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1. Introduction 

The semiclassical approach to the scattering problems within 

the fram~ork of the nonrelativistic Schrodinger equation ~ith the · 

smooth potential/1 •2•31 is known to reproduce the main characte~is­

tics of the high-energy, elementacy particle reactions. It thus· rep­

resents an effective tool for analyzing·the experimental data •. This 

is rather similar to the quasipotential approach/4 ,5/ and other 

methods of the.relativistic quantum field theory/6,71. 

In the present paper the semiclassical scattering is investi­

gated by the functional integration method~ Before stating the 

problems of this paper, the principal results of the conventional 

semiclassical W.K.B. method is briefly reviewed as applied to the 

potential scattering problems. To make things more clear, we consi-

der only the following asymptotic domains: 
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According to the W.K.B. method the' scattering phase in the partial 

wave expansion of the amplitude is defined as the ratio of the 

classical action function to the Planck constant. 

~)w·e use the following notations: \lq is the average value of 
the potential energy, R is the- potential size,.-t=! ·, K is the 
incident momentum modulus, f= !::} is the kinetic en:rgy (the .scatte-

• ~ I 

ring particle mass is assumed to be unity), e- is the scattering 
angle. 

J 



Consider the first case of (1.1). Here for the classical 

action function the Born approximation is valid because of the 

smallness of the quantity ~ -. The range of angles (a) is classi-
E 

cally forbidden, and in the vi.K.B. approximation the amplitude 

falls exponentially with increasing momentum transfer, reproducing 

the Orear behaviour of the differential cross section at high 

energies. At small angles (b) the W.K.B. approximation coincides 

with the eikonal one for the scattering amplitude. The latter; 

is extensively used nowadays for theoretical analysis of the expe­

rimental data. At very small angles and~<<: the first Born ap­

proximation is true which describes the diffractional peak. The 

diffractional picture as a whole results from the multi-scattering. 

(Note that the smooth potential is interpreted by ref.10) as a result 

of the interaction due to the reggeon exchange). 

As to the second case, the classical action function is much 

greater than the Elanck constant, and, generally speaking, is not 

approximated by the first Born term. As is easil.y se.en from Eq. (1.1) 

only in the domain 2)(a) it is reasonable to say about the classical 

limit of the semiclassical. expression for the differential cross 

section the calculation of which by the saddle point method leads 

to the cl.assical. mechanics formul.ae (except for some anomal.ous 

cases). 

The diffractional domain-2)(b) has been investigated l.east of 

all.. Al.l. the resul.ts, which can be found in the l.iterature, have 

been obtained by the eikonal. approximation~ being in somes•~ce the 

p~-~i~ul.ar case of the W.K.B. method, as we have al.ready noted. 

4 

Nevertheless, the·question about the .l.imits _of.appl.icabj 

the eikonal approximation- i~ still open. '.Che' most accep1 

condition for its val.idity is supposed to be as- rol.l.ows: 

The rough estimation of the eikonal expansion terms givE 

tion "!!.((.fir*. , which, from· the -point of view· of the class 
·c 

~ .. ·o., differs from first one in principl.e. On the othei 

exist a number of papers, in which the appl.icabil.ity of' 

approach in th~ c~se/131/f<<; << i' ' or at an arbitral:'J 

~- 1141, is justified by the physical. results obtained· 

r~ general methods~ rn particul.ar, the Yukawa potential. 

cr~ssaeotion .. at VD-£ obeys the Frois~art bound/151' •.. 

It is very instructive, of course! to-compute in th 

sical. approximation the' scattering amplitude in the doma 

study the question-concerning the l.imits of eikonal app:t 

val.idity. 

