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I. Introduction 

In a number of recent papers the problem of the validity of 

the eikonal aporoximation in description of high-energy particle 

scattering in the framework of quantum ·field theory was discussed 

from various points of view /l/. 
The investigation of the quasipotential equation for an elas­

tic scattering amplitude in quantum field theory /
2

/ has shown that 

the validity of the eikonal approximation can be considered as a 

consequence of the assumption on smoothness of the local 

quasipotential /3 /_ 

We notice, that assumption on smoothness of the local 

quasipotential has been first done in pa.per /
4

/ in connection with 

an analysis of the Orier's behaviour of large angle scattering at 

high energies. 

The attempts for the theoretical explanation of the smoothness 

property of the local quasipotential were presented in pa.p~rs/
5

/ on 

the basis of probability analysis of the multiparticle processes in 

two-particle collisions, and in papers /fi/ in the framework of the 
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coherent state model where high-energy hadron scattering is 

considered as an interaction of two complex systems vvith an 

infinite number of internal degrees of freedom :!i). 

There is an interesting problem of justification of the eikonal 

approximation in the framework of various field-theoretical model of 

particle interaction and the familiar question on the status of the 

smoothness hypothesis of the two-particle quasipotential at high 

energies, 
/8-17/ . 

The great number of papers was devoted to the 

studying of the eikonal or Glauber representation for a scattering 

amplitude in the simplest models of quantum field theory, 

In papers /
8

, 
9

• 11-
16

/ there was investigated essentially an 

asymptotic behaviour of a sum of the perturbation theory diagrams 

of the ladder type (with all the possible intersections of 

exchange meson lines between two nucleons) in the limit· of high 

energies at fixed momentum transfers, It was shown thflt a sum 

of the principal asymptotic· terms tends in the limit s ➔ 00 

., 
t = fixed, to the sum of the quasipotential graphs for the two-

particle scattering amplitude, 

It should be noticed that in papers /l8/ some additional extra 

terms in asymptotic behaviour of some special diagrams of high 

orders have been found which can in principle change the results 

mentioned above in the simplest models such as the model of 

scalar nucleons with a scalar exchange, 

*) We note also the recent paper /7 /, 
model is discussed in connection 
model of hadrons, 
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in which the coherent state 
vvith the dynamical composite 

In papers / 9-ll/ in studying these problems the functional 

integration methods in quantum field theory were used. The 

important result of these studies was the formulation of the 

straight-line path approximation which gives an effective method 

of investigation of an asymptotic behaviour of scattering amplitudes 

in the framework of the functional integration technique, We note 

that the straight-line path approximation is a generalization of the 

so-called '' le 
1

le 
1 

"' 0 " " approximation proposed in papers /l
9

-
21

/ 

in connection with the study of the infra-red asymptotics in 
. /22-23/ 

quantum electrodynamics • 

The investigation of the radiative effects in two-particle 

scattering at high energies by means of the straight-line path 

approximation in papers / 24-27 / leads to the qualitative understanding 

of the smoothness property of the complex quasipotential of two 

particles, 

It should be stressed that the most hard problem is the role 

of the vacuum polarization effects, or speaking in the perturbation 

theory language, the contribution of diagrams vvith the closed 

nucleon loops. In this direction only some preliminary 

results /l/ are available. 

We should stress here that an investigation of the structure 

of scattering amplitudes in the framework of the functional integra­

tion methods in general form presents up to now yet non-solved 

/ 28-30/ · 
problem • 

In this paper we give the derivation of the representation 

of scattering amplitudes as the continual integrals over the 

particle paths for simple models of quantum field theory such as 

the models of scalar nucleons interacting vvith a scalar or a 

neutral vector field, 
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In particular case of the model with the scalar exchange 

the representation for two-nucleon scattering amplitude has the 

form: 

.00 ( 1) . . .00 (2) . 
F(p1p2;q1q2)=f[ 8 v1]_

00
E (p1q1lv1 )f[Bvz tooE (p2q2I Vz ), 

I x/1 l -iy,i fofzl 11 2 
( 1,1) 

•f dxe g2 D;2 (x;p
1

q
1

lv
1
)f dye 

11=(p 1-ql )=-(p2-q2), 

where the functional E<' J depends on the variables of the i-th 

nucleon and corresponds to the radiative effects, whereas the 

functional Dj
2 

depends on the variables of both nucleons and 

the relative coordinate x = + (x 1-x2 ) and describes the interaction 

between nucleons, 

All the functionals in eq, (1.1) can be expressed through 

the Green functir:m of the meson field in the presence of the 

external sources 

00 ' i,= fd(8[x -z+2p
1
(0(()+2q 1 (0(-0+2 f v 1 d11]. 

