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A consistent dynamic description of a system of interac­

ting fields requires, first of all, knowledge of the 

symmetry properties of this system. This implies that we 

ought to indicate the group of transformations C: under 

which the Hamiltonian of the system remains invariant and 

find the integrals of motion which are generated by ~ 

group transformations. Then, any calculation scheme should be 

constructed so that the corresponding conservation laws 

might not be violated. 

Any Bamiltonian of modern field theory consists, at 

least, of three parts 

.l'C'=~+~ + v. (1) 

If a system is described by the fields Y and ~ then 

the term R 
J 

is constructed only out of the field yr, 
the term ~ out of the field >P and the operator v 
depends simultaneously upon both the fields 'f/ and Y'. 
The fields 'f' and Y' realize the representations of 

the group 

of (1) is the 

G 
G 

, and each term in the right-hand side 

group invariant. The operators K, and ~ 
are naturally invariant Wider transformations of the fields 

'f/ and 'I' , separately and are associated with free field 

Hamiltonians. The operator V which is associated with 

the interaction operator may be invariant of G group 

provided that the fields ~ and )it' transform in common. 

In order to study the properties of the system with 

Hamiltonian (1) it is necessary, first of all, to find the 

eigenvectors of the Hamiltonian which realize the representa-

tion of the group C: • Then, we can reduce commuting 
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l 
integrals of motion to C - numbe:t's and consider the system 

states with definite values of the invariants. The arbitra-

ry- state of the system can be represented as a superpositi-

on of states with definite values of the integrals of motion. 

Certainly, due to technical difficulties, we imply here a 

more or less satisfactory approximation to the true state 

vector rather than an exact eigenvector of the operator (1). 

Nevertheless any approximation to the eigenvector of 

operator (1) mast be the representation of group ~ 

since, otherwise, the failure of the required conservation 

laws_makes it impossible to judge the degree of the apDroxima­

tion to the exact state vector. It is thus convenient to 

choose the initial state-vector such that the individualitt 

of the fields 'f' and ~ vtill be preserved as much as 

possible, that is, the possibly simplest corpuscular inter­

pretation of the field states compatible with the required 

conservation laws will be provided. 

In the case of the Hamiltozdan 

A:;+~ (2) 

such a problem causes no difficulties. The eigenvectors 

of the operator (2) are constructed out of the products of 

the eigenvectors c:te; and ~ each of which realizing 

a certain representation of the group (; • Thus, the 

eigenvectors of the operator (2) transform under the 

representation of the group G which ensures the validity 

of the corresponding conservation laws and, at the same 

time, the multiplicatiTe structure of the eigenvectors 

provides the conservation of the individuality of the fields 

4 



~ and 'f • Certainly this is only a mathematical 

e:~pression of the physical notion of noninteraoting fields. 

If the operator \1 in the Hamiltonian (1) may be 

thought of as a small perturbation then as the first approxi­

mation to the egenveotors we may take the eigenvectors 

of the operator (2) and construct the stationary states of 

the system by perturbation methods. Thus, the problem 

reduces to the construction of a perturbation theory invariant 

under the G group. It may be of any difficulty but 

nevertheless it is a purely, technical problem. 

The situation is quite another in the case of strong 

coupling when the operator \1 is to be taken into account 

already in the first approximation. The products of the 

eigenvectors of the operators ~ and ~ may not be the 

ones of the ~tonian (1). Therefore the principal prob­

lem of strong coupling theory consists in a suitable 

choice of the first approximation to the ground state vector 

since it is unclear how to make the covariance of the state 

vectors under transformation of the group keeping invariant 

the total Hamiltonian (1) compatible With the individuality 

of the :fields l.j/ and • 
This problem was solved in principle qy N.N.Bogolubov 

more than twenty years ago 1 • He has-shown how it is 

possible, not coming into disagreement with conservation 

laws, to extract the ground state of the system and develop 

a scheme of successive approximations to the exact vector of 

the system With Hamiltonian (1) without the assumption on the 

smallness of the term V compared to both ~ and ~ . 
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The Bogolubov method consists in a canonical transforma­

