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Introduction 

There exists a number of homogeneous spaces group of 

motion of which may serve for the definition of the Lorentz group. 

Out of these homogeneous spaces the most familiar is the three -

dimensional hyperboloid. It has turned out,· however, that in certain 

respect it is expediently to treat the Lorentz group as a group of 

motion of the two (complex) dimensional complex sphere S2 = s; + 

+ S: + S! . Namely, it has been pointed out by H. Joos and 

R. Schrader /l/ and by· the authors o/
2
/that if the Lorentz group 

is considered in this. spirit, matrix elements of its unitary represen

tation take a rather simple form. 
➔ 

A three-dimensional complex vector S is the self-dual part 

of the Lorentz covariant antisymmetric tensor S /l v , i~e. S k = S0 k + 

+ t fk£m Sem(k,£.m=l,2.:J)Since the real and imaginary part of S trans

form like the electric and magnetic field respectively the invariance 

S➔ 2 = (E➔ + 1· B➔ ) 2 
of ·- under proper Lorentz transformation is evident. 

And conversely, it can be proved /
3

/ that the connected part of 

three-dimensional complex rotation group is isomorphic to the 

proper Lorentz group. 
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1. Little Groups on the Complex Sphere of the Zero and 

Non-Zero Radius 

Let us associate to a three~dimensional complex vector 

S = (S
1 

,S 
2

, S 
3

) the matrix S =[ Sa 51 -iS2j. Under g c; SL(2,C) 
S1 +iS 2 -S 3 

" J'\ A '' ➔ 2 2 2 2 
S transforms as T S=;,'=gSg- 1 and clearly S = S + S + S 

g I 2 3 

is invariant. And conversely, it can be shown that if one exclu-
➔ ➔ ➔ 

des the point S = ( 0, o; 0) any two complex vectors S , S ' of 

the same length can be translated to each other by means of a 
➔ 

suitable SL(2, C) transformation. Consider now the point s = 
0 

= (-i S, S, 0) (S,C 0 ) on the complex sphere of the zero radius 

I O • The little group of this point i.e. the subgroup satisfying 

T § 
0 

= S 
O 

constitutes elements of the type r-, = [ 
1 T/1 . This 

is ~he horyspheric subgroup /5 ,6/ isomorphic to the t?vo! imensio-

nal translation group T(2) • An arbitrary other point S = T ); 0 

( g ~ SL (2, C )) on :£ 0 has the little group r-, = g T/. g- 1 • The 
g . 

::onverse statement is also true i.e. any three-dimensional complex 

vector having the horyspheric little group r-, g is on the sphere 

of the zero radius, It can be shown in an analogous way that 

the little group of a vector on the complex sphere of the non-zero 

radius is the group H = S0(2) x SO (1,1) /
2/. Spherical functions of 

the Lorentz group with respect to the subgroup H have been 

studied in /
2

/. Here we derive the spherical functions with res

pect to the horyspheric subgroup. 
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2. Spherical Functions on the Complex Sphere 

of the Zero Radius 

Consider the state I > satisfying 

T I >= I >' 
T/ 

where T T/ is the unitary representation of the horyspheric sub:-

group. Then spherial functions of the Lorentz group with respect 

to the subgroup r-, are defined as 

r<l><Io)=<<I>IT I>*. (1) 

Here T g is the unitary representation of the Lorentz group and 

I <I> > is a basis vector specified below. The quantity I- 0 indi-

cates that f <I> ( I 
0

) is a function over the. factor space g / r-, , 

i.e. it is defined over the complex sphere of the zero radius I
O

~--

Explicit form of the spherical functions,_ (1) can be found by 

solving the eigenvalue equation of the Casimir operators. To this 

end we introduce the combination 

➔ ➔ ➔ 

J=-1-(M+iN), 
➔ 1 ➔ ➔ 
K = -( M-i N) 

2 2 
➔ ➔ 

where M and N are the infinitesimal generators of the 

spatial and hyperbolic rotations. At first the basis I <I> > will be 

labelled by the eigenvalues of J 3 and K 3 i.e. by m = (µ+iv)/2, 

m*= (µ-iv)/2 ( ft= 0,±1, ±2, ... , - 00 <11< 00 continuous). 