-- 0 

(1.2) 

One can see that the sources (1.2) correspond to the point-like 

classical particles moving along the paths which are determined 

by the functional variables v 1 ( T/) 
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2. The Construction of the Two-Particle Greeri 

Function 

For simplicity we consider first the model of scalar nucleons, 

interacting with a scalar meson, with the interaction Lagrangian 

of the form L Int= g: if, +1/l<P 
The generalization of results to the model of scalar nucleons 

interacting with a neutral vector field will be given later. 

The one-particle Green function of the nucleon in the 

given external scalar field </> (x) satisfies the equation 

(0 +m 2-g<f,(x}}G(xy:l</>)=8(x-y). 

The formal solution of eq, (2.1) can be represented by means 

of the functional integral /
2o/ 

00 -1Tm 2 T T ~ 
G(xyl</>)= ifdre f[8v] exp(ig Jd~<f,[x+2 f v(11)d1111 • 

(2. 1) 

0 O O 0 
(2.2) 

where 

rz 
[8v ]T 

1 

T 

,8[x-y+2 f v(11)d11l. 
0 

T2 

8 v exp [- i fT. v
2 (11 ) d 1J ] 

2 
f 8v exp [-if v 2(11)d11] 

Tl 

cl'ld 8 v is a volume element of the functional space of the 

four-dimensional functions v ( T/ ) defined on the interval 

r1 :ST/ ~ rz 

(2.3) 

The Fourier transform of the Green function (2,2) has the 

following form 
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lpx- lqy 
G(pcflc/>)=f dxdye G(xy:1¢)= 

(2.4) 
00 -1r(m 2 -iJ /x(p-q/ r r f ,..; f dre fdxe J[8v] exp[ig f dfcp(x+2pf+2 f v(11)d11]. 

0 O O 0 

Using the expression (2,4) we can find the two-particle Green 

function of nucleons in the form: 

• 2 
G(p

1 
q

1
;p

2
q

2
}=[expf f D -J<P"]. G(p 1qil¢) ,G(p2 q;l¢)Sof¢)1¢=a(2,5) 

where 

2 2 
• 8 • 8 [exp i f D 8¢2h exp [-f- f dx I dx 2 D(x1 -x2 J ----] 

8¢x,8¢x2 
(2,6) 

and S0 ( ¢) is the S -matrix averaged over the nucleon vacuum 

fluctuations in the presence of the external field ¢ • As is known, 

S0 ( ¢) can be written as 

S of ¢ ) = exp [ i " ( ¢ ) ] , (2.7) 

where the functional "(¢) in the models considered here cor­

responds to the sum of the connected diagrams, with one closed 

nucleon loop and an arbitrary number of external meson tails, 

Introduce the notation 

f i,¢= fdz¢(zJ;(x
1
-z;p

1
;r/l v 1 ), 

(2,8) 

where 
r 1 f 

;(x
1
-z;p

1
;r

1 
Iv,) = J df 8 (x 1-z+2p f +2 f v (7] )d11 ). 

0 I O I 

(2.9) 

B 

Using these notations we can rewrite the expression for 

the two-particle Green function (2.5) in the following simple form: 

00 2 2 2 2 ,
2 

IT
1

(p
1

-m /+1r
2

(p 2-m} lx 1(p 1 -q 1}+!x2'p2 -q2 } 

G(p
1 

q 
1
;p 

2
q

2
J=• f dr 1 dr2 e f dx 1dx2 e 

0 

(2.10) 
r, r 2 . 

