C 346.55 E-44

объединенный ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ

HANKE

AABODATOPHS TEOPETHUE(KOM

Дубна.

3362/1 INT in the second

E2 5996

M.A. Eliash vili, B.A. Magrad ze, M.N. Tugu lea

K₂₃ DECAYS THE

AND CHIRAL SYMMETRY-BREAKING

E2 - 5996

M.A. Eliash vili, B.A. Magradze, M.N.Tugulea

THE K₂₃ DECAYS

AND CHIRAL SYMMETRY-BREAKING

Submitted to $\mathcal{H}\Phi$

* Tbilisi State University

1. It is well-known that the form factors in the semileptonic decays of kaons are very sensitive to the choice of the chiral symmetry breaking. It has been shown ¹ that the most common scheme of SU(3) \times SU(3) symmetry-breaking through the I= Υ =0 components of a tensor transforming as the (3,3^{*}) + +(3^{*}, 3) representation does not lead to an adequate description of $K_{\ell 3}$ form factors from the latest experiments. So, the \Im parameter calculated with this scheme is near to zero in comparison with the experimental values: $-1 \leq \Im \leq -0.5$. Then, it appears necessary to try other models of symmetrybreaking.

In this note we consider a model of chiral SU(3) \times SU(3) symmetry-breaking where a term transforming as (1.8) + (8.1) representation is added to the (3.3^{*}) + (3^{*},3) breaking.

We calculate the $K_{\ell 3}$ form factors using an effective Lagrangian which appears in the non-linear realization of the SU(3) × SU(3) group with the linearization on the SU(2) × Y subgroup ^{2,3}, and we show that such a model gives a realistic desoription of $K_{\ell 3}$ form factors.

2. We start with the effective Lagrangian density 2,3

Lefs = Liny + LA.6. (1)

(2)

Here \mathcal{L}_{inv} is the SU(3) × SU(3) invariant part and $\mathcal{L}_{A.b.}$ is the breaking term which is assumed to be of the form

$$\mathcal{L}_{A.b.} = u_0 + c u_0 + d g_8$$

where $U_{0,8}$, g_8 are the scalar densities transforming respectively as $(3.3^*) + (3^*, 3)$ and (1.8) + (8.1) representations and c,d are breaking parameters. \mathcal{L} s.b. (as the full effective Lagrangian density) is an essentially non-linear function of the preferred pseudoscalar \mathcal{T} , K, \mathcal{T} and scalar $\mathcal{L}(I=\frac{1}{2},Y=\pm 1)$ meson fields.

The Lagrangian vector. $J_{\mu}^{\nu,m}$ and pseudovector $J_{\mu}^{\mu,m}$ currents satisfy the current-field identities and their divergences have the form :

 $\partial_{\mu} J_{\mu}^{V,i} = 0 , \qquad i = 1, 2, 3 ,$ $\partial_{\mu} J_{\mu}^{V,a} = \frac{3}{4} (c \langle u_{8} \rangle + d \langle g_{8} \rangle) \frac{1}{F_{x}} \mathscr{X}^{a} = m_{x}^{2} F_{x} \mathscr{X}^{a} , \quad a = 4, 5, 6, 7 ,$ (3) $\partial_{\mu} J_{\mu}^{A,i} = \frac{1}{3} (\sqrt{2} + c) (\sqrt{2} \langle u_{0} \rangle + \langle u_{8} \rangle) \frac{1}{F_{x}} \Pi^{i} = m_{n}^{2} F_{n} \Pi^{i} , \quad i = 1, 2, 3 ,$ $\partial_{\mu} J_{\mu}^{A,a} = \left[\frac{1}{3} (\sqrt{2} - \frac{c}{2}) (\sqrt{2} \langle u_{0} \rangle - \frac{\langle u_{8} \rangle}{2}) + \frac{3}{4} d \langle g_{8} \rangle \right] \frac{1}{F_{k}} K^{a} = m_{k}^{2} F_{k} K^{a} , \quad a = 4, 5, 6, 7 ,$

where $M_{\mathbf{x}}, M_{\mathbf{n}}, M_{\mathbf{K}}$ are the masses, $F_{\mathbf{x}}, F_{\mathbf{n}}, F_{\mathbf{K}}$ - the weak decay constants and $\mathcal{H}^{q}, \Pi^{i}, \mathbf{K}^{q}$ - the renormalized fields of the scalar and pseudoscalar mesons, and $\langle u_{\cdot} \rangle, \langle u_{s} \rangle, \langle g_{s} \rangle$ the vacuum expectation values.

