E2-5897
ААБОРАТОРИЯ ТЕОРЕТИUЕЕКОЙ ФИЗМКИ

S.P.Kuleshov, V.A.Matveev, A.N.Sissakian, M.A.Smondyrev

GENERAL ANALYSIS
OF THE MESON-NUCLEON SCATTERING BASED
ON THE FUNCTIONAL
INTEGRATION METHOD

1971

E2-5897
S.P.Kuleshov, V.A.Matveev, A.N. Sissakian, M.A.Smondyrev

GENERAL ANALYSIS

OF THE MESON-NUCLEON SCATTERING BASED
ON THE FUNCTIONAL INTEGRATION METHOD

Introduction

Well known are the results achicved by the quantum field theory with the help of the ordinary perturbation theory. But the difficulties which arise when one attempts to describe, for example. strong interactions are known not to a less extent. These difficulties have resulted in the development of a number of methods which go beyond the scope of perturbation theory. Among those one of the most distinguished is the functional integration method in quantum field theory ${ }^{/ 1 /}$. This method has further been developed in papers ${ }^{/ 2!}$ and later was successfully applied to the study of the infrared asymptotics in quantum electrodynamics and also in the research of the processes of hadron interactionsat high energies (see e.g. ${ }^{/ 3,4 /}$).

The principal merit of the functional integration method is the possibility of obtaining expressions of closedformfor the complete Green functions and deriving with their help a number of general relations. Thus, the representation of the iwo-particle Green function in the form of the conimuous integral gave the authors of paper ${ }^{/ 5 /}$ the opportunity to get the expressions of closed form for the elastic and inelastic two - nucleon scattering amplitudes. which
may be used, for example, for the development of various approximations.

The present paper is devoted to the derivation of the expressions in the form of path integrals for the vertex function and the amplitude of the elastic meson-nucleon scattering.

1. Complete Nucleon Green Function

We consider the quantum-field model of the interaction between scalar nucleons and scalar mesons $L_{\text {in }}=g: \psi^{*} \psi^{\prime} ;: \quad \mathrm{x} /$

Let us introduce the single-particle Green function of a nucleon in the external field $\phi(x)$ without taking into account the virtual effects. This function satisfies the following equation$\left.\square+m^{2}-g \phi(x)\right] G(x, y \mid \phi)=\delta(x-y)$
the solution of which can be written in the form of continuous integral

$$
\begin{align*}
& \mathbf{G}(x, y \mid \phi)=i \int_{0}^{\infty} d \tau e^{-i \tau m^{2}} \int[\delta \nu]_{0}^{T} \exp \left\{i g \int_{0}^{\tau} d \xi \phi[x+\right. \\
& \left.\left.+2 \int_{0}^{\xi} \nu(\eta) d \eta\right]\right\} \delta\left[x-y+2 \int_{0}^{\tau} \nu(\eta) d \eta\right], \tag{1.2}
\end{align*}
$$

where

$$
\begin{equation*}
[\delta \nu]_{0}^{T}=\frac{\delta \nu \exp \left[-i_{0} \int^{T} \nu^{2}(\eta) d \eta\right]}{\int \delta \nu \exp \left[-i \int_{0}^{T} \nu^{2}(\eta) d \eta\right]} \tag{1.3}
\end{equation*}
$$

[^0]and δ_{1} is the volume element in the functional space. Performing the Fourier transforms we obtain
\[

$$
\begin{align*}
& G\left(p, q(\delta) j d x d y e^{i p x-i q y} G(x, y) \phi\right): \\
& i \int_{0}^{i} d i e^{-i\left(m^{2}-q^{2}\right)} \int d x e^{i x(p-q)} \tag{1.4}\\
& \cdot j\left[\delta i | _ { 0 } ^ { i } \operatorname { e x p } \left\{i g \int_{0}^{i} d \xi \phi\left[x-2 q \xi+2 \int_{0}^{\xi} v(\eta) d \eta l\right\} .\right.\right.
\end{align*}
$$
\]

Now using the expression (1.4) we can find the complete Green function of a nucleon in the external field. We shall operate with the notations of the following type

$$
\begin{align*}
& \int D A B j d x_{1} d x_{2} D\left(x_{1}-x_{2}\right) A\left(x_{1}\right) B\left(x_{2}\right) \tag{1.5}\\
& (D A)_{x_{1}}^{\{a\}} \int d x_{2} D\left(x_{1}-x_{2}\right) A\left(x_{2},\{a\}\right) .
\end{align*}
$$

where $\{a\}$ is the set of those arguments of A which do not take part in the contraction $\mathrm{x} /$.

