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Po6awuxk [1., CMoponuucku#t f1.A., Buuopex 3. E2-5993
[lpeo6pasoBaHue COCTOSHHA GeCKOHEYHOTOD HMIOyabCA

HapecTHbIll pe3yabTaT, COCTOSWHEA B TOM, 4YTO COCTOSIHHA CIHPAalbLHOCTH
MACCOBBIX HACTHI C BECKOHEYHLIM MMAYABLCOM 00G/afanT TEeMH Xe CaMLIMH
cBOo#cTRBaMHu npeobpa3opaHua 4To M GeaMaccoBsle wacTHubl, o6o6maeTcs Ha
coctosHEs ¢ pi<O0.

B cnyuae p?> 0 up?<OompenensiioTca KaHOHHYECKHMe COCTosSHHs. Pac—
CMaTpHBAETCH ACHMITOTHYECKDEe HoBeleHHe nobopoTa Buruepa nns arux
cocTod HHl, YcTaHapnHBaeTCs CBfi3b MexAy NOBOpoToM BurHepa ans Gecko-
HEe4YHOrD0 HMIyabCa H NMOBDPOTOM B COOTBETCTBYylouleM NOANPOCTpPaHCTBE, Bbl-
TekaomeM H3 Npeobpa3obaHHd NOAXOAAWEro CBETOBOrO BEKTOpa.

Coobmeuxs O6beAMHEHHOrO NHCTNTYT2 SAGPHHX MccaeaoBauui

Aytas, 1971

Robaschik D., Smorodinsky Ja.A., Wieczorek E. E2-5993

Transformation Properties of States at
Infinite Momentum II

The well known result, that helicity states of mas-
sive particles at infinite momentum satisfy the same
transformation laws as the states of massless particles,
is extended to the states with p?<o0.

In the cases P?2>0 and p?<o canonical states are de-
fined. The asymptotic rproperties of the ligner rotation
for these states are considered.

A connection is given between the kigner rotation in
the infinite momentum 1imit and the rotation in the cor-
responding subspace induced by the transformation of an

appropriate light-like vector.
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I.Introduct ion

In this paper we extend our considerations of trans-
formation properties of massive particle states/1/to light-
like and spacelike representations. We consider two types
of states: the helicity states and the canonical states.
The states are constructed using the statelesu)in a stan-
dard system and applying an unitary transformation U(de

Lplesas = Wy yipsay (1)

which depends on the boost matrix Lr.The boost matrices
for helicity states with po are well known/1,3/z For p'%e
we define the helicity states in the same manner. The bo-
ost matrix for the canonical states is a rotation free Lo-

rentz transfdrmation/Z/. However the most important proper-
ty of this matrix is

(X3 (%
A A
if R is an element of the little group Rp=p . Taking this
property together with lLyl=4 as a definition of the canoni-

cal boost in general we obtain unique solutions for P>o

and pla . For p'=o there is no solution with lLi=4  The
more restricted condition

-4 Rt*<t® t's (10,0, 4
Le, RL,=R ,Re0q) sy = -
r Rt* =t = <1,00,.0 (3)



which is suggested by the propertyfof gauge invariance
leads to an one-parametric set of solutions for the boost
matrices in the case p'=0.

A1l these considerations are done for the group30(3.1)
and its subgroups.The discussion of transformation proper-
ties of states at infinite momentum leads to an inspection
of the Wigner rotation in this limit. For helicity states
we generalize the result that the Wigner rotation reduces
to a rotation in the mS-m}- plane to
the case p*¢o. It is explicitly shown, that the rotation
angle is always the same for all three cases. The asym-
ptetic properties of the Wigner rotations of canonical
states are discussed. The results can be cénnected with
the transformation properties of appropriate light-1ike mo-
mentum vectors. The projection of the transformation of
this light-Jike vector into a three dimensional subspace
(ne ot wg ort't’,m®, mi ) leads (together with one further
condition) to a unique transformation in this subspace
which just coincides with the corresponding Wigner rota-
tion in the infinite momentum 1imit. This appears as a ge-
neralization of the well known treatment of the abberation
of 1ight, which is just a three dimensional description
of the transformation of light-Tlike four-vectors.