Introduce the following coordinate system on I 0 

S I = - i cos @ cos <I> - sin <I> , ·s2 = - i cos El sin <I> + cos <I> (2) 

S 
3 

= i sin El , 

Here 

®=®
1

+i®
2

, <1>=<1>
1

+i<1>2 , 0::;:® 1 <rr, 0::;:<1> 1<2rr,-oo<®2 ,<1> 2 <oo, 
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The spherical functions in unitary spinor basis satisfy the eigen-

value equations of the Casimir operators J 
2 

, K 
2 

and the 

generators J , K 
3 

• From (2) we obtain 
3 

2 2 2 
[tg 2 0 _a _ ___ I ___ a_+ 2 i sin 0 a +tg@( 2 +tg2@)-a_+ 

a@ 2 cos2 0 a <I> 2 cos 2 0 a@ a <I> a@ 
(3) 

+ • _a_] f H* 
cosa@ a<1> mm* = j(j+ I) fii* mm* 

[tg20*__L- I a -2i sin®* a2 +tg0*(2+tg20*)-a __ 
a0* 2 cos 2 ®* ait>* 2 cos 2 0* a@*a<I>* . a0* 

I a 
a<1> 

a u* 3 ___ Jr 
cos 0* a<1>* mm* 

= i * ( i* + l )f u * 
mm* 

u* u* f = m f 
mm* mm* 

, _I_ __a_ f u* = m* f ll* * 
a <I>* mm* mm 

Here j is related to the familiar quantum numbers i 0 

as i= t- (j
0
-l+ia) (j = O,1,2, ... ,-oo<a<oo continuous). 

The solution of equations (3), (4), (5) can be written 

·form 

(4) 

(5) 

' a 
/4/ 

in the 

Jl* 1 1 t..\ J-m 0 l+m 9* -f*-t+'l'* 9* -l*-i-m* 
f = - --- (cos~) (sin -"-) (cos-"-) lsin --) • 

mm* 
2 

...;2 · (2
17 

)2 2 2 2 · 2 (6) 

l(m<l>+ m*<l>*) 
• e 
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;~ 

l 
I 

·l 
j: 
l 

These functions are normalized as follovvs 
• 2 · 1 'i "I<· u* 

<j'j'*;m'm"i<lii*;mm*>=(-
2
1 ) Jcos0cos0*d®d0*d<l>d<l>*(f, ;* )*f *= mm mm 

= o , o (a' - a) o , o (v ' - v ) • 
1 o 1 o P.P. 

* 
It is worthy of note that f 11 * is a single valued function. If we mm · 
cut the sin -~ plane it is easily seen that as a consequence of 

the discontinuity over the cuts is integral va.luedness of i O ± P. 

equal to zero. Or conversely, the requirement of single va.lued

ness leads to the quantization of i o 

In order to qbtain the spherical functions in another basis 

we have to introduce a suitable coordinate system, e.g. the coor-

dinate system 

S
1 

= ea+nf,(-sinef>+icos0cos¢ ), S2 = ea+llf, (cos¢+icos0sin'¢) 

S = - i s' 0 a+ I,/, 3 m e . 'I' 

-oo<a<oo, OS,¢,tf,_<211, 0<0<11 

leads two the spherical functions in angular momentum basis 

(1<1>>= Ii oa;£p.>);: 

100- j U+ I 
f - --£p. - 811 3 

a( -t+tO") e 
e Dp. 1 (¢,0,tf,), 

0 

e ½'here D /l 
1 0 

is the representation of the real three - dimensional 

rotation group. 
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3. Belation~to Gelfand's Homogeneous Functions 

Consider now the following parametrization of I O • 

S =-iCu 2 -v 2 ), S2 = u 2 + v 2
, S 3 = 2iuv 

I . (8) 

It can be easily shovvn that if u and v transform as spinors 

of the SL (2, C) group i.e. ( 0 
:) = ( a ~ ) ( 

0 
) then S transforms 

V y u V 

as a vector of the three-dimensional complex rotation group. 

Parametrizations (2), (7) can be considered as special cases 

of (8) and correspond to the following parametrization of spinors 

<I> <I> 
E) -1- E) 1-

U = cos -- e 2 , v = sin -e 2 
2 2 

and 

. 0 
u = - sm --

~+ i tf,-¢ 
e2 "--2~ ' V=COS~ -;. + j tp+<p 

2 
e 2 

2 

Spherical functions in terms of n 

spinor basis read 

V in the unitary 

ru* 1 1 j-m 
--n vi+m u *-J*-l+m*. *-J*-1-m* 

V • 
mm* 2 y2 (2 rr ) 2 

If one consideres the linear manifold 

then under the 

as 

00 00 
ii* 

f ( u, v ) = I f dv amm* f mm* 
µ=- 00-00 

SL (2, C) group the function f(u,v) transforms 

T f (u,v )= f (1;- 1(u,v))= f (Bu -/3v,-yu +av), 
g 

8 

furthermore, it has the degrees of homogeneity 2 j , -2 j * - 2 

with respect to u , v and u * , v * • Thus, if we fix a basis, say 

m, m * the homogeneous functions investigated by Naimark and 

Gelfand /
5

,
6

/ take the form of the spherical functions (6) defined 

over the two-dimensional complex sphere of the zero radius. 
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