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1. Introduction

s

A consistent dynamic description of a system of interac-
ting flelds requires, first of all, knowledge of the
symmetry properties of this system. This implies that we
ought to indlcate the group of transformations G under
which the Hamiltonian of the system remains invariant and
find the integrals of motion which are generated by G
group transformations. Then, any calculation scheme should be
construoted so that the corresponding conservation laws
might not be vlolated.

Any Hamiltonlan of modern field theory consists, at
least, of three parts

% = % -+ % + V. &
If a system is described by the fields ¥ and ¢ then
the term % is constructed onmly out of the field VY,
the term .}a out of the field % and the operator Y
depends simultaneously upon both the fields ¥ and ¥
The fields YW and ¥ realize the representations of
the group G s and each term in the right-hand side
of (1) is the (F group invariant. The operators % and K
are naturally invariant under transformations of the fields
Y and ¥, separately and are assoclated with free field
Hamiltonians. The operator V which is associated with
the interaction operator mey be invariant of G group
provided that the fields ¥ and ¥  transform in common,
In order to study the properties of the system with
Hamiltonlan (1) it is necessary, first of all, to find the
elgenveotors of the Hamiltonian which realize the representa—

tion of the group G « Then, we can reduoce commuting
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¢
integrals of motion to C - numbers and consider the system

states with definite values of the invariants., The arbitra-
ry- state of the system can be represented as a superpositi-
on of states with definite values of the integrals of motion.
Certalinly, due to technical difficultlies, we imply here a
more or less satisfactory approximation to the true state
vector rather than an exact eilgenveotor of the operator (1).
Nevertheless any approximation to the eligenvector of
operator (1) mast be the representation of group G
since, otherwlise, the fallure of the required conservatilon
laws makes it impossible to judge the degree of the approxima-
tion to the exact state vector, It is thus convenient to
choose the initial state-vector such that the individuality
of the fields Y and ¥ will be preserved as much as
possible, that 1s, the possibly simplest corpuscular inter-
pretation of the field states oompatible with the required
oonservation laws will be provided.
In the case of the Hamiltonlan

2, + %, @
such a problem causes no difficulties., The eigenveotors
of the operator (2) are constructed out of the products of
the elgenvectors 646 and d*i eaoh of which realizing
a certain representation of the group C; « Thus, the
eigenvectors of the operator (2) transform under the
representation of the group 6; which ensures the validity
of the corresponding conservation laws and, at the same
tine, the multiplicative structure of the elgenvectors
providés the conservation of the individuality of the fields



¥ and ¥ . Certainly this is only a mathematical
expression of the physical notion of noninteracting fields.

If the operator V in the Hamiltonian (1) may be
thought of as a small perturbation then as the first approxi-
mation to the egenvectors we may take the eigenvectors
of thec operator (2) and construct the stationary states ‘of
the system by perturbation methods. Thus, the problem
reduces to the construction of a perturbation theory invariant
under the G group, It may be of any difficulty but
nevertheless 1t is a purely, technical problem.

The situation 1s quite another in the case of strong
coupling when the operator V 1is to be taken into account
already in the first approximation. The products of the
elgenvectors of the operators % and % may not be the
ones of the Hamiltonian (1). Therefore the principal prob—
lem of strong coupling theory oconsists in a suitable
choice of the first approximation to the ground state vector
since it is unclear how to make the covariance of the state
vectors under transformation of the group keeping invarient
the total Hamiltonien (1) compatible with the individuality
of the flelds ¥ and ¥ .

This problem was solved in principle by N.N.Bogolubov
more than twenty years ago l. He has.shown how it is
possible, not coming into disagreement with conservation
laws, to extract the ground state of the system and develop
a scheme of suocessive approximations to the exact vector of
the system with Hamiltonian (1) without the assumption on the
smallness of the term "4 compared toc both a?; and ”; .
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The Bogolubov method consists in a canonical transforma-
tion of Hamiltonian (1) taking into account its group
properties, Under this transformation, among new variables
describing the system there are some generalized coordina-
tes the canonical momenta of which coincide with the
operators of the integrals of motion which are defined by
the Hamiltonlan group properties. Owing to the fact that

