E.A. Solodovnikova, A.N. Te.vkhelidze, O.A. Khrustalev**

OSCILLATORY LEVELS
OF A PARTICLE AS A RESULT OF STRONG INTERACTION WITH THE FIELD

Submitted to TVID

E.A. Solodovnikova, A.N. Tavkhelidze, O.A. Khrustalev *

OSCILLATORY LEVELS
of a Particle as a result OF STRONG INTERACTION
WITH THE FIELD

Submitted to TVID

[^0]
1. Introduotion

Nowadays a tendency exists to treat hadrons as some complicated structures of either the true elementary particles or certain quasielementary excitations. These may be: Quarks, if speaking about static features of a particle and the simplest properties of a soattering; coherent compleoes ${ }^{1)}$, partons ${ }^{2)}$ or droplets, if more complioated charaoteristios of bigh-onergy interaction should be considered. All these concepts usually are introduced purely operationally, and, as a rule, the interaction dyamical picture itself is not even touched. Recently very interesting work ${ }^{4}$) has appeared in which a conneotion between the ookerent state method and quark model has been established. So, in this work there ilistly has been oreated the dyiamioal model, which explains in what way the quasielementary exoltations of the coherent state tjpe oocur. In the present pape:: we wish to show that the above type structures are a natural ::esult of the strong interaotion of a particle with boson field.

The ideas on the oomplicated structure of the particle and on the presence of exoited states are permanently inherent in any strong-oeupling problem ${ }^{5)}$. Here it should be recalled that the main difficulties of the above theory are due to the urgent necessity to work from the very beginning with the notions different from those of free field theory. The only well-known consistent model of strong ooupling in field theory is the model of fixed souroe of the boson field. This model, nevertheless, is rather far from real interactions oonserving the total momentum.

The method of a separation of the particle motion in the field which takes into account the translation degeneraoy due to the total momentum oonservation, has been introduced by N.N. Bogolubov ${ }^{6)}$. This nethod makes it pessible to construct a scheme of suocessive approximations for the energy and wave functions of a system, wh:oh allows for the conservation of the total momentum explioit: y.

In this piper by using the Bogolubov method one of the strong-coupl:ng problem, viz, an interaotion of the nonrelativistic partille with the soalar field, is discussed. It is shown that stationury states of the above system are just the oscillatory states "f the particle surrounded by a oloud of the soalar quanta, which to acertain degree are an analog of the states considered ill refs. ${ }^{1,4 \text {). }}$
2. Interaotijn of a Partiole with the Soalar Field in the Case of Eark and ntermediate coupling

The problam of interaotion of a nonrelativistic particle with scalar field was found to be useful in modelling rather wide olass of mors interesting physioal problems. Here one can mention, first of all, suoh problems as: (1) Interaction of lowenergy fermions with the soalar meson field, (1i) motion of an electron in polar crystal or semiconduotor ${ }^{6,7 \text {). On writting the }}$ Hamiltonian of the system under consideration as

$$
\begin{equation*}
H=\frac{1}{2 \mu} \vec{p}^{2}+g \sum a_{f} e^{i \vec{f} \overrightarrow{2}_{f}}+a_{f}^{*} e^{-i \vec{f} \vec{b}_{f}^{+}}+\varepsilon^{2} \sum \nu_{f} b_{f}^{+} b_{f}, \tag{1}
\end{equation*}
$$

where g and ε^{2} are dimensionless constants, one oan predict all the possible relations between the energy of a free soalar
field (further its quanta will be called phoncns) and that of the particle-field interaction. The oase $\varepsilon^{2}=1$ and $g \ll 1$ is Just the weak-coupling limit, and here the orinary perturbation theory is applicable ${ }^{*}$. In this case it is possible, in the approximation, to distinguish rather well the state of the particle and look for the wave funation of the state "particle $+n$ phonons" in the form of the product of functions, depending only on the partiole radius vector and the phonon variables:

$$
\begin{equation*}
\psi\left(\vec{z}, n_{f}\right)=\varphi(\vec{z}) \theta\left(n_{f}\right) \tag{2}
\end{equation*}
$$

If this function is an eigenfunction of the total momentum operator

$$
\begin{equation*}
\vec{p}=\vec{p}+\hbar \sum \vec{f} b_{f}^{+} b_{f} \tag{3}
\end{equation*}
$$

then it has the form

$$
\begin{equation*}
\psi\left(\vec{i}, n_{f}\right)=\frac{1}{\sqrt{V}} \exp \left[i \frac{\vec{p}-\vec{p}^{\prime}}{\hbar} \vec{z}\right] \theta\left(\eta_{f}\right) \tag{4}
\end{equation*}
$$

where \vec{P}^{\prime} is the total momentum of the phonons. These functions at the same time are the eigenfunctions of the operator

$$
\begin{equation*}
\frac{1}{2 \mu} \vec{P}^{2}+\varepsilon^{2} \sum \nu_{f} b_{f}^{+} b_{f} \tag{5}
\end{equation*}
$$

which represents an unperturbed energy operate: in the weakcoupling limit. Thus, within the theory of weais interactions

[^1]one can get quit; simple expansions in the eigenfunotions of energy and momen:um for the wave funotions of a system.

However, the case $g \sim \varepsilon^{2}$ or $g>\varepsilon^{2}$ (1.e. as basic effects are to be considired those due to an equivalent aocount of the partiole kinetic energy and that of the partiole-field interaction) requires another approach. Here the main difficulty is: In what way one lian correctly give account of the conservation law of the total momentum for the system.

The wave funcitions (4) oannot be the eigenfunctions of the operator

$$
\begin{equation*}
\frac{1}{2_{\mu}} \vec{p}^{2}+o \sum a_{f} e^{i \vec{f}^{2}} b_{f}+a_{f}^{*} e^{-i \vec{f}^{*}} b_{f}^{+} \tag{6}
\end{equation*}
$$

which is an initial Hamiltonian in the strong-ooupling limit. Therefore in the theory of strong ooupling the problem arises of the correct ol.oi0e of stationary wave funotions, whioh make it possible to pieserve the partiole indiriduality as well as the total momentim.

To this end we do employ an adiabatio variant of perturbation theory developed in ref. ${ }^{6}$). The above work just dealt with the speoial case of ediabatic interactions when $g=\varepsilon \ll 1$ i, i.e. the interaction is treated as small one though the interaction energy is muoh hy gher than that of a free field. However, the method of separating of the particie coordinate developed in this work, is so general that it oan be immediately extended to the strong-coupling oase $\varepsilon^{2}=1, g \gg 1$, considered here.

Before describing the methoditself, let us try less general (or less rigorous) means for taking into aocount the momentum and partiole individuality oonservation. These may serve to il-
lustrate once more the egsence of the method of ref.6).
One of the possibilities to take into accound the momentum conservation is to pass to a representation in vhich the total momentum and energy operators become C-numbers. This poesibiliiy was indicated in ref.6) and successively stucied in ref.9). On using an appropriate canonical transformatior

$$
\begin{equation*}
b_{f} \rightarrow e^{-1 \vec{f}^{-}} a_{f} \quad, \quad \vec{P} \rightarrow \vec{P}-\hbar \sum \vec{f} a_{f}^{+} a_{f} \tag{7}
\end{equation*}
$$

the Hamiltonian (1) takes the form (we put $\varepsilon^{2}=1$;

$$
\begin{equation*}
H=\frac{1}{2_{\mu}}\left(\vec{p}-\hbar \sum \vec{f} a_{f}^{+} a_{f}\right)^{2}+g \sum a_{f} a_{f}+a_{f}^{*} a_{f}^{+}+\sum \cdot f a_{f}^{+} a_{f} \tag{8}
\end{equation*}
$$

where \vec{P} is a C-number.
The ground state in ref.9) was searched by use of the minimara energy condition for trial functions corresponding to the system state which consists of a particle with the cloud of noncorrelating phonons around the particle. The mathematical expression of this is the canonioal transformation which transforms the operators a_{f} and a_{f}^{+}to operators ξ_{f}, ξ_{f}^{+}

$$
\begin{equation*}
a_{f}=u_{f}+\xi_{f}, \quad a_{f}^{+}=u_{f}^{*}+\xi_{f}^{+} \tag{9}
\end{equation*}
$$

