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1. Introduction

Nowadays a tendenoy exists to treat hadrons as some compli-
cated struoctures of either the true elementary pairticles or
certain quasielementary excitations. These may be: Quarks, if
speaking about static features of a particle and the simplest
properties of a scattering; cohereat oompleoesl), partonsz) or
droplets, 1f more complicated charaoteristios of high-energy
interaction should be considered. All these concepts usually are
introduced purely operatienally, and, as a rule, the interaction
dynamical picture itself is not even touohed. Receantly very in-
teresting workh) has appeared in which a connection between the
ocoherent state method and quark model has been established. So,
in this work there firstly has been oreated the dyilamical model,
which explains in what way the quasielementary excltations of
the coherent state type occur. In the preseat pape:: we wish to
show that the above type struotures are a natural :result of the
strong interaotion of a particle with bosor field.

The ideas on the complicated struoture. of the partiole and on
the presence of excited states are permanently inharent in any
strong~ceupling problemj). Here 1t should be recalled that the
main diffioculties of the above theory are due to tle urgent
necessity to work from the very beginming with the notions dif-
ferent from these of free field theory. The only well-known
consistent model of stromg ocoupling in field theory is the model
of fixed source of the boscn field. This model, nevertheless, 1s

rather far frem real interactions conserving the total momentum.



The method ol a separation of the particle motion in the field
which takes :nto aocount the translation degeneraoy due to the
total momentum oonservation, has been introduced by N.N. Bogolu-
bov6>. This nethod makes it possible to construct a scheme of
successive approximations for the energy and wave functions of
a system, wh:ioh allows for the conservation of the total momen-
tum explioit.y.

In this piper by using the Bogolubov method one of the
strong-coupl:.ng problem, viz. an interaction of the nonrelati-
vistic particle with the soalar field, is discussed. It is shown
that stationiry states of the above system are just the oacilla-
tory states of the particle surrounded by a oloud of the scalar
quanta, which to a certain degree are an analog of the states

considered in refs.l’“).

2, Interaoti»n of a Partiocle with the Scalar Field in the Case

of Weak and '(ntermediate Ccoupling

The probl:m of interaotion of a nonrelativistic particle with
scalar field was found to he useful in modelling rather wide
olass of mor: interesting physical problems. Here one can men-
tion, first >f all, such problems as: (1) Interaction of low-
energy fermions with the scalar meson field, (11) motion of an
electron in polar crystal or senioonduotor6’7). On writting the
Hamiltonian 5f the system under consideration as

H=3, P4g 2 ?}2%‘1 CACKEESRAT LTINS

VR
where ? and E® are dine:éionlesa constants, one oan prediot

all the possible relations between the energy of a free scalar




field (further its quanta will be called phomcns) and that of
the partiole~field interaction. The case £° =1 and 9‘4: 1l 1is
Just the weak-coupling limit, and here the ordiinary perturbation
theory is applioable*. In this case it is postible, in the ap-
proximation, to distinguish rather well the state of the partic-
le and look for the wave functien of the state "particle + n
rhonons* in the form of the product ef functions, depending only

on the particle radius vector and the phonon variables:
A —_ - 2
V(2 ) =4(2)0(n,) (2)

If this function is an eigenfunction of the tetal momentum

operator

/5":[_;4-#2]‘:%#@, 3)

then it has the form
V(3 )= \/_/:17 exp [ 22 2] 0 (%)

e |
where [ 1is the total momentum of the phonons. These functions

at the same time are the eigenfumnctions of the operater

Y +

L gt 67 )
¢

which represeats an unperturbed emergy operate.’ in the weak-

coupling limit. Thus, within the theory of weaic interactions

¥4 poasibility for an application of the Hamil:onian (1) under
the assumption of weak coupling for problems of the motion of
an eleotron in the polar orystal was studied :n detail in refg




one can get quit: simple expansions in the eigenfunotions of
energy and momen.um for the wave functions of a systenm.

However, the case yﬂlfa or j>>22 (1.e. a8 basic effects
are to be considired those due to an equivalent aocount of the
partiocle kinetio energy and that of the particle-field inter~
action) requires another approach. Here the main difficulty is:
In what way one van oorrectly give aocount of the conservation
law of the total momentum for the system.

The wave funciions (4) cannot be the eigenfunctions of the
operator .. .
1 5% "ZQ~ C(bfzg +Q *e-‘fzgf* (6)
Zp < F ¥ ¥
which is an init:.al Hamiltonian in the strong—coupling limit.
Therefore in the theory of strong coupling the problem arises
of the correot ocloice of stationary wave funotions, whioch make
it possible to preserve the particle individuality as well as
the total momentim.

To this end we do employ an adiabatic variant of perturbation
theory developed in ref.6). The above work just dealt with the
aspecial case of sdiabatic interactions when g‘=f<?j 1, i.e.
the interaction is treated as small one though the interaction
energy is much higher than that of a free field. However, the
method of separating of the partiocle coordinate developed in
this work, is so general that it can be immediately extended to
the strong—coupling case £z=l, 9:» 1, considered here,

Before describing the method itself, let us try less general
(or less rigorous) means for taking into account the momentum ‘

and partiole individuality oonservation. These may serve to il-
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lustrate once more the essence of the method of ref.6).