tion of Hamiltonian (1) taking into account its group 

properties. Under this transformation, among new variables 

describing the system there are some generalized coordina­

tes the canonical momenta of which coincide with the 

operators of the integrals of motion which are defined by 

the Hamiltonian group properties. OWing to the fact that 

these the Hamiltonian is invariant under the given group Cf 
coordinates are found to be cyclic which ensures the 

fulfilment of conservation laws. The introduction of such 

superfluous variables requires naturally some additional 

conditions to be imposed on the variables compatible in the 

new representation vr.l. th the fields 't' and '/' • The choioe 

of the additional conditions is suggested by the following 

arguments: since the term V in Hamiltonian (1) descri­

bes the interaction of two fields it necessarily leads to a 

violation of the particle number conservation law of one 

of the field, say ~ • Therefore when the interaction is 

taken into account the stationary state of the system is 

necessarily the one with indefinite number of particles ·)V 

By impositine the simplest linear conditions on the field 

variables S" we change only slightly the structure 

of the virtual cloud around the field particles JP the 

number of which is kept also when the interaction is swit­

ched on. After the ••nt1oned canonical transformation baa 

been performed the ground state wave function is the product 

of three functions depending only on the listed variables 

separately. 

6 



The desired constancy of the integrjfs of motion and the 

individuality of particles,the number of which must also 

be the integral of motion of Hamiltonian (lh has thus 

been achieved. After this the scheme of successive approxima­

tions, the detailed description of which is given in ref.1 , 

may be develope~ 

2. Strong Interaction of a Nonrelativistic Particle ------------------
with a Scalar Field 

We consider the simplest examples of realization of the 

Bogolubov transformation. The systems,in which the classic 

particle interacting With a scalar field plays the role 

of the field 'f/ , are viewed. To the field Y there 

corresponds the particle radius-vector. The Hamiltonian 

of the system is invariant under the Abelian group of 

translation• to which there corresponds the conserved 

total momentum vector, We assume for simplicity that the 

system is enclosed in a cube and the periodicity conditions 

are fulfilled. In the nonrelativistic oase, taking into 

account zero field oscillations in the Schroedinger 

representation the Hamiltonian has the fom 

To the operator ~ there corresponds the operator ~~ p~ 

and to .7t;_ - j .£ lJJ'- ( 1/ 9;~ + ~ 6'/). the numbers a' :1 . 
obe7 the reality condition a#: a.;f • The system with 

Hamiltonian (J) is given in ref.1 in which the case of 

adiabatic coupling was specially considered when the scalar 

field frequencies are supposed to •e proportional to the 
7 



small parametre E~ 
i 

and the coupling constant to £ 

In ref. 2 it is shown that the method suggested in ref. 1 

is directly extended to the case of a pure strong coupling 

w~thout the assumption on the smallness of the field 

frequencies and the constant coupling is put to be 

muoh larger than unity. In so doing, it turns out that 

within the strong coupling limit the interaction of a 

partiole with the field leads to the appearance of discrete 

oscillator levels. Here we repeat briefly the arguments 

of refs. 1 ' 2 focusing our attention on the group aspect 

of the problem. 
-

The variables '! realize the representa4t-

ion of the translation group 

;:; - ~ + ;; /? - /? e -<-·7 ,_ 
"' '" r ,., tJ .:1 D~ ' 

(4) 

where ~ is a certain constant vector. The Hamiltonian 

(J) is invariant under transformations (4), therefore the 

operator 

(5) 

commutes with Hamiltonian (J) which corresponds to the total 
'+ ~ momentum conservation. The eigenvectors of the operator_,~~ 

(6) 

realize the translation group representation 
B 

Y''= e' t '~"' (7) 

in just the same way as the eigenvectors of the operator 

8 



(8) 

Therefore the products of the vectors (6) and (8) realize 

also the representation of the group of translations 

and correspond to the state of systems With definite total 

momentum JS "' P .,. ji' · 

The state-vectors (9) may not be the eigenvectors of 

operator (J) and in the case of strong coupling they 

cannot be taken as the first approximation tothe true 

eigenvectors. To find the eigenvector of the operator (J) 

which realizes the representation of translation group 

1n ref.1 it was suggested to consider the vector { 

as a new variable independent of i and obtained As a 

result of canonical transfarmation 

(9) 

(10) 

The momentum corresponding to the variable ' 

the operator of the total momentum of the system 

_,·~p~=.P 
+ 

must be 

The operators JD ~:f and ~ satisfy the 

following commutation relations 

9 
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(lJ) 

From relations (12) and (lJ) and condition (11) it follows 

an explicit dependence of the operators ~'~ 17 + 

on the variable f 

(14) 

(15) 

If the vector 1J 

then ~ ~ 

is displaced by the constant vector ~ 
L:'~ 

and c;;. transform according to the law 
, 

(4) which realizes the representation of translation group. 

