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1. Introduction

'he semiclassical approach to the scattering problems within
the'fraﬁeﬁork'of the nonrelativistic Schrﬁdinger equatien:with the
smooth potential/ 1+2137 ig inown to’repro&uce the main characteris—
tics of the high-energy, elementary perticle reactions. It thus‘rep-
resents an eifectlve tool for analyz1ng the experimental data. Thi»
is rather 31milar to the qua31potent1a1 approach/ '5/ and other
methods of tne relat1v1stlc quantum field theory/6 7/

“In the present paper the semicla351ca1 scattering is investi-
gated by the functlonal 1ntegratlon method. Before statlng the
problems of this paper, ‘the prlnclpal results of the conventional
sémiclassical W.K.B. method is briefly reviewed as applied to the
potentlal scatterlng problems. To nmake thlngs more clear, we consi-

der only the follow1ng asymptotic domalns. Cn
X
) o ¢ X : = ) S8 <=
)E ~R ! (a)~"§l?>k = () R

N X d 9—4—-’* R
d\ . . * -~
. Z)E»’E‘ ,,(q) 'g'»ﬂ " () 4 ‘p

in the semiclassical limitx)

.ot .
‘ 2 «

According to the W.K.B. method the:scattering phase in the partial
wave expansion of the amplitude is defined as the ratio of the

classical action function to the Planck constant.

i‘)W'e use the foilow1ng notations: Ve is the average valun of
the potentlal energy, R 'is the potential 51ze X--E y K "is the
incident momentum modulus, £ = —3 is the klnetlc energy (the scatte-
ring particle mass is assumed to be unity), € is the scattering
angle.



Consider the first case of (1.1). Here for the classical
action function the Born approximation is validrbedause,ofvtﬁe
smallness of the quantity ké "« The range of anglesu(a) is_cla;si-
cally forbidden, and in the W.K.B. approximation the amplifude
falls exponentially with increasing momentum transfer, reproducing
the Orear behaviour of the differential cross section at hlgh
energles. At small angles (b) the W.K.B. approximation c01nc1dee
with the eikonal one for the scattering amplitude, Thevlatter:
is extensively used nowadays for theoietical anaiysis’of the expe-
rimental data. At very small angles and .g‘-‘« Z— the first Born ap-
proximation is true which describes the diffractional peak. The
dlffractlonal picture as a whole results from the multi-scattering.

10) as a result

(Note that the smooth potential is 1nterpreted by ref,
of the interaction due to the reggeon eichange).

As to the second case,)the classigal action fﬁnction is much
greater than the rlanck constant, and,ysgnerﬁlly Speﬁkiﬁg;nis not
approximated by the first Born term. Asjis easily seen from Bq. (1.1) .
only in the domain 2)(a)‘it_is reasonable to.say. about the classical
1imit of the semiclassical expression for the differential cross
section the calculation of which by the saddle point-method leads
to the classical mechanics formulae;(excepf for some anomalous
cases).. : g :

The‘diffractional domain -2)(b) has been investigated~least of
all, All the results, which can be found in the literature, have
been obtained by the eikonal approxlmatlon, belng in some sente the

paTfcizular case of the W.K.B. method, as we have already noted. .
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Nevertheless, the questlon about the limits: of. ‘applicability: of. .

the e1konal approX1matlon is still: ‘open, . 'the: most acceptable- -
condltlon for 1ts valldity is supposed to . be as follows: Vo << j

The. rough estlmatlon of the. eikonal: eXpansion' terms glvesEthe condi-
tion »142/;?, whlch, from the point. of view: of the classical limlt
XH»D f dlifers irom flrst one: in principle, .On.the other hand,athere
exlst a number of papers, . in whlch the applicability of the ‘eikonal
approach ln the case/13{/—2< <2 i Uy or at an arbltrary value of
,\/ /14/ 1s justifled by the physical results obtained oy other, no~
I% general methods. In particular, the Yukawa potential scattering
crossaootion at V,~E obeys the Fr01ssart bound/157

it is very lnstructlve, of course, to- compute in the semiclas-
sical approximation the scatterlng amplitude in the domaln a)(b) and
study the question : concernlns the llmlts of eikonal approach
validity, '