Under such a transformation a vacuum becomes the coherent phonon state. The assumption on statistical independence of phonons simplifies calculations but at the same time restricts rather strongly the domain of validity of the method. In employing the assumption (9) the particle must be consldered without a recoil fron the phonons emitted, because the rycoil introduces a correlation between successively emitted pionons. The use of the transformation (9) makes the method of re?.9) closely
related to that of intermediate coupling introduced earlier by Tomonaga 10) for solving the problem of interaction of a fixed nucleon with cherged mesons. The basic assumption of the methor 1 s that all the mesons forming the ground state of a system are described by the same wave functions though the number of virtual mesons is rot limited. For the problems with the fixed nucleon the intermediate coupling method gives the correct relations in both strcng and weak coupling limits. However, to problems concerning the motion of a particle this method wittingly cannot be applifd in the strong coupling limit, in which the neglect of the recoil of a particle due to the emission of the huge amount of fhonons cannot be justified. Now let us turn back to ref. ${ }^{9)}$. The ninimum energy condition gives the expression

$$
\begin{equation*}
g u_{f}+u_{f}^{*}\left\{\nu_{f}-\frac{t_{1}}{\mu^{\mu}} \vec{f} \vec{P}+\frac{\hbar^{2}}{2 \mu} \vec{f}^{2}+\frac{\hbar^{2}}{2 \mu} \vec{f} \cdot \sum \vec{f}\left|u_{f}\right|^{2}\right\}=0 . \tag{10}
\end{equation*}
$$

Symmetry properties of the numbers make it possible to represent the sum in Eq. (10) as

$$
\begin{equation*}
\sum \vec{f}\left|u_{y}\right|^{2}=\imath^{\vec{P}} \tag{11}
\end{equation*}
$$

and the equatior for η followe

$$
\begin{equation*}
\eta \vec{P}=g^{2} \sum \hbar \vec{f} \frac{\left|a_{\mu}\right|^{2}}{y-\frac{h}{\mu^{\prime}} \vec{f}(f-r)+\frac{\hbar^{2}}{2 \mu} \vec{F}^{2}} . \tag{12}
\end{equation*}
$$

On solving Eq.(12) it is possible by using Eq.(10) to obtain the numbers n_{f} and the energy of the ground state $E=\langle H\rangle=\frac{\vec{P}^{2}}{2 \mu} \cdot g \sum a_{f} u_{f}+G_{f}^{\prime} u_{f}^{*}+\frac{\hbar^{2}}{2_{\mu}}\left(\sum \vec{f}\left|u_{f}\right|^{2}\right)^{2}+\sum k \mu_{d}{ }^{2}\left(\frac{v}{f}-\hbar \frac{\vec{P} f}{\mu}+\frac{\left(\hat{f}^{2} f^{2}\right.}{2 \mu}\right)$. In ref. ${ }^{9)} \mathrm{Eq.(1̌)}$ has been solved exactly for the special choice of frequencies γ and coefficients a_{y}, which corresponds to the problem of motion of an electron through a polar crystal.

As to our purposes, it is sufficient to note that for smali g the sum of absolute squares of $\left|U_{f}\right|^{2} \mathrm{Eq} .(10)$ as well as next to last term of (13) can be neglected. Then Eq. (13) gives the expression for the energy and effective mass of the particle just the same as those of the weak coupling theory ${ }^{8}$). Thus, an account of terms of higher orders in g by ineans of Eqs. (11), (12) leads only to corrections to the weak coupling theory, as it should be expected. In the subsequent paper ${ }^{11}$) an atternpt was made to allow for the correlations between virtual phonons by introducing more complicated trial functions on which one seeks to minimize the onergy. Such an approach severely complicates calculations and that is more important, gives rise to the loss of clear physical criterion which permits to mare a choice between the trial functions.

3. The Variational Principle in the Strong-Coupling Iimit

The above considerations being quite rigorous once more manifest the complexity of the problem in strong-coipling limit. We find therefore $1 t$ convenient to present some ot ier argments not so rigorous but more tightly related to the metiod of ref. 6). So, if in the strong coupling limit the unpertu: bed Hamiltonian of the system (6) is Iinear in the operators \boldsymbol{l}_{f} and ${\underset{f}{f}}^{+}$, then the Heisenberg equation of motion for the operacors does not permit to identify, in this approximation, thess operators with the creation and annihilation operators of the :eal phonons capable to transfer the energy and momenta.

The simplest way to be oonvinced of this is :0 ohange the
operators $l_{f} \ell_{f}^{+}$by the complex coordinates

$$
\begin{equation*}
q_{f}=\frac{\varepsilon_{f}+b_{-f}^{+}}{\sqrt{2}}, \quad P_{f}=i \frac{\varepsilon_{f}^{+}-E_{-f}}{\sqrt{2}} \tag{14}
\end{equation*}
$$

In this case the Hamiltonian (6) depends on the variables q_{f} only and the Heisenberg equation of motion results in the solution

$$
\begin{equation*}
q_{f}(t)=\operatorname{cons} t \tag{15}
\end{equation*}
$$

In the systent with the Hamiltonian (6) the phonons are viewed as a certain passive mass, which adheres to the particle and moves together and creates for the particle something like a potential well. So, to the first approximation one oan picture the particle-field interaction as follows: The particle has dug the potential well in the field and then moves through the field, the motion being composite and equal to the sum of uniform motion of a velocity \vec{C} and vibratory motion inside the well。 The uniform mition (i.e. the momentum conservation, too) can be allowed for b, inserting into the Hamiltonian an appropriate energy, i.e. boing over to the Hamiltonian

$$
\begin{equation*}
H=\frac{1}{2 \mu \mu} \vec{p}^{2}+g \sum a_{f} e^{\cdot \vec{f} \overrightarrow{2}} b_{f}+a_{f}^{*} e^{-\sqrt{f} \overrightarrow{2}} b_{f}^{+}+\sum \nu_{f} b_{f}^{+} b_{f}-\vec{C}\left(\vec{p}+\hbar \sum \vec{f} b_{f}^{+} b_{f}\right) \tag{16}
\end{equation*}
$$

The ground state of the system will be searched by means of the variationel principle, with the trial functions of the type Eq. (2). Before it is necessary to make the oanonical transformation (9) of phonon field and choose the phonon states in the form of states with fixed number of phonons. To the first approximation, the choice of the trial functions in the form (2) is justified by the classical behaviour of phonons and by posoible
separation of the motion of the centre of mass of the system. The minimum enegry condition $\frac{\partial}{\partial u_{f}}\langle H\rangle=0, \frac{\partial}{\partial u_{f}^{*}}\langle H ;=0$ provides the following values for the numbers u_{f}

$$
\begin{equation*}
u_{f}=-g \frac{a_{f}^{*}\left\langle e^{-i \vec{f} \vec{z}}\right\rangle}{\nu_{f}-\hbar \vec{c} \vec{f}} \tag{17}
\end{equation*}
$$

where symbol $\left\langle e^{-i \vec{f} \overrightarrow{2}}\right\rangle$ means the averaging of the exponential over the wave function of the particle ground state, and the Hamiltonian (15) takes the form

$$
\begin{align*}
& \left.H=\frac{1}{2 \mu} \vec{p}^{2}+g \sum a_{f} u_{f} e^{i \overrightarrow{f \vec{f}^{*}}}+Q_{f}^{*} u_{f}^{*} e^{-i \vec{f} \overrightarrow{2}}+\sum \right\rvert\, u_{f}^{2}\left(\nu_{f}-\hbar \vec{c}_{f}^{*}\right)-\vec{C} \vec{p}_{+} \\
& +\sum\left\{g a_{f} e^{i \vec{f} \vec{i}}+u_{f}^{*}\left(\nu_{f}-\hbar \overrightarrow{c_{f}}\right)\right\} b_{f}+\left\{g a_{f}^{*} e^{-i \vec{i}}+u_{f}\left(\nu_{f}-\hbar \vec{c}_{f}\right)\right\} b_{f}^{+} \tag{18}\\
& +\sum\left(\nu_{f}-\hbar \vec{c} \vec{f}\right) b_{f}^{+} b_{f} .
\end{align*}
$$

An appearance of $-\vec{C} \vec{p}$ in Eq.(18) can be treated as pasaing to the coordinate system moving together with the jarticle, or in the Heisenberg operator language, the replacement

$$
\begin{equation*}
\vec{z}-\vec{z}-\vec{C} t \tag{19}
\end{equation*}
$$

1.e. the term $-\vec{C} \vec{P}$ can be excluded from the Hami; tonian (18) by a simple transformation of the wave function.