the Hamiltonian is invariant under the given group (&  these
coordinates are found to be cyclic which ensures the
fulfilment of conservation laws. The.introduction of such
superfluous variables requires naturally some additional 3
conditions to be imposed on the varlables compatible in the
new representation with the filelds ¥ and ¥ . The choioce
of the addltional conditions is suggested by the following
arguments: since the term V  in Hamiltonian (1) descri-
bes the interaction of two flelds it necessarily leads to a
violation of the particle number oonservatlion law of one

of the fleld, say & . Therefore when the interaction is
taken into account the stetlonary state of the system is
necessarily the one with indefinite number of particles Y -
By impositing the simplest linear conditions on the field
variables §¥ we change only slightly the structure

of the virtual cloud around the field particles ¥  the
number of which 1s kept also when the interactlon is swit-
ched on. After the mentioned canonical transformation has
been performed the ground state wave function is the product
of three functions depending only on the listed variables

separately.
6



The deslred comnstancy of the integraels of motion and the
individuality of particles,the number of which must also

be the integral of motion of Hamiltonlan (1), has thus

been achieved. After this the scheme of successive approxima-
tions,the detalled description of which is given in ref.l,
may be developed.

2, Strong Interaction of a Nonrelativistic Particle

—

with a Scalar Field

We consider the simplest examples of realization of the
Bogolubov transformation, The systems,in whioh the classic
particle interacting with a scalar field plays the role
of the field V¥ , are viewed, To the field Y  there
corresponds the particle radius—veotor. The Hamiltonlan
of the system 1s invariant under the Abelian group of
translations to which there corresponds the conserved
total momentum vector,; We assume for simpliclty that the
system is enclosed in a cube and the periodicity conditions
are fulfilled, In the nonrelatlvistic oase, taking into
account zero field osclllations in the Schroedinger
representation the Hamiltonlan has the fom

- . ijE * ) + +
HLpt g Ea e’ gra, e +350,(6€:6,67).

To the operator % there corresponds the operator é/s“
7/ + -

and to 5‘6 —_z—fcdf (6’, @{‘:625’) the numbers (¥,

ovey the reality comdition &, = & , « The system with

Hamiltonian (3) is glven in :eef.l in which the case of

adlabatic coupling was speclally consldered when the scalar

field frequencies are supposed to be proportional to the
7



small parametre €*  and the cougling constant to &

In ref, 2 1t 1s shown that the method suggested 1n ref.1
1s directly extended to the case of a pure strong coupling
without the assumptlion on the smallness of the fleld

frequencles and the constant coupling is put to be
muoh larger than unity. In so doing, 1t turns out that
within the strong coupling limit the lnteraction of a
partiole with the fleld leads to the appearance of discrete
osclllator levels, Here we repeat brliefly the arguments
of refs, 1,2 focuslng our attentibn on the group aspect
of the prodlem,

The variables z and éﬂ_ realize the representa®%-~
ion of the translation group

T7+3 /,—-»l;e""", (4)

where é' 1s a certaln constant vector. The Hamiltonlan
(3) 1s invariant under transformations (4), therefore the

operator
-2 - e
p:-cia?-/-ﬁffg”; &)
commutes with Hamiltonian (3) which corresponds to the total

momentum conservatlon. The elgenvectors of the operator -£$5%

Lz
y=vie? (6)
reallze the translation group representation
. 28
= e 5 ¢

)

in just the same way as the elgenvectors of the operator
PETA
5 %

8



¥

g

+ # . -, 8)
6,=2¢6 8 1:>5(3%%-5). (

Therefore the products of the vectors (6) and (8) realize
also the representation of the group of translations
CPrp
(6,¢) =7 %6,y .
and oorrespond to the state of systems with definite total
momentum 2 = Prp’-

The state-~vectors (9) may not be the eigenvectors of
operator (3) and in the case of strong coupling they
cannot be taken as the first approximation tothe true
elgenvectors. To find the eigenvector of the operator (3)
which realizes the representation of translation group
in ref.l it was suggested to consider the vector i
as a new variable independent of Z and obtained &s a

result of canonical transfarmation
- -~
726 }~/T 56 ¢ . (10)