One of the possibilities to take into accouni. the momentum
conservation is to pass to a representation in vhich the total
momentum and energy operators become C-numbers. This possibili-
%ty was indicated in ref.s) and successively stucied in ref.9>.
On using an appropriate canonical transformatior

g, F— P-52fa a4 (7

¥ )

the Hamiltonian (1) takes the form (we put Elsl:

He ik (P-1Zfa') 9240 10 ar e 2200,

’

where 13 is a C~number,

The ground state in ref.g) was searched by use of the minimum
energy condition for trial functions corresponding to the system
state which consists of a particle with the cloud of nongcorrela-
ting phonons around the particle. The mathematical expression
of this is the canonical transformation which transforms the

+ ’ +
erato d to operato
operators é& and & perators 2}’ %

Q=¢ i  Qf=wT g ()
Under such a transformation a vacuum becomes the coherent

phonon state. The assumption on statistical independence of

phonons simplifies calculations but at the same time restricts

rather strongly the domailn of validity of the method. In employ-

ing the assumption (9) the particle must be consldered without

& recoil from the phonons emitted, because the r:icoil introdu-

ces a correlation between successively emitted pionons. The use

of the transformation (9) makes the method of ref.g) closely



related to that of intermediate coupling introduced earlier by
Tomounaga 10) for solving the problem of interaction of a fixed
nucleon with cherged mesons. The basic assumption of the method
is that all the mesons forming the ground state of a system are
described by the same wave functions though the number of vir-
tual mesons 1s rot limited. For the problems with the fixed nuc-
leon the intermediate coupling method gives the correct relati-
ons in both strcng and weak coupling limits. However, to prob-
lems concerning the motion of a particle this method wittingly
cannot be applied in the strong coupling limit, in which the
neglect of the 1ecoll of a particle due to the emission of the
huge amount of yhonons cannot be justified. Now let us turn back

to ref.g). The ninimum energy condition gives the expression
: * I S I —-2“-" =0 (10)
+ - Lo L. ‘
?dj— L{f-{)é JH!’PP—"'z,,f +le f f/uf'/} .

Symmetry properties of the numbers make 1t possible to re-

present the sum in Eq.(10) as

- . > 11
Z 5 llt=yq P au

and the equatior for 1 follows
pogrohf — LAl
= — T .
(RN y APt BT
On solving Eq.(12) 1t 1s possible dy uaing Eq.(10) to obtain

(12)

the numbers + and the energy of the ground state
_ p: Gt B S TV e Sy (-6 PE G
t;<H>:Z—ﬂ—192a}u}+0’u} ?(Z)‘/uﬂ) Z_IL(II(; p +?ﬂ2/

In ref.g) Eq.(1z) has been solved exactly for the special chol-
ce of frequencies X ané coefficlents CA , wkich corresponds

to the problem of motion of an electron through a polar crystal.



As to our purposes, 1t 1s sufficient to note that for small g
the sum of absolute squares of ﬂﬁﬁl £q.(10) as well as next to
last term of (13) can be neglected. Then Eq.(13) gives the exp-
ression for the energy and effective mass of the particle just
the same as those of the weak coupling theorys). Thus, an acco-
unt of terms of higher orders in g by means of Eqs.(11), (12)
leads only to correctlons to the weak coupling theory, as it
should be expected. In the subsequent paperll) an attempt was
made to allow for the correlations between virtual phonons by
introducing more complicated trial functions on which one seeks
to minimize the energy. Such an approach severely complicates
calculations and that is more important, gives rise to the loss
of clear physical criterion which permits to mate a choice bet-

ween the trial functions,

3. The Variational Principle in the Strong-Coupling Limit

The above considerations being quite rigorous once more mani-
fest the complexity of the problem in strong-coipling limit. Ve
find therefore it convenlent to present some otier arguments not
so rigorous but more tightly related to the metiod of ref.6}.
So, 1f in the strong coupling 1imit the unpertu:rbed Hamiltonian
of the system (6) 1s linear in the operators é& and gf, then
the Heisenberg equation of motion for the opera:ors does not
permit to identify, in this approximation, thes: operators with
the creation and annihilation operators of the :real phonons ca-
pable to transfer fhe energy and momenta.

The simplest way to be oonvinced of this 1s .o change the




operators 44 @F by the complex coordinates

g+é‘* Al

f -f = A £
, /i L_.fv_z__ﬁ

g - aw)

v —
Ve

In this case the Hamiltonian (6) depends on the variables ?}
only and the Heisenberg equation of motion results in the solu-
tion
, ( = couAt (15)
9,(%)

In the systen with the Hamiltonian (6) the phonons are viewed

as a certain passive mass, which adheres to the particle and
moves together and creates for the particle something like a
potential well. So, to the first approximation one can picture
the particle-~field interaction as follows: The particle has dug
the potential well in the field and then moves through the field,
the motion being composite and equal to the sum of uniform mo-
tion of a velodcilty é‘ and vibratory motion inside the well,