Next, representing the wave function of the system in the zeroth approximation in the form of product

$$
\begin{equation*}
\psi\left(\vec{z}, n_{f}\right)=\varphi_{0}(\vec{z}) \Phi_{0}\left(n_{f}\right) \tag{20}
\end{equation*}
$$

and varying φ_{c} and $\Phi_{0} \quad$ independently, we find that the variational principle

$$
\begin{equation*}
(\delta \psi,(H-E) \psi)=0 \tag{21}
\end{equation*}
$$

results in the equations

$$
\begin{align*}
& \left(\Phi_{0},(H-E) \Phi_{0}\right) \varphi_{0}(\vec{z})=0 . \tag{22}\\
& \left(\varphi_{1},(H-E) \varphi_{0}\right) \Phi_{c}\left(n_{f}\right)=0 . \tag{23}
\end{align*}
$$

Because of (17) the Hamiltonian (18) naturally breaks down into the terms froportional to various powers of g, viz.: The first line of Eq. (18) is proportional to g^{2} (the problem how to increase the order of kinetic energy will be discussed somewhat later; , second - to g, third to zeroth-order of g. Expanding the energy in power series in g and putting $W_{e}=g^{2} E_{\mathrm{c}}+\sum\left|u_{f}\right|^{2}\left(\nu, h \vec{c}_{f}\right)$ we find thet Eq.(22) reduces to the Schrbdinger equation for a particle

$$
\begin{equation*}
\left(\frac{1}{2_{\mu}} \vec{p}^{2}+V(\vec{z})-W_{0}^{\prime}\right) \varphi_{0}(\vec{z})=0 \tag{24}
\end{equation*}
$$

with the potential

$$
\begin{equation*}
V(\vec{z})=g \sum a_{f} u_{f} e^{i \vec{f} \vec{z}}+a_{f}^{*} u_{f}^{*} e^{-i \vec{f} \vec{z}} . \tag{25}
\end{equation*}
$$

In virtue of the identity

$$
\begin{equation*}
\left(t_{0},\left(H_{0}-g^{2} E_{c}\right) \varphi_{0}\right)=0 \tag{26}
\end{equation*}
$$

Eq.(23) retluces to the relation

$$
\begin{equation*}
\left[\left(\varphi_{0}, H_{1} \varphi_{0}\right)-g E_{1}\right] \Phi_{0}\left(n_{f}\right)=0, \tag{27}
\end{equation*}
$$

where in t, there are involved the terms of Eq. (18) linear ing. Due to the condition (17) the average value of H, over the wave function sjecifying the ground state of a particle is equal to zero, and jq.(27) can be satisfied provided we put $E_{1}=0$. The wave funct:ion ϕ_{c} there remains arbitrary. In the given approximation, by fixing the term of the highest order in g in the
exact expression for the momentum operator, it is possible to put the total momentum of the system equel 1:0

$$
\begin{equation*}
\vec{p}=\hbar \sum \vec{f}\left|u_{j}\right|^{2} \tag{28}
\end{equation*}
$$

reducing the momentum operator to C-number.
Further, it is convenient to introduce the coefficients \tilde{u}_{f} expressed through μ_{s} as

$$
\begin{equation*}
\tilde{u}_{f}=\frac{\sqrt{2} \nu_{f}}{\nu_{f}+\hbar \vec{c} \vec{f}} u_{f}=-g \frac{A_{f}^{4} \nu_{f}}{\nu_{f}^{2}-\hbar^{2}(\vec{c} \vec{f})^{2}}\left\langle e^{-i \vec{f} 2}\right\rangle, \quad A_{f}=\sqrt{2} a_{f} . \tag{29}
\end{equation*}
$$

Then there may be indicated the more direct relationship of the momentum with the vector \vec{C} :

$$
\begin{equation*}
\vec{\rho}=\hbar^{2} \sum \frac{\vec{f}(\vec{f} \vec{c})}{\nu_{f}} /\left.\tilde{u}_{f}\right|^{2} \tag{30}
\end{equation*}
$$

The energy, without that specifying the motion of a system as a whole, can be expressed through the coefficients \tilde{u}_{j} as

$$
\begin{equation*}
g^{2} E_{0}=W_{c}+\frac{1}{2} \sum\left|\tilde{u}_{f}\right|^{2}\left(\nu_{f}+\frac{\hbar^{2}(\vec{c} \vec{f})^{2}}{\nu_{f}}\right) \tag{31}
\end{equation*}
$$

Using the Sohrodinger equation (23) which results in the relation $\frac{\partial W}{\partial \vec{c}}=\left\langle\frac{\partial V}{\partial \vec{c}}\right\rangle$, one can show that

$$
\begin{equation*}
\frac{\partial g^{2} E_{0}}{\partial C^{\alpha}}=\sum_{\beta} C^{\beta} \frac{\partial P^{\beta}}{\partial C^{\alpha}} \tag{32}
\end{equation*}
$$

from whioh

$$
\begin{equation*}
\vec{c}=\frac{\partial g^{2} E_{0}}{\partial \vec{P}} \tag{33}
\end{equation*}
$$

follows, i.e. the vector \vec{C} represents the rean velocity of the particle. Note that if $q^{2} E_{0}$ and β are quantities of order of g^{2} then the vector $\overrightarrow{\mathcal{C}}$ is of the zeroth order in $y, 1 . e$. the
momentum transferred by the particle is significantly less than the total momentum of the system ${ }^{*)}$.

Thus, the calculations based on the above variational principle indicate that as the first approximation to describing strong field-particle interactions, one can really employ simple assumptions given ε, t the beginning of the section. These consist in that the mein effect of interaction is just the preparation by the partjcle of the potential well.

Proceeding from Eq. (30) for the total energy it is easy to get the value of tre particle effective mass

$$
\begin{equation*}
M_{i \varphi p}=\frac{1}{3} \sum \frac{\hbar^{2} \vec{f}^{2}}{\nu_{f}}\left|\tilde{u}_{f}^{(\nu)}\right|^{2} \tag{34}
\end{equation*}
$$

where $\tilde{U}_{f}^{(\nu)}$ are t\}e values of U_{f} computed at $\vec{c}=0$. The expressions for U_{f} and the effective mass differ from those derived by use of the canonical transformation which reduces the total momentum to (-number. The expressions (17) for U_{f} now contain a form factor of the particle taking into account the recoil in the phoncin emission. Thus the new version of the variational prinoiple reflects, to a degree, the true picture of interactions. One ©f the spesific features of nonweak interact1ons of a particle with the field is just the pronounced nonlinearity of the ecuation for the particle ground state, in which the effective potential is expressed by the form factor of the particle in the ground state. Therefore to determine in fact the wave function of the ground state it is more convenient

[^2]to employ the variational principle
\[

$$
\begin{equation*}
\frac{\hbar^{2}}{\mu} \int \frac{\partial \psi^{*}(\vec{z})}{\partial \vec{z}} \frac{\partial \varphi(\vec{z})}{\partial \vec{z}} d \vec{z}-\sum \frac{q^{2} \nu_{f}\left|A_{f}\right|^{2}}{\nu_{f}^{2}-\hbar^{2}\left(\overrightarrow{c_{f}}\right)^{2}}\left|\int e^{-i \vec{f}} \psi\left(\frac{r}{r}\right) \varphi(\vec{z})\right|^{2}=\min _{i n} \tag{35}
\end{equation*}
$$

\]

with the condition

$$
\begin{equation*}
\int|\varphi(\vec{z})|^{2} d \vec{z}=1 . \tag{36}
\end{equation*}
$$

On cosidering at the same time both the equation in variations and Eq.(24) which follow from (35), the linear incegro-differential equation

$$
\begin{equation*}
\left(-\frac{\hbar^{2}}{2 \mu} \frac{\partial^{2}}{\partial^{2} \bar{z}^{2}}+V(\bar{z})-W\right) \varphi(\bar{z})=\int K\left(\bar{z}, \bar{z}^{\prime}\right) \varphi\left(\bar{z}^{\prime}\right) d z^{\prime} \tag{37}
\end{equation*}
$$

$$
\begin{align*}
& \text { 1s obtained with the kernel } \\
& \qquad K(\vec{z}, \vec{i})=\sum g^{2} \frac{\nu_{f}\left|A_{f}\right|^{2}}{\left.\nu_{f}^{2}-\hbar^{2} \mid \bar{C} \vec{f}\right)} e^{\left\langle\vec{f}\left(\vec{z}-\vec{z}^{\prime}\right)\right.} \varphi_{0}\left(z^{\prime}\right) \varphi^{*}\left(\vec{z}^{\prime}\right) \tag{38}
\end{align*}
$$

specifying the excited states of the particle.
Thus, the variational principle described above reproduces correctly specific nature of strong particle-field interactions. It is not very hard, however, to learn the nonstrictness and insufficiency inherent in this principle: The exact account of the momentum conservation is replaced here by the approximate separation of the principal part of the total momentum. Although this trick makes it possible to separate the gross effect of interaction, it provides no hints conoerning the detills of interaction. In formulating the variational principle tile quantum properties of the phonon field appeared to be out of the consideration. For, if we take into account the energy and nomentum transfer by phonons, we at once lose a chance to repre:sent the wave function of the system in the form of product $\mathrm{Fq} .(: 0)$ and identify Eq. (30) with the total momentum of the system This makes
unknown the degree of an accuracy to which the particle state can be desoribed oy the Schrödinger equation with the potential (25). Later on it will be shown that this equation being modified a little, may serve, in fact, for describing of quasistationary states of a particle in the field, but to do this the more detailed analysis is neoessary of the effects caused by the translation degeneracy due to the total momentum conservation.