Let us denote, for example, the operator

$$
\begin{equation*}
\left[\exp \frac{i}{2} \int D \frac{\delta^{2}}{\delta \phi^{2}}\right]=\left[\exp \frac{i}{2} \int d x_{1} d x_{2} D\left(x_{1}-x_{2}\right) \frac{\delta^{2}}{\delta \phi\left(x_{1}\right) \delta \phi\left(x_{2}\right)}\right] \tag{1.6}
\end{equation*}
$$

with the help of which we obtain the expression for the complete Green function

$$
\begin{equation*}
\bar{G}(p, q \phi)-\left[\exp \frac{i}{2} \int D \frac{\delta^{2}}{\delta \phi^{2}}\right] G\left(p, q(\phi) S_{0}(\phi) .\right. \tag{1.7}
\end{equation*}
$$

[^1]Here $S_{0}(\dot{\phi})$ denotes the vacuum expectation value of the S-matrix in the presence of the external scalar field $\phi(x)$. Substituting (1.4) in (1.7) we obtain
$\bar{G}(p, q \mid \phi)=i \int_{0}^{\infty} d \tau e^{i \tau\left(q^{2}-m^{2}\right)} \int d x e^{i x(p-q)} \int[\delta \nu]_{0}^{T} E(\{a\}| | \phi)$,
where

$$
\begin{align*}
& E(\{a\} \phi)=\left[\exp \frac{i}{2} \int D \frac{\delta}{\delta \phi^{2}}\right] \exp \left\{i g \int_{0}^{\tau} d \xi \phi[x-2 q \xi+\right. \\
& \left.\left.+2 \int_{0}^{\xi} \nu(\eta) d \eta\right]\right\} S_{0}(\phi)=\left\{\exp \frac{i}{2} \int D \frac{\delta^{2}}{\delta \phi^{2}}\right] e^{\lg \int \phi I_{0}(\phi)} \tag{1.9}\\
& \{a\} \equiv\{x, \tau, q ; \nu\} .
\end{align*}
$$

In formula (1.9) we have employed the following notations

$$
i(\mathrm{z},|a|)=\int_{0}^{\tau} d \xi \delta\left[x-z-2 q \xi+2 \int_{0}^{\xi} \nu(\eta) d \eta\right]
$$

$$
\begin{equation*}
f \phi i=\int d z \phi(z) i(z,\{a\})=\int_{0}^{\tau} d \xi: \phi\left[x-2 q \xi+2 \int_{0}^{\xi} \nu(\eta) d \eta\right] \tag{1.10}
\end{equation*}
$$

Using the techniques developed in the paper ${ }^{0} / 5 /$ we can write (1.9) in the following form

$$
\begin{equation*}
E(\{a\} \mid \phi)=\exp \left\{i g \int \phi i-\frac{i g^{2}}{2} \int D i^{2}+i \Pi\left[\phi-g(D i)^{\{a\}}\right\},\right. \tag{1.11}
\end{equation*}
$$

where

$$
\begin{equation*}
\left[\exp \frac{i}{2} \int D \frac{\delta^{2}}{\delta \phi^{2}}\right] \quad S_{0}(\phi)=e^{i \Pi[\phi]} \tag{1.12}
\end{equation*}
$$

Note that $\Pi[\phi]$ corresponds to the sum of all the connected diagrams with the arbitrary number of closed nucleon loops and external meson lines, all possible internal meson pairing being taken into account.