The uniform m>tion (i.e. the momentum conservation, too) can be
allowed for b7 inserting into the Hamiltonian an appropriate

energy, i.e. joing over to the Hamiltonian

-5 L ) Ria s i,y (16)
He o 7o 20, ¢ g 1070 7 24 -ClPr 2FE%)

The ground state of the system will be searched by means of
the variationsl principle, with the trial functions of the type
Eq.(2). Before it is necessary to make the canonical transfor-
mation (9) of phonon field and choose the phonon states in the
form of states with fixed number of phonons. To the first appro-
ximation, the choice of the trial functions in the form (2) 18

justified by the classical behaviour of phonons and by possible

10




separation of the motion of the centre of mass of the system.
The minimum enegry condition %% <H> '19 9 ‘</4,_(9 provides

the following values for the numbers a& :

z
Q" <e” Fz 17)
_5 __L.____:—:—— !
-ACS
-(fz
where symbol <& > means the averaging of the exponential

over the wave function of the particle ground state, and the
Hamiltonian (15) takes the form

H‘*-P rgZCZ ue +0 ure rZ/u,/z(y LCF)-CP
+ Z{QQ € ﬂﬂé, Oker) b4, [70 e l-u()i ncf)}é (18)

S IV pF

+2 (4 #EF )66 -

An appearance of -C7 1in Eq.(18) can be treat:d as passing
to the coordinate system moving together with the »jarticle, or
in the Heisenberg operator language, the replacement

z-2-C¢, (19)

i.e. the term - éf; can be sxcluded from the Hamil tonian (18)
by a simple transformation of the wave function.
Next, representing the wave function of the system in the
zeroth approximation in the form of product
(3 ) =40 (2) (v, (z0)
and varying <, and Q1 independently, we find that the

variational principle
(3% (H-E)¥)=0 (21)

results in the equations

11



(@, (HE)B )4 (2)=0>

(22)
(&, (H-E)e)P. (n)=0. (23)

Because of (17) the Hamiltonian (18) naturally breaks down 1into
the terms jproportional to various powers of g y Viz.: The first
line of Eq.(18) is proportional to yz (the problem how to in-
crease the order of kinetic energy will be discussed somewhat
later), second - to g third to zeroth-order of(? . Expanding
the energy in power series 1in ? and putting H4=gﬁgvifﬂﬁ172'£@9
we find that Eq.(22) reduces to the Schrbdinger equation for a

particle

I 32 (/7= . (24)
(2’/"4 P +V(Z)— VL{)) \&(2)—0
with the potential
. Ljf £ ,
&’(2):92@ we' e re . (25)
In virtue of the identity
(<, (H.-gE)e)=0 (26
Eq.(23) reduces to the relation
[ (4., He)-9E B (»,)=0, (27)
where in /', there are involved the terms of kq.(18) linear 1n9.

Due to the condition (17 the average value of Fﬂ over the wave
function specifying the ground state of a particle 1s equal to
zero, and 1ig.(27) can be satisfied provided we put E] =0, The

wave funct:ion Q{ there remains arbitrary. In the given appro-

ximation, by fixing the term of the highest order 1in ? in the

12



exact expression for the momentum operator, it is possible to

put the total momentum of the system equal t.o
Peh2Fluf* (28)

reducing the momentum operator to C-number.
Further, it is convenient to introduce tlie coefficients 42;

expressed through ., as
~ (2 - f7 - 29)
U= =1, ?—*t——'—<€ > A =12d . (29,
)'} +b s y _ ﬁz(cfj > 5 k]

Then there may be indicated the more direct relationship of the

—

momentum with the vector ([

- i

P I Z f'(f /'tzi/'z‘ (30)

The energy, without that specifying the motion of a system as a

~

whole, can be expressed through the coeffici:nts U, as

- ! 7 INAZ SN s
g =Wer b Z1Gf (- ELEEL) €

Using the Sohrddinger equation (23) which results in the re-

lation %_\(/?_V ;‘)C_\./> ’ onchan show that
2
ai E Zcf?’ D/‘?‘ (32)
20 ~F oC
from whioh 5
> _ 29°E,
C=5F (33

-
follows, 1.e. the vector c represents the rmean velocity of the
particle. Note that if ? E and /5 are quantities of order of

7 then the vector C 18 of the geroth order in :/ , L.¢. the

13



momentum transferred by the particle is significantly less than
the total momentum of the system*).

Thus, the calculations based on the above variational prin-
ciple indicate that as the first approximation to describing
strong field-particle interactions, one can really employ simple
assumptions given &t the beginning of the section. These con-
sist in that the mcin effect of interaction is Jjust the prepa-
ration by the particle of the potential well.

