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I, Introduction

In a number of recent papers the problem of the validity of
the eikonal aporoximation in description of high-energy particle
séattering in the framework of quantum field theory was discussed
from various points of view /] .

The investigation of the quasipotential equation for an elas-
tic scattering amplitude in quantum field theory 2l has shown that
the validity of the eikonal approximation can be considered as a
consequence of the assumption on smoothness of the local
quasipotential /3/

We notice, that assumption on smoothness of the local

/4]

an analysis of the Orier's behaviour of large angle scattering at

quasipotential has been first done in paper in connection with
high energies, .

The attempts for the theoretical explanation of the smoothness
property of the local quasipotential were presented in pdpers/ 5/ on
the basis of probability analysis of the multiparticle processes in

two-particle collisions, and in papers fel in the framework of the



coherent state model where high-energy hadron scattering is
considered as an interaction of two complex systems with an
infinite number of internal degrees of freedom x)'

There is an interesting problem of justification of the eikonal
approximation in the framework of various field-theoretical modél of
particle interaction and the familiar question on the status of the
smoothness hypothesis of the two-particle quasipotential at high
energies,

[8-17/ '

The great number of papers was devoted to the
studying of the eikonal or Glauber representation for a scattering
amplitude in the simplest modes of quantum field theory,
/8,9,11-16/
-In papers

asymptotic behaviour of a sum of the perturbation theory diagrams

there was investigated essentially an

of the ladder type (with all the possible intersections of
exchange meson lines between two nucleons) in the limit" of high
energies at fixed momentum transfers, It was shown that a sum

of the principal asymptotic terms tends in the limit s - « ,

f“= fixed,to the sum of the quasipotential graphs for the two-
particle scattering amplitude,
It should be noticed that in papers / 18/ some additional extra
terms in asymptotic behaviour of some special diagrams of high
orders have been found which can in principle change the results

mentioned above in the simplest models such as the model of

scalar nucleons with a scalar exchange.

¥
) We note also the recent paper /7/, in which the coherent state

model is discussed in connection with the dynamical composite
model of hadrons,

s S meot e+

In papers / 9_;1/ in studying these problems the functional

" integration methods in quantum field theory were used. The

important result of these studies was the formulation of the

straight-line _path approximation which gives an effective method

of investigation of an asymptotic behaviour of scattering amplitudes
in the framework of the functional integration technique, We note
that the straight-line pafh approximation is a gengralization/ig_gljj
so-called " k;k, = 0 ¥ " approximation proposed in papers
in connection w1th the study of the infra-red asymptotics in
quantum electrodynamics / 22—23/

The investigation of the radiative effects in two-particle
scattering at high energles by means of the straight-line path
approximation in papers 4-27/ leads to the qualitative understanding
of the smoothness property of the complex quasipotential of two
particles.

It should be stressed that the most hard problem is the role
of the vacuum polarization effects, or speaking in the perturbation
theory language, the contribution of diagrams with the F:losed
some

nucleon loops. In this direction only preliminary

results are available.

We should stress here that an investigation of the structure
of scattering amplitudes in the framework of the functional integra-
tion methods in general form presents up to now vet non-solved

problem /28-30/.'

In this paper we give the derivation of the representation
of scattering amplitudes as the continual integrals over the
particle paths fo.r simple models of quantum field theory such as
the models of scalar nucleons interacting with a scalar or a

neutral vector field.



In particular case of the model with the scalar exchange
the representation for two-nucleon scattering amplitude has the
form:

Flp,pyras9)= 10v;10_E (pya;lv, ) Lo w, 17.E (b, 051

1xA ) ! "}’92 fD1*2I1I2
. f dxe  g2D} (x;p,q /v, ) [ dye .
0

A=(p 9 )=-(p2_q2)l

1) ’
{ depends on the variables of the i-th

where the functional E
nucleon and corresponds to the radiative effects, whereas the
functional Dj, depends on the variables of both nucleons and
the relative coordinate x=-—;-—(x1—x2) and describes the interaction
between nucleons.