In sect.2 the semiclassical approach is developed by using the-
path lntegratlon method, An advantage of such -an approach over- the
conventional W.K.B," method is that it can be applied-to the scatte—
ring on ‘the spherlcally nonsymmetrlc potentlals, as well,

ln sect.3 the total cross. section and the scattering: amplltude
with the Gausslan potential are calculated in the semlclassical o
2\/.>>1 + It is found that in the small angle

)xr-
diffractional domain the asymptotic. values for the - semicla551cal and

approximation. -<Kl

eikonal amplltudes coincide, - The. eikonal series is alternatlng one,
therefore -all its terms ‘cancel and even.in the. case %;-aoo do not.

violate an asymtotic behaviour of the elkonal amplitude, which

.'5
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descrives the scattering analogous to the Fraunhofer diffrection on
the black sphere with the radius rising logarlthmcally as R V°-toa .
The change of the potential scattering behaviours w:.th mcreasmg
potential energy is discussed. In partlcular, 11: ‘is shown that at
Vo>>‘5 the angle diffractional domain 6-(-— * (but not 9*’"_/ .
as is assumed usually in the semiclassical approacl:/9/) provides

the main conbribution to the total cross section.

2, The Remiclassical Ap_proximaticn to the gcat-beri_z}_gv Amplitude

Let us now consider the semiclassical appro:d.inafioh to the
scat‘bering‘ amplitude within the framework o\f.the functional
mtegratlon method.The closed continukl representat:.on for the
relativistic potentlal scattering amplitude has been found by the

authoxl 12/. The nonrelativistlc analog has the form™ x)

(r')=—fd TV [ o™ ®fsh e

¢ X,l0)= ?,)' ) X.=T (2.1

hereT P 9 IPI "]"K ‘and

$e= I'h[ -—J\V/il i‘)] S Jd:[—' —AV(X *7()] .(2.2)

are bhe action functions whlch depend on arbitrary trajectorleax (( )
passing at time =0 through the pomt X+ {o) Z; S‘SQ- are
the volunme elements of mnctlonal spaces

In the senu.class:.cal approach K R>>I s to calculate the

path integral the stat:.onary phase method/I ! is valid, accord:.ng

%)we shall work in the system! t’-‘”"’l



to which™ :

7T c S
.ﬁe(r’)—— /Jze : V(z)fd,\ e “l04) -
(2.3)
Sl (23)= S, (%a) + 8. (. o) | -
Awhere Xy L. ‘sratisfy the classical equations of motion
8§, o
5’ 0 X+(O) 2‘ fm X,,.(t} ,D / ZMX {) 7 . v(yg.’q.)

S - 4 Ce=00

By meane of the motion integral (the energy‘conserve.tion .
law) , ’ ' '

A - 2 7S . k?
_-__——(x+2+'° +,\V(x+(?)+?(”=j’;'} '_T""'“V(* @+§7)= § 2.5)

it is easy to define /17/ the Hamilton-Jacobi equations for the
function ,S'+ replacing in £q.(2,5) at al =0 )?:(0) by ;5;,5;(?}
with the boundary conditions em ,S' (r)=0 ¢ &m J’ x)=0 e Our.

" considerations are confmedpto the case of sm.all scattering

angles when it is possible to neglect the dependence of the
function .5' L (x, ,\) on the momentum transfer / 12/ « Then, choosing .
the dlrectlon of P along z-ax:.s a.nd denotmg z ( P, 2) for ,Siv-

we arrive at the Hamilton-Jacobi equatlons o
o) +(aef] sk =22Viez)

of which the solution can be rather easily constructed in the

) For the sake of simplicity suppose.ff,_-.(xoz) to be functions of.
a fixed sign, the unique solution for =~ §8'  to exist.

. X



Torm of series
T 5 = o (2.7)

inserting the latter into sq.(2.6) and putting the coefficients
at the same powers of A be zero.
v . ) s s
In the case ?-<(/ the action tunction Ji(/%A) is comp~
letely determined by the first term of the series (2.7) and

coincides with the elkonal phase !