Proceeding from Eq.(30) for the total energy it is easy to

get the value of tle particle effective mass

/wjtff/): 1 Zzi F° N(,/ (34)

-~ -

where Lé:ﬁ are tle values of b% computed at C =0. The exp-

ressions for U& and the effective mass differ from those de-
rived by use of the canonical transformation which reduces the
total momentum to (-number. The expressions (17) for L@ now
contain a form factor of the particle taking into account the
recoil in the phontn emission. Thus the new version of the va-
riational principle¢ reflects, to a degree, the true picture of
interactions. One of the spesific features of nonweak interact-
ions of a particle with the field is just the pronounced non-
linearity of the ecuation for the particle ground state, in
which the effective potential is expressed by the form factor
of the particle in the ground state. Therefore to determine in

fact the wave funciion of the ground state it is more convenient

*)Later it will be shown that the coordinate transformation
which increases the order of the kinetic energy, does not influ-
ence this conclusion,

14



to employ the variational principle

B0 200 40 FOAAE | [ et e O

with the condition

[erdz=1 . 28

On cosidering at the same time both the equation in variations
and Eq.(24) which follow from (35), the linear in:.egro~diffe-
rential equation

(_A,z. v V(F)-W)(E) )<f K(22)@(Z)4 (37)

2/14 22°
1s obtained with the kernel QF(5—€7 .

K (3 z) Z? Y /Ai-’ e @, ()¢ (2') (382
FUCF)¢
specifying the excited states of the particle.

Thus, the variational principle described above reproduces
correctly specific nature of strong particle-~field interactions.
It 1s not very hard, however, to learn the nonstrictness and in-
sufficiency inherent in this principle: The exact account of the
momentum conservation is replaced here by the approximate sepa-
ration of the principal part of the total momentum. Although
this trick makes it possible to separate the gross effect of in-
teraction, 1t provides no hints conocerning the detiils of inter-
action. In formulating the variational principle the quantum pro-
perties of the phonon field appeared to be out of :.he considera-
tion. For, if we take into account the energy and nomentum tran-
sfer by phonons, we at once lose a chance to repre:ient the wave
function of the system in the form of product ¥q.(<0) and iden-

ti1fy 2q.(30) with the total momentum of the system This makes

15



unknown the degree of an accuracy to which the particle state
can be desoribed by the Schrédinger equatien with the potential
(25). Later on it will be shown that this equation being modi-
fied a 1little, may serve, in fact, for describing of quasista-
tionary states of a particle in the field, but to do this the
more detailed analysis is necessary of the effects caused by the

translation degeneracy due to the total momentum conservation.

4, The Bogolubov Transformation

An attempt to allow for the translation degeneraoy due to the
momentum conservation, transforming to the moving coordinate
system by means of (19) is, of course, very naive. In ref.6> the
total momentum conservation as well as the translation degenera-
cy were taken into account by the transformation

Qg

which introduces instead of one variable , two independent

(39)

variables é and X H <i being associated with the uniform mo-
tion of the particle and ;? -~ with the oscillatory motion insi-~
de the potential well. An explioit form of the canonical trans-
formation of E and Q; to the new operators can be found from

the condition —
E2prh2FE (40)
%9
according to which the derivative with respect to 9 must be the
total momentum operator.
For further consideration it is more convenient to change

¢ - 2
the operators é; , é; by the ccmplex coordinates ?;’f}— 199?
which break the energy of the free phonon field into the kine-

16



tic and potential energy of field oscillators. Let us perform
this transformation in such a way that both the totential energy
of the field oscillators and the interaction energy of the par-
ticle with the field become quantities of the same order. To
this end let us go back to the Hamiltonian (1) adding to it the

energy of the fleld zeroth oscillations

;J}:ﬁ ["‘fr(‘/- 27 C(’ (?f éjr‘f'(zj [ é} f é 2%/&?(} 1*6} t:/ ’)_ (ﬂl)

1t 1s useful to introduce the following combirations of the con~-

stants 9 and £ -
2

¢ v _ f/: . (u2)
)= x'= 1

5

The quantity ¢ is a small parameter in both cases of strong
coupling ( ¢ =1, y >> 1) and adiabatic one ( (<% 1, ://:; £ ). For
the adiabatic coupling X =1, but in the strong-coupling limit
there arises new small parameter <)c</<<1 which still more simpli-
fies the problem. The constants y and 82 ar: expressed thro-

ugh the new ones in the following way

2 2 2 ( Y
g=x"y, £=x") . R
Now let us define the operators
Sy Gl o GG Coud
7= VZ R Ve

which obey the commutation relations
— : , . \
[Qf7pf‘]—6(j;} (45)
and the reality conditions

+ +t_ o
%L = 9_5, , Pe= I~y
Then the Hamiltonian (22) takes on the form

(46)

17
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and the total momentim operator
P=p-h2 f4n

Inserting the variable éi satisfying the relation (40) in the

(48)

representation in which the operator $¥. reduces to multiplica-

tion by a number, it should be put

22 --( £4, (49
27 (50)
Sas

Bearing in mind that now the potential energy, generally speak-
ing, is rather large quantity, we break up ET into components
in such a way that ir the following it would be possible to take
into account the kinetloc enegry of oscillatory motion inside the
well even in the firest ordei

€=27*5’g/‘ . (51)
In this case the operator of the particle kinetic energy will

be as follows

~

2 A 1_ .

Zp

Eq.(30) 1ndicates that the operators 9; have to be expressed
in terms of new variables as
o (Fé)g (53)
7 (.

