
OS'bELU1HEHHbiti 
HHCTHTYT 
~1.0EPHbJX 

HCCnEllOBAHHA 
· :.Dy6aa. 

/t!l to /11.-1-1 
E2 5922 

., 

D .I. Blokbin tsev 
.. 

THE STOCHASTIC SPAC.ES 

1971 

.. 



E2 • 5922 

· D.I. Blokhintsev 

THE STOCHASTIC SPACES . 

Submitted to TMlP 

C~D~~Ell~~H~tl cn~;r; 

r3~cliJLl:.::i!: liC.:!.lll~.l{Ol:J<l!l:iri 
6~6J~~OTEKA 



1. Introduction 

This work is an extension of the method suggested earlier 

in my paper /1/ for calculating the v.ra.ve propagation in a medium 

with random characteristics. A more perfect method of integration 

of the random phase equation is proposed, the averaging over 

the random phases is improved, and an application to quantum 

field theory is given. 

In some cases it is reasonable to introduce the notion of 
. . /2/ 

stochastic space • This just explains the title of the article • 

. 2. Propagation of the Plane Wave 

. As the initial object we. consider the plane v.ra.ve: 

(1) 

where px= paxa= ft-p;, p(E,p}, f =Vp 2 + M2 is the 

· • Wa.ve momentum, in quantum theory the parameter M playing the 

role of the particle mass, u ( p } is the wave amplitude. 
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If this wave is propagated in a medium with random characte

ristics then as the first. approximation we introduce a correction 

in the wave phase (1) which is assumed to be equal to 

" " S(x)==px+a(x), (2) 

where a is a linear function of a certain random field ¢ ( x ) • 

It is not difficult to show that this additional phase in the linear 

approximation satisfies the equation / 1/ 1i) • 

d;;(x) +F(x)= 0 
dr (3) 

. a 
here T= nx and n is the vector with components na = -£r--
It is obvious that n 2 = 1 • Therefore r is the proper time of 

the wave or, in quantum theory, the proper time of the particle 

" with momentum p and mass M • F ( x) is the linear function 

of the random field c$ ( x ) which in general case can be written 

as 

" f3 " F(x)=gnan •.. ¢af3(x), (4) 

where g is a coupling constant and ¢af3 .•. C x) are the components 

of the field ¢ ( x) which may be a tensor of different rank ·~ 
This field is expanded in the Fourier series: 

" 1 ¢ f3 (x)=-- I 
a ... yV k 

· e"- 1; + lkx v·--r-;;;- af3 kAe +O ,e-/kx I 
" kl\ ' 

(5) 

~ As compared with ref. /
1

/, here. the notations are somewhat 
changed and a proper time r is introduced instead of· the ,time 
t • 

~ " Here we do not consider the spinor field, when F ( x) 
not be a linear function of the spinor ¢ ( x) 

could 
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,\ 
where e · is the tensor d~fining the polarization of the vvave 

afJ ''+ 
( ,\ } and · ~..lsl!:.__ and a k ,\ are the random Fourier series ..;y;;;-; ..;2-;;;; .. 

amplitudes. The vector k has components k == ( w k k } , 

In particular, for the field obeying the Klein equation w ==V k 2+ p. 2 , 
k 3 

.where J1. -is the particle mass for the field ¢ ( x } V == L is the 

normalization volume. Below, this is assumed to be infinitely. By 

expressing x as X= x:
11

+x+ and x:!l ==n(nx}==nr by means of 

eqs. (4) and (5), from eq. (1) we obtain 

__ 1__ --1-- ( n a n f3 ... e ,\ } x 
v-rw;. n" (p} af3 

(6) 

I "+ '"" x a leA e 

where f(r0 , xl-} is an arbitrary function of xi depending on 

the choise of· the initial conditions at r == r 
0 

• In what follows we 

assume that r0 ==-·oo and f( -.oo, x+} == 0 , The quantity n "(p} 

is an invariant frequency: 

n ,.( p} == -
1- ( kp J • 
M ' 