In the following part of this paper we consider heli-
city states and their asymptotic properties. The canonical
states and their behaviour are treated in the last sec-

tion.

2. Helicity States
a) Boost Matrices
The helicity states/3/ are given by lpsx>=‘10$)lﬁsﬁ>
o5
with the additional property (S;% lrs»:hlrno.where



geUth",Mu)) H,,generators of fhe Lorentz group, p=(p™)
= (e ) = (fﬁ,p’)’p:l#l,pln-P°k°-;;,lP1's the boost matrix
which transforms the four vectors of the standard system
(7, LI S n; ) into the vectors (p,n‘(”‘n“w‘n’(")

of an arbitrary system. In the standard system the opera-
tor M.;"Vcﬁ) is diagonal. In the arbitrary system we

demand

->
u(.,,) W(ﬁ) \-lu';) = Wiy = (51"”/1. (4)

Writing this in a covariant manner

v »sa
Poe Wepm e MTTp “z‘u”":; L PEim000, ng =(0,0,0,4)

5)
ve ) 4 A [ . (
<o Wepr = "rvft M p” 'rhrl;lt , P (0,0,0, ) PR T 14,0,9,0)

- A [} A
P=o Wip) = % Er‘vrt H"t: ™ , P= t°) = (0,4,0,0), M= Lo,o,d,o)‘

. H e . .
we determine m,,, trn 1n agreement with eq. (4). The boost
matrices are:

P"m" » -t . I"=M‘>o
A - -
Lﬂ - sz ' "‘.:(n ‘\\:(n PPt (mp? (6a)
P P wm? Pt P (me?
PP md P} PO (wmg)t
f}‘-* '0)‘-1 ' fl#‘t<’
P T o
r Pyt (pprt NP e pt utt (6b)
PPt (pt 3



\
r#’"" 1 -] ——r"_i r. L3
7 © . 2p* =0
" . ~ "
P e UPp) '
L P PT-1 | o , ¥ oe'va ;t
2t p? ?."" '3 (6c)

'n‘:(l.,and n:“., are chosen to be

< kS
Py - R o W R e 2 4
"‘“P’.(o 4+ "‘ N r :E‘P ')"‘l(')'(°": ' 1" frl, r) ) (7)
where f *a r, ap) .

At infinite momentum we expect relations between the
different boost matrices. According to ‘\:'-{[}1.%0,')*“'.%0.2)]

the boost matrices satisfy

(L +L:,)*°(‘;,). (8)
*izo L
This corresponds to the fact that at infinite momentum
both space-like and time-like vectors approach the 1light
cone, but from opposite directions.

b) Asymptotic Properties and Rotation Angles

Doing the same calculations as in I we can show

i Roamnys Bl U AL = flee ()

et
which means: In the limite»® the general Wigner rotation
reduces in any case to -a rotation in the n!m plane. For
the representations we haveihu Da;(n“ ‘5A»€ 4 . This agrees
with the transformation properties of massless particles
(corresponding to p=0 and the discrete series) and inclu-
des the vanishing of the transitions between different
helicity states induced by finite Lorentz transforma-
tions/1,5/. With our choice ofmn,,and'nn,,the rotation
angle is in all cases the same and given by



!
‘-
wp= (0, R n?) « (“?.L:, AU, W) = ("‘:‘('\r) A "-“(P)) . (10)

It depends only on the choice of ?ﬂ( and n, This means that
r 2p)

at very high momenta states and matrix elements show the
same transformation properties for all values of p* .

3. Canonical States
a) Boost Matrices

The canonical boost introduced by Joos/z/

is defined
as a rotation free Lorentz transformation which transforms
;guwgmﬂ intop . This boost has the important property

Ri, - \_‘:’R L¢p .R :‘,‘f: u.ch;u:h;\.nf oA the tiktee (1'])
To get a simple general jzation of this boost to the ca-
ses p¢o wWe take this property together with |15le4 as a de-
finition of the canonical boost. It is then possible to
show, that there exists only one solution in the cases
p*>e and p'20 and no solution in the case?:o.The proof
goes as follows. Starting from

o>
"

(w,0,0,0) . P‘7°

-1 . A a -
L‘QPRL‘PP ‘RP \‘RP-’P, e=(9,90m, Px‘.