In sect.2 the semiclassical. approach is developed b 

path integration method. An advantage of such·an approac 

conventional. W.K.B. method is that it can be applied to 

ring on the spherically nonsymnietric potentials, as \vell 

Ln sect.3 the total. cross section and the scatterin 

w~th the Gaussian potent~al. are cal.culated ~ the semicl. 

approximation :<<I 1 -~ ~· >> i . It is found that in the 

diffractional.·domain the asymptotic.val.ues ror·the semic 

eikonal. ampl.itudes coincide. The eikonal series is alter 

therefore all its terms cancel. and even -in the_ case -~ :.,. 

viol.ate an as~otic behaviour of the eikonal amplitude, 

., 
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Nevertheless,: the question about the limits .of applicability of :. 

the eikonal ·approximation. is still·· open. 'i'he: most acceptable.: 

condition for :i.ts. validity is supposed. to be. as· i'ollows: ~~;.(< i ... 
. . · .. ·. . .. . E 

The rough estimation of the eikonal expansion terms gives the. condi-

tion ~<<If 1 which, from the point of view of the classical limit ; c . '' ' 
;f .. 0 1 differs !'rom first one in principle •. On the other hand, .. there 

exist a nuinber of papez·s, in Which the applicability of the eikonal 

approach in th~ case/
1

31/f<< ~ (< i ' or at an arbitrary value of 
. /14/ . . . t 

~. ,· is justified by the physical results obtained oy other, mcr.-f ' . ·.· . 
re general methods. In particular, the Yukawa potential scattering 

crossaeot1on. at VD-£ obeys the Frois~art bound/151. 

lt is very instructive, of course, to compute in the semiclas­

sical approXimation the scattering amplitude in tpe domain 2)(b) and 

study the question.concerning the limits of eikonal approach 
validity • 

In sect.2 the semiclassical approach is developed by using the 

path integration method. An advantage of such an approach over the 

conventional Vl.K>B.·method is that it can be applied to the scatte­

ring on the spherically nonsymmetric potentials, as well. 

Ln sect.3 the total cross section and the scattering amplitude 

with the Gaussian potent:tal are calculated m the semiclassical ': 

approximation :<<I 1 ~ ~· >> 1 . It is found that in the small angle 

diffractional· domain the asymptotic values for the . semiclassic.al and 

eikonal amplitudes coincide. The eikonal series is alternating one, 

therefore-all its terms cancel and even-in the.case ~~~.do not 

violate an asymtotic behaviour of the eikon~l amplitude, which 

' 



describes the scattering analogous to the Fraunhofer diffn:ctipn on 

the black sphere with the radius rising logari tbmically as ~ ~ ...... oo • 
. ~E 

The change of the potential scattering behaviours with increas~g 

potential energy is discussed. In particular, it is shown that at 

!'2>>~ the angle diffractional domain g.< _R:X :. (but not 6 ...., !: 
E' R . I 1/} 1/:' 

as is assumed usually in the semiclassical approac~ 9./, provides 

the main contribution to the totai cross section. 

2. The ;lenuclassical Approximation to the scatterinPi Amplitude 

Let us now consider the semiclassical approximation to the 

scattering' amplitude within the framework of the functional 

integration method.The closed continwtl representation for the 

relativistic potential scattering amplitude has been found by the 

autho/121·. The nonrelativ.i;stic analog has the form*) 

f(T~ = ": f J{ /rr vr~J j J). I ,~1- /~ r"~1 f sL / ~ r"-1 , 
c: JC,_(DJ=r JC_(Q}: r (2.11-

- .... - 1-1 -J . where T ::. f - q J 'P = / 1 : I< and . 
. ~ 

s+=~c-fif -.\Vtx-:+P'rJ] ;.r_=f"~'[~-
2 

-;.Vr~+fcJ] (2.2) 
~ -~ 

are i7he action ±"unctions which dep8D.d on arbitrary trajectories X. (r) 
1 -

passing at time ~ 0 through the po.int X:t {o) :: 'l ; S X :f are 

the volume elements of runctional space. 