The vector C which in equality (14) has the meaning of 

the integ~ation constant is identified with the new 

independent variable 

(16) 

Then the particle momentum operator takes the form 

. + ;) . .. .;;e ~ (17) 
-c , P E = - ' , P). 

The value of the constant de will be determined later on. 

Note that, following the meaning of the transformation (10) 

the variables -t and ~ remain unaffected under 

translations. Before to find explicitly the complete 

transformation (5)' we note that the operators dj and c; 
can no longer contain explicitly the variable fJ, since· 

otherwise the commutation relations (lJ) would be violated. 

Therefore the total Hamiltonian of the system (J) is also 

IO 



.f 
independent explicitly of ; • The eigenfunctions of the 

operator (J) can be presented in the form 

·.6 
'f(],tf,~) = e( ;f c,o(X/':~-J. 

(18) 

These functions realize the representation of translation 

group and oorrespond to the state of the system with definite 

total momentum JD. 
To derive an explicit dependence of the operators d'~ 

-+ 
~ on the new variables we notice that in the and 

case of strong coupling in the first approximation the energy 

of the free scalar field may be neglected. In this case the 

Hamiltonian of the system is linear in the operators ~~ 
L)+ 

and e, 

and the Heisenber' equations of motion for these operators 

do not permit to identify them with the creation and 

annihilation operators of real particles transferring 

energy and momentum. This is most easily seen by passing 

from the operators f'-1' and ~+ to the complex coordinates 

and momenta 

) 
(19) 

In our approxiaation Hamiltonian (J) gives just this solution 

for the Heisenberg equations of motion : 

o(t)=«=~· 7', ;/-
The order of magnitude of the coefficients t<+ can 

be estimated by a simple variational calculation performed 

in ref. 2 • The energy minimum of the system was sought 

II 

(20) 



there among the trial functions corresponding to the 

coherent states of the scalar field. It is fQund that the 

energy minimum is achieved in the case when the coefficients 

uf become proportional to $ 

to the choice of the operators ~; 

• This fact contributes 

• It is convenient, 

first of all, to pass from the operators ~ to complex 

coordinates (19) normalizing this transformation in such 

a way that the numbers U:r , the constant component of 

new variables, could be considered as zero order quantities 

in the coupling constant and the new variables Qr 

taking into account the free scalar field energy effect as 

small quantities. This is reached by a certain modernization 

of transformation (19) 
~ + (/_; 

I; == f 

and a subsequent replacement of the variables 

(21) 

(22) 

Three auxiliary conditions should be imposed on the 

variables G?~ since in transformation (10) instead of the 

three components of the vector ~ there appeared six 

components of the vectors ) • Wi.thout loss 

of generality, as the additional conditions we may take 

the following linear conditions 

L.7tJ;Q =o. 
~ 

12 

(23) 



' 
I. 

After this we have only to express the momenta 

in terms of the variables ij. ;i 
' 

and Q ~ 
procedure will be described later on in analyaing the 

interaction of a relativistic particle with a scalar field. 