(12)
; =z (1,994 ' =0
and using the notation N(n=f;P Wwe can write
R «(p) = %(Re) for all R with Rgep . (13)

The general solutions of this equation are

A

T ad
+pb 2p°
fro: O(LP)‘(’P—‘_TP.:';:‘-P’) omd  A¢py= P



plzo: (g = AP and ¢(p)=$ a4

where p = (p%P,PY),

The solutions gy=F lead to matrices Lp with lLpl= -1
For geo the solution &gy=rp is in contradiction with the
transformation propertyf*p The other two solutions give
the canonical boost for p»o /1,2/ and the following boost
for peo /4/

(A — o+ 1 = e T o0t e )
2Ledep) it INGITS) »
1 N A * -4 S | Ly
—_— (A4 A- = 1 A —1 Y -—
\f’ ] ~CPem) rmietep mled e ~ (15)
P - 2 v
A T AL B A
MPP L mipdem r
L 2 I -t e
» ” M » )

For the massless physical particles - belonging to the dis-
crete representations - the translations of the Ecygroup
are represented by the identity (gauge invariance). This
suggests us to use a weaker condition and look for solu-
tions of

gl =R i Rt°=t*
L"R P W RE T i.e. for pure SOmrotations (16)

in the case g'=0 . Here we shall obtain a set of one paramet-
ric solutions. 1f we denoie the veclorsw, and w, by 1\.E

(a labels the vectors, v the components) then from eq. (16)
it follows

- - T ;
“‘L(Rr)Rbc R‘)“ul?) (17)



with the solutions
Mnie ;.8{*-,“('?‘ YIS
. . (18)
“"2 v,'; }’=°'3

Taking into account the conservation of scalar products,
normconditions and the regularity of the boost for p®= p?
we obtain for this boost:

>

"> M 4 e’ ;4._;" t, + bp
(19)

L] 2 4 Y
"N+ p ey t. + by

1. - ;zarn*u(r'-r’));.* Bprp +2u(mrpte g rH

where b is an arbitrary function. This boost contains se-

veral well known boosts as special cases e.g. for b=-'1;:r‘4;.
the helicity boost and for bse the boost/4/
1 . v
Lpoa 2 )] AR L A S
P — i e ——
1( Wwtee?) Porp? *+ '3 (% ( P ) )
! ' (20)
L 1 o £
L, = *
P "
-': ° 1 =
A®
A (pd-2 i X Y Pei—))
;.(P 'E'!) PO Porp® *+ Pap?
\

. . . 2 Lo .
with the important property 1:-"’,:;',1: This boost does not
contain generators of the group Eca .



b) Asymptotic Properties s

In 1 we have studied the 1imit p2e for the Wigner
rotation of canonical states with p*>o . It has been shown

(P9 RU(A ')n' 'M-. L‘A.“A\.t'ﬂrz (.lm ‘V‘IA' (2])

pre > )
e

where n,-(o,‘-‘;),n,‘;(o,li‘f_;‘\‘,&v.;af'inite Lorentz transforma-
tion. Using essentially the same methods similar result
can be shown in the case p'<o . Denoting +=(pS¥,¥') then we
have

U R\,U\r)'mpg U A, (22)
1 >0 ¥ )

~ e . . N
n m=(E o) m ° if A does not changel essen-
where mye( £ ,0), M= (K ), ifA geiFl

tially (i.e. ifipigoes to infinity, thentR}lshould also

go to infinity). This means, that the result is valid for
all states withiflee (g% -u*, m* finite). In the case

p‘.—.o the resu]tsdepe:ds%on,‘the’::ype of boost, which is gi-
ven by the choice ofb . For bm=o(eq. 20) and the helicity
boost ':_.‘.':‘;‘;-“-l:,‘“rtz t° is valid. But this relation depends
onY . For another asymptotic behaviour of b , we expect

another asymptotic behaviour of the Wigner rotation.