In the semiclassical approach I( R >)I , to calculate the. 

path integral the stationary phase method /IG'/ is valid, acc~rding 

illi)we shall work in the s11stem: f\-= l'n~ I 

I 

I 

to which*): 

1 /.. 21 I f ~ t''i"T I ; .f!, ( ·; .;e.rTt-=;- J'te · '"fJr' ~- Z:.-' r. .. Ylt J""" e 
0 

.s'd. (~>.) = S+{X.J.) + J'_ (X- c.!.) 

where X~ J. satisfy the classical equations of moti, 

&S. -+ _. ~ ..... J ·-:-- .· . -
---=- = 0 j X+ (o)= 't · trn X+ (r) = p 

1
· Gtr~X. {c):: 'l 

SX:t - 1
?-uo 0.-oo · · 

By means of the motion integral (the energy con 

law) ~ ..... _.,2. __. ) K • 
(x++P +>.V(x:(rJ+p r =:z, 

2 

--.. _, ..... 
ex_ +qJ +>.V(i<-:.(t}t-9' 

it is easy to define 1171 the Hamilton-Jacobi equati 

function S+ replacing in Eq. (2.5) at Z" =0 X:, - ' -
with the boundary conditions ltn ,1,.(r):O • 6m ,f..(r)= 0 

'tl'-.od J 'fi"-+•N 
considerations are confined to the case of small sea 

angles when it is possible to neglect the dependence 

function Sci. ('r,>.) on the momentum transfer 1121. ' 