•f [8v
1

]
0 

[8v
2

] 0 E(x 1;p 1;r 1 Iv,), 

where 

j '82 lgfc/>C/1+/2} . . 
E=[exp- JD--]· e • Sof¢)1A-=o· 

2 8¢2 ..,., 
(2.11) 

Consider now in details the structure of the quantity E 

Let us determine for each functional A ( ¢ ) , the quantity 

- • 82 
A ( ¢ ) = [ exp -'- f D __ ] • A(¢ ) 

2 8 ¢2 
(2.12) 

so that the average value A ( ¢) over the meson vacuum fluctua­

tion is g,iven by A =A(¢} I ¢=o • 
Consider the average value of a prodt,,tct of two functionals 

• 52 
A• 8 = [ exp -4., f D -- ] • A ( ¢) • 8 (¢ JI A._ o· 

~ 8¢2 ..,.,_ 
(2.13) 

One can easily show that the following identity holds: 

A,B=[exp..l...-J D(-8-+-8-)
2 

].A(c/> 1 )8(¢2)\IA. _,1.,_o= 
2 8¢1 8¢2 ..,.,,-'1'2-

2 

=[expifD 
8 

]A(¢,),B(¢2)1¢=¢=0 
8¢18¢2 I 2 

(2.14) 
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=A(ifD 

Choosing 

_a~)-B(¢)1¢=o • 
8¢ 

A(¢)= exp[ig f¢(; 1+j2 )]; B(cp) ="So<¢) 

we have 

A(¢)=exp[ig f ¢ (;
1
+j

2
)-ig 2 /2 f D(j

1
+;

2
)

2
] 

so ( ¢ ) = exp [ ; n ( ¢ ) ] ' 

(2.'1s) 

(2.16) 

(2.17) 

where the quantity TI ( ¢ ) corresponds to the sum of all the con­

nected Feynman diagrams• with an arbitrary number of closed 

nucleon loops and internal meson lines (having in mind that the 

nucleons interact with the external field ¢ ). 

Using the identity (2.14) and eqs. (2.15 -17) we find the • 

foloowing expression for the quantity (2.11): 

• 2 
E=exp[- ~g f D(j

1
+j

2
) 2-g 

1IlCcpJ 
~a __ ].e 1¢=0= 

J D(/1 +1,I •~ (2.18) 

2 2 
= exp [-ig / 2 f D(/ 1+ j

2
) +ill (- g JD(j

1
+ i

2
))] • 

10 

Expanding the quantity (2.18) in powers of the coupling 

constant and substituting the series in to eq. (2.10) we get, after 

performing simple functional integrations over v 1 , just the 

usual non-renormalized series of perturbation theory for the two­

particle Green function, 

We stress now the important fact, which will be used in the 

following. The expression (2.18) allows to separate in general form 

the contributions to an interaction betwee·n two nucleons ( exchange 

effects), the self-interaction of the nucleons through the meson 

field (radiative corrections) , and the vacuum renormalization, 

Really, the f.irst term, in the exponential in eq. (2.18) can 

be rewritten as 

-ig 2 /2JD(j 1_+j2 )
2 =-ig 2 f Dj1 j

2
-ig 2/2JDj:-;g2/2JD;;. (2.19) 

where the first term in the right hand side corresponds to the 

one-meson exchange between the nucleons and the rest terms 

lead to the radiative corrections. 

Correspondingly, the second term in the exponential in 

eq, ( .2,18) can be represented in the form 

Il=Il 12 +Il1 +Il 2 +'Il(OJ, 

where 

n 12= n(-g JD(;1+;2 ))-n(-g JD; 1J-n(-g f D;2 J+n<oJ 

• 
n,='Il(-g JD;,J-n(O). 

11 

(2. 20) 

(2.21) 

(2.22) 



It can be shown that the quantities (2,21-22) may be expressed 

through the polarization operator of the meson field 

82 
P(x1x 2 :1¢ ),.,_ --- II(cf,) 

8 cf, Xl 8cp X2 
(2.23) 

or through the full Green function of the meson field 

G(x 1x11¢ )=G(x 1-x2 ) +f dr1dy2 G(x 1-r 1 )P(y1 r2 lc/>)G(y2-x2) (2.24) 

in the presence of external sources. {see Appendix). 

