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It is quite evident that a consistent description of the elas

tic scattering of hadrons at high energies is impossible without 

deep understanding of dynamics of essentially inelastic processes 

which are followed by the production ofalarge nulllber of'seconda

ry particles. One of the most important charaCteristics of such 
-. 

processes is the average multiplicity of secondary particles. The 

problem of the asymptotic behaviour of the average multiplicity 

in the limit of extremely high energies attracts now great atten

tion. 

In this note we would like to point to a possibility of existence 

of a definite simple relation which connects the average multipli

city asymptotic behaviour with the· total cross section and the elas

tic diffraction slope parameter. 

Our appr9ach is based on the far-going idea on the close . 

relationship between the diffraction character of elastic hadron 

scattering and the main regularities of multiparticle production 
, A-4/ · - -
processes . To be more concrete we shall suppose the picture 

of high-energy diffraction processes which. is based on the cohetent 

state model developed in papers/5,6/ as well as on the straight~ 
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line path approximation method in quantum field theory mo-

d 1 /7,8/ 
e s • 

In recent papers a tendency has appeared to consider hadrons 

as composite systems with internal degrees of freedom in proces

ses of strong interactions at very high energy(" droplet" mode/
9
/, 

. /10/ /5 6/ 
''parton'' model , coherent state model ' ). 

In the coherent . state model it . is suggested that the hadron 

states in strong interaction processes at high energies correspond 
' I '-

to the coherent states of some complex system, the excitation spect-.. :, 

rum of which is described in the simplest case by the four-dimen

sional relativistic oscillator. 

As a remarkable fact we stress that predictions of the cohe

rent state model are in qualitative agreement with the calculations 

performed in the framework of quantum field models using the func

tional integration method for the summation of the infinite series 

of the ~erturbation theor/6, 7 I. 
The coherent state method has lately been developed in papers 

dealing with the composite dynamic model of hadrons/ll/ and the 

problem of strong coupling of particles with quantum field/l
2
/. 

The results obtained in these papers permit us to hope that the co

herent state model gives a correct outline ofthe behaviour of com

posite quantum systems with infinite number of degrees of freedom. 

As it was shown/5,6/ the exponential decreasing of amplitudes 

with increasing momentum transfers is due in this model to the 

coherent excitement of transverse ( in the center of mass system 
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of colliding hadrons) modes of the '6sciliator, which is followed by 

emission of a large number of secondary particles; In the limit 

of extremely high energies, wheri the momentum transferred from 

, an initial hadron to an ·excited system is fixed, the particle produc

tion process goes in a statistically independent way and is governed 

by the Poisson law. 

Thus the experi~entally observable diffraction behaviour of 

the differential cross section of the high-energy elastic scatter

ingx/ 

d ae 1 d a e 1 -A ( s) t 
---- = (---,-)o e 

dt dt 
(1) 

corresponds to the following dependence of the average number of 

secondary particles produced in inelastic hadron collision on s 

and t 

n(s,t) ... A(s)t 

t..:.fixed 
'.J. (2) ·s -t oo 

where A( s) is the elastic diffraction slope parameter. 

The differential cross section of inelastic. processes; when 

n · and m secondary particles are emitted respectively by· each of 

-two colliding hadrons, are determined by 

da ·doe/ 
(J#-)n,m =(d-

1
-)o W~(s,t)Wm(s,t). (3) 

Here 

(4) 

x/ Here and after the variable t denotes the absolute value 
oflhe square of momentum transfer, i.e. t=:lq 2 :1. 
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where the quantity A(s) f-~ has the .. sense of an average number. of 

particle~ emitted by one of the. two hadronsx/ . · 

It follows from eqs. (3) and (4) that the differential cross sec

tion of the inelastic . collision with excitement of only one of the 

colliding hadrons is characterized by the diffraction peak with the 

slope which is equal to a half of the €lastic one: 
oc e I ( ) t 

da*= l (~) =(~-) e"".As-2 -
dt n=O dt n,O dt 0 . (5) 