All the functionals in eq. (1.1) can be expressed through
the Green function of the meson field in the presence of the

. external sources

00 4
i,=_vo{d§5[x —z+2p,§0(§)+2q'§0(-—§)+20f v, dnl. (1.2)

One can see that the sources (1.2) correspond to the point-like
classical particles moving along the paths which are determined

by the functional variables v, (7) .

(1)

2, The Construction of the Two-Particle Green

Function

For simplicity we ;:onsider first the model of scalar nucleons,
interacting with a scalar meson, with the interaction Lagrangian
of the form L, ,=g: x,lr+x/lqb :

The generalization of results to the model of scalar nucleons
interacting with a neutral vector field will be given later.,

The one-particle Green function of the nucleon in the

given external scalar field é(x) satisfies the equation

([ +m2-g $(x)) G(xylp)=8(x-y). (2.7)

The formal solution of eq. (2.1) can be represented by means

of the functional integral

00 it m? r £
G(xy|p)=1i[dre o f[SV]roexp{ ig f. dép [x+2 of vin)dgli .
0 Q
r (2.2)
Slx=y+2 [ vin)dnl,
0

where

T2
. 2
[SV]TI ) Svexpl-i f”V (n)dnl | (2.9)

T
fOvexp [—ifzvz(ﬂ)drl]
7
1

and S&v is a volume element ‘of the functional space of the
four-;dimehsional functions v (n) defined on the interval
nsn <z . | o '

The Fourier transform of the Green function (2.2) has the

following form



=-lqy

'G(pq'.]qb)=fdxdyelpx Gixyl|o)=
© i (m? - p2) T 3 (2-4)

x(p—q) r
=i°f dre fdxe' P qf[Sv]oexp[igofdf¢(x+2pf+2 [ vipdgl.
0

Using the expression (2.4) we can find the two-particle Green

function of nucleons in the form:

. 2
G(p,q,;pzq2)=[exp-z'-f D -S-%ST]-’G(p,q,iqu) 'G(qui|¢)so(¢)l¢=o(2'5)

where
z 5 2
[exp LD ]—exp[—fdx,dxzD(x, "2) ] (2.6)
8% x,
and So(¢) is the S —matrix averaged over the nucleon vacuum

fluctuations in the presence of the external field ¢ . As is known,

S0(¢) can be written as

Sy(¢)=explin ()], (2.79)

where the functional n(¢) in the models considered here cor-
responds to the sum of the connected diagrams, with one closed
nucleon loop and an arbitrary number of external meson tails,

Introduce the notation

Ji,p= Jdzd(z)jlx,~z;p 7 |v, ), (2.8)
where
; A 4] ¢
’("l'_’v'P:"":»|V,) '=of dfa(x,—z+2P,f+2 I, (3)dn). (2.9)
: 0
8

Using these notations we can rewrite the expression for

the two-particle Green function (2.5) in the following simple form:

s lT,(p -m )+IT (pz-m } lx,(p,—q,)+lx2(p2—q2)
G(P;ql:'quz,=q'2f dr,dr,e ! [dx,dx;e .
0
(2.10)
n 2 .
of [31/,]0 [51/2]0 E(x,;p,;r,_‘v, ),
where
.2
; 5 o fo Uiyl ‘
E=I[ exp-i'— JD .?;—2—]- e . So(¢).1¢___ok. (2.17)

Cons1der now in details the structure of the quantlty E .

Let us determine for each functlonal A( ¢) the quantlty

; . ,
A(g)=lomp L [ D :qsz]'A(qS) L (2.12)

so that the average value A(é) over the meson vacuum fluctua-

tion is given by A-A(3) lg-0-

Consider the average value of a product of two functionals

_ . , |
A-B =loxp 5 [ D 21 A($)- B(B) g o (2.13)

One can easily show that the following identity holds:

A. Bz[exp—-—fD(a VB (6, )] ¢ —g,=0=

¢1

2 - (2.14)

—lexpi [D 1A(5:"‘”¢2”¢:=¢z=° -

8¢y 0 ¢,



- 5 -
=A(i —_—)e. '
A(i [ D o ) B(¢)'|¢=o'