As a result we get for the quantity E the following 

expression 

E = e tll(OJ E(lJ E(2J E(12J, 

where 

E ( 
1 
J = exp [- i g 2 / 2 f D: • i ~] ; i = 1,2 

., (12) [ ; 2 f D * ,· ,· ] . E = exp -• g 12 1 2 

H?re we used the notations 
1 a 

D.* =2f da f d>..D(x 1 x21-g>..fDj 1 );' i=l,2 
I O 0 

1 1 

D* = f d>..1 f d>..2 D(xlx;l-g>..,f Djl-g >..2 fDi2J. 12 0 0 

(2.25) 

(2.26) 

(2.27) 

(2.28) 

(2.29) 

We note, that D* 
I are connected with the Green function of 

the scalar meson interacting with the external sources, associated 

with the i-th nucleon, and 0
1
; corresponds to the Green 

function of the scalar meson interacting simultaneously with the 

sources of both nucleons. 

12 

Thus, the quantity E which determines the two-particle 

Green function of nucleons is factorized into the terms, which 

describe correspondingly the interaction between two nucleons, 

the radiative connections and the vacuum renormalization.· 

3. The Representation for the Two-Nucleon 

Scattering Amplitude 

The two-nucleon scattering amplitude is determined through 

the two-particle Green function (2.5) by 

(21r)4 8(p 1 +q 2-q 1..:.q2 )iF(p1 P2iq1q2)= 

... lim 
2 2 2 

P,,q , ➔ m 

II (p{-m 2)(q~-m 2)G(~1P2iq1q2) • 
1=1,2 

(3.1) 

We ignore the renormalization problem, which will be discussed 

in the following section, and drop in the right hand side of 

eq. (3.1) the factor exp ill(O) so as it does not contribute to 

scattering processes. 

As was mentioned in introduction the developing of the 

correct procedure of passing to the mass shell in constructing 

the scattering amplitude in general form, before any approximations 

are made, is very important, Many approximations being reasonable 

from a physical point of view, when are applied before the 

transition to t!'1e mass shell, disturb the positions of poles of the 

Green function and make all the procedure mathematically incorrect, 

In this paper we develop• the method for extracting poles of 

the Green function, which is a generalization of the method, 
. b d . /9,10,28/ . f" d" tt . which has een use 1n papers 1n 1n 1ng a sea er1ng 

amplitude in the model of scalar nucleons interacting with a scalar 

meson in approximation where the contributions of the closed 

nucleon loops are neglected. 

13 



Using the expression for two-particle Green function (2.5) 

and eq. (2.9) and (2.25-29), we represent the definition of the 

scattering amplitude ( 3.1.) in the form: 

4 
(211) 8(p 1+q2-q 1-q2 )iF(p 1p2 ;q 1q2 ),., lim Il (p;-m2 )(q:-m2 ) • 

P
2 q4m2 ,,.,1,2 
I' I 

r r ( 2 2, 2 2 
. 00 .oo 1 2 IT 1 p 1-m +1Tifp 2-m} lxi<p1-q 1J+lx/p2-q2} 

·/dr1/dr2/dt1 rf dt2 e fdx 1dx2 e 

r, 
• f[8v 10 [~v 

(3.2) 
~ e, 6 . 

10 fdz 1dz28'x 1-z 1+2p 1t 1+2 f v 1dTJ )8(x2-z2+2Pi t 2 +2 f v2 d11)· 
0 0 0 

• iF(z 1-z2 ; i 1i2), 

where 

F(z1-z2H1i2)=g2E(1JE(2JD* fld -1y,ifo7i 11/2 
12 Ye (3.3) 

0 

In getting the eq. (3.2-3) we have used the fact, that the free 

part of the Green function which is not connected with an 

., interaction between nucleons can be subtracted by the formula: 

E (12J E<12,_7 . 2J D* . . f1 d -1yg2 foi*2 1111 
➔ =•g 12 11/2• ye 

0 
(3.4) 

Using the identity 

.oo oo T7 r2 oo oo oo oo 

f dr1 f dr2 f dt 1• fdt2 ••• = f de1 fd6 J dr1 f d2 
o. o o o o o fr e2 

(3.5) 

and making the change of the ordinary and the functional vari­

able; 