The total differential cross section for twohadron collision, after 

summing in eq. (3) over a number of all secondary particles, is 

given by 

d e/ 
da

10
' . _ ( a ) = const 

--- 0 
Jt dt 

(6) 

and does not depend on t , which, in some respect, is analogous to 

the point-like of automodel behaviour of deep inelastic hadron~lep-. 

ton scattering/l3/. Obviously, the relation ( 6) is meaningful only 

for momentum transfers limited by the diffraction region. The real 

meaning of eq. (6). is that the total differential cross section can 

vary considerably in magnitude only with the variations tl t."' t elf 

which are much greater than the size of the diffraction. peak region . 

i.e. 

·» t elf 
(7) 

x7 Note, that we consider the region of diffractive dissotiation 
in which(M-m)2 ,'2m2 << J,where M is the effective mass of th,e"stre
am". 
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To estimate the value i eH we can use the unitarity condition. In

. tegrating eq. (6) over the region t .~ ' .. H we must obtain a cross 

section which does not exceed the total interaction cross section 

teff datot Ja"' 
I dt"" t II ( --) -:; a tot . 

0 dt e dt 0 
(8) 

Using the optical theorem and assumption that the forward elastic 

amplitude is pure imaginary, we get from eq. (8) 

. 1617 
t .<--. 

eff - atot (9) 

The consistency condition (7) can be represented in the form 
e/ a 

a tot 

tot a 

76 TT A(s) 
« 7. (10) 

The found value of t eH can be used to estimate the average number 

of secondary particles iir1
111

, ( s) produced in diffraction collision of 

two hadrons at high energies 

ii ( s)"' -
1--

rl/llr atot 

t 
eff datot BTTA(s) I ---A(s)tdt~ 

0 Jt a tot 
(ll) 

Thus, the diffractive or peripheral part of the average multiplicity 

of secondary particles is determined by the parameters of the elas

tic scattering amplitudes. Th~ conclusion about the behaviour of the 
. -

total average number of secondary particles n( s J can be done only 

on the basis of some additional assumptions concerning the contri

bution of small distances to multi-particle production processes. 

In particular, if one assumes that "pionization" or production of 

particles with finite momenta in the center of mass system of co~-
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liding hadrons disappears in the limit of high energies, one gets. 

from eq. (ll) the following behaviour of the total average multipli

city 

il( s J, +V, (12) 

where v is the number of "leading" particles which is equal to 

2 in this. simplified approachx/. . 

The analysis of relations (ll) and (12) is of. great. interest 

because it can shed some light on the relative importance of the 

central and peripheral forces in processes of multiparticle pro

duction at high energies (see, e.g., ref/14/). 

It is interesting to note that relation (12) gives qualitatively 

the correct high-energy behaviour of the average multiplicity. In

deed the approximate constancy of the total cross section and the 

logarithmic shrinkage of the diffraction width, as is seen at the 

accessible low energies/
15

/ corresponds to the logarithmic growth 

of the a ve~age multiplicity (12). 

In a more general case, using the well-known limitation on 

the asymptotic behaviour of the diffraction slope parameter in 
· AW · quantum field theory we get from eq. (12) the following upper 

bound on an asymptotic growth of the average multiplicity with 

increasing energy 

x7 Eq. (12) disregards particle spins and isospins as well 
as the resonance contribution to the multi-particle production. In 
reality another fact is expected in the first term of eq. (12) which 
takes into account effectively the necessary number of degrees of 
freedom. 
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In 2 s 
n ( s ) < const • -a tot 

(13) 

Relation (12) gives an interesting physical interpretation of 

the growth of the effective radius of strong interactions with in

creasing energy/17 I, Really, the diffraction slope parameter A ( s J 

determines the ."visible" sizes of hadrons in· elastic collisions. 

On the other hand, as it follows from eq. (9) the total cross section 

is determined by the minimal distance R 0 ""l / v -;-:;; up to which the 

"point-like" behaviour of the total differential cross section of two 

hadron collision (6) has sense. One can see from eq. (12) that 

(14) 

'rhus, under the. condition of constancy of the total cross section 

the increasing of the effective radius of strong interaction R with 

increasing energy is due to an expansion of a cloud ?f secondary 

. particles around the colliding hadrons. 