the direction of p along z-axis and denot~g t = (j 
we arrive at the Hamilton-Jacobi equations 

~~~ l :l] 2/ J.,.,t:rJ +(J~~) :;: K dil S;t = ~). 2 V(~ ~; 

of which the solution can be rather easily construct 

*) For the sake of simplicity suppose~ (XcJ} to be fu 
a fixed sign, the unique solution for ~ to 

~X 
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t'bitrary trajectories x~ {r) 
; . 1 -

o) =-. "l ; S X t are 

, to calculate the. 
161' is valid, acc~rding 

J 

1 
1 

to which*): 

1 ~ ' r • uc.t. r "' f 
..... r- , . rl r ) 

f.e_{T2).=~ <l"t e ·. Vtl') f"'-' e · ' 
0 .. 

J',cl. (?-.>-) = S+(x.t~.) + ~- (x_ c1.) , 

where Xr d. satisfy the classical equations of motion 

oJf+ _. .I - " -='"" - J ·-;-"" ·--;--=- = 0 ; X:r (o1= 't ; _um X+ (r} = p 
1
· E~X. (c): Cf • 

oX:t t+oo c-.-oo · ·•· 
(2.4) 

By means of the motion integral (the energy conservation 

(2.;>) 

it is easy to define 117/ the Hamilton-Jacobi equations for the 

function S:t replacing in Eq. (2.5) at i' =0 i;fo} by ;:. ff;,s'r(l) 
with the boundary conditionsl,..S,.(r)=O • tml.(r):O • Our: 
· f"E"-otd J fi" ... -w 
considerations are confined to the case of small scattering 

angles when it is possible to neglect the dependence of the 

function ,1 ci. (r,>.) on the momentum transfer 112/. Then, choosing 

the direction of j1 along z-axis and denoting ?: = (~ r) ±"or ~ 

we arrive at the Hamilton-Jacobi equations 

(2.6) 

of which the solution can be rather easily constructed in the 

iii) For the sake of simplicity suppose~ (XcJ) to be functions of 
a i'ixed sign, the unique solution ±"or !£ to. exist • 

. ~X . 

7 



I'orm of series 
~ ! s ... =LA fe.,. - (~/ - (2.7) 

inserting the latter into ~.(2.6) and putting the coefficients 

at the same powers of >. be zero. 

In .the case { (< / the action function J'c1. (r. -\) is comp-

letely determined by the first term of the series.(2.7) and 

coincides with the eikonal phase 
«:J 

r.;. V{t) 
S',.f-:: >. ~ (;):: >.J.c-(f)-::. >. K J' ~ --;-£ (2.8) 

-P 
i~.>.z 

hence, for the amplitude at least for e .._ i (in particular, 

this leads to the Schiff condition 1141: ~ << /~ ) the e '~'ie 
eikonal representation holds: 

f (Tz) =I;~ f ~;, e·.i·r ( e i~ffJ_t} (2.9) 

Note that Eq.(2.B) is the solution of the Hamilton-Jacobi 

equations which follows from the conservation laws Eq.'(2.5) when 

the change of particle momentum in magnitude and direction is 

significantly less than the momentum itself: JX}1 <<}X~·r) 
Therefore the eikonal representation in classical mechanics 

corresponds to the quasiuniform motion. 

In the straight-line approximation when a particle moves - ...... 
only along z-:axis ( ~l= JC.,.:: 0 ), Eqs. (2.6) are easily solved 

and the action function becomes .., 
~1~t(P,>.) =I<· fr~~[/1-.AW - t] 

-oo f (2.10) 

Here the amplitude takes on the form of the impact-parameter repre-

I 

:! 

I 
. i 
! 

1 
I. 

sentation 

I 

f (r:2'=.!:... (r' iP-.7! j~ ,A~"tA-\) 
.at 4./ ~., p './' e ,s; (pJ "..\ e . 

D 

3. The Gaussian Potential Scattering 

Here we will calculate in the semiclassical approx: 

total cross section of the scattering on the Gaussian P' 

V(7)=:; e-ll~~ in the limit : f' ~ 00 • For the sake of : 

we shall consider the straight-line scheme (2.11). The • 

form of more exact expression (2.3) is calculated in th' 

According to Eq.(2.11) the total cross section has 
I 

a 4:r . !"" f -··~( (;>,1tJ 
'l.tt = y Im f{o) = 'f1r lm .!'~ ,1, ifJ "" e 

0 0 
where 

. "' fl; 

S'4-tf;>.~):-J<Jt~~(/J-.>.Yf!J.,_ t)=£ 5. ...\'" e-"'F 
_.,., E · ,...::1 "' 

(Vc) 2. f ~=-KR~ ; tJ.=I<R £ 2/ii-) • •• 
Integrating by parts·Eq.(3.1) over A we arrive at 

6t,
4
t = ~r.Im{t[:0'!f(l-e_,;st.,1(~/)) +- A-] 

. Soo J: _,·,{~r,J;. 1.. r- .-J~f~.>.J ·h£/(,D;;.] 
A-= -, .P".P " e . 'P>. l e , 

0 0 

The ~~xmptotic form of the second term in Eq.(3.3) is cc 