V(z) : |
5’4’ AS(p)= MK (p)= A K 5"’/*' (2.8)
(S5 at
hence, for the amplitude at least for € ~'1 (in partlcular,
this leads to the Schiff condition /14/: Z’K «/E’I ) the

eikonal representatlon holds:
‘ “‘1{/ '
JP T (7
fr)=L[4pe /" ’) @9

Note that Eq.(2.8) is the solution of the Hamilton—Jacobi
equations which follows- from the consefvation laws EqQ(2.5) when
the changé of particle momentum. in‘mééﬁitude and direction is
significantly less than the momentum itself:}i}a<(lxi’fj .
Therefore the eikonal representation in classical mechanics
.corresponds to the quasiuniform motion.

In the stralght-llne approx1mat10n when a particle moves
only along z-axis ( D {= &,- 0 ), qu.(a 6) are ea51ly solved
and the action function becomes

141(p,'A)=k;f‘(2[»//~AVE_(’) _ 1] .

(2,10)

Here the amplitude takes on the form of the impact-parameter repre-



sentation

, | ;
' Loy = P ( .
N <S¢ (SA
fgé{zf)=4i‘;/a/}eﬁ ,S;(p}/"—\é , ) _ (2.11)

3. _The Gaussian Potential Scattering

Here we will calculate in the semiclassical approxim‘.ativon' the
total crosszsectlon of the scattering on the Gaussian potential
V()= --‘— € R in the limit ;—E“ - 00 . -For the sake of simplicity
we shall consider the straight-line scheme: (2.1'1). ‘The asymptotic
form of more exadtvexpressi‘on (2.3) is calculated in the appendix.

According to Eq.(2.11) the total cross section has. the form

/
- . 0 <y (2A) )
8{,,;:75],.,{(0):4,1,,,!}40 ,51(/9)!04 o~ Sa (A G
where .
2
‘S'«f(ﬁ'\)--Kf"/?/\/ | —A Yo Vf?/ !)—Z'.S' Ame TR
(3.2)
6 zf -
»S',=KR~E”- J Sz*kR{ /2/1-:) yoos
Integrating by parts Eq.(3.1) over A we arrive at
3f.42‘,=ll7r1.m[i!f“§°/"e 4:‘(/’,’)) + 74'] ’ ' (3.3)
@ P KA Y [ ile(pa) +id oA '
h=-ifpdp [dhe " ,;\—[e elp )+ ] (3u)

The &6ymptotic form of the second term in Eq.(3.3) is computed by
using the Watson-Sommerfeld transformation (see the appendix) and

] o .
is found to be equal to O(L;"—z}«-o/ﬁ} in the order of magnitude.
Therefore in the semiclassical limit this term in Eq.(3.3) can be
negleéted. It should be noted that an analogous expression is deri-

.



ved in the W.K.B. approximation with an accuracy to the feplacement
of the function S’fgoljby the scattering phase,m the senu.class:.cal
approx1mat10n.

Adding- and subtractmg the function Rxp{ 60}} in the

remaining express:.on‘of (%«5) under the integral sign we get

Bs op = Bs et T4& - (3.5)
where ) o Xy
~ r(/’)
| 3&&'_:471&1’1[;]!00}’("6 )]
° (5.6)
| 2 el S-S (s
ad,=9x I,.,[; [rape (/— e ""m')}] . . (3.7)
The asympto_ticvform of the eikonal cross section is as follows (see,
€. ref./g/): ’
F ;
2‘.?[‘7 = ermax .. ‘(508)
Here .
—xr Yo ‘ (
-R\/&,,y KR-—- - oo ‘ 3.9)

It should be stressed that the basm contrlbutlon to the integral

Fq.(3.6) is given by the large. 1mpact parameters ‘P~ Pimax N

determined .by the condition & (/’) ~ 1. o
To calculate Eq.(3.7) we substltute the mtegratlon varlable