14 

' 

l 
J 
;;1 
I I 

i 

r ➔ T +e 
I · I I 

e, 
x 1 ➔ x 1 -2p1 t 1 -2 f v 1 d11 

0 

v
1 
(7J) ➔ v,(11-t,)-(p-q) 1 0(TJ-T 1 

(3.6) 

we get the . expression 

(211)
4
8(p 1+q 2-q,-q2JF(p7 P2iq1q2)== l~m 

2 P:,q, ➔ m 

, ( 2 2,, 2 2 fl p 1-m q I - m ) • 
I== 1,2 

00 ,r ( 2 2J 2 2 • f dr dr dt di: 1 P7-m +IT/p2-m J+1tfl1-m2}+1e (q2_ 2, 
0 1 2 1 \, 2 e , 2 2 m • (3. 7) 

1"7(P7-q7J+lxifp2-q2} rl T2 ·•• 

-fdx1dx2e f[8v1le1 [8v2l-e2 F(x1-x2ll1l2 ). 

Going to the limit in eq. (3. 7) and taking into account the 

translation symmetry o~ the quantity F 1') we get the final result 

for the scattering amplitude: 

1') 
We remind that under translations x 1 ➔ x 1 + h the functional 
variables of F namely the "current densities" 

'1 f 
i,= f d(8[x 1-z+2p 1(0(()+2q

1
(0(-0+2 v,d11 l (3.8) 

-~1 0 _ 

undergo the transformation as well. 
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F(p1p2;q1q2J= fl 811 11"" E(1'<P1q1.l 11 1 )J l 8 ~ 1"" .e'2'<P2q2l 112 ). -- -"" 

ix!'! I -1y 2Jo* I I 
• J d x e g2 D * ( x · p q I 11 } J dy e 

11 
12 I 2 

12 1 
I I I O 

(3.9) 

where !'i(=(p
1
-q

1
}=-(p 2-q2} ; x=+(x 1-x2 } and all the quantities 

in this expression are the functionals of the limiting sources: 

CX) ' 

j 
1
:aj(x 

1
- z; p 

I 
q 

I 
I JI 

1 
)= J d( 8 [ x 

1
- z+2p 

1 
( 0(()+2 q 1 (0(-() +2 J 11 1 d71] . 

-CXl 0 
(3.10) 

One can note that the expression (3.10) determines the 

scalar density of the point-like particle, moving along the classical 

path x ( s} , which depends on the proper time s=2m( I . . 
and 

satisfies the equation 

dx (s} 
m 1 =P 0(()+q 0(-()+JJ ((} 

ds 1 1 1 

(3.11) 

under the condition x 1(0}=x,; i= 1,2. 

Now we generalize the consideration given above to the 

case of the vector-exchange model with the interaction Lagragia-n 

L Int= ig : Aµt/J+ fj/l t/J': + g2 
': Ait/J+t/J: (3.12) 

We shall not go into all the details but only summerize 

briefly the final results, 

The scattering amplitude in this model is given by 

"" JIJ . "" (2) . 
F(p1p2:q1q2}=f [811 1 ]_cx,E lp1q1l 111)· J [ 81121_.;E (p2q2l 112). (3.13) 

16 

(I) (2) ,,,!'!. {3 I _, 2 Jo*a/3 (I) (.2) 
.ea e/3 Jdxe g2 D{2a (x;p,q,:lv,),J dye Ysr 12 

1a 1µ 
0 

where 

f ~) = ( p I + q I+ 2 v I ( 0}) a ; j = 1,2 , (3.14) 

Similarly to the previous case all the quantities in eq. ( 3, 13) 

are expressed through the Green function of the vector meson 

field interacting with the external sources 

·"" (I) • 
i a = J d( (2p 1 0(()+2 q 

1
0(-( )+2v

1 
(( )a 8[x 

1
-z +2p 

1
( 0 (() + 

-"" ' 
+2q

1
(0(-()+2J v

1
d711. 

0 

(3.15) 

It is easy to see that eq, (3.15) determin_es the current density 

of the point-like particle moving along the classical path (3.11), and 

obeys the condition 

aa;~'=o. 