Now we dwell up on the properties of the ground state of. 

the system with Hamiltonian (J) mentioned in refs. 112 • 

First of all, we note that in the transformed Hamiltonian 

(J) there appears a large term which plays the role of the 

potential 

(24) 

The terms containing the operators 4?1 and the corres-

pending momenta enter the Hamiltonian as a series 

in decreasing powers of J' , the highest order in this 

series being Unity. The kinetic particle energy defined 

by the expression (17) is proportional to de~ • 

To take into account the kinetic energy already in the 

first order the constant should be taken large. Then the 

exponential in the expression for potential energy (24) 

can be expanded into a series in inverse powers of ~ • 

In so doing, the term linear in .A. vanishes and the 

variable part of the potential will pe of order J' ,4-l . 
It will be a quantity comparable with the kinetic energy 

when we choose 

The terms of order ,? in the Hamiltonian (J) are 1 ' 2 

IJ 

(25) 



~(]) r- .If. (q P) , (26) 
"..i 3 ~ 

where .:~if; is the operator linear in Q_, and _t='t- • 
The expression (26) shows that the wave function of the system 

in the first approximation allows the separation of the 

variables, and is of the form 
.·.ti 

= e ~ y; (AJ e<) (c?
3
J (27) 

Thus, the Bogolubov transformation (14), (15) solves 

really the princip.al problem of strong coupling theory, 

namely the separation of the particle and field coordinates 

with simultaneous conservation of the needed transformation 

properties of the wave function. 

Owing to the choice of the variables in the form (22), 

where the variables G?f are small quantities,the opera­

tor ~ in (26) is linear in Q:l and ~ • The prob­

lem of the eigenvalues for these operators, provided 

the eigenfunction is regular, has a solution only when the 

operator vanishes identically 1 • The condition 

allows to find the numbers tl :f and define completely 

the effective particle potential. 

In the case of strong coupling when the expansion 

(28) 

in ~·' is possible this potential reduces to the oscillator 

one, since in expression (24) in the first approximation we 

may restrict ourselves to the terms quadratic in ~ . 

In ref. 2 it was shown that the account in the Hamiltonian 

14 



of the terms of order ~~ , which are equal to 

(29) 

leads to transitions between the states with wave 

functions (27) and a broadening of the oacill.ator lenla 

by a value comparable with the spacings between them. 

However, it is not difficult to diagonalize in ~ 

the bilinear form consisting of the operators (26), 

and Q 

(29) and the free scalar field energy operator. Due to the 

smallness of the operator (29) compared to the operator 

(26), the appropriate canonical transformation leads to 

small energy level shifts. The spacing between new levels is 

as before propertional to J , while their width is 

proportional to the zero power of J • Thus, the wave 

functions (27) at least in the first approximation 

reproduce correctly the properties of stationary states, the 

improvement of the true physical picture after the Bogolu­

bov transformation being achieved by perturbation theory 

methods even in the case of strong coupling. 

J. ~Relativ!!!!2_~icle in the Scalar Field 

As the second example of the application of the Bogo­

lubov transformation we consider the Lorentz-invariant 

interaction of a elassic particle with a scalar field. We 

are interested only in the first approximation with 

respect to the coupling constant. To preserve Lorentz-in­

variance it is convenient to start from the Klein-Gordon 

equation 

I5 



(JO) 

in which '!"( .x) is the free scalar field operator in the 

Heisenberg representation. Assuming again that the system 

is enclosed into a cube of finite volume we present ,1~} 

in the form 

where the scalar product \~ll be further expressed in 

terms of the covariant components of the vector ~ 

and the countervariant components of the momentum 

~ 

./x ==- ..£. / ".x-;,. 
ot =D 

The coefficients of expansion (Jl) ~ contain cutoff 

factors which ensure in a suitable manner convergence and 

Lorentz-invariance. The operator acting on the wave 

function in eq. (JO) is invariant under transformations 

To find the wave function realizing the representation of 

the translation group we perform a transformation similar 

to transformation (14) 

I 
XK == ff )..._ +1..._ 

The components of the vector 1... are defined by the 

conditions 

16 
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.... 
where .fJ are the components of the four-momentwn opera-

tor. ~o find the explicit formulas for the scalar field. 

transformation we introduce, as before, the complex 
* coordinates -i!/ , Z + 

-; p; j 
,J­

and then pass to the variables <?F 

-</ = e _.7, ( t/"' + ./ C2,;). 
The quantities «.; and Q:f in eq. (J9) may be 

thought of as being real 

Four additional conditioDS should be :t.mposed on the 

variables Q+ • We put 

£ACre?.; =c?' 
/ 

(37) 

(J8) 

(J9) 

(40) 

(41) 

where ~,; is a certain four-row matrix with real elements. 

