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It is quite evident that a consistent description of the elas-
- ‘tic scattering of hadrons at high enei'gies is impossible without

deep understanding of dynamics of essentially inelastic processes

" which are followed by the production of alarge number of 'seconda-

_ry particles. One of the most important characteristics of such
- processes is the average multiplicity of wsécondary particles. The
_problem \of the asymptotic behaviour of the average multiplicity
“in the limit of extremely high energies attracts now great atten-
tion. ' ' '

In this note we would liketo point to a possibility of existence
of a definite simple relation which connects the average rhulti'pli--
city aSymptotic behaviour with the total cross sectionand the elas-
Vtic' diffraction’ slope parameter. |
| Our approach is based on the far-going idea on the close .
| rélationéhip between the diffraction character of elastic hadron
.vsCatter‘i‘ng and the main regularities of multiparticle production
proc'esseys‘/ 1-4/ . To be more concrete we shall suppose the picture
of \high-enérgy diffraction processes which is based onthe coherent

/5,6/

'state model developed in papers as well as on the straight-



line path approx1mat10n method in quantum field theory mo-
dels/ 7 8/ '

In recent p'cipers a tendency has appeared to consider hadrons
as composite systems with internal degrees of freedom in proces-

/9/

ses of strong interactions at very high energy ("’ droplet”’ model

/10/ /5,8/y.

In the coherent state model it .is suggested that the hadron

"’parton’’ model ,-coherent state model
states. in strong interaétion processes at high ‘energ‘ies corrgspond
~ to the coherent states of some complex gystem, the exc‘i;tlatio’n' spect-
rum of which is described in the simplest case by the four-dimen-
sional relativistic oscillator. | _

As a remarkable fact we stress that predictions of the cohe-
rent state model are in qualitative agreement with the calculations
performed in the framework of quantum field models using the fuan
tional 1ntegrat10n method for the summation of the infinite series
of the perturbation theory/ 6 7/

The coherent state method has lately been developedin papers
dealing with the composite dynamic model of hadrons/ 1/ and the
problem of strong coupling of particles with quantum f1e1d/12/

. The results obtained in these papers permit us to hope that the co-
herenf state model gives a correct outline of the behaviour of com-
posite quantum systems with infinite number of degrees of freedom.

/5,6/

with increasing momentum transfers is due in this model to the

As it was shown the exponential‘decreasing of amplitudes

coherent excitement of transverse ( in the center of mass system



o o"fbkcoli‘iding' hadrons) modes of the oscillator, which is followed by
emission of a large number*of secondary particles. In the‘limit
 of extremely high energies, when the momentum transferred from
. an initial hadron to an excited systemis fiXed, the p‘articleprOduc;

tion process goes in a statistically independent way and isgoverned;

by the Poisson law, '~

. Thus the experlmentally observable d1ffract1on behav1our of

the d1fferent1a1 cross sect1on of the hlgh-energy e1ast1c scatter—

,X/

dt dt

T 4,€r‘ < o e, o
do —( do )y e-A(:h 1) o

. corresponds to the following dependence of the average number of
secondary part1c1es produced in inelastic hadron c0111s1on on s

and ¢
n(s,t)+A(s)t : B T R AT TRUSI A
4= fixed SR o e @
where A(s) is the elastic diffraction slope param‘eter."[
The differential cross section of ‘inelastic processes; when
- n-and'm secondary particles are emitted respectively by each of

two 'collidi,ng'hadr'ons -are determined by

do " do®! TR
— = W
”(v p )‘n,m' \( — o ¥, (s tIW_ (s,t). I ‘(3)
Here ,
i ~Als) 4 n ) ) ‘
W (s,t)=e T-—[A(;)L] , S (4)
%/ Heére and after the variable t denotes the absolute value

“of the square of momentum transfer, i.e. t=]q?].



where the. quant1ty A(s) T ‘has the sense of an average number of

*

'part1cles em1tted by one of the. two hadrons : ,

It follows from eqs. (3). and (4) that the d1fferent1al cross sec-
tion. of the inelastic collision with exc1tement of only one of the
coll1d1ng hadrons is characterized by the d1ffract1on peak w1th the

slope which 1s equal to a half of the elast1c one:

do* Q. do - do'! o TAls) I
dt vz (.u )"'0;_( o T | )

The total differential cross section for two hadron collision, ‘after

summ1ng in eq. (3) over a number of all secondary part1c1es 1s -

given by
dater . doe! ; . . _
>y l=v( - )‘o = const (6)

and does not depend ont , which, in some respect, is analogous to

the point-like of automodel behaviour of deep inelastic hadron-lep-.