4. Discussion of the Renormalization 

Problems 

(3.16) 

It is evident that the one-particle Green function of interac-

ting nucleons G ( p } which is determined by 

' 2 

(2rr)
4
8(p-q}'G(p}=[exp-

2
i JD-3_

2 
]G(pq}cp)S0 (¢)1 (4.1) 

8cp <p=O 

has in general case different position of a pole and a value of a 

residue than the Green function of free nucleons, i,e, 

17 



1 ., -
. 2 -G ( P) = m 2 - ·p-""'"2 +--=I-:(;-p--:;2•J - P2 "' m Ph 

v.rnere 

2 2...,,2, 2s:, 2 
m h =m +""- m h =m +um p . p 

z 1 _ aI 
( m ~h ) • 

z -1 

(m2 -p2) 
ph 

(4.2) 

(4.3) 

For this reason in the definition of the scattering amplitude 

(3.1) as the residue of the two-particle Green function at the 

poles associated with the external nucleon tails we should write, 

for example, instead of the factor ( p2
1 m 2 

) the following one 

Z (p:- m;h ). 
Moreover, it can be shown that due to the mass and v.,ave 

functions renormalization the functional integrals in eq. (3. 7) diverge 

or more precisely 

r1 r2 

J[ov 11_t}ov2l_g/ r, ,t I ➔ .oo 
p 2 • q2 "' m2 

I I ph 

-/ I r.[om 2+(1-Z)(pf-m\11 
lt=l,2" P 

e • 

_, ~; "[o m
2
+(1 -z )(pi- m!hl] • f, [ov ) 00 

• [ov 2100 FI 
• e It= • R I -.oo -oo 

(4.4) 

VJhere the symbol JR denotes the renormalized value of the 

functional integral, which is finite after extracting the divergent 

exponential factors. 
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Thus, we obtain for the scattering amplitude defined as a 

residue of the two-particle Green function at the physical poles 

the same expressions (3.9) and (3.13) with only difference that 

instead of J [ov, coo" [ 0 V2 (oo we should write more correctl: 

f R [ovl too• [o V2 Coo 

The procedure of regularization of the functional integrals 

in general investigation of the structure of scattering amplitudes 

can be considerably simplified if one assumes that the following 

limits exist: 

( I} 
E (pq;rflv) 
r (I}. 

J[ov]~E (pq;rflv) 

(I) ( ., ) --+ e pq. V , 

r, e➔.~ (4.5) 

VJhere the momenta p and q are on the mass shell and the 

quantities E''' are determined by eq.(2.26) with nucleon current 

given by (3.8). 

These limits exist in that sense that the following "unproper' 

functional integrals exist 

oo (I} 
J[ov] e (pq:lv)=l -.oo (4.6) 

and 

J[ov]
00

• e " 1(pq:lv)A(v)=[A] (I} -.oo e pq 
(4.7) 

for appropriate functionals A( v) • 

Using eqs. (4.5) and (4.6-7) we get for the two-nucleon 

scattering amplitude (3.9) the expression 

F(p,p2;q ,q2}= ,<''(,}. Pt,,. ((p,p2:q1 q2}, (4.8) 
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where 

00 (JI, . .00 (2) . 
f( P1 P2 i q 1 q2} = f [B vl ]_

00 
e l P1 q 1 1 v, ) J[B v2 ]_

00
• e ( P2 q2 Iv 2 ) • 

I t,,. I ,- 1y/foJ2 IJ 12 
• J dxe "g 2 D11 (x;p

1
q

1
:lv

1
)f dye 
0 

(4.9) 

and 

,,, .00 ,,, . ,2 
r =f[8v1 ] .E (p I,q I lv I ); t=(p 1-q I (t) R -,00 (4.10) 

. ,, ) 
It can be shown that r ( t = 0 J = 1 

One can see from the eq. (4.8) that a part of radiative 

corrections is factorized in scattering amplitude in form of the 

terms which depend only on the square of momentum transfers. 

These radiative factors have a simple physical sense: 

., they describe an interaction of the asymptotically free nucleons 

in the initial and the final states with the fluctuations of the meson 

vacuum. 

The representation (4.8) may be useful in studying asymptotic 

behaviour of scattering amplitudes at high energies. 

5. Generalization to the Inelastic Processes 

Here we consider the generalization of the methods described 

above to the construction of ·amplitudes of the inelastic processes. 