In all the cases but the case of scalar field the quantity ;; ( x} 

may be. represented in the form 

(7) 

(8) 

where e a ( x} has the meaning of a random displacement . of the 

coordinate x • This fact allows us to consider, besides the 

initial space R4 ( x} which we call the reference space, the 

" stochastic space R 4 (X}. • The coordinates of this space 

are connected with the coordinates of the points of the reference 

space by the transformation 
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" .. 
X=x·+f(x} 

(9) 

and are random quantities depending on the random field. Owing 

to this fact the labelling of events in the stochastic space is . 

probabilistic, 

The meaning of the concept of stochastic space or generally 

stochastic geomet2]' may go beyond the scope of ,the present 

article (see ref. /
2 

, § 41, 44, 45), _ · 

3. Calculation of Averages 

" We represent the Fourier amplitude a k ,\ of the field in the 

form 

"+ 
ak,\=AJ.,\ 

e'OJ.,\ , 
" " .. a -A -191<,\ 
J.,\- J.,\e 

" .. 
where ZAJ.Aand OJ.,\ are real quantities. Then eq, (16) can be 

rewritten in the form: 

,\ " " 
;; ( x} =- 2 ~ N k A k ,\ ·sin ( kx + 0 k ,\ ) 

where 

N,\ g _l "2 
k = v'V- v ruk 

__ l -(nanf3 ,\ 
Ok(p} ... ea{3 }. 

(10) 

(11) 

(12) 

In the theory of classic fields the random field distribution is 

specified. by ·the functional J w I rp"( x} l•;:: 0 • This functional is 

assumed to have the form: 

A2 

" - -rl-
clwlrp(x} l= 'll e ~k 

k 

clA~t J (J k 
- •· (13) 

y TT ~ k 
2 TT 
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i.e. the normal distribution of amplitudes A 1c with dispersion /11c 

. and the uniform distribution of phases () 1c • (For the sake of 

omitted cep A and the polarization index simplicity we have 

for the amplitudes A leA and phases 0 leA )~ From the definition 

" of Jwl ¢ ( x) I we have for the average values of a) the wave 

'JI (X) 
p 

111 (} · /pxf /U(x} J I"( )j .< T P x '> = up e e w rp x (1.4) 

and b) interference correlation of two waves 1JI p'( y) an'c:l 'P P ( x} 

.<1JI, (y)r1JI (x}'>=(u' .·ru }exp 1-i(p'y-px)l x 
p p p p 

x f exp I -•i; , ( y Jl exp I - i ~ ( x) l Jw I ¢ ( x }I , 
p . p 

(15) 

. where r 
at x = y 

is any spinor operator. Note that the .correlation (15) 
and r =·Y I' ( y I' -is the Dirac matrix) coincides 

with the so-called 'Vertex" part known from quantum field theory. 

Now inserting in eq. (14) the distribution (13) and integrating 

over A 1c and Ole we .get: 

where 

" . f exp I i CJ ( x ) l J w I ¢ ( x } l = exp - Q / x ) = 'll R 1c , 
It 

g 2 2 2 
R lc = exp I - -

2
- /1/c H lc + In I 0 ( 

2 2 

11 r. H "- )1. 
4 

is .the Bessel function. According to eq. (i2), 

(16) 

(17) 

Here 10 (z) 

H .,._1_ 
lc v"T 

• Therefore when V .... oo 3 the sum of In 1
0 

over 

k has the order of magnitUde 0 ( - 1-J and may be omitted. y2 
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This is a justification for the native operation of replacement of 

Cos () k and 'Sin () "• in the exponential by· their average values 

·which are equal to zero. Inserting (17) in eq; (16) and making the 

transition to. the limit V .... 0<> 
3 we obtain 

g2 .· 3 

Qp(x)=-- r,....LL 
2 2 w 

" 