using the Watson-Sommerfeld transformation (see the appl 

( .1, ) /..I J . . . is found to be equal to 0 -7 .... OficR in the order of IIU 

A! 
Therefore in the semiclassical limit this term in Eq.(3, 

neglected. It should be noted that an analogous expressj 
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1. Sc1. (r, >.) is comp­

ies (2.?) and 
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(</{ ) the 
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Hamilton-Jacobi 

La~s Eq. (2.5) when . 

~d direction is 

)1 <<}Xl·Je} 
:al mechanics 

particle moves . · 

3 easily solved 

(2.10) 

pact-parameter repre-

sentation 

f (7:21_ .!... ( [1 !/J-; f /: ,· ~~' (A;.) 
.iJI: .. ,~- ~'Jj )'.Pe ,s;r1J ). e · 

a 
3. The Gaussian Potential Scattering 

(2.11) 

Here we will calculate in the semiclassical approximation the 

total cross section of the scattering on the Gaussian potential 
) 

2 v. - l'~ 
V(7 =-& e if in the limit~~ 00 • For the sake of simpliCity ..;;;: ;;rE 
we shall consider the straight-line scheme (2.11). The asymptotic 

form of more exact eXpression (2.3) is calculated in the appendix. 

According to Eq.(2.11) the total cross section has the form 
I 

a 4:r 'f fi>O rl f -··£u (J1Ji) ( ) 
'f. .tt = TIm (o) = 't7r Im .!'~ iJ, ifJ "" e , 3.1 

" 0 where 

(3.2) 

(3,4-) 

The g~xmptotic form of the second term in Eq.(3.3) is computed by 

using the l'latson-Sommerield transformation (see the appendix) and 

is found to be equal to o(:,:zz)-...o6:~} in the order of magnitude, 

Therefore in the semiclassical limit this term in Eq.(3,3) can be 

neglected, It should be noted that an analogous expression is deri-

9 



ved in the W.K.B. approximation with an accuracy to the replacement 

of the :function ~./J.YbY the scattering phase,in the semiclassi.cal 

approximation. 

Adding and subtracting the function ll.Xf {i. ,1, (/}} in the 

remaining expression of (3 • .5) under Dhe ~tegr~l sign we get 

~t.~t = 6~ e./}; +~bcr (3.5) 

where 
a . 1. I fj"" _, ( -i~t.oJJ] 

t. e.~:. :: nr m [i .. .P"f I - e 
(_5.6) 

a6t'.= ~"" !""[. ~~~ e -,·,S:(~r{- e ,·,£{1')-,·~f=(AJ)J] (3.7) 

The asymptotic :form of the eikonal cross section is as follows (see, 

e. g. ref.f9/): 

6.L . L = 2..- n 1 
c.e,K. ltJih£l)C • 

(j.~) 

Here 

~"x = R /ft. ,s( $,:1<R Vc ~ 0<1. 
E 

(3.9) 

It should be stressed that the basic contribution to the integral 

l!Jq. (3.6) is given by the large impact parameters . ,;o ..... _/)...,")( , 
determined , by the condition ,.r, (.,o) "' 1. 

To calculate Eq.(3.7) we substitute the integration variable 
-.e! e "•= X , then Eq. (3. 7) takes on the form 

T ~~~ I -c J: X ] t1 6t -= 27i J~r~B "X e g (x) , 
(3.10) 

10 

a 
' 

\J 
I 

where 

·sM= exp{;J',x -i~t(li:[R, 1)}- 1 

is the infinitely di:t":ferentiable and nonsingular :func· 

interval (0.1). Therefore according to re:r/'' 81 :the ·a 

sion of Eq.(3.10) can be performed by means o:t" the in· 

parts. Taking into account the first term of this exp• 

for 6i.li the :following expression 

Zt·~~'. + 2J;R21 [ ;.fido'. ·'' .?.- oti."k - e '/ ... , . . .r,. ... - e + 

I 

o(s'~Je·S!~f.) J . 
Thus the asymptotic values of the semiclassical and e 

expression coincide. From Eq.(3.3) the alterna~ing na· .... ,, 

eikonal series in J;/qi}-.f,: r ,(, is rather evident. . 
. ,.:z 

of the :first terms of this series in order to learn t: 

of validity of' the eikonal approximation can provide · 

on the quantity V.. 111 • 121; while using Eq. (3.10) i· 
£' 

to prove the validity of the eikonal asymptotics at w 

Really, putting X= Y/i; in Eq. (3.10) we get . 

lm .::16 ""r.;;.J"11~ e -•rlii'[(xp{-•yJ[I -t- off:; Ji- 1 ~ v. . 1 t y «<t r .J 
fti<i. » {i:ii' ~0 0 . . • y' 

(
oo ·i/K?Yj . ) -o j«yye . I ~o(.};; 

The reason :for validity of the eikonal.approxima 

small angle scattering is that the strongly osciilati 