4. The Bogolubov Transformation

An attempt to allow for the translation degeneraoy due to the momentum conservation, transforming to the moving coordinate system by means of (19) is, of course, very naive. In ref.6) the total momentum conservation as well as the translation degeneracy were taken into account by the transformation

$$
\begin{equation*}
\vec{c} \rightarrow \vec{\lambda}+\vec{q} \tag{39}
\end{equation*}
$$

which introduces instead of one variable, two independent variables \vec{q} and $\vec{\lambda} ; \vec{q}$ being associated with the uniform motion of the particle and $\vec{\lambda}$ - with the oscillatory motion inside the potential well. An explio1t form of the canonical transformation of \vec{z} and b_{f} to the new operators oan be found from the condition

$$
\begin{equation*}
-i \hbar \frac{\partial}{\partial \vec{q}}=\vec{p}+\hbar \sum \vec{f} b_{f}^{r} b_{f} \tag{40}
\end{equation*}
$$

according to which the derivative with respect to \vec{q} must be the total momentam operator.

For further consideration it is more convenient to change the operators l_{f}, l_{f}^{+}by the complex coordinates $q_{f}, p_{f}=-i \frac{\partial}{\partial q_{f}}$ which break the energy of the free phonon field into the kine-
tic and potential energy of ifeld oscillatore. Let us perform this transformation in such a way that both the potential energy of the field oscillators and the interaction energy of the particle with the field become quantities of the same order fo this end let us go back to the Hamiltonian (l) adding to it the energy of the field zeroth oscillations

It is useful to introduce the following combitations of the constents g and ε^{2}.

$$
\begin{equation*}
x=\frac{\varepsilon^{2}}{y} \quad, \quad x^{4}=\frac{y^{2}}{\varepsilon^{2}} \tag{42}
\end{equation*}
$$

The quantity γ is a small parameter in both cases of stronf coupling $(\varepsilon=1, y \gg 1)$ and adiabatic one ($\because \therefore 1, y=\varepsilon$, for the adiabatic coupling $\quad x=1$, but in the strong-coupling iimit there arises new small parameter $x^{-1} \ll 1$ which still more simplifies the problem. The constants g and ε^{2} are expressed through the new ones in the following way

$$
\begin{equation*}
y=x^{4} y, \quad \varepsilon^{2}=x^{4} j 2 \tag{43}
\end{equation*}
$$

Now let us define the operators

$$
\begin{equation*}
q_{f}=\gamma \frac{b_{f}+b_{-}^{+}}{\sqrt{2}}, \quad P_{f}=\frac{i}{\gamma} \frac{G_{1}^{+}}{\sqrt{2}} \tag{44}
\end{equation*}
$$

which obey the commutation relations

$$
\begin{equation*}
\left[q_{f}, p_{f}\right]=i \delta_{f f^{\prime}} \tag{45}
\end{equation*}
$$

and the reality conditions

$$
\begin{equation*}
q_{f}^{+}=q_{-f}, \quad p_{f}^{+}=p_{-f} . \tag{46}
\end{equation*}
$$

Then the Hamiltonian (22) takes on the form
$H=\frac{1}{2 \mu} \vec{p}^{2}+x^{4}\left\{\sum A_{f} e^{\vec{f} \overrightarrow{2}} q_{f}+\frac{1}{2} \sum \nu_{f} q_{-f} q_{f}\right\}+\frac{x^{4} j^{4}}{2} \sum \nu_{f} p_{f f} P_{f}$
and the total momentim operator

$$
\begin{equation*}
\vec{p}=\vec{p} \cdots i \hbar \sum \vec{f} q_{f} p_{f} \tag{49}
\end{equation*}
$$

Inserting the variable \vec{q} satisfying the relation (40) in the representation in which the operator q_{f} reduces to multiplication by a number, it should be put

$$
\begin{align*}
& \frac{\partial q_{i}}{\partial q_{q}}=-i \vec{f} q_{f} \tag{49}\\
& \frac{\partial q_{\alpha}}{\partial q_{\beta}}=\delta_{\alpha \beta} \tag{50}
\end{align*}
$$

Bearing in mind that now the potential energy, generally speaking, is rather large quantity, we break up \vec{z} into components In such a way that ir the following it would be possible to take Into account the kinetic enegry of oscillatory motion inside the well even in the first order

$$
\begin{equation*}
\vec{z}=\vec{\eta}+\frac{1}{x} \vec{\lambda} \tag{51}
\end{equation*}
$$

In this case the operator of the particle kinetic energy will be as follows

$$
\begin{equation*}
-i e^{2} \frac{\hbar^{2}}{2 \mu} \frac{\partial^{2}}{\partial \lambda^{2}} \tag{52}
\end{equation*}
$$

Eq. (30) indicates that the operators q_{f} have to be expressed In terms of new variables as

$$
\begin{equation*}
q_{f}=: e^{-i(\vec{f})} B_{f} \tag{53}
\end{equation*}
$$

Note that the transfcrmations (51), (53) introduce instead of, $\vec{\imath}, \ldots, q_{f}, \ldots$ the variatles $\vec{\lambda}, \vec{q}, \ldots, \beta_{f}, \ldots$, the number of which is by 3 greater than earlier. As $\vec{\lambda}$ and \vec{q} have been introduoed to be independent variables, the number of the independent variables β_{f} should be constrained.

We notice that in the Hamiltonian (47) the kineti.c energy represents a small perturbation, but, on the other land just this energy depends on the variable \vec{q}. If this one is neglected then q_{f} will commute with the Hamiltonian and energy levels will be functions of q_{f}. In particular, the ground state of the system will be determined by some set of the numbers U_{f}. No dependence can arise between them because an additional variable has not yet appeared in this approximation. An account of the kinetic energy would produce small deviations of q_{f} from u_{f}, and the variables describing this deviation must ober three additional conditions. So, the transformation (53) reduces to the replaoement

$$
\begin{equation*}
q_{f}=\left(u_{f}+\gamma Q_{f}\right) e^{-i \vec{q}} \tag{54}
\end{equation*}
$$

Variables Q_{f} can be subjected to the simplest linear additional conditions

$$
\begin{equation*}
\sum_{f} \vec{f} v_{f}^{*} Q_{f}=0 \tag{55}
\end{equation*}
$$

All the quantities introduced anew satisfy the reality conditions

$$
\begin{equation*}
u_{f}^{*}=u_{-f}, v_{f}^{*}=v_{-f}, \quad Q_{f}^{+}=Q_{-f}, \tag{56}
\end{equation*}
$$

and the numbers V_{f} without restricting the generality, may be chosen that the relation

$$
\begin{equation*}
\sum_{f} f_{\alpha} f_{\beta} u_{f} v_{f}^{*}=\delta_{\alpha \beta} \tag{57}
\end{equation*}
$$

holds. Note that ${ }^{f}$ by the numbers u_{f} and V_{f} it is jossible to construct a projection matrix

$$
\begin{equation*}
A_{f e}=\delta_{f e}-u_{f}(\vec{f} \vec{e}) v_{e}^{*} \tag{58}
\end{equation*}
$$

and the variables Q_{f} can be represented as a linear :ombination
of the independent variables Z_{f};

$$
\begin{equation*}
Q_{f}=\sum_{e} A_{f t} Z_{e} \tag{59}
\end{equation*}
$$

satisfying the reality condition. In this case the additional conditions (: 16) are fulfilled automatically. Now derivatives with respect to ψ_{j} reduce to the expressions

$$
\begin{equation*}
-i \frac{\partial}{\partial q_{s}}=\frac{i}{j} i^{i \vec{f} \vec{q}_{t}^{\prime}}+\frac{\partial \vec{q}}{\partial q_{t}}\left[-i \frac{\partial}{\partial \vec{q}}+i x \frac{\partial}{\partial \vec{N}}+i \sum_{\vec{e}} \vec{e}_{t_{t}} \rho_{e}\right], \tag{60}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{t}^{\prime}=P_{i}-v_{f}^{*} \sum_{e}(\vec{f})\left\langle i_{e} P_{e}, \quad P_{f}=-i \frac{\partial}{\partial Q_{f}}\right. \tag{61}
\end{equation*}
$$