Choosing

A(B)=explig [¢(j +i)]; B(d) =Sy(¢) (2.15)
we have

A(p)=explig [ ¢ (j +i)=ig?/2 | D(j, +i,)? 1 (2.16)

'So(¢)=exp[i M), ‘ ‘ (2.17)

where the quantity TI(¢ ) corresponds to the sum of all the con-
nected Feynman diagrams. with an arbitrary number of closed
nucleon loops and internal meson lines (having in mind that the
nucleons interact with the external field ¢ ),

Using the identity (2.14) and eqgs. (2.15-17) we find the -

foloowing expression for the quantity (2.11):

. 2 )
E=exp[--121- fD(i1+i2)2—g fD(i1+i2)T8¢-]-e' ¢Z

= e l-ig'/2 [ D(iy+ () will (=g [D(j+,))].

10

Expanding the quantity (2.18) in powers of the coupling
constant and substituting the series in to eq. (2.10) we get, after
performing simple functional integrations over v, , just the
usual non-renormalized series of perturbation theory for the two-
particle Green function,

We stress now the important fact, which will be used in the
following. The expression (2.18) allows to separate in general form
the contributions to an interaction between two nucleons (exchange
effects), the self-interaction of the nucleons through the meson
field (radiative corrections), and the vacuum renormalization.

Really, the first term, in the exponential in eq. (2.18) can

be rewritten as

. - . o 2. 2
~ig? /2 D(j,+iy) ==ig® [ Di i,~ig%2 [Dj?-ig?/2[Dj; .  (2.19)

where the first term in the right hand side corresponds to the
one-meson exchange between the nucleons and the rest terms
lead to the radiative c6rrections.

Correspondingly, the second term in the exponential in

eq. ( .2.18) can be represented in the form

H=H12 +’H1+H2 +'H(0), : (2'20)
where
= (=g [D(j+j,))-T(-g (Dj,)-TI(~g [Dj,)+1(0) (2.21)
LI
M,=T(-g [Dj)=T(0). (2.22)
11



Thus, the quantity E which determines the two~particle

It can be shown that the quantities (2.21-22) may be expressed Green function of nucleons is factorized into the terms, which
through the polarization operator of the meson field describe correspondingly the interaction between two nucleons,
2 : : - .
. 6 . the radiative connections and the vacuum renormalization,
P( )
L3 ] X2.|¢ T e e ——— H(¢) (2.23)
by 0 xg

or through the full Green function of the meson field ) 3, The Representation for the Two-Nucleon

Scattering Amplitude

G(x,x,]$)=6(x,~x,) +{ dy,dy,6(x;~y,)P(y, y218)G(y,=x,) (2.24)
- The two-nucleon scattering amplitude is determined through

in the presence of external sources. (see Appendix), the two-particle Green function (2.5) by

As a result we get for the quanti E i i
q ity the following (27 8(p, +q2—q,-‘-q2)iF(P, Pyi 9 9;) =

expression
1) _1) L2) (12 , BT I (p2=-mY(q2=m3)G(p,p,; y - (3.1)
E=e E'E E ) (2.25) ‘ qulemz '=,’2(pl m )(q, m*) (p,pz,q,qz .
' : 1%
where
. ’ We ignore the renormalization problem, which will be discussed
E(”Eexp[—igz/z J Dx -if]; i=12 (2.26) in the following section, and drop in the right hand side of

eq. (3.1) the factor expill(0) so as it does not contribute to

’ scattering processes.

o (12)

E “'sexpl-ig? f{ D* i, jz] . As was mentioned in introduction the developing of the

" (2'27) / correct procedure of passing to the mass shell in constructing
Here we used the notations the scattering amplitude in general form, before any approximations
D-T 2 fl do fa i D(x,xz'[ _gA[Di. ) inl2 (2.28) are made, is very important, Many approximations being rea‘sonable’
0 0 P ' : from a physical point of view, when are applied before the
D* = f1 d f’ dA, D(x.xl—-gA,f Dj.~g A, {Dj,) transition to the mass shell, disturb the positions of poles of the
EY z 2179 % 1179 %2 JE ! (2.29) Green function and make all the procedure mathematically incorrect,