The momentum corresponding to the variable i must be

the operator of the total momentum of the system

L, 2
- 57 P . (¢5))
- . -+~
The operators /’ s T ff and (; satisfy the
following commutation relations
[4 Z.‘_7=—4'5£‘/, ' (12)



[84.] -378  [B &) =418 . (13)

,°F P

From relations (12) and (13) and condition (11) 1t follows
an explicit dependence of the operators E,é 6’;

on the variable ¢

"Z*‘C_r; ’ (14)
/;:é—f'f}/; , ,:‘*= e,‘;-f;i- i (15)

If the vector é is displaced by the constant vector o
-— *
then Z, /f and i,c transform according to the law

(4) which realizes the representation of translation grodp.

The vector C  which in equality (14) has the meaning of
the 1nteg:;ation constant 1is ldentlfled wlth the new
independent variable )

= _ /13 . (16)
C =i
Then the particle momentum operator takes the form
2
e 2 z . an
AP

The value of the constant 2 will be determined later on.
Note that, following the meaning of the transformation (10)
the variables 2 and /; remaln uwnaffected under
translations. Before to find explioitly the complete
transformation (5), we note that the operators ¢ and 5:
can no longer contaln explicltly the variable ¢ since-
otherwise the commutation relations (13) would be violated.

Therefore the total Hamlltonian of the system (3) 1is also

10



¥
1ﬁdependent explicitly of ﬁ' « The eigenfunctions of the

operator (3) can be presented in the form

- - L
v(igd) - e‘s v/if,).

These functions realize the representation of translation

(18)

group and oorrespond to the state of the system with definite
total momentunm /D-

Tquerive an explicit dependence of the operators 5;
and é;* on the new variables we notlice that in the

case of strong coupling in the first approximation the energy
of the free soalar field may be neglected. In this case the
Hamiltonian of the system is linear in the operators &£,

and 5Z+

and the Helsenberf equations of motlion for these operators
do not permit to identify them with the oreation and
annihilation operators of real particles tranasferring
energy and momentum, This 1s most easily seen by passing
from the operators é; and éi+ to the complex coordinates
and momenta . .

(A &ty (19

?f: }/-{—— / ’;’6. KC—

In our approximation Hamiltonian (3) gives just this solution
for the Helsenberg equations of motion :
g, ()= «, = cors?. (20)
The order of magnitude of the coefficlents ¢, ocan
be estimated by a simple variational calculation performed
in ref, 2 « The energy minimum of the system was sought

11



there among the trial functions corresponding to the
coherent states of the scalar field. It is found that the
energy minimum is achieved in the case when the coefficients
¢, become proportionmal to 4 « This fact contributes
to the choice of the operators 5;: « It 1s convenient,
first of all, to pass from the operators /; to complex
coordinates (19) normalizing‘this transformation in such
a way that the numbers ¢¢, s the constant component of
new variables, could be considered as zero order quantities
in the coupling constant and the new variables 0,
ta.kiné into account the free scalar field energy effect as
small quantities, This is reached by a certailn modernization

of transformation (19)
g -2l

/2

A ,,,Q_é; (21)

A 75

and a subsequent replacement of the variables

g -, 4a).

f .

(22)

Three auxiliary conditions should be imposed on the
variables (), since in transformation (10) instead of the
three components of the vector ¢ there appeared six
components of the vectors A4 and ¢ « Without loss
of generality, as the additional conditions we may take
the following linear conditions

ZFYQ,-
(23)

I2



After this we have only to express the momenta /3 = -¢

V
AN

in terms of the variables il A and 0, o This
procedure will be described later on in analysing the
interaction of a relativistic particle with a scalar field.
Now we dwell up on the properties of the ground state of
the system with Hamiltonian (3) mentioned in refs. 1?2 .,
First of all, we note that in the transformed Hamiltonian
{3) there appears a large term which plays the role of the

potential 24

SEa tra,e” . (24)
The terms containing the operators C?* and the corres—
ponding momenta /0,, enter the Hamiltonian as a series
in decreasing powers of 7 s the highest order in this
series being unity. The kinetic particle energy defined
by the expression (17) is proportional to 22t
To take into account the kinstic energy already in the
first order the constant should be taken large, Then the
exponential in the expressicn for potential energy (24)
can be expanded into a series in inverse powers of ¢ -
In so doing, the texm linear in A vanishes and the
variable part of the potential will be of oxder il/x-l .
It will be a quantity comparable with the kinetic energy

when we choose
z
=1 . (25)
2
The terms of order g  in the Hamiltonian (3) are 1,2

I3



L) + (26)
(A (2R )

where ;éf 1s the operator linear in CZ,' and 15; .