Let us introduce the quantity

$$
\begin{equation*}
E_{0}=E(\{a\})=\exp \left\{-\frac{i g^{2}}{2} \int D i^{2}+i \Pi\left[-g(D i)^{\{a\}}\right]-i \Pi[0]\right\} \tag{1.13}
\end{equation*}
$$

Then

$$
\begin{equation*}
E(\{a\} \mid \phi)=e^{i \Pi[\phi]} E_{0} R[\phi], \tag{1.14}
\end{equation*}
$$

where

$$
\begin{align*}
& R[\phi]=R(x,\{a\} \mid \phi)= \\
& =\exp \left\{i g \int \phi i+i\left[\| \phi-g(D i)^{\{\alpha \mid}\right]-i \Pi[\phi]\right. \tag{1.15}
\end{align*}
$$

$\left.-i \Pi\left[-g\left(D_{i}\right)^{\{a\}}\right]_{+} \boldsymbol{I}[0]\right\}=\exp \left\{i g \int d x_{j} \phi\left(x_{1}\right) T\left(x_{j},\{a| | \phi)\right\}\right.$.
It is not difficult to convince oneself that in the expression (1.14) the terms corresponding to vacuum renormalization, radiative corrections to the nucleon line and effects of interaction of the nucleon with the external field, are factorized.

The functional $T\left(x_{1},\{a\} \mid \phi\right)$ can be expressed in terms of the polarization operator of the meson field

$$
\begin{equation*}
P\left(x_{1}, x_{2} \mid \phi\right)=-\frac{\delta^{2}}{\delta \phi\left(x_{1}\right) \delta \phi\left(x_{2}\right)} \|[\phi] . \tag{1.16}
\end{equation*}
$$

In fact, let us perform the Fourier transform in the functional space

$$
\begin{equation*}
\Pi[\phi]=\int \delta \eta \Pi[\eta] \mathbf{e}^{-1 \int \phi \eta} \tag{1.17}
\end{equation*}
$$

Then

$$
\begin{aligned}
& \left.\Pi\left[\phi-g\left(D_{i}\right)^{\{a\}}\right]-\Pi[\phi]-\Pi l-g\left(D_{i}\right)^{\{a\}}\right]+\Pi[0]= \\
& =\int \delta \eta \Pi[\eta]\left[e^{-i \int \phi \eta}-1\right]\left[\mathrm{e}^{1 g \int D_{i} \eta}-1\right] \risingdotseq
\end{aligned}
$$

$$
\begin{align*}
& \left.g \int_{0}^{1} d \lambda_{1} \int_{0}^{1} d \lambda_{2} \int d x_{1} d x_{2}\right\}\left(x_{1}\right)\left(D_{j}\right)_{x_{2}}^{\{a\}} P\left(x_{1} \cdot x_{2} \lambda_{1} \delta-g \lambda_{2}\left(D_{j}\right)^{\left\{a_{i}\right.}\right) \tag{1.18}
\end{align*}
$$

Substituting (1.18) in (1.15) we obtain the expression for the functional $T(x, \ldots \alpha\} ; \phi)$

$$
\begin{align*}
& T\left(x_{1},\{a\} \phi\right)-i\left(x_{1} \cdot\{a\}\right) \quad \int_{0}^{1} d \lambda_{1} \int_{0}^{l} d \lambda_{2} j d x_{2}\left(D_{j}\right)_{x_{2}}^{\{a\}} \tag{1.19}\\
& P\left(x_{1} \cdot x_{2} \lambda_{1} \delta-g \lambda_{2}\left(D_{j}\right)\{a\}\right) \int d y Z\left(x_{1}, y \cdot\{a\} \delta\right) i(y \cdot\{a\})
\end{align*}
$$

in which we have introduced a new functional

$$
\begin{aligned}
& Z\left(x_{1} \cdot y \cdot\{a\}: \phi\right)=\hat{o}\left(x_{1}-y\right) \div \int_{0}^{1} d \lambda_{1} \int_{0}^{1} d \lambda_{2} j d x_{2} D\left(x_{2}-y\right) \\
& \cdot P\left(x_{1} \cdot x_{2} \cdot \lambda_{1} \phi-g \lambda_{2}(D ;)\{a\}\right) .
\end{aligned}
$$