(4)

Following ³ we shall take

$$\frac{F_{\kappa}^{2}}{F_{n}^{2}} = 4.33 , \quad \frac{F_{\omega}^{2}}{F_{R}^{2}} = 0.25$$

and from

$$m_{\chi}^2 = 1.2 \text{ GeV}^2$$
 (5)

Then from (3) we obtain the magnitude of the (1.8) + (8.1) breaking term as following :

$$d\langle g_{8} \rangle = \frac{4}{3} \frac{\sqrt{2} - \frac{c}{2}}{\sqrt{2} + c} m_{2e}^{2} F_{2e}^{2} - 2c \frac{\sqrt{2} - \frac{c}{2}}{\sqrt{2} + c} \left[\frac{F_{n}^{2} m_{n}^{2}}{\sqrt{2} + c} - \frac{F_{k}^{2} m_{k}^{2}}{\sqrt{2} - \frac{c}{2}} \right]$$
(6)

3. We define the $K_{\ell 3}$ form factors as usually :

$$\langle \pi^{i}(q) | J_{\mu}^{V,e}(0) | K^{b}(p) \rangle = \frac{i f_{ieb}}{(2\pi)^{3} \sqrt{4p_{e}q_{e}}} \Big[(p+q)_{\mu} f_{+}(t) + (p-q)_{\mu} f_{-}(t) \Big]$$
(7)

where : $t = (p-q)^2$ and $\int_{\mu}^{V, q}$ - the strangeness changing vector current, which in this model is proportional to the $K^*(1^-, 890)$ and $\mathcal{Z}(0^+, 1100)$ meson fields:

$$J_{\mu}^{V,a} = G_{k^{*}} K_{\mu}^{*a} - F_{z} \partial_{\mu} \mathcal{Z}^{a} .$$
⁽⁸⁾

To calculate the matrix element in (7) we need the effective vertices for $\mathcal{L}K\Pi$ and $K^*K\Pi$ interactions, which from (1) turn out to be

$$\begin{aligned} \mathcal{L}_{\mathcal{Z}K\Pi} &= \frac{F_{w}^{2} - F_{n}^{2}}{F_{n} F_{\kappa} F_{w}} f_{aib} \mathcal{L}^{a} \Pi^{i} K^{b} + \frac{F_{w}^{2}}{2F_{n} F_{\kappa} F_{w}} f_{aib} \left(\mathcal{X}^{a} \Pi^{i} \Box K^{b} - \mathcal{X}^{a} \Box \Pi^{i} K^{b} \right) + \\ &+ \frac{1}{F_{n} F_{\kappa} F_{w}} \left[\frac{1}{6} \left(1 + \frac{4\sqrt{3}}{c} \right) m_{w}^{2} F_{w}^{2} - \frac{1}{2} \left(\frac{\sqrt{2}}{c} + 1 \right) d \langle g_{v} \rangle \right] f_{aib} \mathcal{X}^{a} \Pi^{i} K^{b} , \end{aligned}$$

$$(9)$$

$$\mathcal{L}_{K^{*}K\Pi} = \frac{1}{F_{n}F_{\kappa}} \frac{m_{\kappa^{*}}}{G_{\kappa^{*}}} f_{aib} K_{\mu}^{*a} \Big[(F_{n}^{2} - \frac{F_{\kappa}^{2}}{2}) \partial_{\mu} \Pi^{i} K^{b} - (F_{\kappa}^{2} - \frac{F_{\kappa}^{2}}{2}) \Pi^{i} \partial_{\mu} K^{b} \Big]$$

where, the fact that the $K^*K\Pi$ interaction contains no more than one derivative ³ has been used. Consequently, the $f_{\pm}(t)$. form factors have the form :

$$f_{+}(t) = \frac{1}{2F_{\pi}F_{\kappa}} \left(F_{\pi}^{2} + F_{\kappa}^{2} - F_{\varkappa}^{2}\right) \frac{m_{\kappa}^{2}}{m_{\kappa}^{2}} , \qquad (10)$$

$$f_{-}(t) = \frac{1}{2F_{\pi}F_{\kappa}} \left(F_{\kappa}^{2} - F_{\pi}^{2}\right) - \frac{\beta^{2} - q^{2}}{m_{\kappa}^{2}} f_{+}(t) + \frac{1}{2F_{\pi}F_{\kappa}} \frac{(q^{2} - \beta^{2})F_{\varkappa}^{2} + (t - \beta^{2} - q^{2})(F_{\kappa}^{2} - F_{\pi}^{2}) - \frac{1}{3}(\frac{4V^{2}}{c} + 1)m_{\varkappa}^{2}F_{\varkappa}^{2}}{m_{\varkappa}^{2} - t} + \frac{1}{2F_{\pi}F_{\kappa}} \frac{d\langle q_{s}\rangle(\frac{\sqrt{2}}{c} + 1)}{m_{\varkappa}^{2} - t} . \qquad (10)$$