In this paper we develop the method for extracting poles of

We note, that D} are connected with the Green function of
- the Green function, which is a generalization of the method,

the scalar meson interacting with the external sources, associated ‘ /9 10 28/
with the i * ) cot which has been used in papers '’ in finding a scattering
! e i-th nucleon, and D, corresponds to the Green ’
functi ¢ X amplitude in the model of scalar nucleons interacting with a scalar
nction of the scalar meson interacting simultaneously with the . . .
sources of both nucleons, meson in approximation where the contributions of the closed
T nucleon loops are neglected,
i
13
12



Using the expression for two-particle Green function (2.5)
and eq. (2.9) and (2.25-29), we represent the definition of the
scattering amplitude (3.1.) in the form:

4
(27) 8(p,+q2-q,-q2)iF(p,p2;q1qz)= , lim s T (p’z-mz)(qf_mZ) .
p2, ql,m 1=1,2
! i
ir 1(p?,-m2)+lfz(p§—m2) ix 1(p, -q1)+ lxz(pz- qz)

00 .,o "1 2
'6f dr, ofdrzof d&§ (Tf dcfze fdx,dxze

62(3' 2)

T r &1 .
.f[Sv ]J[&v ]oz fd21d228(X1-21+2p1f1+2 f V,dn )3(X2-22+2P2 £2+2f V:dn)'
0 0 [

. iF(Z,"'zz ;i,iz,l

where

! -1ye? [D%, 141
Je . 2 (1) _(2) 12 1112
F(11-221|I,I2)=9 E E D';kz [dye. oo (3.3)
0 ' .

In getting the eq. (3.2-3) we have used the fact, that the free
part of the Green function which is not connected with an

interaction between nucleons can be subtracted by the formula:

; 1 ~ive2fD*
Lo ig 2 0gy gy [y PRI (3.9)
Using the identity
00 oo " T2 0o oo - s
[ dy fdry £ d€pe Sdby wm [ 4y Sl J drr [ dy o (3.5)
0. 0 0 0 0 0 ] &2

and making the change of the ordinary and the functional vari-

ables

14

roon+ €
&
x,-»x'—Zplfl—Zof v, dy (3.6)

v, ()ov (=€) -(p=q), 6(n-7,)

we get the  expression

4
(27) 6(p;+q,—q;—q3) F(py pyiqaqa,)= lim s "le(pzl—mz)(qf..mz).
P‘lQ,_’m =T

o ! 11,0 2=m2) 417 (p2= m2)+ 1€ fq2 =m?)+1&,(q2~mD)
< [ dr,drydg,dé,e T 2T HAmm Gt (39)
0

T

Ixy{ps=9y) + ix,(po~q,) 8] 2
1fPr=9; PAEP R} v .
f[5v,l£,[8v2]_§2 Flx,=x,1ii,).

«Jdx,dx,e

Going to the limit in eq. (3.7) and taking into account the
translation symmetry of the quantity F *) we get the final result

for the scattering amplitude:

%)

We remind that under translations x,- x,+h the functional
variables of F namely the "current densities"

1"1 {
iy= {08l -2 425 L0(0)+24,00-0)42 [ v dn ] (3.8)
undergo the transformation as well,

15



00 1 . bad (2) .
F(p'pz;q1q2)= f['o‘v,]-mE( )(qul‘lvl )Y [31& ]—. .E (p2q2|1/2).

G

1 (3.9

2 [p*
: -1y /oy 11,
. fderXA 92 D% (x;p'q']v’ )of dy e 12 .