2. The Vertex Function and the Meson-Nucleon Scattering Amplitude

To find the vertex function and the scattering amplitude it is necessary, first of all, to pick out two poles and to pass on the mass shell in the expression (1.8). Omitting the factor exp $\{i l l|\phi|\}$ and subtracting the free part of the Green function, we obtain

$$
i F(p \cdot q \phi) \quad \lim _{p^{2}, q^{2} \cdot m^{2}}\left(p^{2}-m^{2}\right)\left(q^{2}-m^{2}\right) i \int_{0}^{\infty} d t e^{i r\left(q^{2}-m^{2}\right)} .
$$

. $\int d x e^{i x(p-q)} \int \delta \delta_{0}^{T} E_{0} i g \int_{0}^{1} d y \exp \left\{i g \gamma j d x_{1} \phi\left(x_{1}\right) T\left(x_{1},\{a\} \phi\right)\right\}$.
$\cdot \int d x_{2} \dot{\phi}\left(x_{2}\right) T\left(x_{2} \cdot|a| \phi\right)$.

Using the expresssions (1.19) and (1..10)) we note that
$\int d x_{1} \phi\left(x_{1}\right) T\left(x_{1},\{a \| \phi)=\int_{0}^{\tau} d \xi \int d y \delta\left[x-y-2 q \xi+2 \int_{0}^{\left.\int \nu(\eta) d \eta\right] .}\right.\right.$

$$
\begin{equation*}
\cdot \int d x_{1} \phi\left(x_{1}\right) Z\left(x_{1} \cdot y,\{a\} \phi\right) . \tag{2.2}
\end{equation*}
$$

Then after substituting (2.2) in (2.1) and replacing the ordinary and functional variables as follows

$$
\begin{align*}
& r \rightarrow \tau+\xi \\
& x \rightarrow x+2 q \xi-2 \int_{0}^{\xi} \nu(\eta) d \eta \tag{2.3}\\
& \nu(\eta) \rightarrow v(\eta-\xi)-(p-q) \theta(\xi-\eta)
\end{align*}
$$

we obtain the expression

$$
\begin{aligned}
& F\left(p, q(\phi)=\lim _{p^{2}, q^{2} \rightarrow m}^{2}\left(p^{2}-m^{2}\right)\left(q^{2}-m^{2}\right) \int_{0}^{\infty} d t \int_{d}^{\infty} d \xi\right. \\
& \cdot e^{i \tau\left(q^{2}-m^{2}\right)+i \xi\left(p^{2}-m^{2}\right)} \int d x e^{i x(p-q)} \int[\delta \nu]_{-\xi}^{T} E_{0} i g \\
& \int_{0}^{1} d y \exp \left\{i g \gamma \int d x_{1} \phi\left(x_{1}\right) T\left(x_{1},\{a\} \phi\right)\right\} \int d x_{2} \phi\left(x_{2}\right) Z\left(x_{2}, x,\{a\} \phi\right) .
\end{aligned}
$$ Performing the transition to the limit in (2.4) we have

$$
F(p, q)=i g \int[\delta \nu]_{-\infty}^{+\infty} \int d x E_{0}^{m}(x ; p, q ; \nu) e^{i x(p-q)}
$$

$$
\cdot \int d x_{1} \phi\left(x_{1}\right) Z^{m}\left(x_{1}, x ; p, q ; \nu!\phi\right) \int_{0}^{1} d \gamma \exp \left\{i g \gamma \int d x_{2} \phi\left(x_{2}\right) T^{m}\left(x_{2}, x ; p, q ; \nu \mid \phi\right)\right\}
$$

where $E_{0}^{m}, \boldsymbol{Z}^{m}$ and \boldsymbol{T}^{m} are defined by the expressions (1.13), (1.20) and (1.19) accordingly, in which $;$ of the formula (1.10) is replaced by

$$
\begin{align*}
& i^{m}(x-z ; p, q ; \nu)=\int_{-\infty}^{+\infty} d \zeta \delta[x-z-2 p \zeta \theta(-\zeta)-2 q \zeta \theta(\zeta)+ \tag{2.6}\\
& \left.+2 \int_{0}^{\zeta} \nu(\eta) d \eta\right] .
\end{align*}
$$