/13/

for momentuxn transfers limited by the diffraction region.The real

ton soattering . Obviously, the relation (6) is meaningful only
meaning of eq.:(6). is that the total differential cross section can
vary considerably in magnitude only with the variations At~t
which are much greater than the size of the diffraction peak region

i.e.

fﬁeH’ N TR | (7)

x/ Note, that we consider the region of diffractive dissotiation
in wh1ch (M-m)?/ 2m? << I,where M is the effect1ve mass of the”stre
am’’,



‘To ‘estimate the value tey We can use the unitarity condition, In-
tegrat1ng eq. (6) over the region ¢ <ty we must'obtain a cross

' sect10n which does not exceed the total 1nteract10n cross section

t
eff d otot ¢{ael
df::f (———

0 dt dt

)O < otet ’ R . (8)

~ Using the optical theorem and assumption that the forward elastic
~ amplitude is pure imaginary, we get from eq. (8)

" : 167 ‘ .
t eff S YY) ’ C : B . (9)

- . 0

The cons1stency condition (7) can be represented in the form

el fot : -
g = ? «< T, (10)
otet . 16 7 A('s) '

. "The found value of t., can be used toestimate the average number _

of secondary particles n (s) produced in dlffractlon collision of

diffr
two hadrons at hlgh energies

’ 'eH ‘ ‘
m ()_ Ao po)rdre 8”:{{_=’f.. | (1)

o’°’ 0 dt o
- Thus, the diﬁractive or peripheral partofthe average multiplicity

of secondary particles is determined by the parameters of the elas-

L tie scatter1ng amphtudes The. conclusmn about the behaviour of the

total average number of secondary particles n(s) can be done only

- on the basis of some additional assumptions concerning the contri-

~ bution of small distances to multi-particle production processes.

. In particular, if one assumes that ’’pionization’’ or production of

particles with finite momenta in the center of mass system of col-



'

liding hadrons disappears in the limit of high ‘energies, one gets.
from eq’. (11) the folloWing behaviour of the total a&érage rn‘ultipli-‘
city |
M 2 | 12)
_— _ :
' where » is the number of ’’leading’’ particles which is equal to
2 in this. simplified approach :

The analysis of relations (11) and (12) is of great. 1nterest
because it can shed some light on the relative 1mportance of the
~ central and peripheral forces in processes of mu1t1part1cle pro-
duction at high energies (see, e.g., ref./14/)l.

It is interesting to note that relation (12) gives qualitativély
the correct high-energy behaviour of the average multiplicity, In-
deed the approximate constancy of the total cross section and the
logarithmic shrinkage of the diffraction w1dth as is’ seen at the

/15/

of the average multiplicity (12).

access1b1e low energies corresponds to the logarithmic growth

In a more general case, using the well-known limitation on

the aisymptbtic behaviour of the diffraction slope parameter in

/16/

bound on an asymptotm growth of the average multiplicity with

quantum field theory we get from eq. (12) the following upper

increasing energy

x/

"Eq. (12) disregards particle spins and isospins as well
as the resonance contribution to the multi-particle production. In
reality another fact is expected in the first term of eq. (12) which
takes into account effectively the necessary number of degrees of
freedom.



n(s.)f consf-—%—%———. , N | v (13)

: Relation (12) gives an interesting physical interpretation of
"the growth of the effective rad1us of strong interactions with in-
creasing energy/ / Really, the diffraction slope parameter A(s)
‘;gieterx_mnes the ’’visible’’: sizes of hadrons in elastic collisions.
~ On the other hand, as it follows from eq. (9) the total cross section -
is determined by the minimal distance R, ~1/vt.; uptowhichthe
’point-like’’ behaviour of the total differential cross section of two