. - it
where A(=(P1'qt)='(P -~ qz) ; x=-%-(x, xz) and all the quantities

in this expression are the functionals of the limiting sources:

¢
i:Ei(X:—ziP :qlvlv' )'—'_ofcdéﬁ[x,-z.;.Zp' (0(()+2q'C0(~€) +20f Y1 dnl. (3-10)

One can note that the expression (3.1_0) determines the
scalar density of the point-like particle, moving along the classical
path x (s) , which depends on the proper time s=2m¢ and
satisfies the equation

dx,(s)

ds

m

=p,0(C)+q'0(—C)+l', (£) (3.11)

-

under the condition x,(0)=x,; i= 1,2.
Now we generalize the consideration given above to the

case of the vector-exchange model with the interaction Lagragian
H + by ‘e 2'. 2 + . R 2
Llnr'—"'g:Al,l.‘/’ a[.l. vitg 'A[.l.l/’ U - (31)

We shall not go into all the details but only summerize
briefly the final results,

The scattering amplitude in this model is given by

00 00 (2) .
F(p,py:q,a,)=/ L8y, ]_.wE”Ip,q,'lv,)- J v} - E (pja,lvy) - (3.13)

16

1}, (2)

( IxA . P iy forBion
lg lg fdxe ¥ QZD;“zaﬂ(x;p,q,-IV,)-oI dye 12 e 'é .

where
(1)

ta =(p+q,+2v,(0))g; i=12. (3.14)
Similarly to the previous case all the quantities in eq, (3.13)
are expressed through the Green function of the vector meson

field interacting with the external sources

i< rde(2p,000)420,0(=0)+2v, (L), 81x,~2+2p,L0(L) +
+2q'40(-_§)+20f v,dr]].

It is easy to see that eq. (3.15) determines the current density

of the point-like particle moving along the classical path (3.11), and.

obeys the condition

(1)
aa“; =0.

(3.16)

4, Discussion of the Renormalization

Problems

It is evident that the one-particle Green function of interac-

ting nucleons G(p) which is determined by

}

4 : N 52 , .
(27) 5(p-q)G(p)=[exp‘—2—fD—5-¢—2]G(pq)¢)$o(¢).|¢=o (2.7)

has in general case different position of a pole and a value of a

residue than the Green function of free nucleons, i.e.

17



, 1 _ 4
G(p) = o E 000 'lpzzmg,f ('",z,h"”z’ , (4.2)

where

2 2 2 2, 5m2
— = m
mo, =m +2(mph) mts+

(4.3)
az
Z-1-—5— (m2, ).
P
For this reason in the definition of the scattering amplitude
(3.1) as the residue of the two-particle Green function at the
poles associated with the external nucleon tails we should write,
for example, instead of the factor ( pz,-mz) the following one
2_ 2
Z(p Mo ). .
Moreover, it can be shown that due to the mass and wave

functions renormalization the functional integrals in eq. (3.7) diverge

or more precisely

-

. r -1 5 2Tk[8mz+(1—2)(pkz-m:h)] T
f[b‘v,]_é. [SVZ]_é. F ——— e ! .
! 2
p2, aZ=mi, (4.4)

- arnz 1-z)¢( 2""'2 ) i o0
.e ’sz,;k[ + Pk Ph] . fg[sy,]_w- [sz]_ F,

(-]

where the symbol f[p denotes the renormalized value of the
functional integral, which is finite after extracting the divergent

exponential factors.

18

Thus, we obtain for the scattering amplitude defined as a
residue of the two-particle Green function at the physical pbles
the same expressions (3.9) and (3,13) with only difference that

instead of [ [8v,1" . [8v,] we should write more correctl:
o —=00

00
.00

felov 10 160, 1

o0
-00 .

The procedure of regularization of the functional integrals
in general investigation of the structure of scattering amplitudes
can be considerably simplified if one assumes that the following

limits exist:

E(”(pq;nf.lV)

f[avljfE""qu.-rﬂv) o &

where the momenta p and q are on the mass shell and the

o1 (pqlv), (4.5)

quantities E “) are determined by eq.(2.26) with nucleon current
given by (3.8).
These limits exist in that sense that the following "unproper

functional integrals exist
® (1) . i '
f[SV]__me (pqg|v)=1 - (4.6)
and

[evT ;e pqlv) A(v)=TAT (4.7)

o0
Pq

for appropriate functionals A(v) .
Using egs. (4.5) and (4.6-7) we get for the two-nucleon

scattering amplitude (3.9) the expression

F(p,p,iqa,)=r" (1)) £(p,p,:9,4,), 7 (4.8)

19



where
.y — 18517 e Mpa 1u) f18v,1 - e® (p,0,0v,)
flpypyiasa) =183y 1 e Prayln) ey, e P29;1v,)

(4.9)
2
A ‘ ! r=1v9 oy 11y
o[ dxe "7g2D% (x;p,q,lv) f dye
0

and

e lon T B (pua v )i t=lp-g ) (4.10)
Itv can be shown that rm(f=0)=1 .