It is always possible to find a four-colwnn matrix fi,~~ 

obeying t~e condition 

(42 ) 

17 



Of matrices ~... and vt'~o( it is possible to construct 

a quadratic ide•potent matrix ~~; 

.#:N' .... ~_,, -7 .#._.,& .. ~._., (4J) 

satisfying the relations 

(44) 

(45) 

(46) 

By means of the matrix ~ ... , the variables G?.,. can be 

represented as a linear combination of certain independent 

variables "'~ 

the additional conditions (41) will then be satisfied 

automatically. 

(47) 

Since in determining the matrices ~r and ~ol.. 
we are interested only in their rank, we can choose, 

without loss of generality, the matrix ~~ in the form 

(48) 

18 
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After this it is not difficult to find a partial 

derivative ({J:f of .2~ 

and 

'dq = t!~e e -d,_ -~o ..Z f),_ {-t'.£ /~Q ~ ) 
8~ 7~ p , ~ 
express the momentum operator I' = _,· .2 

~ iJ.c., 
and Q · 

+ 
in' terms of new variables _A, 

(49) 

,· .£. d""Q,. ~;,c5o) 

where the operators J; 
to the vaiables 

are the momenta corresponding 

~ -/~J~ ~r • .. (51) 

These operators satisfy complementary conditions 

(52) 

To determine completely the operator ~ we have to 

calculate the derivative Jlj,_ • To this end we differen-
8-et! 

tiate the relation (41) writting in the form 

Using the properties of the matrices ~T 

it is easy to obtain the relation 

I9 

(5J) 

(54) 



Representing the desired partial derivative as 

Jp .. - · o e-~·e,_ 
- - -t .tt. 

(55) 

i'Je 

we reduce eq. (54) to 

(56) 
(). 

The rela.tion (56) allows to find the matrix 8..~ t' 

in the form of a series in inverse powers of the coupling 

constant. To obtain the equation for the ground state of 

the particle it is sufficient to take into account two 

first terms of this series 

.8., e ~ .J\1:: e -J.Lf .Jo/.. ~ .I /J ~ I!' c)~ • 

Using relation (55) the momentum ~ 

(57)\ 

can be written 

* Defining in a similar way the variable ~ : 

* -•. ,,_/ I ) 
~ = e c «~ -+ T Q~ 

(59) 

... ~ 

and the corresponding momentum ~ = _,· <>« we get for 
' u<e 

the momentum ~ an analogous expression 

~ = e.-e'l/~ ~;~ .8 .. ~(-~·~ ~•6 ;;./,·.z.r~~ ;;J} .. 
(60) 

20 
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!.., 

t-

.( . * 
The fennulas defining the variables 2 e ~e 

.) 
and the 

corresponding momenta in the transition to new variables 

show that the operator of the left-hand side of eq. (JO) 

does not coatain the variable • Therefore the 

solution of this equ~tion can be presented in the form 

(61) 

by identifying ~ with the total four-momentum vector. 

The wave function (61) realizes the representation of the 

group of translations of space-time. From definition (J7), 

(J8) of the creation and annihilation operators in terms 

of the variables and the connection 

of these variables with the variables 

it follows that the operators ~~ contain 

a large a-number component proportional to J 
therefore the total momentum of the system will be a 

qt. quantity proportional to d • We define 

(62) 

Then the variable of 1 ..._ is everywhere replaced by the 

and eq. (JO) takes the form 

_ m L -f-J .L f.! { ;(, v~ ec, :j- + 

+ J ff L .w-, c; a, :;:_ + a IF 2 ~ ~ ~" fi + 
.;. f tJ rt if 

(6J) 

+ l.l~~ e~:} B~f(;l;;.t._,-r;';;oL ). 
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Expanding the trigonometric functions into power series in 

1- ~ , taking as 8«- e expression (57) lind retaining 

only higher powers of 1-~ we get in the first 

approximation the following equation 

I ;;l ....2.!_ m' ...r: ./ 
-'J;..} + ;,...~ -T +ft'.!£.#.; v.,- f/.t£~v.,(f.A} + 

-< ~ ~ (64) 
/.f £ ~ f/J_, + e1 /.t .£ .#,vV; r d' -/17.£ ~ Al'.,.,; :I (1;.) -

< .ll . 
_ /.i .f ~ .,N_~ .7oit'~, ~- _//.t..£.N;(fA):N.t+ j JtJ(J.,IT}=o. 