ll)lp{.·"'ltA}in (3.3) gives·the ~ontribution comparabl 

11 



:uracy to the 'replacement 

1e,in the semiclassical 

f {i~(IJ} in the 

;egral sign we get 

(3.5) 

(j.G) 

J] (3.7) 

lction is as follows (see, 

(j•fj) 

. bution to the integral 

Leters . yo"' .;4 ,...~x , 

Le integration variable 

' (3.10) 

H 
'-' 

where 

e;cp /•ff..J( i-1 
i)( (j.11) 

is the infinitely differentiable and nonsingular function on the 

interval (0.1). Therefore according to ref/;181 ~he asymptotic expan­

sion of Eq.(3.10) can be performed by means of the integration by 

parts. Taking into account the first term of this expansion we get 

1'or 6l.8i the following expression 

z ::: ~ . 2.,.Rzr {e;.f'ttfo) .-,r: o(g't;<Je·.1.~f.)'] 
t,.u t.~•" + .r. ... - e + I) ' . .r, 

Thus the asymptotic values of the semiclassical and eikonal 

expression coincide. From Eq.(3.3) the alternating nature of the 
.,., ' 

eikonal series in ,s;/q•J-.S:=r ,('" is rather evident. An estimation 
,..:z 

of the first terms of this series in order to loam the limits 

of validity of the eikonal approximation can provide the upper limits 

on the quantity ~ 111 •12/; while using Eq.(3.10) it is not hard 
£ 

to prove the validity of the eikonal asymptotics at any ~ • c 
Really, putting X-= Y{i; in Eq. CJ.10) we get . 

{;;~ . f}-
lrn .116 "" J "o:t e -·flii'{tJ(pf-•y1[1..,. o(i;;}] 1] v. -f t y ~ . ""' 

frxi. » ~ -?o " i Y · 

(

oo ·i;;i'YJ -o j«yye . 1 ....,o(-f;} 
(3.13) 

The reason for validity of the eikonalapproximation for the 

small angle scattering is that the strongly osciilating function 

~ZfrliJ'.,tft,'J} in (3.3) gives ·the contribution comparable with unity 

11 



l r 
I 
' I 

'I 

'"'~ ~ 

only in the large impact parameter region where $1~ (f)- 1. How-

ever the latter condition is sufficient, as was already mentioned in 

the introduction, the classical action function to be approximated 

by the Born expansion (i.e. by the eikonal phase *)) with an 

accuracy to the quantities of the order 1f : 
~hysically this means vhe strong interference of the diffrac­

ting part of the scattering particle plane wave, for which J'<j;m"'Jr' 
hence the diffractional picture is determined mainly by an peripheral 

domain J' "".1'•\t>.Jl • Therefore the scattering at ~~J >> 1 physically 

is adequate to the light-scattering on the black sphere (the 

Frauhofer diffraction) with logarithmically increasing radius (.3.9). 

Hence, in particular, from the Babinet principle 119/ it follows 

that the values of elastic and inelastic cross sections coincide: 

2,.., -= 6d = "J'~I\K • (.3.14) 

The value of o and, consequently, those·of the total cross section 
jm~ . 

and diffractional amplitude 119/ 

f · {;:lf)~ ::= ,· ~ J. (P•'>'AX· K·-9) e.t 2-s- ' (.3.15) 

in the classical limit ~ ... 0 tend to infinity. This is· due to the 

1·act that in classical mechanics the scattering total cross section 

proves to be infinite for any field becoming zero only as 'r-. a:o • 

*) Note the contrast situation for the scattering through 
classical angles: the main contribution is furnished by those 

impact parameters for which S'cl(fJ)"' d.Pct>>1lB/. 

12 

(We recall that the classical cross section at a fixed I 

half of the quantum one). Thererore one gets that the ma 

but ion to the total cross section at ~ >.:> .~ just as in 
- E R. 
Vo<~ E R 

is provided by the diffractional domain of the sc 

angles. The typical angle of 

by the quantity 9- "" ~ >> ; 
semiclassical approach IB,YI, 

the predominant scattering 

, as is usually adopted j 

X 
but fJ. --

J',,..vr 
Thus, as the potential energy rises in passing' fron 

1)(b) ~<.!. to the domain 2)(b) :i>>~ ·(see (1.1))th.erE ,: ,_ e t. 
following correlating qualitative distinctions: the loga 

growth of the total cross section and the shrinkage of t 