Let us discuss now the question concerning the relation bet-

. ween the asymptotic behaviour of the average multiplicity and the 

inelasticity parameter Hs) which defined· the ratio of the average 

· · .. energy of secondary particles and the total energy of colliding 

hapronsx/. . 

Obviously, in the framework of an assumption on the statis

tical independence of secondary particles we have 
. k 

k ( s ) = ii ( s ) .< --0 -· •> • 
y$ 

(15) 

x/ Recently this question was considered in paper/lS/. 
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··Assume now that in the high-energy, limit there exists the 

finite distribution of a number of particles produced in a given in

terval of the variable x= 
2

ko /lO/, i.e. 
ys 

· cl;;(s,x) ->p(x)clx, £<x.:: l, 
s ....... ,00 

t -llxecl 
where c = 2m+- and m* is some characteristic mass. 

ys . 
Hence in accordance with eq. (15) we get 

- I 
,n(s)_, f p(x)clx 

( 
. I 

k(s)-.. _l_ f xp(x)clx 
2 ( 

at ·s _, oo, 

(16) 

(17) 

It is easy· to see that the asymptotic behaviour of the average 

multiplicity at high energies is determined by the behaviour of the 

distribution function p( x) near the point x = o • 

For example, if the average multiplicity grows asUnsJ
1
+Y at 

s ->oo we get p(x),+(-lnx)Y at xz0 , 

In the general case from requirement of the finitness of 

inelaStiCity it fOllOWS that the fUnCtiOn xp( X) ShOUld be integrable 

up to x = o. 
One can· easy get from eqs. (17) the following formula 

k(s)=k(s
0 

)+m* j - 1
- cl~;- cis'. (18) 

so ·-r cis ys 
Thus as it follows from this equation the inelasticity parame-

ter at high energy is determined by the behaviour of the average 

multiplicity at all the foregoing energies. 
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: .· . Consider·now the particular example when.the average mul

tiplicity ·grows beginning from some s 0 logarithmically with in-. 

creasing energy. From eq. (18) we find that 

' k = lim (19) 

where 
. 2m* l 

lo = ----=.=--=X max .:5 ' 
\' so 

So, we can see that in this particular case the upper bound 

ori the groWth. of•the; average multiplicity with increasing·energy 

is determ.ined by the ratio of two parameters: the inelasticity k 

. and the maximal fraction ·of the energy of an· initial hadron on one 

secondary particle c 0 .• 

It should be noticed that in the framework of the statistical 

independence consideration when the particle production is descri

bed by the Poisson law, both theparameters k and c0 cannot de-

. viate considerably from zero, i.e. k « l, c 0 « l . : 

Recently there has been suggested a number of models of 

multiparticle production where an assumption on the Poisson cha

racter of the distribution over the number of secondary particles 

was made in some or other for~/l9/, 
The results obtained in these models depend crucially on 

the concrete conditions under which the particle production proces-

• ·• ses are assumed to obey the Poisson law. So in some cases the 

·. ~ssumption of the Poisson distribution leads to the contradictions 

with some rigorous results of quantum field theory. 
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'· For example, as is well known,: under some conditions from · 

general principles·· of quantum field theory it follows tha/
16

/ 

P
0 

( s) = 
ael 

In 2 s 

a tot 
(20) \ . '> const • 

a tot 

If one assumes now that the integrated probabilities of multi-par

ticle production are described by the Poisson distribution one gets · 
. . 

Po (s J = exp[-ii( s)] and hence the average multiplicity can not grow fas-
/20/ ter than In In s • . ' 

, In our ,approach the integrated probability bf an elastic chan- · 

nel isgiven by P0, (s)= 
2
,/( s J and using formula(20) we ju.st obtain 

the upper bound on the asymptotic growth of the average multipli-: 

city (13) derived above. 
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