One can see from the eq. (4.8) that a part of radiative
corrections is factorized in scattering amplitude in form of the
terms which depend only on the square of momentum transfers.

These radiative factors have a simple physical sense:

- they describe an interaction of the asymptotically free nucleons
in the initial and the final states with the fluctuations of the meson
vécuum.

The representation (4.8) may be useful in studying asymptotic

behaviour of scattering amplitudes at high energies.

5. Generalization to the Inelastic Processes

Here we consider the generalization of the methods described

above to the construction of amplitudes of the inelastic processes.
We shall consider such inelastic processes when some number of

secondary mesons is produced in two-nucleon collisions.

20

These processes can be described by means of the two-
particle Green function of nucleons inthe presence of external

meson field ¢ '(x) :

1y (p5 m2 i1y (p2-md)

. ex .2 had
Glpypyia1q,)e°  )=i J dndre - fdx,dx,e
| (5.2)
T, 7‘2 ext
-f['dv,]o -[81/2 1, E(¢ ),
where
2 e[ty +uy)
ext y ; é ¢ 1 2 _
E(¢' )=[exp—2'—-fD _“(ﬁ ] e SO(¢ )-|¢=¢exr =
5.2
-192/2fD(1,+/2)2+19 f¢"'(l,+lz)+ll'l(¢"'-,fb(/,+/2)) (6.2
= e -7
It is convenient to rewrite eq. (5.2) as follows
o H ext ox .
E(gs ) T4 'E.R(s ), (5.3)
where

ext )
19 /8" (1 41y 41T ™ =g D1, 41,0 =ill( ~g Ity +1)- Mg
e

R(¢.x' )= (5.4)

and E=E(¢"* =0)

the pure elastic scattering process.

is defined by eq. (2,18) and corresponds to

Introduce now the quantities

. ox . ] . ex
P (zl¢ "=, +ofdaof dA [dy(Di,), P(xylog *™ -Ag [Dj ) (5.5)

21

beyp=a )t Ixfp, -a)



and

! ! 1
‘Frz(z'-“ﬁe“ ):Idaofdhof dA, fdhde(Dﬁ)y,(DiZ)yz 'F(zh th“qsut' (5-6)
~g [D (A jpA,i)h

where

5 ‘
Tlzy, v, 19)= M(¢) - (5.7)
56,58, .04 .

Y2

is the generalized vertex operator of three-meson coupling in the
presence of an external field, and the polarization operator
P(zylo) is determined by eq. (2.23). The functional R(¢

ex')

in terms of the quantities (5.5-6) has the following form

Moy tefe" (T +5 )+ 192 f <"1y,

R(4°* )=e . (5.8)

The generating function for amplitudes of the inelastic processes
is determined as the residue of the two—pafticle Green function of

nucleons in the presence of an external field (5.1):

. ext .
'F(P1P2;q1q2|¢ )= lim 1 (p,z-m)(qf—m )G(p,pz;q,qzlg‘b." ) . (5.9)
Pf. qz,"mz i=1,2

'Dropping, in the right hand side (5.9) the factor exp(ill(¢°™"))
which does not contribute to the particle interaction, and performing
changes of the variables (3.6), we get the following expression for
the generating functional (5.9):

) Ix (p,-q )+lx2(p2—'q2)
F(p,pz;qrqz\(ﬁ"'v):éf dx,dx, e ! ! .

o s

(5.10)

22

o0 (1) ext . ext
-flév,] . E (P;q,ilv,)e”’ 6 Dytegapxglyéd )