t~onal peak ( R.-!> _p..,d ). While in the nondiffractional· 

angles ~ << .p. < v., (see sect. 'I) for real potentials the 
~ i= 

scattering behaviour is changed mto the purely one; an<l 

case V~ >r. t vanishes at all. A similar situation can oc 

instance, in the scattering of particles on the tensor ~ 

(the gravitational fields)/141. 

Conc.lusion 

Within the framework of the path integration method 

semiclass~cal representation Eq.(2.3) for the amplitude 

derived. It was applied then to calculating the scatteri 

tude with the Gaussian potential in the diffractional do 

angles. By this it has been found that the smallness of 

potential is not necessary condition for th7 simpler·eik 

approximation to be Talid, since the latter coincides wi v. . 
semiclassical approximation nen as£;>> 1 

l) 



~ $1~ (f) ... 1. How-

> already mentioned in 

1 to be approximated 

>e *)) with an, 

lnce of the diffrac-

l, for which .J'<'pm"'k' 
w.inly by an peripheral 

e~ >> 1 physically 

:k sphere (the 

:reasing radius·(,.9) • 

. e 119/ it follows 

sections coincide: 

0.14) 

;he total cross section 

This is due to the 

: .total cross section 

1ro ;only as?"~ M • 

.ttering through 

.ished by those 

.,. 

ewe recall that the classical cross section at a fixed radius equals 

half of the quantum one). Therefore one gets that the'main contri-

t th t t 1 t . tV.'"" .X · t · · the but ion o e o a cross sec 1.on a ·- .q ·- JUS as 1.n . case 
E R. 

Vo<~ .E R 
is provided by the diffractional domain of the scattering 

angles. The typical angle of the predominant scattering is given not 

by the quantity (} '" ~ >> ! ' as is usually adopted in the 

semiclassical approach /B,<J/, but (}. -..!5.. 
.P~"'"' 

Thus, as the potential energy rises in passing from·the domain 

1)(b) ~<..! to the domain 2)(b) ~>>~ (see (1.1))th.are appear the 
,: r. e t. 

following correlating qualitative distinctions: the logarithmical 

grovroh of the total cross section and the shrinkage of the diffrac­

tl.onal peak ( t< ~ .P ... o~.x ) • While :Ln the nondiffractional domain of 

angles ~ << .p. < ~ (see sect. 'I) for real potentials the Orear 
~ t: .. 

scattering behaviour is changed into the purely one, and in the 

case V~ 1:, f vanishes at all. A similar situation can occur, :tor 

instance, in the scattering of particles on the tensor potential 

(the gravitational fields)/141. 

Conc.lusion 

Within the framework or the path integration method the 

semiclass1.cal representation Eq.(2.,) for the amplitude has been 

derived. It was applied then to calculating the scattering ampli­

tude with the Gaussian potential in the diffractional domain of 

angles. By this it has been found that the smallness of the 

potential is not necessary condition for the simpler eikonal 

approximation to be T&lid, since the latter ooinoides with the 
v 

semiolassioal approximation nen as s. >> 1 



The physical explanation of such a coincidence suggests an idea 

that this might be inherent in all potentials, quite rapidly 

decreasing at infinity. 

If the latter is true, then at I<R ~ .>>1 the structure of 
E 

such potentials in the finite region of origin, which defines the 

scattering amplitude in the Born approximation~ is levelled by the 

strong interference of diffracting waves of the scattering particle. 

Therefore, potentials which are rather large in magnitude can be 

approximated by the black sphere with the radius of which the 

energy dependence is determined by the behaviour of an appropriate 

eikonal phase at infinity. It should be noted that the upper bounds 

on the interaction cross section at high energies, found by using 

the general principles of quantum field theory are consistent also 

with the semiclassical ideas on the scattering on strongly absor­

bing sphere 171. 