" hadron collision (6) has sense. One can see from eq. (12) that

Als)<R? =7(s)R] . - a (14)
Thus, under the condition of constancy of the tota1 cross section
" the increasing of the effective radius of strong int'eract'ion R with .
fﬁ“(increasing energy is due to an expansion of a cloud ef secendary
particles around the colliding hadrons. _
: Let us discuss now the question concermng the re1at1on bet-
:, ween the asymptot1c behaviour of the average multiplicity and the
’1ne1ast1c1ty parameter k(s) which defined the ratio of the average
- energy of secondary particles and the total energy of coll1d1ng
: 'hadrons /.,
’ . Obviously, in n the framework of an assumpt1on on the stat1s-
 tical independence of secondary particles we have
k

at R | - (15)
Vs

k(s)=F(s)<

/18/

x/ Recently this question was considered in paper



“ Assume now that in the high‘-energy.zlimit.there exists the

f1n1te distribution of a number of particles produced in'a glven in-

terval of the variable x= —2£% / 10/
_ —
dn(s,x)op(x)dx, ecxshy | e
t— fixed

where ¢ =2 and m, is some charactéristic_ mass.
Henc\c/e in accordance with eq. (15) we get
j(s)acyp(x)dx
k(s)o Lo [ xplx)dx U
I,
at s, |
It is easy-to see that the aSymptotm behaviour of the average
mu1t1p11c1ty at h1gh energies is determmed by the behaviour of the
d1str1but1on function p(x) near the po1nt x=0,
For example, if the average multiplicity grows as(lns)'*? at
s - we get p(x):—-(—lnx)y at x=0 ., ‘
In the general case from requlrement of the finitness of

1ne1ast1c1ty it follows that the function xp(x) should be integrable

up to x=0,
One can eaSy get from egs. (17 the following formula
k(s)=k(so)+m*‘f L_ -—3—"—’— ds’. S (i8) :
0. s’ s S

‘Thus as it follows from this equationthe inelasticity parame-
ter at high energy is determined by the behaviour of the average;

multiplicity at all the foregoing energies.

-10



£

Consuier ‘now: the part1cu1ar example when the average mul-

t1p11c1ty grows beginning from some s, logarithmically with in-.

:creasmg energy. From eq (18) we find that

s ,
k—’ll_r,nac k(S)\c —E—, §=In oel o ,(19)‘
) 2m,
€ = ~.'.£:-=xmax'_<_,'
v S0

So, we can see that in fhis particular ca‘se the upper bound

on the grthhAof'«the"laverage ﬁmltiplicity with increasing energy
s determined b'y”the ratio of tWo parameterS° the inelasticity
;f:; and the maximal fract1on -of the energy of an'initial hadron on one
;:f,secondary part1c1e €g o o )
] It should be noticed that in the framework of the statistical
i7">“'independence eonsideration when the particle production is descri-
;ff/fb'ed by the Poisson law, both theparameters k and ¢, cannot de-
:f:{'.v1ate considerably from zero, i.e. k<<1, ¢y<«<1. f |

_‘ Recently ‘there has been suggested a number of - models of
o multiparticle production where an assumption on the Poisson cha-
‘?jt_;?racter of ‘the d1str1but1on over the number of secondary particles

/1 /

: f‘was made in some or other form’ ‘ _
k The results  obtained in these models depend cruc1a11y on
fi"vlk‘the concrete conditions under which the particle production proces-
i‘.f ses are assumed to obey the Poisson law. So in some casee the
 assumption of the Poisson distribution leads to the contradictions

'with_some rigorous results of quantum field theory.

11



“For example as’ is’well known,’ under some -conditions fromkf,
general ‘principles - of quantum f1e1d theory it: follows that/ 16/ S
el

‘PO (S)E

> consf .
gtet - In 2g

If one assumes now that the integrated probabilities of multi-par-
ticle production are described by the Poisson distribution one gets: .
Py(s)= exp[-n(s)] and hence the average multiplicity can not grow fas- .
/ 20/ :

ter than/n In s

In. our approach the mtegrated probab111ty Of an e1ast1c chan- .

nel is given by P, (s)-. and using formula (20) we ]ust obtam ‘

" 2n ( )
the upper bound on the asymptotlc growth of the average mu1t1p11-

city (13) derived above.
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