The expression (26) shows that the wave function of the system
in the first approximation allows the separation of the

variables, and is of the form
yx

¥ (i3 0‘)=€'.—fifﬁ)9"/@f). 1

Thus, the Bogolubov transformation (14), (15) solves
really the principal problem of strong coupling theory,
namely the separation of the particle and field coordinates
with simultaneous conservation of the needed transformatiom
properties of the wave function,

owing to the choice of the variables in the form (22),
where the variables G?f are small quantities, the opera-
tor % in (26) is linear in Of and /of . The prob-—
lem of the eigenvalues for these operators, provided
the eigenfunction is regular, has a solution only when the
operator vanishes identically 1 « The condition

F,(C,L)=0 (28)

allows to find the numbers Ckhf and define completely
the effective particle potential.
In the case of strong coupling when the expansion
in X7 is rossible this potential reduces to the oscillator
one, since in expression (24) in the first approximation we

may restrict ourselves to the terms gquadratic in A

In ref. 2 it was shown that the account in the Hamiltonian

I4



of the terms of order ;‘& s which are equal to

p iz a, (490, (29)

leads to transitions between the states with wave

functions (27) and a br&doning of the oscillator levels

by a value comparable with the spacings between them.

However, it is not difficult to diagonalize in A and &/

the bilinear form comsisting of the operators (26),

(29) and the free scalar field energy operator, Due to the

smellness of the operator (29) compared to the operator

(26), the appropriate canonical transformation leads to

small energy level shifts., The spacing between new levels is
as before.propertional to 2 while their width is

proportional to the zero power of ‘; . Thus, the wave

functions (27) at least in the first approximation

reproduce correctly the properties of stationary states, the

improvement of the true physical picture after the Bogolu-

bov transformation being achleved by perturbation theory

methods even in the case of strong coupling.

3. The Relativisiic Particle in the Scalar Field

As the second example of the application of the Bogo-
lubov transformation we oonsider the Lorentz—invariant
interaction of a slassic particle with a scalar field. We
are interested only in the first approximation with
respect to the coupling constant. To preserve Lorentz-in—~
variance it is convenient to start from the Klein-Gordon

equation

I5



2, e
[~5%+v -mirgein)] ¥ =0
in which Y%/ 1s the free scalar field operator in the

(39)

Heilsenberg representation. Assuming again that the system
is enclosed 1nto a cube of finite volume we present r(t)
in the form

.’__. e A Fx, 4 31
vix) = ZH, (e 75g 2 7g), (1)
where the scalar product will be further expressed in
terms of the covariant components of the vector =x

and the countervariant components of the momentum

7X :f{o Fix,, (52)

The coefficients of expansion (31) 44: contain cutoff
factors which ensure in a suitable manner convergence and
Lorentz~invariance, The operator acting on the wave
function in eq. (30) is invariant under transformations
. ] ‘*g (33)
x,‘—-».x‘+;‘1/*—>g /]
To find the wave functlon realizing the representation of
the translation group we perform a transformation similar

to transformation (14)

/ (3)
J“:—g‘ -L+;ok
The components of the vector FL are defined by the
conditions
?
. = / 5)
2T, 4 A,

16



-4

(367
) ~

- 2 <
-C — = P
?
2
o<
where A are the components of the four-momentum opera-—
tor. To find the explicit formulas for the scalar field

transformation we introduce, as before, the complex

-
coordinates -Z'f , 2’*

€))
= L ;, 2
O =714, +F 5z /
£
*/ (38)
£ =—=/95 £ 7
S LT = f
#
and then pass to the variables Qf
= 7/ =
=€ /[" % Q//
The guantities &7, and Qf in eq. (39) may be
thought of as being real
- # (40)
((/ = ((4 47* = 0.} .
Four additional conditions should be imposed on the
varlables (Q+ . We put
- 41)
f A, C‘?f =, ¢
7 .
where ,{/_‘! 1s a certaln four-row matrix with real elements.