To find the vertex function $\Gamma(p, q ; k)$ the expression (2.5) must be varied once with respect to ϕ.

$$
\begin{align*}
& (2 \pi)^{4} \delta(q-p-k) \Gamma(p, q ; k)=\int d y e^{i y k} \frac{\delta}{\delta \phi(y)} F\left(p . q q^{\prime} \phi\right) \phi 0 \tag{2.7}\\
& i g \int[\delta v]_{-\sim}^{-\alpha} \int d x E_{0}(x ; p, q ; v) e^{i x(p-q)} \int d y e^{i k y} Z_{o}^{m}(x, y ; p, q ; v)
\end{align*}
$$

where

$$
\begin{align*}
& Z_{0}^{m}(x \cdot y ; p \cdot q ; v) Z^{m}(x, y ; p \cdot q ; y, \phi) \delta(x-y) \\
& \int_{0}^{1} d \lambda \int d z D(z-y) P\left(x \cdot z-\lambda g\left(D i^{m}\right)^{\{x, p, q\}}\right) . \tag{2.8}
\end{align*}
$$

Let us note that the functionals E_{0}^{m} and Z_{0}^{m} are invariant under translations, i.e. E_{0}^{m} does not depend at all on x. and Z_{0}^{m} depends only on the difference $(x-y)$

$$
\begin{aligned}
& E_{0}^{m} E_{0}^{m}(p \cdot q ; 1) \\
& Z_{0}^{m} \quad Z_{0}^{m}(x-y ; p \cdot q ; 1) .
\end{aligned}
$$

Then it follows from (2.7) the final expression for the vertex function

$$
\begin{equation*}
\Gamma(p \cdot q ; k)-i g \int\left|\delta 1 \sum_{-}^{m} E_{0}^{m}(p \cdot q ; 1)\right| d z e^{-i z k} Z_{0}^{m}(z ; p \cdot q ; 1) . \tag{2.10}
\end{equation*}
$$

Varying twice the expression (2.5) with respect to ϕ, it is not difficult to obtain the amplitude of the elastic meson-nucleon scattering. In fact,

$$
\begin{aligned}
& (2 \pi)^{4} \delta(q-1-p-k) F(p \cdot k ; q \cdot 1) \\
& \because \int d y_{1} d y_{2} e^{i y_{1} k-i y_{2}:} \frac{\delta^{2}}{\delta \phi\left(y_{1}\right) \delta \delta\left(y_{2}\right)} F(p \cdot q \cdot \delta) \phi: 0 \\
& \left.=i g \int \delta \delta_{1}\right]_{-}^{\alpha} E_{0}^{m}(p \cdot q ; r) \cdot \mid d x d y_{1} d y_{2} e^{i x(p=q) i y 1^{k}=y_{2}}
\end{aligned}
$$

$$
\begin{align*}
& \cdot\left\{\left.\frac{\delta Z^{m}\left(x, y_{1} ; p, q ; \nu \mid \phi\right)}{\delta \phi\left(y_{2}\right)}\right|_{\phi=0^{+}} \frac{\delta Z^{m}\left(x, y_{2} ; p, q ; \nu \mid \phi\right)}{\delta \phi\left(y_{1}\right)}\right\}_{\phi=0^{+}} \\
& +\frac{i g}{2}\left[Z_{0}^{m}\left(x-y_{1} ; p, q ; \nu\right) \cdot T_{0}^{m}\left(x-y_{2} ; p, q ; \nu\right)+\right. \tag{2.11}\\
& \left.\left.+Z_{0}^{m}\left(x-y_{2} ; p, q ; \nu\right) T_{0}^{m}\left(x-y_{1} ; p, q ; \nu\right)\right]\right\}
\end{align*}
$$