!l2 
2 k (nan f3 ,\ ) 2 

o,.(p) ••• eaf3 • . (18) 

This. equation is relativistically invariant if w 1c = + y k 2 + p 2 and 

if the dispersion fl2
,. is an invariant._If no special direction in 

the Minkovsky space R 
4 

( x ) is connected with the fieid · 9 ( x ) · 

then the only possibility is to assume that !l ~ .. canst, is 

·constant, i.e. the amplitudes A " obey one and the same distribu

tion law independently of the vector k • This supposition leads 

immediately to divergences in the integra~ (18), namely 

g2 p 
Q ( x) .. -- In -!IL!!L 

P 2 M (19) 

and p .... 0<> 
max 

• At· p = 0 there appears a divergency on the 

lower limit, too. 

The correlation (15) is calculated in a similar manner. To make , 

the calculations simpler we give . the result for x = y 

A ' ~ A 

I exp I - r u , ( X ) I exp I ; u ( X ) I rJ w I 9 ( X r I = 
p p . 

= exp l- Q PP •( x)] 
(20) 

in this case 

g 2 rJ 3 k 2 
Q, (x)=-f -fl,.2 

P P 2 2w .\ 

" 
,an,f3 na nf3 ] 12 (21) ,\ '[ n --~ • 

eaf3 ... -;;-(1- - Q- ( p) . 
u" p " 
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This correlation like the quantity (18) turns out to be divergent 
2 . 2 

'for ~ k = const • Note that tl k may be considered as a form 

factor ensuring convergence of the integrals in (18) and (21) • 

If it is considered as a function of the invariant n k (p) (the 

remaining invariants from k and p are constant) then the 

quantities Q P ( x ) and Q ,(x) 
Pp ar~ invariant _too (which must 

just be the case in relativistically invariant theory). The· q'uantity 

is simply a number and Q P , P ( x) a function of only 
' -2 , 

q I q=p-p (if p' and p are on the mass shell, 'the invariant 

qp = 0 is zero). 

4. The quantum Field 

,, 
In the case under consideration the random amplitudes at>.. ,, 

and akA are the operators obeying the commutation relations: 

" "+ . . 
[ a leA a k 'A. , ] = 81c/c ~ 8 >..A, • (22) 

Next, the average over the measure clw I¢ ( x) I should now be 

replaced by the average over the wave functional 0 0 I ¢ ( x) 19 

. which is an analog of the quantity v clw 
0 
I¢ (x) lexpiS

0
(¢,' ~ where 

" 
'S ( ¢) is the functional phase and the· mark o implies the 

vacuum state of the field ¢ ( x ) • Using the usual notations we 

rewrit~ eqs. (16) 'and (20) in the form: 

(16 ) 

(20 ) 

" where .< 0 l L :1 0 •> means the vacuum.:.expectation value of the field 
" ¢ ( x) • Further calculations are b8.sed on the relations: 
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.· . "+ " . l " " + 
.< 0 !I exp (A lc + A lc) t I 0 •> .. exp T [ A,. , A lc 

. . . "+· " ... + ... . 
.. < 0 :j exp (A lc + A lc ) exp (A lc , + A lc, ) :I 0 I> .. 

(23) 

. . l " "+ l " "+ "· "+ 
= exp T ,([ A " , A " ] + T [ A " , A " , ] + [ A " , A ", ]) , (23'). 

" .... 
where [A, B] denotes the Poisson bracket, which is assumed 

to be the · c-number. The calculation -of the .averages in eqs; (16 ) 

arid (20) With the help of eqs. (23) and (23
1

) and the expression 

(12) for N" ,x· leads exactly to the classic formula (18) arid (21), if 
2 . 

b. " = l . 
Thus, the divergent result is a consequence of the assumption 

on vacuu~ isotropy ( ll 2
,. :.. cons# ) which follows. from the requirement 

of relativistic invariance. 