We shall consider such inelastic processes when some number of 

secondary mesons is produced in two-nucleon collisions. 
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These processes can be described by means of the two­

particle Green function of nucleons in the presence of external 

meson field ¢ ext ( x J 

2 2 2 2 · 
00 lr,(pr m )+ 1Ti<p2-m) lx

1
(p

1
-q/+1x/ p

2 
-q; 

G(p 1 p2 ; q 1q 2 1 <p ext}= i
2,j dr

1 
dr

2 
e •Jdx

1
dx

2
e 

(5. 1) 
Tl T2 t 

• J[8v 1] 0 • [8v2 ]
0 

• E (¢ ex ), 

where 

82 lgf<p(/1+/2) 
E(<f,ext h[expf-JD 8¢2] e So(¢ )!¢=¢ext = 

_, g2 /2JD ,,, +12 ,2+lg I¢, ext',,+ '2 J+I n (<p ext_ g Jo ( 1,+12" 
=e 

(5.2) 

It is convenient to rewrite eq. (5.2) as follows 
ext 

E(<f,ext )=e ,Ile¢ 'E.R(<f,ext ), (5.3) 

where 

f ,I. ext n ,I. •xt I n J n ext ext lg 'I' (1 1+12 )+1 ('I' -g D(1 1+/ 2 ))-/ ( -g D(/ 1+1;)-1 (<p ) 
R( <f, )= e (5.4) 

and E "" E ( <f, ext = 0 J is defined by eq. (2.18) and corresponds to 

the pure elastic scatt,:,ring process. 

Introduce now the quantities 

I I 

r (z:1¢ext )=j +fda Id>.. Jdy(D;,JYP(zyla<f, 0 t ->..gfD; J 
1=1,2 I O O I (5.5) 
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I ~ 
I 

and 

l l l 
I'

12
(zlef>ext )=fda fd>.. 1 f d>..2 fdy 1dyilDi 1) (Dj2) ·I'(zy 1 y2faef>ex~ 

0 0 0 Y1 Y2 
(5.6) 

-g fD .(>.. 1i1+>-2i2)), 

where 3 

8 II(¢) -
r(zr1 Y2 lef>)= Bef>%8ef>r

1
, 8 ef>r2 

(5.7) 

is the generalized vertex operator of three-meson coupling in the 

presence of an external field, and the polarization operator 

P(zrlef>) is determined by eq. (2.23). The functionalR(ef>0 t) 

in terms of the quantities (5.5-6) has the following form 

R ( ef> ext ) = e 'n '0 } • e I g f ef> ext ( r l + i; ) + ' g 2 fef> ext. r 12 (5.8) 

The generating function for amplitudes of the inelastic processes 

is determined as the residue of the two-particle Green function of 

nucleons in the presence of an external field (5.1): 

. ( . ext) , ( 2 ) ( 2 ) ( .
1 

ext ) ( ~ F p1p
2
;q 1q 2lef> = l,m II p

1
-m q1-m G p1p2 ;q 1q2 ef> . 5.91 

P 2 q2 ➔ ml I= 1 2 ,, I I 

Dropping in the right hand side (5.9) the factor exp( ill(¢ ext)) 

which does not contribute to the particle interaction, and performing 

changes of the variables (3.6), we get the following expression for 

the generating functional (5.9): 

F(p1p2;q q lef>ext )=f d d lx1<P1-q1}+lx2'p2-·q2) 
12 x 1 x 2 e (5.10) 
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oo (1} f~ ext . ext 
·f[Bvl]_oo· E (p1q1lv1)e'g 'I' .rl (p1q1x1lv1ef> } 

f ~ext.-, .
1 

~ext 
.oo (2} . • 1 g 'I' '•2 (p2q2x2 v2'1' _} . • • ext 

•f[Bv2 ]_
00
•E (p 2 q 2 lv2 )e F(x1x 211 112 ;ef> ), 

where 

F( ·1· ext - l -iy 2f;* 
xlx2. l1i2ief> )=g2D* f d g 12 1112 

12 Ye 

Here the quantity D* 12 

0 

is defined by 

D{i = D{2 (x 1x2 ;p 1p2 ;q 1q2 lv 1v2ef>ext ) =DTi (x 1x2 ;p 1q ;Iv,)-

1 1 1 
- f da f d>.. 1 f d>.. 2 f dzdy 1dr2 ef>ext(z) D(x 1 -y1 H12 (z y1 r21 aef> w_ 
0 0 0 