It 1s always possible to find a four-column matrix /,«.:
obeying the condition

1557“V;fv*Qp = éi74 - (42 )

I7
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0f matrices JV_‘, and J{,‘ 1t is possible to construct
a quadratic idempotent matrix f{,ﬂ,,

- - (43)
./f/, é/' %%/d"/;'

satisfylng the relations

ZEN, A,,.=0, (44)

Z Aty =0, (45)

Z/ ’ =

L at /\;"C ./g( . (46)
By means of the matrix ,'fﬁ,, the variables cﬁ* can be

represented as a linear combination of oertain independent

variables J

e .

Cr==A,,7 (47
the additional conditions (41) will then be satisfied
automatically.

Since in determining the matrices ./tﬁf and &,

we are interested only in their rank, we can choose,

wishout loss of generality, the matrix €7 in the form

"(/d.( =, = (48)

I8



< A

s

- After this it is not difficult to find a partial
derivative Qf of o2

e
2 i (49)
e
and express the momentum operator P/: - _;9.2
Le
in’ terms of new variables A , g and ,Q?+ .
y—_7 (50)
~&y 9"‘[—[—£ +* 7 >— - ZdQP
£-se L+ “{91, 22, ? e £ e
where the operators /Z are the momenta corresponding
to the vailables
2
N I (51)
"< o, 7 -
These operators satisfy complementary conditions
(52)
eZ’;,,{/e.‘ =0 .

To determine completely the operator f; we have to

calculate the derivative 93_2‘ « To this end we differen-
Le

tiate the relation (41) writting in the form

€ FQ
ZM(/ (-Zle - }/."_'-0. (53)
Using the properties of the matrices \A(‘f and &,
it 1s easy to obtain the relation
-~/ 2% ./ Az (
M,E - - L= VRAZ e 54)
€ 7x, Sy Ny # iz, LQJ- ©

I9
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Representing the desired partial derivative as

220 -y (55)
2—.;; = ¢ dee .
we reduce eq. (54) to
p (56)
JVie aé""‘ﬁéf/“v’ Sl 0y = O

The relation (56) allows to find the matrix éi(e

in the form of a series in inverse powers of the coupling
constant. To obtain the equation for the ground state of
the particle it 1s sufficlient to take into account two

first terms of this series

N
dte = N, jé{ g 0, .
Using relation (55) the momentum A can be written
in the form

P =eFlpr - /_‘Zﬂ.‘,/"";‘% +"$"_%;"£"(‘7,6’)}.(5e)

(-4

3
Defining in a similar way the variable -2

z -y / (59)
E'e--é /“,4’"—0__,)
and the corresponding momentum /% = -ijr;z we gef for
- [ 4
the momentum £ an analogous expression
. J o
- ceg . el i VF =i 5279 P) ).
/;.—.e ///f*({ﬁ,‘[ 2;.4 "ﬂ/\_‘ Ji}
(60)

20
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The fermulas defining the variables £, <, and the
)

corresponding momenta in the transition to new variables

show that the operator of the left-hand side of eq., (30)

does not comtain the variable y «» Therefore the
o

solution of this equation can be presented in the form

Y29 Q) = e"ﬁ A Er @) © (61)

by identifying P

" with the total four-momentum vector.

The wave function (61) realizes the representation of the
group of translations of space-time. From definltion (37),
(38) of the creation and annihilation cperators in terms
of the variables Z, and 3‘_} and the connection
of these variables with the variables 9, ’M, @,
1t follows that the operators (J and 5;* contain
a large c-number component proportional to 2
therefore the total momentum of the system will be &

Fd

quantity proportiomal to [J « We define

'°‘=§¢-7‘L- (62)

Then the variable of 2, is everywhere replaced by the
vector +4'J*'.7" and eq, (30) takes the form

£
7 2 2/ _:f_)__+
/ j?ll ja;l "m *“J /_- 4 '; /3

/7 'n:—f—/“ (63)
+;7/_ZW f&;%-fﬂ/??%#ﬁ 5*
. . J
A B (7T )
2 VEZE A5 s, €08 FO0(0R)-0 -
re, 5