The derivative $\frac{\partial \vec{q}}{\partial q_{f}}$ can be easily found by differentiating the relation

$$
\begin{equation*}
\sum_{-} \vec{f} \vec{f}_{f}^{*}\left(q_{+} e^{i \vec{f} \vec{v}}-u_{j}\right)=0 \tag{62}
\end{equation*}
$$

which follow: from (55), and using the orthogonality condition Eq.(57). As it result we get the relation

$$
\begin{equation*}
\frac{\partial \vec{q}_{i}}{\partial q_{f}}=i \vec{f} v_{f}^{*} e^{i \vec{f} \vec{q}}-\gamma \sum e \cdot \frac{\partial \vec{q}_{e}}{\partial q_{f}} v_{e}^{*} Q_{e} \tag{63}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\frac{\partial \vec{q}}{\partial q_{j}}=e^{i \vec{f} \vec{q}_{\vec{B}_{j}}} \tag{64}
\end{equation*}
$$

Vector $\vec{\beta}_{f}$ lan be explicitly written as a power series in small parameter γ Now for us it is sufficient to note that \vec{B}_{f} depends only on Q_{f}, and all the dependence of $\frac{\partial \vec{q}}{\partial q_{f}}$ on \vec{q} is concentrated in the exponential $e^{i \vec{q} \vec{q}}$. So, the derivative with respect to $l_{/ 5}$ becomes
$-i \frac{\partial}{i^{\prime} l_{f}}=e^{i \vec{f} \dot{r}}\left[\frac{1}{x} P_{f}^{\prime}+\vec{B}_{f}\left(-i \frac{\partial}{\partial \vec{q}}+i x \frac{\partial}{\partial \vec{d}}+i \sum \vec{e} Q_{e} P_{c}^{\prime}\right)\right]$
and the kinetic energy is rewritten in the form

$$
\begin{equation*}
\frac{1}{2} x^{4} \partial^{4} \sum \nu_{f}\left[\frac{1}{\partial} P_{-f}^{\prime}+\vec{B}_{-f}\left(-i \frac{\partial}{\partial \eta}+i x \frac{\partial}{\partial \vec{\lambda}}+\vec{f}+i \sum \hat{e} Q_{e} P_{e}^{\prime}\right]\left[\frac{1}{\gamma} P_{f}^{\prime}+\vec{B}_{f}\left(-i \frac{i}{\partial i}+i \partial_{i}^{\partial}+i \sum \vec{Q}_{\vec{\lambda}} Q_{e} P_{e}^{\prime}\right)\right]\right. \tag{66}
\end{equation*}
$$

Now let us make two remarks: First, the $\because x p r e s s i o n ~(66) ~ r e-~$ veals that the transformed Hamiltonian (47) does not depend explioitly on \vec{q}, and this results in the consurvation of the total momentum. Second, on writing the Heisenberg; equations for $\vec{q}(t)$ one can see that the time dependence of $\vec{q}(t)$ is rather complicated, so the naive picture described earlier, of the uniform motion of the potential well with a particlf, may be regarded only as the first approximation to the true behaviour of the particle-field system.

The Bogolubov transformation (51), (54) has a simple group meaning ${ }^{6)}$. The conservation of the total monentum is a result of the invariance of (47) with respect to the eroup of transformations

$$
\vec{z} \rightarrow \vec{z}+\vec{q}, \quad q_{f} \rightarrow q_{f} e^{i \overrightarrow{f q}}, \quad \vec{q}=\operatorname{cocst}
$$

If \vec{q} is treated as an operator then the canonically conjugate operator of derivative should be identified with the total momentum operator. On the other hand, supposing in (51), (54) the vector \vec{q} being independent variable, we break up the vector \vec{z} into two parts: First one, \vec{X} is invariant under translations. Second, \vec{q} changes with the phase of the operator q_{f}.
5. The Equation for the Ground State of a Pacticle

The derivatives with respect to \vec{q} and Q_{f} in ($6 \dot{6}$) contain small parameters γ^{2} and γ respectively, as factors. Before
proceeding to expand the energy and wave function in power series in γ, the wave Punction, therefore, should be transformed as

$$
\begin{equation*}
\Psi\left(\vec{q}, \vec{\lambda}, Q_{f}\right)=\exp \left[i \frac{\overrightarrow{7} \vec{q}}{\hat{i}} \cdot \frac{1}{j^{2}}\right] \exp \left[\frac{i}{\gamma} \sum S_{f} Q_{f}\right] \Psi '\left(\vec{\lambda}, Q_{f}\right) \tag{57}
\end{equation*}
$$

The numbers S must satisfy the reality condition $S_{f}^{*}=S_{-}$ and, besides, due to (5j) they may be chosen in such a way that the conditions

$$
\begin{equation*}
\sum \vec{F} u_{f}, S_{f}=0 \tag{68}
\end{equation*}
$$

hold. On this transformation the derivative with respeot to \vec{q} replaces by $\frac{1}{\gamma^{2}} \frac{J}{\hbar}$, and the momenta P_{f}^{\prime} by $\frac{1}{\gamma} S_{f}+P_{f}^{\prime}$. Now it is easy to get an expansion of the transformed Hamiltonian (47) In powers of the small parameter γ. A scheme for obtaining this expansion is given in detail in ref. 6). Here it seems sufficient to confine our consideration to the first two terms

$$
\begin{equation*}
H=H_{0}+\gamma H_{1}, \tag{69}
\end{equation*}
$$

where

$$
\begin{align*}
& H_{0}=-x^{2} \frac{\hbar^{2}}{2 \mu} \frac{\partial^{2}}{\partial \vec{\lambda}^{2}}-x^{4} \sum A_{f} u_{f} e^{i} \frac{\vec{f} \vec{\lambda}}{x^{2}}+\frac{x^{4}}{2} \sum \nu_{f}\left|u_{f}\right|^{2}+ \tag{70}\\
&+\frac{x^{4}}{2} \sum \nu_{f}\left|\alpha_{f}\right|^{2}, \\
& H_{f}= \sum \nu_{f} \alpha_{f}^{*} P_{f}^{\prime}+\sum\left\{\|_{f} e^{i f \frac{\vec{x}^{\prime}}{}}+\nu_{f} u_{f}^{*}-\alpha_{f} \sum_{\vec{e}} \nu_{e} \alpha_{e}^{*}\left(\vec{e}_{f}\right) \nu_{f}^{*}\right\} Q_{f}, \tag{71}\\
& \alpha_{f}=S_{f}+i v_{f}^{*} \frac{\vec{J} \vec{f}}{\hbar} . \tag{72}
\end{align*}
$$

Expanding the wave function and energy in powers of :

$$
\begin{equation*}
E=E_{0} \operatorname{rg} E_{1}+\ldots, \quad \Psi^{\prime}=\mathscr{D}_{0}+\gamma \Phi_{1}+ \tag{73}
\end{equation*}
$$

the equation

$$
\begin{equation*}
(H-E) \Psi^{\prime}=0 \tag{74}
\end{equation*}
$$

can be reduced to the system

$$
\begin{equation*}
\left(H_{0}-E_{0}\right) \Phi_{1}+\left(H_{1}-E_{1}\right) \Phi_{0}=0, . \tag{75}
\end{equation*}
$$

The operatorfor ${ }^{H}$ ores not act on the variables Q_{f}, so the wave function $\bar{\varphi}_{\text {。 }}$ becomes the product

$$
\begin{equation*}
\Phi_{0}=\varphi_{0}(\vec{\lambda}) \theta_{0}\left(Q_{i}\right), \tag{76}
\end{equation*}
$$

where $\theta_{0}\left(Q_{f}\right)$ is an arbitrary function of Q_{f}, and $\varphi_{0}(\vec{\lambda})$ obeys

$$
\begin{align*}
& \text { the equation } \\
& \left(-x^{2} \frac{\hbar^{2}}{2 \mu} \frac{\partial^{2}}{\partial \lambda^{2}}+x^{4} \sum A_{f} u_{f} e^{i f \frac{\vec{d}}{x}}-W_{0}\right) \varphi_{0}(\lambda)=0, \tag{77}\\
& \text { where }
\end{align*}
$$

$$
\begin{equation*}
W_{s}=E_{0}-\frac{x^{4}}{2} \sum \nu_{f}\left|u_{f}\right|^{2}-\frac{x^{4}}{2} \sum \nu_{f}\left|\alpha_{f}\right|^{2} . \tag{78}
\end{equation*}
$$