where

$$
\begin{equation*}
T_{0}^{m}=T^{m}\left(x, y_{1} ; p, q ; \nu \mid \phi=0\right) \tag{2.12}
\end{equation*}
$$

and, because of the translation invariance, depends on $\left(x-y_{1}\right)$.
Introducing a translation invariant functional

$$
\begin{align*}
& Q^{m}\left(x-y_{1}, x-y_{2} ; p, q ; \nu\right)=\left[-\frac{\delta Z^{m}\left(x, y_{1} ; p, q ; \nu \mid \phi\right)}{\delta \phi\left(y_{2}\right)}+\right. \\
& \left.\quad+\frac{\delta Z^{m}\left(x, y_{2} ; p, q ; \nu \mid \phi\right)}{\delta \phi\left(y_{1}\right)}\right]_{\phi=0} \tag{2.13}
\end{align*}
$$

we can write the expression for the scattering amplitude in the following form

$$
\begin{align*}
& F(p, k ; q, r)=i g \int[\delta \nu]_{-\infty}^{+\infty} E_{0}^{m}(p, q ; \nu) \int d z_{1} d z_{2} e^{-i k z_{1}+i r z_{2}} . \\
& -\left\{Q^{m}\left(z_{1}, z_{2} ; p, q ; \nu\right)+\frac{i g}{2}\left[Z_{0}^{m}\left(z_{1} ; p, q ; \nu\right) T_{0}^{m}\left(z_{z^{\prime}} ; p, q ; \nu\right)_{+}\right.\right. \tag{2.14}\\
& \left.\left.+Z_{0}^{m}\left(z_{2} ; p, q ; \nu\right) T_{0}^{m}\left(z_{1} ; p, q, \nu\right)\right]\right\} .
\end{align*}
$$

The representation (2.14) can be used in the study of the asymptotic behaviour of the meson-nucleon scattering amplitude at high energies, and also in the investigation of the automodel behaviour of the nucleon structure functions ${ }^{/ 6 /}$.

The authors are glad to have the opportunity to express their deep gratitude to N.N. Bogolubov, D.I. Blokhintsev, B.M. Barbashov, A.A. Logunov, R.M. Muradyan, M.K. Polivanov, A.N. Tavkhelidze and M.K. Volkov for fruitful discussions and valuable remarks.

References

1. R.P. Feynman. Rev.Mod.Phys., 20, 376 (1947). Н.Н. Боголюбов. ДАН СССР, $9 \underline{9} 225$ (1954).
2. Б.М. Барбашов. ЖЭТФ, 48, 607 (1965). Е.С. Фрадкин. Труды ФИАН, 29, 7 (1965).
3. Г.А. Милехин, Е.С. Фрадкин. ЖЭТФ, 45, 1926 (1963).
Б.М. Барбашов, М.К. Волков. ЖЭТФ, 50, 660 (1966).
4. B.M. Barbashov, S.P. Kuleshov, V.A. Matveev, V.N. Pervushin, A.N. Sissakian, A.N. Tavkhelidze.Phys.Lett., 33B, 484 (1970). И.В. Андреев, И.А. Баталин. Препринт ФИАН N¢60, Москва, 1970.
5. V.A. Matveev, A.N. Tavkhelidze. JINR, E2-5851, Dubna (1971).
6. М.А. Марков. "Нейтрино", "Наука", М., (1964).
В.А. Матвеев, Р.М. Мурадян, А.Н. Тавхелидзе. ОИЯИ, Р2-4578, Дубна, 1969.

Received by Publishing Department on June 28, 1971.

[^0]: ${ }^{x /}$ The obtained results can be easily generalized to the case of the model $L_{i n t}=i g: A_{\mu} \psi^{*} \widetilde{\partial}_{\mu} \psi:+\frac{g^{2}}{2}: A_{\mu}^{2} \psi^{*} \psi:$

[^1]: $x /$ In the case when $(D A)^{\{a\}}$ as a function of x is included in the argument of a functional we shall omit, for the sake of simplicity, the symbol x.