Eq. (64) allows the separation of the variables ). ... 

and Q 
1 

, i.e. the function 

as 

e(>. Q) 
I 

may be represented 

e (;.,r;):; ~(")e .. [Q) · 
' (65) 

Since the variables Q f enter eq. (64) only linearly 

then for the function ~ rce) to be regular we should 

vanish the terms containing the variables Gf~ • 
The funot1on e., ( Q) thus remains completely indefinite 

in the first approximation, but instead we have secceeded 

in obtaining a relation allowing to determine U~ numbers. 

Assuming all the coefficients for G?+ in the left-hand 

side of eq. (64) to be equal to zero we get the condition 

(66) 

22 
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J 
where the numbers and are defined by the 

relations 

Let us require that the numbers z{ coincide with the 

numbers tit' • Then from eqs. (48) and (68) we can get 

the expression for the total momentum of the system 

(68) 

(69) 

(70) 

If now we take the numbers ~ as a new parameter then 

eq. (67) makes it possible to determine the numbers ~~ 

by means of the coefficients .-4e and e;s 
(71) 

Let us clarify the tensor dimensionality of the quantities 

~ • 'rhe matrices ~-I and .AI +.J.. were first introduced 

regardless of the metric properties of space-time. 

However, the definition of the matrix ~~ by relation 

(48) ascribes to it the transformation properties 

of the counterYar1ant vector. After this it is natural 

to define "':he matrix vY",~ 
1 as a covariant vector with 

respect to the inlex ol.. • This makes it possible to 

attribute to the condition of orthogonality of the matrices 

and vf/~<. ( Y.( ) a Lorentz-invariant meaning 

and makes additional condition (41) Lorentz-invariant. As 

tunot1ona of Latin indices these matrices should be regarded 

23 



to be invariant, at least, un1cr the orthoohronous proper 

Lorentz group. Under this condition the coefficients 

define the covariant vec.or. 

Eq. (64) taking into account relations (70) and (71) 

takes the farm 

I JL J 2 .ef.l Lo pfl_ .l:!!_~fiz.11w(uf}tf.rlj-=0{¥< 1 
-JA}+?}.~+T'i'-,1 J I+ • j 

Eq. (72) is the one of the four-dimensional oscillator. This 

fact forces us to pay a special attention to the way of 

regulatization of the scalar field. Indeed, in spite of the 

fact that the quadratic form 

L ;..~. Ap (1 c:fJ tJ.f(>) 
oi.jJ 

(73) 

is formally Lorentz-invariant it may play the role of a 

physically admissible potential only with a special choice 

of the coefficients .;I~ • Otherwise the proper oscillator 

frequency IIRY depend on the vector C't" , Which is 

inadmissible in a relativistically invariant theory. There-

fore as .41 we should choose some functions of the 

invariant (de) • Then the s.nn over the momenta in 

eq. (7J) can be presented as 
l L 

.c.#~ !""fl1.,. ~ .,:£F(+c) f (-lr) ~c"'~cP + 1- .. 

The swn in the right-hand side of (74) is a relativistic 

invariant therefore it must be a function of the Lorents 

24 
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square of the vector cl': 

.;£F:,(fc)= +t~"(? ... ;4e,.c;..) 
r 

(75) 

To en3ure independence of the oscillator frequency of the 

vector , we should choose the function Jf; 

in such a fashion that the equality 

vfr'f1C'C')= w' c ... c~' 
o£~ ff ?,_,. (76) 

be satisfied, Then cq. (72) takes the form 

[- /;.; + ~ ~: - J t -1- Lf .f ~ p ~ ·f- W ~~ )I .t.). (J] ~ ( J.) = 0 (77) 

Physically admissible solutions for eq. (77) can be obtained 
I 

following the method of ref. J • There it was suggested to 

put 

after which_eq, (77) transforms 
f z ..: z \.t m -w z_ r,_-- -+ 

« ~t 3 

to the equation 

The latter allows normalizable covariant solutions with 

positive equidistant squared mass spectrum 

(78) 