@ R=x , then Eq.(3.7) takes,on the form

[} . )
A8, =2x L,.[fo(x ¢ ‘ﬂxg(x)]' : B9

10



where

96)= exp{g-l,x - _“'//a.—xfp) 1}} -1 } W/"g;’-'-"'y-f

x o X N (5.11)

is the 1nf:|.n1tely dlrferentlable and nons:.ngular functlon on the
interval (0. ’I) Therefore accordlng to ref /184 the asymptotlc expan—
sion of Eq.(3.10) can be perfomed by means oi the lntegratlon by
parts, Taking 1nto account the first term of thls expansmn we get

for 3(86 the following expression
: i (o) :,r,' Sia .
83t = ok + 5 Z”R I,.[e " (5 we // (3.12)

Thus the asymptotlc values of the semiclassical and elkonal

expres.,lon coincide. From hq (3. 5) the alternatmg nature of the

eikonal series in ,S;{(dl)-,f' Z' g is rather evident, An estlmatlon

of the first terms of thls serles in order to learn the limits |

of validity of the elk_onal approxlmatlon can provide the upper limits

on the quantity .._‘i‘ ‘/11’12/; while ﬁsing Eq. (3.10) it is not ‘hard o

to prove the vali’c;lity of the eikonal aéymptotics at any .;'_4 .

Really, puttms;\’z Y/Z'; in Eq.(3.10) we get I‘;
L4

lm 43, ~ f 4y e W[w[-‘x‘[lw{—L)]]—lj
o

‘F»""*bo ;
o0 el : : (3.13)
~0(§a/y/€ J"y "’0( ) v 3.13)

The reason for validity of the eikonal«. approximation for the
small angle scatterlng is that the strongly osc:.llatmg function
tz)!f{ qu(ﬁ I)}:Ln (3.3) gives “the contrlbution comparable with unity

11



Aol

only in the large impact parameter region where ,S'“ { f)~ 1. How=
ever the latter condition is sufficient, as was already mentioned in
the introduction, the classical action function to be approximated
by the Born expansion (i.e. by the eikonal phase “3) with an
accuracy to the unantities of the order % . ’

Physically this means the strong interference of the diffrac-
ting part of the ecattering particle plane wave, for which L< 0,
hence the diffractional picture is determined mainly by an perlpheral
donmain P=Poaax Therefore the scattering at RV > phys:.cally
is adequate to the light-scattering on the black sphere ‘(the
Frauhofer diffraction) with logarithmically increasiﬁg radius (3.9).
Hence, in particiilar, from the Babin‘et principle /19/ it follows

that the values of elastic and inelastic cross sections coincide:

= 2 o']q-
in = ZC/: F_/ormu. . (5 )
The value of /"'w and, consequently, those-of the total cross section
and diffractional amplitude /19
2nd) o -/on-al
Fei (k769 = ¢ 26 Y, ( pax-:8) G

in the classical limit X' = ¢ +tend to infinity. This is due to the
tact that in classical mechanics the scattering total cross section

proves to be infinite for any field becoming zero only as Y-» oo,

*) Note the contrast situation for the scattering through
classical angles. the main contrlbutlon is fumlshed by those
impact parameters for which ,g((’, ) ~ kk&l >>1

12



(We recall that the classical cross section at a fixed radius equals
half of the quantum one). Theretore one gets that the main contri-
bution to the total cross sectioﬁ Et%?ﬁ?é} “Just as 'in the case
!§<‘%.is provided by the diffractional domain of the scattering
angles. The typical angle of the predominant scattering is given not
by the quantity € ~ !>>%— 'y as 1is usually adopted in the
semiclassical approach /8’9/, but & ~x .

Thus, as the pbtential energy riségagn passing from'the domain
1) (b) YZ<%- o the domain 2)(b) i)}%’ (see (1.1)]there appear the
follo“éng ;orrelating qualitativetdistinctions: the logarithmical
growth of the total cross section and the shrinkage of the diffrac- |
t1onal peak (R=» Pimax }o While in the nondiffractional domain of -
angles %((9-6;! (see sect.l) for'real potentz:.‘als the Orear -
scattering behaviour is changed into the purely one, and in the
case M,Z,E_ vanishes at all..A similar situation can occur, ror
instance, in the scattering of particles on the tensor pdtential

(the gravitationai fields)/14/.