? .
19 f¢°M'T, (quzlelfztﬁef')

~fldv,] ~E"Up,q,lv,)e F(x;x,liqiyi

ext ),

where
- N oxt -] ~iys 20 11, |
F(x1x2'|ly I ;P )=g D:;kz Of dye (5'11)
Here the quantity Df, is defined by
Dy = Dy (xyx0ipypyiaya,lvyvyd ™ ) =D}, (xyxp5p,0 1v)) -
: ' (5.12)

1 1 7
—Of daofd)t,of d)lz fdzdy,dyz qbex'(z)D(x,—y,)r;z(zy,yéla¢ ext_

-qg ID()\,I.',-(-)\ziz))' D(Yz"Xz)
and corresponds to the full Green function of the meson field

interacting simultaneously with an external field qS"'

and the
sources j; and j, . .

The amplitudes of the processes when N secondary mesons
are produced in two-nucleon collision, are determined by the

functional derivatives of the generating functional (5,10):

4 N
(27) 8(q,+q2-P,"P2— 121 kl)F(Prpz;qrqz"krkz"'kN)=
(5.13)
N : .
=0 [ dy elY;k] 8 F( . C ext .
=1 1 oxt * P1P21q1qzl¢ )] ¢ex'_o .
5 y =
1
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For example, the amplitude of production of one secondary

meson with the momentum k has the form

, e (1) . o _(2) .
Fp,pyia,a,:k)=ig [18v,] E (pyaglv)) 18w, ] E (pyq,10 ).

, . . 1 oy 2ot 5.14
<[5 (prayikylvy) +1; (pzqz;kzlvz)]-fdxe' Agz D% -of dye v Bl é )

o {1 4 o (2 _ x , -1g2[D¥% 11
+igfloy ]_mE{ ?p,q,.]v,)f[ﬁvz ]qu{ ,(pzqzlvz)fdxe' A‘I,‘{gt;, prakly)-e 1271z

Here we used the notation

. k L, ext . 5.15),
I‘,(p'q,;k".lu,)=f dze'” r (z|é ).‘x'=q ( )
i=1,2 S ™' =0

and
- ] 1 1 Iz k
I‘u(x;p’q,;k.]v')=-gt{ di, ofd)\zfdz dy,dy, e .

(5.16)
. D(y,—-;-)D(y27+—;—-)-I‘(y,yzzﬁ| —g fD(A f,+2,i0,)).

The similar expressions can be obtained for the production

amplitudes of two and more secondary mesons,

In conclusion the authors express their deep gratitude to
N.N. Bogolubov and A.A. Logunov for helpful and stimulating
discussion and to D.I. Blokhintsev, B.M. Barbashov, S.P. Kuleshov,

R.M. Muradyan, A.N. Sissakian for interesting discussion.
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Appendix

Consider the structure of the quantity I[I,, , determined
by eq. (2.22). Using Fourier-transformation of the functional ()

to the functional space of the virtual nucleon current n{x)
N(p)=[dnliy)e /N (A1)

and the definition of the polarization operator of the meson field

(2.23) we find the following expression for the quantity I,

19 fon ig D7}
;=87 N(n)(e ’ Toon)(e -QI 112 ~1)=

Ig JO(Ayi;+A15)7

1 1
= g’of di, ofdz\zfdn N(n)e J Dniy-fDni,= (AD)

1 1 .
== gzof dA, ofd'\z Jdx; d"z(Dir),,,(Diz)xz P(x;x;]~gN [Dj;=g A3 /D j3) .

The similar expressions can be found for the quantities I, ,

determined by eq. (2.21). Really, taking into account the condition

51
5% !¢=o (A3)

we find

M,=fdpT(y)Ce P gy Dj,-1)-

1gAfpn| (A1)

1 4 :
=_g’of do fd) [dnTn)e ' fDni, O, =

1 ag .
--g J do S [dx,dxy(Di,), (BL), Plxyx)=hs [O1, ).
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* Using formulas (A2) and (A 4) and the definition of the full Green
function of the meson field in the presence of external sources,

one can easily obtain the expressions (2.26-29).
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