The author is sincerely grateful to D.I.Blokhintsev, B.M.Bar­

bashov, A.N.Tavkhelidze for many critical.remarks and fruitful 

discussions, to A.V. ~fremov, I.H. Khriplovich, G.I. Kolerov, 

A.V. Matveev, .v.v. Nesterenko for useful discussions. 
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Appendix 

Let us calculate in the semiclassical approxima1 

cross section of the scattering on the Gaussian potex 

has the form . . - I 

Ztf.i= ~,.. Two{lo}=ltM~ {t11rVfrJf";. ei.r'r.t /~A). 

according to E~(2.3). 

C.t is searched in the form of series in >. 
1:10 • , - .e.!. ,.., 

S'c.~(z;>.) = f
1

£',., (JJ,l)(x e ~z) 

it being known that 

""" S'd ( ~ ~,>.) = J'.,., (~J) :: L J',., ... , ~ 
,., ::I 

• 

The coefficients~e defined by the solution of the it 

equations, whic~ result from inserting the series (2. 

Hamilton-Jacoby Eq.(2.6) 

t, (p,?)::: ,r: ["' ' ... l ~ il 

.s't (pi): f"' [i + ~; Y; (!)]; tfftr j fci~,(Je-1't1?,) -r Jt'l, 
' , .. e rr. ? 1, _., 

- :r~?)=·.f,.,.{t.,. z:-··-{:~f,~:ll)]. 
tot.~J A. li \,UM 

It should be noted, that the functions 'H (7) are 

throughout the whole z-domain. This makes it possible 

the asymptotic calculation under the integral sign ov 

ing 'f'..,.,(l) as some constant coefficients. 
- J!..~ 

After the variable replacement 2. It' ~X integ 

on the simple form { "" - t'l. _ _} 

~tel.= 21rll'" I.., _{ ~ ~l'J(,!'.f) 
"'1/.C'-4 J I f ~ _ 
!!!..:.!t-=- ftJ;c f,C;. t}(f {··/,x;. [1 +X >.-1/J +'I; l,x}+ ... + 
~ .. . . ~ 

+ {>. ><)"' ~ ... (I + ••. ) + • " J} . 
I 1' 
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Appendix 

Let us calculate in the semiclassical approximation the total 

cross section of the scattering on the Gaussian potential; which 

has the form 1 

. . ( f,t ;' t'e~ (~ ). ) 
6r_ r.( = ';; Two flo)= J.,. ~ J Jlr Vtr) o ;. e . . (1) 

according to E~(2.~). 

~ai is searched in the form of series in ). (see Eq.(2.7)) 

.!'<! (l;.) ~ i:-., J'*(J', ~) [>. e-1-r (2) 

it being known that 

• (3) 

The coefficients~e defined by the solution of the iteration 

equations, which result from inserting the s~ries (2.?) into the 

Hamilton-Jacoby Eq.(2.6) 

t, ( P, '1): f, [ "' , · "" 1 z i.& 1• f l 7 
.s't (P.l); t;> [t ... ~~ Y;' (l}] i 'if'r f: {ci~,(fe-1'tll, 1-r J.-'?,(j { ~iJ 

' , ~ e rr. ? ~. V _.., .., ( 4 ) 

.. 
• • • • .,_,.. 2h .. 

,.f ~'l) = S',... [t + z: '?) 'f,.,ll) J . 
,..1 t.. li u,M 

It should be noted, that the functions '~ (?) are not zero 

throughout the whole z-domain. This makes it possible to per1'orm 

the asymptotic calculation under the integral sign over zoonsider­

ing ~"(l) as some constant coefficients. - ~~ 
After the variable replacement 2 Itt :::-X integral (1) takes 

on the simple form 
1 

~-~ 
2
-tt } 

"'Jtcl. = 2.,/l I~ _[ -;;-'? 'Y(tf'ct) 
"'1/.C'~J I I .£ 
~:: f"'~ ft<;. fl)(p /i/,x.>. [1 +X)t.-1 (J + Y-; 4J<)+ ... + 
~ .. . . ~ 

+ ~ xJ'" ~ ... (,., .... ) + " ' J} • 
' 1' 

(5) 

(6) 



l 
·I 
:! 
I 

' ~ 

l! . 
' 'I if ! ,, 

" 't 
ll' 

:[ 
, I 
') 

'I 
! ~: 
' ' . 
d< 

ij 
!i 
I' 
'" ., 
il 

1 
' ! 

J 
I 

:I 
'I' 
I 
l 
I 
I 
I 

i 
I 
~ 

~ 
I 

'ft 
I 

'.rhe integral of the type (6) can be i"ound in the calculations of 

the l:t'eynman diagram asymptotics and have oeen investigated in 

.nef/18/. 

The asymptotic value of Eq. (G) asS,~ oo is determined by the 

most right singularity o:r the :Lunction F (;} • ~his function is an 

analytic continuation of the coefficient fi of •raylor series in 

$, of the expression \.3.6). In the case under consideration the 

most right singularity has the form 
I i "f { 

F(f)=ffJ){JJ.(>-x) =-(·" )2 
~ o . .,+I (7) 

which corresponds to the asymptotic behaviour 1101: 

1 (fcl.} = ,· t. ~~ + '-r;;r ft . (8) 

Hence the value of the total cross section coincides with the 

eikonal expression (3~9). 
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