$$H_{\pi}(t) = \frac{1}{2F_{\pi}F_{\kappa}} \frac{d\langle q_{s}\rangle(\frac{\sqrt{2}}{c} + 1)}{m_{\varkappa}^{2} - t} + \frac{1}{2F_{\pi}F_{\kappa}} \frac{d\langle q_{s}\rangle(\frac{\sqrt{2}}{c} + 1)}{m_{\varkappa}^{2} - t} .$$

$$\Gamma'(\mathcal{X} \to K\Pi) = \frac{3}{32 \Pi F_{\kappa}^{2} F_{\chi}^{2} m_{\chi}^{2}} \left[\frac{F_{\kappa}^{2} - F_{n}^{2}}{2} \left(m_{\chi e}^{2} - m_{n}^{2} - m_{\kappa}^{2} \right) + \frac{F_{\chi}^{2}}{2} \left(m_{n}^{2} - m_{\kappa}^{2} \right) - \frac{1}{6} \left(1 + \frac{4V_{z}}{c} \right) m_{\chi e}^{2} F_{\chi}^{2} + \frac{1}{2} \left(1 + \frac{V_{z}}{c} \right) d < g_{\varrho} > \right] \cdot f_{c.m.}$$

$$(12)$$

where

$$p_{c.m.} = \frac{1}{2m_{\chi}} \left[\left(m_{\chi}^2 + m_n^2 - m_{\chi}^2 \right)^2 - 4m_{\chi}^2 m_n^2 \right]^{\frac{1}{2}} = 0.43 \, \text{fs}$$

4. The K_{ℓ_3} decay analysis uses the parameter $\xi(t) = f_-(t)/f_+(t)$. The comparative analysis of different measurements gives the world-average ¹:

$$\overline{f}(0)_{exp} = -0.85 \pm 0.20$$
.

From (11) we see that f(t) and consequently the parameter ξ

depend on the values of symmetry breakings: $c, d < g_2 > .$ Using (6) for the fixed \mathcal{R} - meson mass we can obtain the

 ξ - parameter dependence on c or $d < g_s >$. The same we can do for $\int'(\varkappa \rightarrow \kappa n)$ when considering (12). It's easy to find the intervals for c and $d < g_s >$ for which $\xi(0)$ and $\int'(\varkappa \rightarrow \kappa n)$ take reasonable values in agreement with exprimental data (see Table 1).

It is interesting to observe that the values for C are near the exact $SU(2) \times SU(2)$ limit (i.e. $c = -\sqrt{2}$).

Concerning the parameter $d < g_8 >$ it must be said that it is connected with the scalar components of the meson nonet (when we add the corresponding relations to(3)) and a treatment similar to the **c**-parameter one can be achieved when conclusive experimental information about $\gamma - \gamma'$ meson mixing will be available. The results we obtained depend also on the modified Glashow-Weinberg values ³ for (4) (using the $K^*K\Pi$ decay width instead of the second Weinberg sum rule) and on the uncertain value of \mathcal{X} - meson mass (5).

Finally, let us remark that similar results can be obtained in the context of the current algebra (when the corresponding symmetry-breaking model is used) 5,6 or still with other models ⁷.

ter en ser e

 N.K.Gaillard and L.^M.Chounet, K₂₃ Form Factors, CERN 70-14, and Phys.Letters, <u>32B</u>, 505 (1970).
 D.Haidt and oth. Phys.Rev., <u>D3</u>, 10 (1971).
 J.Honerkamp, Nuovo Cim., <u>66</u>, 767 (1970).
 M.A.Eliashvili, On the K₂₃ Decays in Chiral Dynamics, JINR P2- 5290, Dubna (1970).
 T.G.Trippe and oth. Phys. Letters, <u>28B</u>, 203 (1968).
 R.Arnowitt and oth. Phys.Rev.Letters, <u>26</u>, 104 (1971).
 K.Schilcher, The (1.8) + (8.1) Term in SU(3) x SU(3) Symmetry Breaking and the Parameter ₹ in K₂₃ Decay, Amer.Univ.Beirut (1970).

References:

7. J.Rest and D.Welling, Phys.Rev., D3, 2783 (1971).

9

Received by Publishing Department on August 11, 1971.

Table 1

С	d<98> GeV*	₹(0)	Г (ж→кп) Ge¥
-1.345	0.16	-0.45	0.014
-1.35	0.23	-0.52	0.025
-1.355	0.25	-0,56	0.035
-1.36	0.31	-0.61	0.05
-1.365	0.37	-0.66	0.07
-1.37	0.46	-0.74	0.12
-1.375	0.59	-0.83	0.18
-1.38	0.79	-0.94	0.32
-1.385	1.09	-1.1	0.62