Note that the transfcrmations (51), (53) introduce instead of ,
[OR Q;,... the variatles A 2,..., f&,..., the number of which
is by 3 greater than earlier. As A and 9 have been 1introduoed

to be independent variables, the number of the independent va-

riables A, should be constrained.

f

18



We notice that in the Hamiltonian (47) the kinet:c energy
represents a small perturbation, but, on the other tand Just
this energy depends on the variable i: If this one is neglected
then ?f will commute with the Hamiltonian and energy levels
will be functions of q¥. In particular, the ground state of the
system will be determined by some set of the numbers &%_. No de-
pendence ocan arise between them because an additional variable
has not yet appeared in this approximation. An account of the
kinetic energy would produce small deviations of 9& from ag ,
and the variables describing this deviation must obey three ad-
ditional conditions. So, the transformation (53) redices to the

replacement

9,= (v 0)e 7. (56

Variables 0

+ ocan be subjected to the simplest linear additionsl

conditions
S FurQ=0 - (55)
r f
{_
All the quantities introduced anew satisfy the reality condit-
ions

wr=u e u 0;:0_

i - F b (56)

[
and the numbers U} without restricting the generality, may be

chosen that the relation
r
e AN 7
holds. Note that by the numbers u%» and Zﬁ it is »ossible

to construct a projection matrix
= - re * 58
A;e—g}e +(}€)Ué (58

and the variables Ci can be represented as a linear combination

19




of the indepcendent variables Z} !
G =>n 7 (59)
§TE e e
satisfying the reality condition. In this case the additional
conditions (36) are fulfilled automatically. Now derivatives

with respect to q# reduce to the expressions

L}’Liﬂ oor LSy -
o /o'ﬁ\ajf_[q‘%”afi_“zz?c{/i f, (60)
My J f 99, a7 2n <
where
— o - )
i - e fD oo 2 . ))
P :Q_zg‘%(ﬂ)agle . A= T (613
The derivatire 5o can be easily found by differentiating the
i
relation s
S Tuvle etV o) =0 62)
25y (CM Ly )= (62

which follow:s from (55), and using the orthogonality condition

Eq.(57). As « result we get the relation

DG - ¢ /’"V; ST oG, - x
G _ gy ey 26 T 4 (63)
D Y Z: ’
which gives —
- FY
5_@_ = € B, . (64)
g, ’

-

Vector Bﬁ can be explicitly written as a power series in small

parameter } Now for us it 1s sufficlent to note that f%_de~
G —
pends only on Cg , and all the deggndence of D; on <$ is
; §

Cf
concentrated in the exponential & v « So, the derivative with

respect to @; becomes ) 3 o ) (65)
» S F (il rexE e €0 R ]
(,(;;‘ = ¢ LZ”Pf *bf(LQ(; ‘ oA 2‘ ¢ L>

¢ k&

20



and the kinetic energy 1s rewritten in the form

125 Tl B [geifei dea Rl JEQR)] o)

Now let us make two remarks: First, the uxpression (66) re-
veals that the transformed Hamiltonian (47) does not depend exp-
licitly onii , and this results in the consecrvation of the total
momentum. Second, on writing the Heisenber;; equations for 1:(&)
one can see that the time dependence of QZE) is rather compli-
cated, so the naive picture described earlier,of the unitorm
motion of the potential well with a particle, may be regarded
only as the first approximation to the true behaviour of the
particle-field system.

The Bogolubov transformation (51), (54) has a simple group
meanings). The conservation of the total monentum is a result of
the invariance of (47) with respect to the group of transforma-

tions - Lf'-c}/ -
224G, gTge o gTeedts

If éi is treated as an operator then the canonically conjugate
operator of derivative should be identified with the total mo-
mentum operator, On the other hand, surposing in (51), (54) the
vector é being independent variable, we break up the vector Z

into two parts: First one, jE is invariant under translations.

Second, i changes with the phase of the operator i% .

Y, The Equation for the Ground State of a Particle

The derivatives with respect to @ and C& in (66) contain

small parameters az and a/ respectively, as factors. Before

21



proceeding to expand the energy and wave functlon in power se-
ries in Y, the wave function, therefore, should be transformed
as
G)==pl B L]ep[3250]v(AQ) - D
The numbers cs must satisfy the reality condition é&tfég
and, besides, due to (55) they may be chosen in such a way that

the conditions
2 {—uc S, (68)

hold. On this transformation the derivative with respeot totf

+

aces L J . . ! Lo p
replaces by - . , and the momenta P byd/éffﬁf . Now 1t
is easy to get an expansion of the transformed Hamiltonian (47

in powers of the small parameter J . A scheme for obtaining this

~

expansion 1is given in detail in ref.6j. Here it seems sufficient

to confine our consideration to the first two terms

He=t, raH, (69
where

= Zﬁz" ey L xS |

o f e e e € E o
#——f;y

; % u )M{Yfﬂf* Q
=) %4 R f){/]f FY A e e (CHY } Y, (715
d;._s F U g zi N (72)

Expanding the wave function and energy in powers of

E=E,cb,c. , Y=, +dB .. (73)

the equation
(H-E)¥ =0

can be reduced to the system

(74



H,-E)D +(H-E )P, =0 ,. (7%)

The oper&to#iﬁbes not act on the variables 05_, so the wave

function qz becomes the product

P, =+,(16,(q), (78
where thlxis an arbitrary function of Cl , and 4&(?7 obeys
the eguatio? L;}; )

