jlﬁ‘lK Fo
is calculated approximately by substituting Fo by 1. Takim;

KL, as



. ome may e'1.,11y verify that, for calculating
gdl’q/K F‘J , 1t'is uufficient to find the 1ntegra.1/ /

o0

S)J Mz)2

Gao(}\l}ju A_Z):C’ ( 0211_)(23)

. i
;1-‘or small  A°

Y ) ‘;‘ 1“ b _ _L . ) ‘
M am?] - Yo 2 XM +2 £ (A
L’.s(l 0,2,1,,—1,--2) x_“l + Bn x +O ) )0

. a.nd ﬁna.lly we get

-Sdﬁ'{K;,Fo m&(&rm +‘/x 2)+ o(/\) @

Ilow, substituting eqs ('ro) (21) and (25) into eq. (19)

. we arrive at the modified perturbxtlon serieo '

F(P. =1+ (M 2+4x— )+
(26)

+i AKZ(fmA M+ n{ 5) ( K (M)+ oA
It is of inteves ,t to compare this c*{p*esoion with tha.t

of triangle diagram, c"xlc ulated with a cut-off for t!, A
e latter is identical to the firqt iteration of eqs (3)

10



" where. -

oy - ft“W

)y (o)
'__E(Cn—, ) A%AZK2<€n———-+L>-f‘[d"cL'K»v"‘O‘('/{})..

d:Comparing eqe (26) with eq; (“7) e find that

F(P,k) i+§d4‘LK(Pv‘L)+°(7‘) e

v
et

N -

s (29)
A, = }\2 exp(7 éb’

*4

?i: Eq. (29) 1s in fact the "unitarj cut-off parnmeter" which,v
'from general conelderations, must. ‘have the form [\ C//A;

',The value of C obtained ‘above enables us to calculate the

'terns ~aA‘ ezactly and to eotimate the higher—order
terms . ( de suppose to explclt this possibilitygel;c-o
where)

Now, it is not hard to prove the unitarity rclation

‘for the )-~ order correction. Indeed, the inaginary part

'*3-of eq. (28) ‘is equal to that of the triangle diagram and’

thua it 13 given by thc ‘unitarity .relation. It does not
make scnse to’ diseuga the unitarity relations for higher—

—order'terms since We considered only ladder type<diagrgms.

_-....—.—....-_—..—-——

Mz pia2
Thelsual unitary cut—off- gives only the term ~ A 6k
which is not sufficient to estimate the 1-—order correction,

I



Eq, (26) may ve gxp:essed as a sér;és of powers‘of
external momenta. Introducing‘the notations
pl (p—k/2) =X p2 (p-+ k/2)2 -x', we get,( with '

"n® =0, ? =1)

F(x, %, k’)— X [(en X+ 4x——

,+'qL(><'+Xz) -+ Tz‘ (X.—)Sz)v + 4 (x.+x1)r<

o o 2t

LK A _]+o(kz)

322
conclusion concerning a rather~rapid variation ‘of the

whers AM® 3’”}/ 0,8, From this expression the important .

vertex function ( with external momenta) is drawn. This
‘fact was used in ref./lo/for imnroving the vector-dominance

'model ‘for the decays
Jw — 3, w~>7rx y T —>Xz(

phe useful discussions with Prof, B A Arbuzov are

kindly acknowledged. ‘ ‘ ' _ o
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