(5.11) 

(5.12) 

-gfD(>..Ji1+>-2i2H-D<r2-x2J 

and corresponds to the full Green function of the meson field 

interacting simultaneously with an external field ef> ext and the 

sources i 1 and ii 
The amplitudes of the processes when N secondary mesons 

are produced in two-nucleon collision, are determined by the 

functional derivatives of the generating functional {5.10): 

4 H 
(l 71 ) B(q1+q2-p1-p2- I 1c,JF(p1p2;q1q2;lcl2·"/cN)= 

1=1 

H 
II f dye'r,", 8 
I= 1 I Bef> ext 

y I 

ext ).I 
.F(p1p2;q1q;l<t> · ef>""t=o · 
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For example, the amplitude of production of one secondary 

meson with the momentum k has the form 

00 (11 .oo (21 
F(p1P2iq1q2;k)=igJ[Bv,]_OOE (p,qrlv,)J[8v2]_00E (p2q2:lv2 ). 

-[fj (p,q,;k,'.lv1>+r2<P2q2;k;lv2)].Jdxe'"dg2 D;~ .;dye-ry,}Jo,~11l2 }5.14) 
0 

• ]"" -111 . Joo -12) . lxd . -10
2 
Jo,~ I,, 2 

+1gJ[8v1 ...,ooE p1q1jv1)f[8v2 ...,ooE (p2q2 lv2)fdxe ·lj'J~;1 p1·q 1klv1 ) 0 e . 

Here we used the notation 

r, (p,q,;k;lv,)=J dze
1
.,,. r,(zlcf>ext >l,,,=o 

i = 1,2 
,1,ext 
'I' =0 

and 

1 1 I., le 

r12(x;p ,q,;k:lv,)=-gJ d>..1 Jd>..2J dz dyl dy2 e 
0 0 

-D(y1-+)D(y2++Jr(y1y2zl-g JD(>..1 i1+>-2i2))' 

The similar expressions can be obtained for the production 

amplitudes of two and more secondary mesons. 

(5.15) I 

(5.16) 

In conclusion the authors · express their deep gratitude to 

N.N. Bogolubov and A.A. Logunov for helpful and stimulating 

discussion ,and to D.I. Blokhintsev, B.M. Barbashov, S.P. Kuleshov, 

R.M. Muradyan, A.N. Sissakian for interesting discussion. 
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Appendix 

Consider the structure of the quantity Il 12 , determined 

by eq. (2.22). Using Fourier-transformation of the functional Il(cf,) 

to the functional space of the virtual nucleon current 71( x) 

Il(¢)=Jo71Il(71)e- 1J¢71 (Al) 

and the definition of the polarization operator of the meson field 

(2.23) we find the following expression for the quantity Il 12 

I g JD 71 I 1 I g JD 71 I 2 
Il 12 =Jo71 Il(71)(e -1}.(e -1)= 

2 
1 1 lgJD(A1f1+A.if2)T/ 

=-g J d>.. 1 Jd>.. 2 Jd71 Il(71)e j D71iJ•JD71i 2 = (A2) 
0 0 

1 1 
=- g2 / d>.. 1 /d>-2 J d x1 dxi{DiJJ,,/ D j2) ,,

2 
P( x, x2l-gA, JD i ,-g ,\2 fD i2J. 

The similar expressions can be found for the quantities Il 1 , 

determined by eq. (2.21). Really, taking into account the condition 

on (A3) 
ocf> 

I = o 
¢=0 

we find 

lgJDT/f 
n,=Jd71Il(71)(e 1 -igJ D71j,-1)= 

1 a 
=-g 2 J da J ,J>.. J d71 Il(71)e 

0 0 

lgAJD71f 
I 

(A4) 

Jo.,, i Jo.,, i = 
I I 

1 a 
=-/ J da J d>.. J dx

1
,dx 2(Dj) (Dj2 ) P(x 1x2)-Ag JDj 1 ). 

O O I "1 "2 

25 



1-
l 

' Using formulas (A2) and (A 4) and the definition of the full Green 

function of the meson field in the presence of external sources, 

one· can easily obtain the expressions (2.26-29). 
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