(XL 2 rx DA E-W, )4, (F)=0, (77
2]\4 247
where
X' s (78
Wc:Eo_—z—)_))/»/%/l‘%”Z)ﬁ/"(}/z- )
Taking the second of Eqs.(75) we find that because of the iden-
tity
J@ (N, -E)d di=o (79
the wave function QO(CQ) must obey the equation
[ (e (Fymu(n)di-E]0,(0,) =0 . (60)

The operator/4, averaged over the wave function: %L(ﬂj is
linear in CL s 6/ , therefore Eq.(80) cannot have u regular
solution except <H,>=0. Thus, seoond of (75), though not elimi-
nating the arbitrariness in the choice of function llﬂ@J , re-

sults in the conditions E?—'C

Z{A fe & [ (D dA+ Y ey azzu,a( (F6)%"30,= 0, (61

2 %t h'=0 . (82)

To satisfy (81), (82) one may put all coefficients of C; in

(81) equal to zero and make use of the relation
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zzfuf,ﬂ}l =0 (83)
which immed:ately follows from the definition (61). The last
equality indicates that (82) would be satisfiled 1Tt o@ would be
chosen so that

yol ==l £(FC), (84)
where E’is some vector, which has to be taken in such a way
that the adcitional conditions on S, Eq.(68) remains valid.
Taking into account all the conditions we get the relation for

5 to the total momentum

Fer2Z HIC 1 e (85)
f_

Substituting, (84) in the expressions for the coefficients of the
series (81) we find the numbers ¢f :

U= - A Y Je x,q(u; dr . (86)
/;(
Thus, consicering the Hamiltonian in the first order in ¢  one

can derive the expression for the potential in Eq.(77)

e £ LT
. e M < A - JtA
X V(A)=x le{_u e Xy 2k _l_;l__<_.°’___>z e X . ce7)
£ Foyrest(E)

The energy ¢f the ground state 1s
_ 2/ TR
E, =W, £ 5wy (4 £LEF) ). (88)
Yy

The expressions (87) and (88) for the poteantial of the Schri-
dinger equaiion and for the total energy as well as formula (85)
for the totel momentum coincide formally with the corresponding

expressions derived in the previous section. Nevertheless there
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should be emphasized once more the different rhysical interpre~
tation of these expressions. The relation (85., which connects
the total momentum, the mean velocity of the particle and the
numbers L%_ y 15 the exact expression not depending on the
accuracy of calculations. Therefore the transformation (51),
(53) enables one to say with certainty that tle main effect of
the particle-field interactions in the non-weck coupling case
is just the appearence of the potential well for the particle.
In ref.s) there was pointed out the general method in what way
the higher-order approximations to the energy and wave functions
can be taken into account if the quantum properties of the pho-
non field are included into consideration, We leave this quesa-
tion be open and proceed to study the strong coupling of a par-

ticle with the field.

6. Strong Coupling of a Particle with the Field

Up to now we have kept ourselves within the gsramework of adi-
abatic or intermediate coupling, especially dealing only with
the small parameter y . Now let us make use of thé chanoe that ir
the strong-coupling limit there arises one more small parameter

3{ . In this case to describe the particle motion in the field
and transitions between the excited states it 15 sufficient to
retain in all expressions for exponential only such terms as

3 o e
g * :_{4-(.][—% “ZL (}-\xz) : (89)

Remembering the results of previous ssction one can guess

that the potential well in such a case should be just the oscil-
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latory well, This :.s gquite natural approximation for the poten-
tial in problems with very deep and precipitous well and not too
strongly excited siate. Nevertheless, this 1limit is of a speci-
al interest from the physical viewpoint even if the perturbation
series, whioh has ¢ different structure than in the adiabatic
coupling case, 1s r.ot oonsidered. If the strong coupling limit
1s only discussed ( £°=1) we get the following expression for
the coefficlents J and X
Y=+ > 36=V;‘i_ (90)

In this case the Hamiltonian, wave function and energy are
expanded in fracticnal powers of the ooupling oonstant, so 1t
1s suitable to rewrite anew the corresponding expressions for
the transformed Hamiltonian (47). In the accepted approximation
the terms including only C%_ and /x , provide the following

contribution to the Hamiltonilan

AT b N, g Th et g

b S (R - o 2 Ay (F) 49 ZA0 7 92540470,
Pt TN (70 £ Y 0,0~ 5 24, (FA)C,

(91)

On replacing the wave function analogously with (67) we get
Y(q,AQ)=ep i F)er(§254)PAq) - (s2)

The part pf Hamiltonian associated with the kinetic energy of

phonons takes the form
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f
‘ykz&a;'lf(/;%) 4 Iu(P T Za’e") oo Qc )P/ —g‘%f(‘/’e‘)«e@)
VI (RN Qe 20k’ (RF)Q -

_d Vg
E‘Z{‘izﬁ £ “ﬁ

5 24Py P = hg DY I gD B g4 Q S et Y

(93)