21



v
Expanding the trigonomefric fu.ﬁctions into power serles in
7-14 , taking as B, e expression (57) and retaining
only higher powers of /‘74_ we get 1in the first
approximation the following equation

/—9%:; +5%i -—;—"—2;7{!—‘{}7*(/ - -—/_A{-/” (#2)%+

JEE S Q, +//-!_.2’.x(,x{,/ --’/.FZ//V 7t (64)

_EER N, 7N, G FIEEAY Ny I 600,8)-0,

Eq. (64) allows the separation of the variables Al
and (?f 3 1l.es the function 9//\}.?) may be represented

as

e (r@)=w(r)e.(e) - v (69
Since the variables (Q} enter egq, (64) only linearly
then for the function @) (@) to be regular we should
vanish the terms contalning the variables 0, .
The funoction 6, (Q) thus remains completely indefinite
in the first approximation, but instead we have secceeded
in obtaining a relation allowlng to determine a, numbers.
Assuming all the coefficlents for Q,, in the left-hand
slde of eq. (64) to be equal to zero we get the condition

/’ <
Zv ,,,«7 =0 (66)

which can be rewritten in the form

p -
J/‘-{V;é £,=0 » (67)

22
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!
where the numbers t/e and c/g are defined by the

relations
ol
1]

yg:{w{lej (68)

G, =ZEA, N, . (69)
Let us require that the numbers V, coincide with the
numbers &, . Then from eqs. (48) and (68) we can get

the expression for the total momentum of the system

T 5t (70)
f

If now we take the numbers 6, as a new parameter then
eq. (67) makes it possible to determine the numbers Uy
by means of the coefficients ,/‘52 and ('/3

=-_J1’—— . (71)
e”C
£e%,

Let us clarify the tensor dimensionality of the quantities

“e

(/7, . The matrices ‘A/oH and -/{'/,w. were first introduced
regardless of the metric properties of space-time.

However, the definition of the matrix ,/(/H by relation
(48) ascribes to it the transformation properties
of the countervariant vector. After this it is natural

to define *he matrix M* as a covariant vector with
respect to the imex « . This makes it possidble to
attribute to the condition of orthogonality of the matrices
N,

ol d
and makes additional condition (41) Lorentz-invariant., As

and 4 ,, ( %¢ ) a Lorentz-invariant meaning

funotions of Latin indices these matrices should be regarded

23



to be invariant, at least, uniecr the orthochronous proper
Lorentz group. Under this condition the coefficients
define the covariant vec#sor.

Eq. (64) taking into account relations (70) and (71)
takes the farm

/- 25+ ”j . _e;’_l_f ze pe- -}‘-ﬁz’.»zu,(u)'}«e(yzq(#z)

Eq. (72) is the one of the four-dimensioml oscillator. This
fact forces us to pay a special attention to the way of
regulafization of the scalar field. Indeed, in spite of the
‘fact that the quadratic form

ZI‘ A/g (£ (éc) +.LJ'A) (73)

is formally Lorentz-invariant it may play the role of a
physically admissible potential only with a special choice
of the ooefficients v*;_ « Otherwise the proper oscillator
frequency may depend on the vector é; y Which is
inadmissible in a relativistically lnvariant theory. There-
fore as ,42 we should choose some functions of the
invariant (,4?/ + Then the sum over the momenta in

eqe (73) can be presented as
z

fF[fzj

£4
= “ s
Z [{(/ QC 2cC (74)

The sum in the right-hand side of (74) is a relativistic

invariant therefore it must be a function of the Lorents

24



square of the vector C/, ’

-~ N (75)
S F (1) = e (9%, C,)
Ed
To ensure independence of the oscillator frequency of the

vector C/, s we should choose the function ﬂf
in such a fashion that the equality

& i B
vigrec, e, - L%, ce (76)
be satisfled. Then eq. (72) takes the form
_2°, 8t f 7
[Firda-F e s oy 22" T gm0,

Physically admissible soluiions for eq. (77) can be obtained

following the method of ref. - o Thereit was suggested to

put
ho=CAy (78)
after which eq. (77) transforms to the equation
H . f 2 A
JE 2 et s N - L g, P (W) =0 . (79)
Y 9,\.'~ ol =f ; Jd .