(79) 

(so) 

The quantities ./. r:ie,A arc the covariant components of 

the total momentum.· In ref. 3 it is shown .that such a mean 

of treating eq. (77) is equivalent to the description 4 

of the four-dimensionaloooillator on the basis of the 

use of an additional condition excluding time quanta. From 
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equality (So) it follows that th~ spacings between some 

values from the mass spectrum are proportional to the first 

degree of the coupling constant J • Certainly the 

solution for eqs. (79) are not the exact stationary states 

of the system. To judge the reliability of the approximation 

realized by eq. (79) we should consider tae follo*ing 

terms of the expansion of the operator in the left-hand 

s~de of (6J) into a power series in p~1ers of j ~L 

The terms proportional to 5 ~ are 

j:i .£ .;¢-1 (II<)~ - < ii f cts v~p (81) 

The second term in this expression oan be eliminated by a 

simple transformation of the wave function which leads to a 

shift of all the mass spectrum defined by equality (sO) 

by a value of zero order in the coupling constant. The 

account of the first term in (sO) leads to transitions 

between stationary states of the system in the first 

approximation, the transition probabilities being proportio-

nal to the first power of JJ , i.e. the account of terms 

(Sl) leads to a broadenin~ of levels (so) by a value 

comparable with the spacings between these levels. It is 

not difficult to indicate more steady states of the system • 

Notice that the first term in (So) leading to transitions is 

similar to the operator (29) which is a bilinear form in the 

variables Ao~.. and /; Adding to (Sl) the terms 

quadratic in variables ~ and G?t which are proportio-

nal to the zero power of J we get an equation of the 

type (79) the operator of which is the quadratic form in 
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the variables }~ Pf 
mation the variables j..._ 

and Q + • In this approxi­

and Q .1- are already not 

separable. However the appropriate quadratic form is 

easily diagonalized by the method developed in ref. 5 • For 

the nonreiativistic case such a problem was solved in ref. 2• 

It was shown there that the account of the interaction of a 

particle with the field Cal) leads to a small shift of 

levels (8o)and the spacings between the levels which are 

now assumed to be stationary e.retas before,proportional 

to the first power of the coupling constant J • The 

subsequent terms in the expansion of the operator (6J) 

begin with the zero power ~ , therefore the Vlidth of 

new levels is ala o proportional to the zero power of the 

coupling constant. 

4. Conclusion 

We have shown that the application of the Bogolubov 

transformation to the description of strong interaction 0f a 

classic particle with a scalar field allows to extract 

the motion of the particle in the field taking into account 

explicitly the conservation law of the total momentum. This 

transformation allows to draw a consistent picture of 

creation by the particle of a potential well moving 

together vii th the particle, in the case of strong interac­

tion this well being reduced to the oscillator one and 

the ground state of the system being described by a set of 

shifted oscillators constructed on the particle and field 

variables. 
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It should be noted that recently the experimental data 

have led to the creation of variouskinda of dynamical models 

in which strong interacting particles are regarded as 

certain complexes consisting of either truly elementary 

particles or some quasielementary excitations ( quars, 

coherent complexes 4 , droplet formations 5 , partons 6 ). 

Recently a very interesting paper appeared J where the 

connection between the coherent state method and the 

quark models was first established, i.e. dynamic model 

of eeneration of quasi-elementary excitations of the coherent 

type was first constructed. The suggested scheme of gene­

ration of the ground state is in its idea very close 

to the considerations of ref.J • Thus, the simple problem' 

considered here may serve as a model of the oscillator 

interaction of particles at high energies J, 4 , 7 • The 

formalism used here allows to indicate a certain internal 

mechanism of generation of oscillator levels. 

Finally, it is necessary of recall the deeper physical 

sense of the singling out of the variable r~ associated 

with the total momentum of the system. In ref.1 it was 

indicated that this variable describes the translational 

motion of the particle interacting with the field while 

the quantities describe the vibrational motion of 

the particle inside the potential well. This should be 

taken into account in generalizing the method suggested to 

the many-particle case where there must appear independent 

variables describing the translational motions inside each 

potential well separately. 
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