Taking the second of Eqs.(75) we find that because of the identity

$$
\begin{equation*}
\int \varphi_{0}^{*}(\vec{\lambda})\left(H_{0}-E_{0}\right) \Phi_{1} d \vec{\lambda}=0 \tag{79}
\end{equation*}
$$

the wave function $\theta_{0}\left(Q_{f}\right)$ must obey the equation

$$
\begin{equation*}
\left[\int \varphi_{0}^{*}(\vec{\lambda}) H, \varphi_{0}(\vec{\lambda}) d \vec{\lambda}-E_{1}\right] \theta_{0}\left(O_{f}\right)=0 . \tag{80}
\end{equation*}
$$

The operator H, averaged over the wave function: $\varphi_{0}(\vec{\lambda})$ is Innear in Q_{f}, P_{f}^{\prime}, therefore Eq. (80) cannot have it regular solution except $\left\langle H_{1}\right\rangle=0$. Thus, seoond of (75), though not eliminating the arbitrariness in the choice of function $\theta_{c}\left(Q_{f}\right)$, results in the conditions $E_{1}=O$,

$$
\begin{gather*}
\sum_{f}\left\{A_{f} \int e^{i f \frac{d}{x}}\left|f_{0}(\vec{x})\right|^{2} d \vec{\lambda}+\psi_{f} u_{f}^{*}-\alpha_{f} \sum \nu_{e} \alpha_{e}^{*}(\vec{f} \vec{e}) \nu_{e}^{-}\right\} a_{f}=0, \tag{81}\\
\sum \nu_{f} \alpha_{f}^{*} P_{f}^{\prime}=0 . \tag{82}
\end{gather*}
$$

To satisfy (81), (82) one may put all coefficients of Q_{f} in (81) equal to zero and make use of the relation

$$
\begin{equation*}
\therefore \vec{f} u_{f} P_{f}^{\prime}=0 \tag{83}
\end{equation*}
$$

which immediately follows from the definition (61). The last equality incicates that (82) would be satisfied ip α_{f} would be chosen so that

$$
\begin{equation*}
\nu_{f} \alpha_{f}^{*}=-i u_{f} \hbar(\vec{f} \vec{c}) \tag{84}
\end{equation*}
$$

where \vec{C} is some vector, which has to be taken in such a way that the adcitional conditions on S_{f} Eq. (68) remains valid. Taking into account all the conditions we get the relation for \bar{C} to the total momentum

$$
\begin{equation*}
\vec{J}=\hbar^{2} \sum \frac{\vec{f}(\vec{f} \vec{c})}{u_{f}}\left|u_{f}\right|^{2} . \tag{85}
\end{equation*}
$$

Substituting; (84) in the expressions for the coefficients of the series (81) we find the numbers u_{t} :

$$
\begin{equation*}
u_{t}=-\frac{A_{f}^{*} \nu_{f}}{\nu_{f}^{2}-\hbar^{2}(\vec{f} \vec{c})^{2}} \int e^{-i \vec{\lambda} \vec{\lambda}}\left|\hat{u}_{\Delta}(\vec{\lambda})\right|^{2} d \vec{\lambda} \tag{86}
\end{equation*}
$$

Thus, consicering the Hamiltonian in the first order in γ one can derive the expression for the potential in Eq. (77)
$x^{4} V(\vec{\lambda})=x^{4} \sum_{f} t_{f} u_{f} e^{i \frac{\vec{i}}{x}}=-x^{4} \sum_{f} \frac{\nu_{f} \mid A_{f} \|^{2}\left\langle e^{-i \vec{f} \vec{x}}\right\rangle}{\nu_{f}^{2}-\hbar^{2}(\vec{C} \vec{f})^{2}} e^{i \frac{\vec{f} \vec{i}}{\vec{x}}}$.

The energy of the ground state is

$$
\begin{equation*}
E_{0}=W_{0}+\frac{1}{2} \sum\left|u_{f}\right|^{2}\left(\nu_{f}+\frac{\hbar^{2}(\vec{e} \vec{f})^{2}}{\nu_{f}}\right) . \tag{88}
\end{equation*}
$$

The expressions (87) and (88) for the potential of the Schrodinger equation and for the total energy as well as formula (85) for the totel momentum coincide formally with the corresponding expressions derived in the previous section. Nevertheless there
should be emphasized once more the different fhysical interpretation of these expressions. The relation (85), which connects the total momentum, the mean velocity of the farticle and the numbers l_{f}, is the exact expression not depending on the accuracy of calculations. Therefore the transformation (51), (53) enables one to say with certainty that tre main effect of the particle-field interactions in the non-weck coupling case is just the appearence of the potential well for the particle. In ref. 6) there was pointed out the general method in what way the higher-order approximations to the energy and wave functions can be taken into account if the quantun properties of the phonon field are included into consideration. We leave this question be open and proceed to study the strong coupling of a particle with the field.

6. Strong Coupling of a Particle with the Fie]d

Up to now we have kept ourselves within the framework of adiabatic or intermediate coupling, especially dealing only with the small parameter γ. Now let us make use of the chanoe that in the strong-coupling limit there arises one more small parameter -1
x^{-}. In this case to describe the particle notion in the field and transitions between the excited states it is suffioient to retain in all expressions for exponential only such terms as

$$
\begin{equation*}
e^{i \frac{\vec{f} \vec{\lambda}}{x}}=1+i \frac{\vec{f} \vec{\lambda}}{x}-\frac{1}{2}\left(\frac{(\vec{f} \vec{\lambda})^{2}}{x^{2}}\right. \tag{89}
\end{equation*}
$$

Remembering the results of previous section one can guess that the potential well in such a case should be fust the oscil-
latory well. This :.s quite natural approximation for the potential in problems w.th very deep and precipitous well and not too strongly excited siate. Nevertheless, this limit is of a special interest from the physical riewpoint even if the perturbation series, whioh has ε. different structure than in the adiabatic coupling case, is not oonsidered. If the strong coupling limit is only discussed $\left(\varepsilon^{\Sigma}=1\right)$ we get the following expression for the coefficients γ and x

$$
\begin{equation*}
\gamma=\frac{1}{i}, \quad x=\sqrt{g} . \tag{90}
\end{equation*}
$$

In this oase the Hamiltonian, wave function and energy are expanded in fracticnal powers of the ooupling oonstant, so it 1s suitable to rewrite anew the corresponding expressions for the transformed Hamiltonian (47). In the acoepted approximation the terms inoluding only Q_{f} and $\vec{\lambda}$, provide the following contribution to the Hamiltonian

$$
\begin{align*}
& g^{2} \sum A_{f} i^{i \vec{f} 2} q_{f}+\frac{1}{2} g^{2} \sum v_{f} q_{-f} q_{f}=g^{2} \sum A_{j} u_{f}+\frac{1}{2} g^{2} \sum \nu_{f}\left|u_{f}\right|^{2}+ \\
& +i g^{3 / 2} \sum A_{f}(\vec{f} \vec{\lambda}) u_{f}-\frac{1}{2} v_{j} \sum A_{f} u_{f}(\vec{f} \vec{\lambda})^{2}+g \sum A_{f} Q_{f}+g \sum \nu_{f} u_{f}^{*} Q_{f}+ \tag{91}\\
& \quad+i g^{1 / 2} \sum A_{f}(\vec{f} \hat{\lambda}) Q_{f}+\frac{1}{2} \sum \nu_{f} Q_{-f} Q_{f}-\frac{1}{2} \sum A_{f}(\vec{f} \lambda)^{2} Q_{f}
\end{align*}
$$

On replacing the wave function analogously with (67) we get

$$
\begin{equation*}
\Psi(\vec{q}, \vec{\lambda}, Q)=\exp \left(i j^{i} \frac{\vec{J} \vec{y}}{\hbar}\right) \exp \left(i g \sum s_{f} Q_{f}\right) \varnothing D\left(\vec{\lambda}, Q_{f}\right) \tag{92}
\end{equation*}
$$

The part of Hamiltoaian associated with the kinetic energy of phonons takes the f orm

$$
\begin{aligned}
& -\frac{i}{2} \sum \nu_{f} U_{f} \overrightarrow{i d}_{f}^{2}
\end{aligned}
$$