The kinetic energy in the strong coupling limit 1s proportional
to g . Thus all the terms of transformed Hamiltonlan (47) do not
gcontain the variables O)L and /-\' simultaneously, and Q and /;
are only in a linear comblnation in the Hamlltcnian. On taking
the initial Hamiltonian 4n the form of the sum of terms of the
order of j and higher, we find that the wave function in the
geroth approximation, as befoxe, its represented by the product
of functilons depending on I angd 0,_ only, and to ensure the
regularity for the function depending emly on C_ , it should be

required that the conditiocns analagous with (81), (82)

2% R =0, (98}

A 4%, S (7€M, "y U= 0 (93)

must hold. Therefore i1t is necessary to put again 11)"4': -,u,,e(;g)

and
[ ]

uiz-iﬁ:___’_ﬂ . (96)
};Z_ﬁt(fe)

On performing an edditional transformation of the wave functilon

G(r0)=ep(-ig )5 (70) (o)
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the initilal Haniltonian becomes
H= f,?/<|u TATE ufc)-g-ﬂaz
—————— y}A}a,(f/\)-(f D))

*éZ;4;“E¢ZOFMQQFWQP%§”QfQ’

(98)

where

P”n :l[;'_tf\ l;*%_. (ii)_}%e_(-_l 0@ . (99)

In the first-order approximation the particle wave function

obeys the eguations

//,/ = LD M (77 W T) =0

(100;

Léo—fz/]f“f% F)?/“y[z(‘é*/’:%l)fzi/’g‘ o (101)

It is easy to show that

L, w (57 =T B ) o)

where

oy ri (4 (103)
:_21,_2 [ __L] 103




BC?Z:—éZAftzf[—S(%Z ~f.""] . (104)

For simplicity choosing ¢ along z-axis we obtain that Eq.(100)

describes the motion of the anisotropic oscillator with frequen-

w:w,=\/2—A ) Lu:/M' (105)
[ fid jw 3 /,/

cies

The particle energy levels are given by
E;,nl_n;: gi}[u}((m/+2(—)+u)a (”.’.‘é—) ru')j [”5 P%)‘[
2 li 2 ro T2 —

g oN gy LIl (g ML ) - g

(106)

from which it follows that a distance between the energy levels
is proportional to j. Note that in the strong coupling limit

the levels of the grounid and excited states are det:rmined by
the same Eq.(l00). This is due to the fact that in :he strong
coupling limit the relations (96) which determine ¢, do not
contain the form faotor of the particle. In this caie the poten-
tial well 1s so precipitous that the particle may only oscillate
with a large frequency but negligible amplitude around its equi-
1ibrium point. Therefore Eq.(100) becomes linear iu the wave
function of the ground state and the resultant equation ian the
variations coincides with the initial one. The same result can
be derived from Eq.(37) by expanding the kernel Fq.(38) in power
series in 3{1 and putting the wave functions of the excited
states being orthogonal to that of the ground state, It ashould
be emphasized that though the expressions for the kinetic cnergy

and effective mass now include only the absolute square of J* s
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45 1n the weak coupling limit, nevertheless the corresponding
formulae have very different structure and are not reduced to
those of the weeck couvling theory. All the effects due to the
recoll in phonor. emission have been taken into account in split-
ting the radius vector into two parts by the transtormation {51),
(54}, and now the total momentum conservation is allowed for in
a different way than by the canonical transformation (7) used in
the weak coupling limit. This can be understood if recall that
in the weak coupling limit the phonon fleld is represented by
a superposition of i1ndependent free phonon states, of which the
operators obey -.he canonical commutation relations, while in the
strong coupling oase the phonon field states are determined by
the variables (, , @' satisfying the additional conditions
Egs.(55), (89) and treated as some kind of collective coordinates
The states corresponding to the levels of the energy (106)
are not, of course, the statlonary states of the system. However,
before we will Look for transitions between those states, note
that we have no: yet had the eguations of motion for the opera-
tors (, , @'. T> get these equations and the above stationary
states one need3 to dlagonalize a certain quadratic form compo-
sed by Cl and 6} » This problem was discussed in detail in
ref.s). Here onz may stay in the simpler gqgualitative considera-
tion. It is seea from Eq.{29, that the phonon field energy 1s
small compared to that of the particle and dipole interaction
between the particle and phonons, of which the density 1s pro-

i
portional to g‘Q. Therefore in the first approximation the

quadratic form is
F
DI A-S
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vhere the operators Z; , Z;+ obey the canonical commutation
relations, may be associated with the energy of free phonon field.
This form can be picked out from the Mamiltonian (98) by use

of Egs. (59) and (61) which relate the variables C& , @'
to the corresponding independent variables. Considering the

transitions caused by the dipole interaction

(9" A (7)., (108)

it is easy to see that the probability of the above -iransitions
and, consequently, the 7idth of the levels (106) are proportio-
nal to the coupling constant 3 yle. the width Tg. (106) is
of the order of a distance between levels. Therefore the states of
harmonic oscillator only very hardly may be regarded as the
stationary states of the system. Nevertheless, it is not dif-
ficult to get more stable states. To this end, the irsertion
of bilineap form in X and C} Eg. (108) as well as quadratic
form Fq. (107) into the initial Hamiltonian seems to be sufficient
For higher symmetry let us express the coordinates and momen-
ta of the oscillator through the appropriate creation and an-

nihilation operators,
-4 Y, ;
Qf'_'){f \//%Aoﬂ ’—L//./tu) P"‘})