¢) Relations between the Transformation Properties of
Light-Like Vectors and the Wigner Rotation in the
Infinite Momentum Limit

The relations (21), (22) can be connected with the
transformation properties of appropriate light-like momen-
tum vectors. The transformation p’ Ar, of a light-like
momentum vectorps(sp, p) can be’prOJected onto a rotation
of normed vectors‘u’ail *V’ 1. in the space spanned by
the vectors m®w,n} y as

10



. (23)

where €, is a pure rotation matrix. To define# uniquely

we represent A in the form A=L R  (L¢ pure Lorentz trans-
formation,Rpure rotation). The corresponding matrix T, can
be represented in the same way

Sl M (24)
Clearly we have Th=R.To determine11‘ we remark:

a) T is a rotation matrix with the property
4‘; ’TLF% .Possible invariant vectors (axis of
rotatwns) are m-x(&l_"wpv\ op(«'._"x&)

b) The Lorentz transformation L. has

vuaCoq B 0 4 b (o w, B

as invariant vectors.

The condition that there is one common invariant vec-
tor both for the rotation T and the Lorentz transfor-
mation Lg 1eads to eo and gives a unique defined matrix %,
On the other hand the Wigner rotation for canonical states
with p.(f“"-,..s‘,;) satisfies for pure rotations R

<
R-Ul,l')‘& and therefore

RLUpm =R=T . ~ (25)
In 1 we have obtained the results
a) R:, (C,P) is a rotation around the axis
Zx? o Copni
L RS (0o, p):'r * Qo ‘WL « ,'“r’“ftf)

re 1 P
for pure Lorentz transformations. If the former light-like

b)

vector p has the same spacelike directions as p then the

11



normed vectors Gun iz and  Cww coincide
P oo

pam
and we are ab]e to conclude
N <
U RS (L) = Mo (26)
P

Summarizing the foregoing we see that the transformation
of an approrpiate light-like vector induces a full rota-
tion (in the space spanned by “3:“:;“; ) which describes
the abberation of 1ight. Furthermore this rotation and
the Wigner rotation in the infinite momentum l1imit coin-
cide. This is a more complete description of the connec-
tion between the abberation of 1light and the Wigner ro-
tation in the infinite momentum 1imit as considered in 1.
In the same way it is possible to consider the pro-
jection of p::l\p._with PL-(';,li'n),Fa(r',r:r'/onto the space span-
ned by the vectors (s0,08),n%n> This transformation is
a SO0QY rotation

L d
e

W= Sacp W (27)

~,

of the normed vectors&,t&‘,&'ﬁ%' (as long as i@gi=iQl#e).
To get a def1n1t1on ofq&we proceed in the same manner. Re-
presentat1ngA_zL R(L‘ is a canonical boost matrix with
h"‘<° R is a $50Q4) rotation matrix) and Sp=5, 5 We have
S&-'ﬂ sL1s again uniquely defined by the condition that
there is one common invariant vector for the Lorentz trans-
formation and the S$O0Q4) rotation matrix. The resulting
invariant vector is (4 xf:.l').

On the other hand the Wigner rotation for canonical
states with p=(#,TFT«A*) satisfies for the rotation
Ri(i")a’i and therefore

R = R (&,m= 50 | (28)

12



For the transformation f( the Wignep rotation has quite

similar properties:

a) R:CL". P is a 0@ rotation with pxk
) bed it . .
orpxC,p as invariant vector,
b)  Rwm RS (T gy = Qn T
1$1 D00 w (L,p) W = g1 % Lep -
An appropriate light-like vector has the property ﬁ:)ﬁ;‘

p2o Proceeding in the same manner we conclude
e RS (1 orms (29)
1Fiaw vlem = e

In other words: In the limit |41 and g<e the Wigner ro-

tation is Just the SOQW rotation (in the space spanned

by (1,990,9,m°*, W ) induced by the Lorentz transformation

A applied to the corresponding light-like vector.
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