The kinetic energy in the strong coupling limit is proportional to g. Thus all the terms of transformed Hamiltonian (47) do not contain the variables Q_{f} and $\vec{\lambda}$ simultaneously, and Q_{f} and P_{f}^{\prime} are only in a linear combination in the Hamiltcnian. On taking the initial Hamiltonian in the form of the sum of terms of the order of g and higher, we find that the wave function in the zeroth approximation, as before, is represented by the product of functions depending on \vec{A} and Q_{+}only, and to ensure the regularity for the function depending omly on $G_{\text {. }}$, it should be required that the conditions analogous with (81), (82)

$$
\begin{gather*}
\sum v_{f} \alpha_{f}^{*} P_{f}^{\prime}=0, \tag{94}\\
A_{f}+\psi_{f} u_{f}^{*}-\alpha_{f} \sum(\vec{F}) \alpha_{e} * v_{l} v_{l}^{*}=0 \tag{95}
\end{gather*}
$$

must hold. Therefore it $1 s$ neoessary to put again $y_{f} x_{f}^{*}=-i u_{f} t(f \bar{f})$ and

$$
\begin{equation*}
u_{s}=-\frac{\nu_{t} A_{t}^{\prime}}{y_{t}^{2}-\hbar^{2}(\overrightarrow{F C})} \tag{96}
\end{equation*}
$$

On performing an additional transformation of the wave function

$$
\begin{equation*}
\Phi(X, Q)=\exp \left(-i g^{-1 / 2} \frac{\mu \vec{C} A}{\hbar}\right) \Phi^{\prime}(\lambda, Q) \tag{97}
\end{equation*}
$$

the initial Haniltonian becomes

$$
\begin{align*}
& H=y^{2} \sum A_{f} u_{f}+\frac{1}{2} g^{2} \sum\left|u_{f}\right|^{2}\left(\nu_{f}+\frac{\hbar^{2}\left(\vec{f}^{2}\right)^{2}}{\prime_{t}}\right)-\frac{1}{2} \mu \vec{c}^{2} \\
&-g^{\hbar^{2}} \frac{\partial^{2}}{\partial \mu} \frac{1}{\partial \lambda^{2}}-\frac{1}{2} g \sum A_{f} u_{f}(F \vec{\lambda})^{2}-i g^{1 / 2} \sum A_{f}(\overrightarrow{F \lambda}) Q_{f} \tag{98}\\
&+ \frac{1}{2} \sum \nu_{f} P_{f}^{\prime \prime} P_{f}^{\prime \prime}-\frac{i}{2} \hbar \sum(F \vec{E})\left(Q_{f} P_{f}^{\prime \prime}+P_{f}^{\prime \prime} Q_{f}\right)+\frac{1}{2} \sum \nu_{f} Q_{f} Q_{f},
\end{align*}
$$

where

$$
\begin{equation*}
P_{f}^{\prime \prime}=P_{f}^{\prime}-i \hbar \varepsilon_{f}^{r} \sum_{e} \frac{(\vec{f})(\vec{e} \vec{C})}{\nu_{e}} Q_{e} . \tag{99}
\end{equation*}
$$

In the first-order approximation the particle wave furction obeys the equations

$$
\begin{equation*}
\left(-\frac{i^{2}}{j^{\prime}=} \frac{\partial^{2}}{\partial \lambda^{2}}-\frac{1}{2} \sum A_{f} u_{f}(f, \lambda)^{2}-W\right) \varphi(\lambda)=0 . \tag{100}
\end{equation*}
$$

$$
\begin{equation*}
W=\frac{1}{g}\left[E_{c}-g^{2} \sum A_{f} u_{f}-\frac{1}{2} \sum \nu_{f} \left\lvert\, u_{f} I^{2}\left(\nu_{f}+\frac{h^{2}(\overrightarrow{F C})^{2}}{\nu_{f}}\right)+\frac{1}{2} \mu_{1} \vec{c}^{2}\right.\right. \tag{101}
\end{equation*}
$$

It is easy to show that

$$
\begin{equation*}
-\frac{1}{2} \sum A_{5} u_{f}(\vec{F} \lambda)^{2}=A \lambda^{2}+B(\bar{C} \lambda)^{2} \tag{102}
\end{equation*}
$$

where

$$
\begin{equation*}
A=-\frac{1}{4} \sum A_{f} u_{f}\left[\vec{f}^{2}-\frac{\left(\vec{f} \dot{C}^{2}\right.}{\vec{c}^{2}}\right], \tag{103}
\end{equation*}
$$

$$
\begin{equation*}
B \vec{C}^{2}=-\frac{1}{4} \sum A_{f} u_{j}\left[3\left(\frac{(\vec{C})^{2}}{\vec{c}^{2}}-\vec{f}^{2}\right] .\right. \tag{104}
\end{equation*}
$$

For simplicity choosing \vec{C} along z-axis we obtain that Eq. (100) describes the motion of the anisotropic oscillator with frequencies

$$
\begin{equation*}
\omega_{1}=\omega_{2}=\sqrt{\frac{2 A}{\mu}}, \quad \omega_{3}=\sqrt{\frac{2\left(A+B \bar{C}^{2}\right)}{\mu}} . \tag{105}
\end{equation*}
$$

The particle energy levels are given by

$$
\begin{align*}
& E_{n_{1} n_{2} n_{3}}=g \hbar\left[\omega_{1}\left(n_{1}+\frac{1}{2}\right)+\omega_{2}\left(l_{2}+\frac{1}{2}\right)+\omega_{3}\left(n_{3}+\frac{1}{2}\right)\right] \tag{106}\\
& \quad+g^{2} \sum A_{j} u_{f}+\frac{1}{2} g^{2} \sum\left|u_{f}\right|^{2}\left(\nu_{j}+\frac{\hbar^{2}\left(\left.f \mathcal{E}^{2}\right|^{2}\right.}{\nu_{f}}\right)-\frac{1}{2} \mu^{n} \vec{C}^{2}
\end{align*}
$$

Pron which it follows that a distance between the energy levels is proportional to g. Note that in the strong coupling limit the levels of the ground and excited states are detsrained by the same Fq. (100). This is due to the fact that in the strong coupling limit the relations (96) which determine c_{f}, do not contain the form faotor of the particle. In this case the potential well is so precipitous that the particle may only oscillate with a large frequency but negligible amplitude around its equilibrium point. Therefore Eq. (100) becomes linear 111 the wave function of the ground state and the resultant equation in the variations coincides with the initial one. The same result can be derived from Eq.(37) by expanding the kernel Fq.(30) in power series in \mathscr{X}^{-1} and putting the wave functions of the excited states being orthogonal to that of the ground state. It should be emphasized that though the expressions for the kinetic cnergy and effective mass now include only the absolute square of A_{+},
as in the weak coupling limit, nevertheless the corresponding formulae have very different structure and are not reduced to those of the weck couvling theory. All the effects due to the recoil in phonor. emission have been taken into account in splitting the radius vector into two parts by the transtormation (51), (54), and now the total momentum conservation is allowed for in a different way than by the canonical transfornation (7) used in the weak couplilg limit. This can be understood 19 recall that In the weak coupling limit the phonon field is represented by a superposition of independent free phonon states, of which the operators obey .he canonical commutation relations, while in the strong coupling oase the phonon field states are determined by the variables C_{j}, P_{f}^{\prime} satisfying the additional conditions Eqs.(55), (89) and treated as some kind of collective coordinates

The states corresponding to the levels of the energy (106) are not, of cou:se, the stationary states of the system. However, before we will book for transitions between those states, note that we have no: yet had the equations of motion for the operators Q_{f}, P_{f}^{\prime}. T, get these equations and the above stationary states one needs to diagonalize a certain quadratic form composed by Q_{f} and P_{f}^{\prime}. This problem was discussed in detail in ref. 6). Here ons may stay in the simpler qualitative concideration. It is seen from Eq.(os) that the phonon field energy is small compared to that of the particle and dipole interaction between the particle and phonons, of which the density is proportional to $g^{i / 2}$. F'herefore in the first approximation the quadratic form is

$$
\begin{equation*}
\sum \nu_{f} z_{f}^{+} z_{f} \tag{107}
\end{equation*}
$$

where the operators Z_{f}, Z_{f}^{+}obey the canonical sommutation relations, may be associated with the energy of free phonon field. This form can be picked out from the Mamiltonian (98) by use of Eqs. (59) and (61) which relate the variables Q_{f}, P_{f}^{\prime} to the corresponding independent variables. Considerine the transitions caused by the dipole interaction

$$
\begin{equation*}
i g^{1 / 2} \sum A_{f}(\vec{f} \vec{\lambda}) Q_{f} \tag{108}
\end{equation*}
$$

it is easy to see that the probability of the above rransitions and, consequently, the width of the levels (106) are proportional to the coupling constant g, i.e. the width Eq. (106) is of the order of a distance between levels. Therefore the states of harmonic oscillator only very hardly may be regarded as the stationary states of the system. Nevertheless, it is not difficult to get more stable states. To this end, the irsertion of bilineay form in $\vec{\lambda}$ and Q_{f} Eq. (108) as well as quadratic form Eq. (107) into the initial Hamiltonian seems to be sufficient