The latter allows normalizable covariant solutions with

positive equidistant squared mass spectrum
Vé/'z= m(.,c/w‘(.(”»‘ﬂ.' (e0)

The quantities {756;, are the covariant components of
the total momentum, 1In ref.'.3 it 1is shown that such a mean
of treating eq. (77) is equivalent to the description 4

of the four—dimensioml osoillator on the basis of the

use of an additlonal condition excluding time quanta. From

25



equality (80) it follows that thé spacings between some
valueg from the mass spectrum are proportional to the first
degree of the coupling constant } o Certainly the
solution for egs. (79) are not the exact stationary states
of the system. To judge the relliability of the approximation
realized bty eg. (79) we should consider the following

terms of the expansion of the operator in the left-hand

side of (63) into a power series in powers of § %

The terms proportional to 3% are

| 2 (s1)
JEE A, ($1) P, -‘)’E;Jz/c,, 5T

The second term in this expression can be eliminated by a
simple transformation of the wave function which leads to a
shift of all the mass spectrum defined by equality (80)

by a value of zero order in the coupling constant. The
account of the first term in (80) leads to transitions
between stationary states of the system in the first
approximation, the transition probablilities being proportio-
nal to the first power of 3§ y l.e. the account of terms
(81) leads to a broadening of levels (80) by a value
comparable with the spacings between these levels. It is

not difficult to indicate more steady states of the systems
Notice that the first term in (80) leading to transitions is
similar to the operator (29) which is a bilinear form in thé
variables A, and / . Adding to (8l) the terms
quadratic in variables /; and 67+ which are proportio-
nal to the zero power of g we get an equation of the
type (79) the operator of which is the quadratic form in
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the variables A, , F, and (@, . Inthis approxi-
mation the variables A, and 62& are already not
separable. However the appropriate quadratic form is

easily diagonalized by the method developed in ref, 5 « For
the nonrelativistic case such a problem was solved in ref.z.
It was shown there that the account of the interaction of a
particle with the field (81) leads to a small shift of
levels (8o)and the spacings between the levels which are
now assumed to be stationary are,as before,proportional

to the first power of the coupling constant J . The
subsequent terms in the expansion of the operator (63)
begin with the zero power 9 s therefore the width of
new levels 1s also proportional to the zero power of the

coupling constant.
4. Conclusion

We have shown that the application of the Bogolubov
transformation to the description of strong interaction of a
classic particle with a scalar field allows to extract
the motion of the particle in the field taking into account
explicitly the conservation law of the total momentum, This
transformation allows to draw a consistent pilcture of
creation by the particle of a potential well moving
together wvith the particle, in the case of strong interac-—
tion this well belng reduced to the oscillator one and
the ground state of the system being described by a set of
shifted oscillators constructed on the particle and field

variables,
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It should be noted that recéntly the experimental data
have led to the creation of various kinds of dynamical models
in which strong interacting particles are regarded as
certalin complexes consisting of either truly elementary
particles or some quasielementary excitations ( quars,
coherent complexes 4, droplet formations 5, partons 6 e
Recently a very interesting paper appeared 3 where the
connection between the coherent state method and the
quark models was first established, 1.e. dynamic model
of gereration of quasi-elementary excitations of the coherent
type was first constructed, The suggested scheme of gene-
ration of the ground state is in its idea very close
to the considerations of ref.3 o Thus, the simple pro'blem'A
considered here may serve as a model of the oscillator

21457 | e

interaction of particles at high energies
formalism used here allows to indicate a certain internal
mechanism of generation of oscillator levels,

Finally, it is necessary of recall the deeper physical
sense of the singling out of the variable 2‘ assoclated

with the total momentum of the system. In ref.l

it was
indicated that this variable describes the tramslational
motion of the particle interacting with the field while
the quantities Ad describe the vibrational motion of
the particle inside the potentiel well. This should be
taken into account in generallzing the method suggested to
the many-particle case where there must appear independent

variables describing the translational motions inside each

potential well separately.
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