*;F{ﬂwﬂ [*“ } (109)

3




and 61 through the opersiors Z; by means of Egs. (59),(61),
Then, on extracting the factor ? the initial Hamiltonian
may be put as

Zlﬁb”&@:% *g[ax*@*)/@f%*/@; Zf+J*Z%?+fo > (110)
/

oA

where
2 =iy LI Sy (6 (5 5
by = 2 g, S Ae (6 “f(gf)f)ﬂ?‘j - (MM
Introducing vniform notations for the operators Q& and 2;
. /&
gf(z) (112)
and defining matrices
w ,a) A‘(O 2"
6=(2r v ). "=la o (113)

the guadratic form (110) takes on the form

F2ARGE AL T Bl (i)

P

wvhich is diagonalized b. the well-known canonical transforma-

tion

A w/’ 'Jfé W24t il )

vhere set of eigenfunctions & obey the equations

/—(
Ef‘““/’:z"*ﬁ‘%ﬂ* o, =B Z Lpp " dﬁ”%/w (116)
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and the orthonormality conditions
*
U Ui = vl=4 (11?7
Z; ﬁﬂ ar« qu ar4 7 - ZE eﬂ ﬁﬂ Qﬁf %y, gga.
The quadratic form (110) by this transformation Ls reduced

to the form
r _ e
/ZE/";/“ 5 a% b/“ Al ?fd/” . (118)

From the definition of the matrix < (111) .t follovs
that the elements of 4 -matrix producing a deriation of the
quadratic form (114) from the diagenal shape, is proportional

-1
to a small quantity i . llence the eigenfunc:ions

G
which determine the deviation of (115) from the .dentical transfor

mation are proportional to j y, as well, Thus the account

of dipole interaction (108) results in a small shift of levels
(106), and distances between the new stationary ..evels are
proportional to j . The matrix elements respon:iiible for

the transitions between these states are of zerosh order in(? -
Therefore the width of levels is considerably leis that the

distance between those.

7. Conclusion

Thus, we can conclude that the apprlication of the Bogolubov
method to the streng-coupling problem discussed above makes it
possible to separate the motion of a particle in the field taking
into account the conservation law &f the total momentum, A picture
of preparing the pgtential well by particle whic then moves
together with tle particle has been constructed Hy this trans-
formation and found to be successive.

In the strong-coupling limit this potential well becomes
33



oscillatory one, ard the ground state of the system is descuiibed
by a set of shifte¢ oscillators formed by the particle and field
variables.

A simple problem discussed here may be a convenient
fool for modelling the high-energy oscillatory interaction

considered in Lefs./2’4’15/'
This work originates in many convéersations with N.N.Bogo-

lubov, who called cur attention to the deep meaning of the
rigorous treatment of the precise conservation law in the
strong-coupling theory., The authors are indebted to i.A.Logunov
for stimulating discussion. Discussions with B.A.Arbuzov,
D.T.Blokhintsev, V.A.Matveev, R.M,Muradyan, M.K.Polivanov,
L.D.50loviev and R.N.Faustov were very fiuitful. %e express

them our gratitude.

34



References:

1. V.A. Matveev, A.N, Tevkhelidze, JINR, E2-5242 (1970).
Report at the XY International Conference on High Energy
Physics, Kiev, 1970.

2. R.P. Feynman. Phys. Rev. Letters, 23, 1415 (19€9).

3. C.N. Yang. Report at XV International Confererce on High
Energy Physics, ¥Yiev, 1970; JINR, 5454, Dubna (1971).

4. N.N. Bogolubov. JINR, P2-5684, Dubna (1971).

5. W. Paulil, S.M. Dancoff. Phys. Rev., 62, 85 (1942);
A. Pais, R. Seberg. Phys. Rev., 105 , 1636 (1957); 113, 955
(1959).

"« G. Wentzel. Helv. Phys. Acta, 13, 269 (1940).
M.A. Markov. Giperony i K-mezony, Moscva (1960).

6. N. Bogolubov. Ukr. Matem. jurnal, 2,3 (1950); lzbrannye
trudy, 2, Kiev, 1970.

7. S.I. Pekar. JETF, 18, 419 (1948).

L.D. Landauy S.I. Pekar. JETF, 18, 419 (1968).
Lejlikman. JETF 29, 417, 430 (1955).

8. N. Frohlich, H. Pelzer, S. Zieneau. Phil. Mag., 41, 221
(1950).

9. T.D. Lee, F.E. Low, D. Pines. Phys. Rev., 90 , 297 (1953).

10.S. Tomanaga. Progr. Theor. Phys., 1, 83; 109 (1946); 2,

6 (1947).
11. T.D. Lee, D. Pines. Phys. Rev., 92, 883 (1953).
12. N.N. Bogolubov. Lectsii po kvantovo] statistike, Kiev,
1949; Izbranhye trudy, 2, Kiev, 1970.
13. A.N. Kvinikhidze, S.D. Popov, D. Ts. Stoyanov, A.N. Tavk-
helidze, JINR, E2~5695, Dubna (1971).
Received by Publishing Department

on June 4, 197..
35