For higher symmetry let us express the coordinates and momenta of the oscillator through the appropriate creation and annihilation operators.

$$
\begin{align*}
& a_{f}=\frac{1}{\sqrt{2}}\left\{\sqrt{\frac{\mu \omega_{\alpha}}{\hbar}} \lambda_{\alpha}+i \sqrt{\frac{1}{\mu \hbar \omega_{\alpha}}} P_{\alpha}\right\}, \\
& a_{f}^{+}=\frac{1}{\sqrt{2}}\left\{\sqrt{\frac{\mu \omega_{\alpha}}{\hbar}} \lambda_{\alpha}-i \sqrt{\frac{1}{\mu \hbar \omega_{\alpha}}} P_{\alpha}\right\} \tag{109}
\end{align*}
$$

and Q_{f} through the opera core Z_{f} by means of $\mathbb{E q s .}$ (59), (51), Then, on extracting the factor g the initial Hamiltonian may be put as

$$
\begin{equation*}
\sum_{\alpha} \hbar_{1} \omega_{\alpha} a_{f}^{+} a_{\alpha}+\sum_{\alpha, f}\left(a_{\alpha}+a_{\alpha}^{+}\right)\left(D_{\alpha f} z_{f}+D_{\alpha f}^{*} z_{f}^{+}\right)+\sum \tilde{y}_{f} z_{f}^{+} z_{f}, \tag{110}
\end{equation*}
$$

where

$$
\left.\lambda_{\alpha_{f}}=-i g^{-1 / 2} \cdot \frac{1}{2} \sqrt{\frac{\hbar}{\mu \omega_{\alpha}}} \sum_{e} A_{e} e_{\alpha}\left(\delta_{f e}-u_{e}(\vec{e} \vec{f}) v_{f}^{*}\right), \tilde{\nu}_{f}=\frac{\nu_{t}}{g}\right)
$$

Introducing uniform notations for the operators a_{α} and Z_{f}

$$
\begin{equation*}
b_{\alpha}=\binom{a}{z} \tag{112}
\end{equation*}
$$

and defining matrices

$$
B=\left(\begin{array}{ll}
\omega & D \tag{113}\\
D^{+} & \tilde{y}
\end{array}\right), \quad A=\left(\begin{array}{cc}
0 & D^{*} \\
D^{+} & 0
\end{array}\right)
$$

the quadratic form (110) takes on the form

$$
\begin{equation*}
\frac{1}{2} \sum A_{\alpha \beta} b_{\alpha}^{+} b_{\beta}^{+}+\frac{1}{2} \sum A_{\alpha \beta}^{*} b_{\alpha} b_{\beta}+\sum B_{\alpha \beta} b_{\alpha}^{+} b_{\beta} \tag{114}
\end{equation*}
$$

Which is diagonalized b the well-known canonical transformalion

$$
\begin{equation*}
\xi_{\mu i}=\sum_{-}\left(u_{\alpha \mu}^{*} b_{\alpha}-v_{\alpha \mu}^{*} b_{\alpha}^{+}\right), \quad \xi_{\mu}^{+}=\sum\left(u_{\alpha \mu} b_{\alpha}^{+}-v_{\alpha \mu} b_{\alpha}\right), \tag{115}
\end{equation*}
$$

where set of eigenfunction $u_{\alpha \mu}, v_{\alpha \mu}$ obey the equations

$$
\begin{equation*}
E_{\mu} u_{\alpha \mu}=\sum A_{\alpha \beta} i_{\beta \mu}+B_{\alpha \beta} u_{\beta \mu}, \quad-E_{\mu} v_{\alpha \mu}=\sum A_{\alpha \beta}^{*} u_{\beta \mu}+B_{\alpha \beta}^{*} v_{\beta \mu} \tag{116}
\end{equation*}
$$

and the orthonormality conditions

$$
\begin{equation*}
\sum_{\alpha} u_{\alpha \mu} u_{\alpha \mu^{\prime}}^{*}-v_{\alpha \mu^{\prime}} v_{\alpha \mu^{\prime}}^{*}=\delta_{\mu \mu^{\prime}}, \sum_{\mu^{\prime}} u_{\beta \mu} u_{\alpha \mu}^{*}-v_{\beta \mu} v_{\alpha \mu}^{*}=\delta_{\alpha \beta} \tag{117}
\end{equation*}
$$

The quadratic form (110) by this transformation is reduced to the form

$$
\begin{equation*}
\sum_{\mu} E_{\mu} \xi_{\mu}^{+} \xi_{\mu}-\sum_{\alpha \mu} E_{\mu} v_{\alpha \mu}^{*} v_{\alpha / \mu} \tag{118}
\end{equation*}
$$

From the definition of the matrix \mathcal{D} (111) .t follows that the elements of A-matrix producing a de:piation of the quadratic form (114) from the diagonal shape, is proportional to a small quantity $g^{-1 / 2}$. Hence the eigenfuncions $v_{\alpha \mu}$ which determine the deviation of (115) from the dentical transfor mation are proportional to $g^{-\frac{1}{2}}$, as well. Thus the account of dipole interaction (108) results in a small shift of levels (106), and distances between the new stationary i.evels are proportional to g. The matrix elements responisible for the transitions between these states are of zero;h order in g. Therefore the width of levels is considerably less that the distance between those.

7. Conclusion

Thus, we can conclude that the application of the Bogolubov method to the atrong-coupling problem discussed above makes it possible to separate the motion of a particle in the field taking into account the conservation law of the total mimentum. A picture of preparing the petential well by particle whici then moves together with the particle has been constructed jy this transformation and found to be successive.

In the strong-coupling limit this potential well becomes
oscillatory one, ard the ground state of the system is described by a set of shiftec oscillators formed by the particle and field variables.

A simple problem discussed here may be a convenient fool for modelling the high-energy oscillatory interaction considered in lefs. $12,4,13 /$.

This work orifinates in many conversations with N.N. Bogolubov, who called cur attention to the deep meaning of the rigorous treatment of the precise conservation law in the strong-coupling theory. The authors are indebted to A. A. Logunov for stimulating discussion. Discussions with B.A.Arbuzov, D. I. Blokhintsev, V.A.Matveev, R.M.Muradyan, M.K. Polivanov, I. D. Soloviev and R.N. Taustov vere very fluitful. We express them our gratitude.

References:

1. V.A. Matveev, A.N. Tevkhelidze. JINR, E2-5242 (1970).

Report at the XY International Conference on High Energy Physics, K1ev, 1970.
2. R.P. Feynman. Phys. Rev. Letters, 23, 1415 (1969).
3. C.N. Yang. Report at XV International Confererce on High

4. N. N. Bogolubov. iINR, P2-5684, Dubna (1971).
5. W. Pauli, S.M. Dancoff. Phys. Rev., 62, 85 (1942);
A. Pa1s, R. Seberg. Phys. Rev., 105, 1636 (1957); 113, 955 (1959).
' G. Wentzel. Helv. Phys. fcta, 13, 269 (1940).
M.A. Markov. Giperony i K-mezony, Moscva (1960).
6. N. Bogolubov. Ukr. Matem. jurnal, 2,3 (1950); Izbrannye trudy, $2, \mathrm{Kiev}, 1970$.
7. S.I. Pekar. JETF, 18, 419 (1948).
L.D. Landau., S.I. Pekar. JETF, 18, 419 (1968).

Lejlikman. JETF 29, 417, 430 (1955).
8. N. Frohlich, H. Pelzer, S. Zieneau. Ph1l. Mag., 4l, 221 (1950).
9. T.D. Lee, F.E. Low, D. Pines. Phys. Rev., 90, 297 (1953).
10.S. Tomanaga. Progr. Theor. Phys., 1,$83 ; 109$ (1946); 2, 6 (1947).
11. T.D. Lee, D. Pines. Phys. Rev., 92, 883 (1953).
12. N. N. Bogolubov. Lectsil po krantovoj statistike, Kiev, 1949; Izbranhye trudy, $2, K 1 e v, 1970$.
13. A.N. Kvinikhidze, S.D. Popov, D. Ts. Stoyanov, A.N. Tavkhelidze. JINR, E2-5695, Dubna (1971).

[^0]: * Moscow University, Moscow
 * IHEP, Serpukhov

[^1]: *A possibility for an application of the Hamil;onian (1) under the assumption of weak coupling for problems uf the mation of an eleotron in the polar orystal was studied : n detail in ref.)

[^2]: *) Later it will be shown that the coordinate transformation which increases the order of the kinetic energy, does not influence this conclusion.