The formula (21) is tightly connected With the theory of the 

so-called "coherent states" jsf. The model of the vertex in this 

latter differs from the considered fluctuations of the spinor particle 

coor.:iinate g ( x) by the supposition that the zero harmonic 

is predominant so that the dispacement g ( x) is independent of x • 
... 

It is. useful to note that in the case. of the vect~r field ¢a( x) 

the mean square displacement g ( x ) defined by eq. (8) is 

2 J 3k 
2 • g f 2 ) .< g a (X) I> = ~ 2 W lc {l p ( p 

::E (e,\) 2 
,\ a • (24) 

For :1 J,;l.« M , we obtain: 

2 g 2 J 
3
k ,\ 2 .<e (x)•>= --- f --- ::E (e ) • 

a. M2 2 w3 ,\ a 

" 
(24') 
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If g = e is assumed to be equal to the electron charge and 

implies its mass eq, (24') coincides with the value of the square 
2 

displacement of the electron COOrdinate .< e a (X) •> which defines 
. . . /56/ 

the Lamb shift of the level in the hydrogen atom (see refs. ' ), 

5, Gravitation 

In ref, /3 / it was shown that if one considers the gravitational 

field fluctuations, which arise from the fluctuations of the energy

momentum tensor of the fields in the vacuum, one arrives at 

strongly divergent expressions for the fluctuations of the metric 

(length and time), 

The method developed here makes it possible to calculate 

the fluctuations of the . wave phase which arise from zero-point 

fluctuations of the free gravitational field, 

It is not difficult to show that in this case the function ,, 
F ( x) is 

" M "(3 F ( x ) = -- h a ( x ) n nf3 2 a 
(25) 

where 
"'af3 "af3 af3 h (x0=9· ,(x)-g

0 (26) 

and gaf3 is the metric tensor .in the absence. of gravitational 
0 

. waves, Among. the quantities h a f3 ( x ) only four of them are 

independent. Bearing in mind these components we represent 

haf3 ( x) as a series: 

- lkx ) + a/cAe • 

11 
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In contrast to (5), a constant y is here introduced· which is 

defined· in· such ·a fashion that the energy of a gravitation wave 

is equai to ; n lc h culc , where n lc are integers and h cu 1c 

the gravitation energy. On the other hand, this energy_ is expressed 

in terms of the integral of the energy-momentum· pseudo-tensor 

( ' ' /7 f, 2 8 1T k 
see e.g. ). This fact allows to determine the constant ·y "' --cz-. ; 

( -8 3 -1 -2)''' where k is the gravitational constant k = 6,67 , 10 em 2 · sec · , ,' 

Performing the calculations· analogous to those described. in 

§ 3 we are led to formulas (18) and.(21) at· £\ 21c= l and 

g 2 
= y M 2 

• If the· usual dimensionality is restored it is easy to 

make bm?self sure that in the case of gravitational field the 
' 2 

quantities Q P ( x ) and Q P; P ( x ) are· proport~onal to A.fJq , 

where A. 
9

= y 8"} .!.,0.82.10-J~ is the characteristic length; which defines 
.: c c 

the limits , outside which the metric fluctuations may become 

essential. 

It is seen from these calculations that without artificial 

introducing a "cut-off" form-factor fluctuations of the phase ;; ( x) 

turn out to be indefinite. The same may be said about the 

fluctuations of the stochastic coordinate X (9), This extreme 

dispersion of the averages <;; 2 ( x) I> and 
p 

.< g2 
( x) •> is due 

p 

to the requirement of homo,geneity of vacuum ( £\ 21c = const ) 

Physically it is clear that the above fluctuations can be restrict~d 

only by taking into account the effect of the particle itself on 

the vacuum, in other words, by taking into account a possible 

deformation of the vacuum in the vicinity of the particle. The 

introduction of the "cut-off" factor may be thought of as a forma:! 

procedure of taking this effect into account. 

In conclusion the author expresses his gratitude to V.A. Matveev 

for useful discussions. 
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