Concjusion i ;
Within the framework of the path integration method the
semiclassical representation Eq.(2.3) for the amplitude has been-
derived, It was applied then to calculating the scattering ampli--
tude with the Gaussian potential in the diffractional domain of

angles, By this it has been found that the smallness of the
Lpotential is not necessary condition for-the simpler’eikonal
approximation to be valid, since the‘;atief ooinoides with the

semiclassical apprdximation evén as ’é"» 1 V .

13 -



‘ The physical explanation of such a coincidence‘suggests an idea
that this might be inherent in all potentials, quite rapidly
decreasing at iﬁfinity. ’

If the latter is true, then at kKR _Ev£>>1 the strucfure }of i
such potentials in the finite region of origin, which defines the
scatte:iﬁg amplitude in the Born approximation, is levelled by the
strong interference of diffracting waves of thé scattering particle,
'Therefore, potentials which are rather large in magnitude can be
approximated by the black sphere with the radius of which the
energy dependence is determined by the behaviour of an appropriate i
eikonal phase at infinity. It should be noted that the upper bounds
on the‘inferaction cross section at high energies, found by using
the general principles of quantum field theory are consistent also
with the semiclassical ideas on the scattering on strongij absor-
bing sphere /7/. ,

The author is sincerely grateful to D.I.Blokhintsev, B.M.Bar-
bashov, ‘A.N.,Tavkhelidze for many critical remarks and fruitful
discussions, to A.V. Efremov, I.B. EKhriplovich, G;I; Kolerov,

A.V. Matveev, .V.V. Nesterenko for useful discussionms,

14



Appendix

Let us calculate in the semiclass:.cal approximation the total
cross section of the scattering on the Gaussian poten‘cial, wh:Lch
has the form

A'Zp/r,A) . ,
,Zw--rm,%) Tt {sz}//»e RS

according to Eq(2.3). :
Sl.,? is searched in the form of series in A (see Eq.(2.7))

S (za) = z: £ //0,2)[>\e e) 5 @)
it being known that
Sip(023)= JS,«/N). Z"J’w\ . | (3)

The coefficients are defined by the solution of the iteration /
equations, th.cn result from inserting the senes (2.7) into the

Hamilton—Jacoby Eq. (2.6)

Silp2)= 8 R R R I
S'z{la‘g):;,g’z['l+ 2 %/;—)],'VI‘*#,;&[!"""/,{" "’?,) fffl;,(_jwe %‘QEZ

Sulp)="S.[1 + z (—) (37 . |
It should be noted, that the functions 7" (7) are not zero
throughout the whole z-domain. This makes it possible to peri‘oi'm
the asy_mptotic galculation under the integral sign over z‘oonsider-
ing ‘/f,,h{?) as some constant 'vcoefbficients.l

After the variable replacement & Rtox integral (1) takes

on the simple form

3= 2xR* I,,{f ¢ 4a7/m]

._(ilj Ip(xfl()lx,.{,('x,\[ld-/\‘»\ (/Ii-)‘;‘,x)-/-.u"'f"
o | g
+hox)" Eafy 4., eis]
b g0 > 1)



The integrﬁl-of the type (6) caané found in the caleulations of
the Feynman diagram asymptotlcs and have been 1nvest1gated in’
retr./ 18/, :

The asympbotic value of Iig.(6) as .S - ¢ is determined:by the
most right singularity ot the runction f?(?) o This function is an
analytic continuation of the coefficient f? of:'laylor series in

,ﬁ oi the expre551on (3¢6)s  In the case under cons1deratlon the -

most right singularity has the form

F(z) = U‘/x%,\()ux) (;+1)2 o @)

/107,

which corresponds to ‘the asymptotlc behavibur

j/’g")"‘/r‘f +C¢nf?‘ (8
Hence the value of the total cross. aectlon coincides with the

eikonal expression (3.9).

16
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