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Introduction

There exists a nufnber of homogeneous spaces group of
motion of which may .serve for the definition of the Lorentz group.
Out of these homogeneous spaces the most familiar is the .threea
diménsional hyperboloid, It has turned out,” however, that in certain
respect it is expediently to treat the Lorentz group as a .gf'oup of
motion of the two (conipl'ex) dimensional complex sphere § ®a 512 +
+ S;+S§ . Namely, it has been pointed out by H. Joos and
R. Schrader 1 and by the authors of/ 2/that if the Lorentz group
is considered in this. spirit, matrix elements of its unitary represen-
tation take a rather simple form, '

A three-dimensional complex wvector 8 is the self-dual part
of the Lorentz covariant antisymmetric tensor S‘“, , Le. S,=S0, +
+—é—ckgm 8 .k, &m=1,2,3)Since the real and imaginary part of S trans-
form _’like the electric and magnetic field respectively the ‘invariance
of §%= (E+ iﬁ)2 under proper Lorentz transformation is evident,
And conversely, it can be proved 31 that the connected part of
three=dimensional complex rotation group is isdmorphic to the \

‘proper Lorentz group.



1, Little Groups on the Complex Sphere of the Zero and

Nc;n—Zero Radius

Let us associate to a threex~dimensional complex wvector

§= (8, .8,.8,) the matrix §- S S‘—is2. Under g ¢ SL(2,C)
S;+i8, -8,

§ transforms as T, §=8-gSeg~'and clearly s? - 512+ 522+ Sj

is invariant, And conversely, it can be shown that if one exclu-
des the point S-= (0,0,0) any two complex vectors - $ , §” of
the same length can be translated to each other by means of a
suitable SL(2,C) transformation. Consider now the ’point S*0=
=(-iS5,50)(S£°0) on the complex éphere of the zero radius
3, « The little group of this point i.e. the subgroup satisfying

TTI §0= §0 constitutes - elements of the type 7= 1 Tll . This

, 0 1
[5:61 isomorphic to the two-

is the horyspheric subgroup imensio-
nal trarislation group T(2) , An arbitrary other point S - ngo

(g eSL(2C)) on X, . has the litlle group N, =& g~! . The
~onverse statement is also true i.e. any three-dimensional complex
vector having the horyspheric little group Mg fs on the sphere
of the zero radius. It can be shown in an analogous way that

the little group of a vector on the complex sphere of the non-zero
radius is the group H=S0(2) x S0(,1) /2/. Spherical functions of
the Lorentz group with respect to the subgroup H have been
studied in / 2/. Here we derivé the spherical functions with res-

pect to the horyspheric subgroup.

2, Spherical Functions on the Complex Sphere
of the Zero Radius

Consider the state |> satisfying
T | >=1]>"
- 7 , |
where ~T,] is the unitary representation of the horyspheric sub-
group. Then spherial functions of the Lorentz group with respect

to the Subgroup' 1 ‘are defined as

fd)(_Eo)=<(D|T | >*. (1)

Here T, is the unitary representation of the Lorentz group and
|® > is a basis vector specified below. The quantity £, indi-
cates that f ®(Eo) is a function over the factor space g/7 ,
i.e. it is defined over the complex sphere of the zero radius 2 o:‘
Explicit form of the spherical functions, (1) can be found by
solving the éigen{ralue equation of the Caéimir operators, To this

end we introduce the combination

J - L (M+iN), K =L (M-iN)
‘9 2

nd -

~ where M and N are the infinitesimal generators of the

" spatial .and hyperbolic’ rotations. At first the basis |® > will be

labelled by the eigenvalues of J, and K, ie, by m=(g+ir)/2,
m*= (p-iv)/2 ( p=0,t1,:2,..., ~w<v< = continuous).

Introduce the following coordinate system on X

Sl=;—'icos®cos®—sin®, ‘Sz=—icos@sin D+ cos® (2)
S3 = isin @'.
Here

0=0,+i0,, 0=0, +id,, 0<O <7, 0<P <27, - 0<@, ,P, <.
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The spherical functions in unitary spinor basis satisfy the eigen-
value equations of the Casimir operators 32 . K? and the

generators J_, K, . From (2) we obtain

2 2 . 2
[tg2 @ 6 - 1 a - +2i sin @ a +tg®(2+tg2®) a +
982 cos?@® 00 c0s@ 303D
(3
. % . ok
' co;3® -Taq)— ] f:m* =i+ l)f:m* !
: 2 L 2 )
[g? @2 L 0 _g; SO 0 41g®* (241g 20%) = -
90*% cos?@* 9d* cos’ @* 9B*3D* (433@)

i d 1* Iyeli*
(e 1 ,
cos® @% JD* ]{mm* it )‘“’“’*

*
=mf” , 1 d f”*=m*fi:**

. = (5)

1 _a {u*

i d0 mm* mm ¥ i 0 ®* mm

. ; . 14
Here j is related to the familiar quantum numbers i, , ¢ / /
(jg=1+i0) (j =012, —oce<o<os continuous).

(4), (5) can be written in the

as _i=-;—

The solution of equations (3),

- form . .

*

LN} * * —j¥_j—m
. )j -Hz‘sin ) e .
()

H 1 1
mm* 2y2 (27)°

f

(cos -&)j—m(sin -G—)Hm (cos e
2 2 2

1(m®P+ m*P*)
« e . -

These functions are normalized as Ioilows

. » 2 4 ]
<ii*sm'm*|jj*; mm
m mm

. : 1% *

*>= (3 )2 [ cos ®cos ©*d0 d6*d0dP* (T , |, yritl =
=6, 8(o'-a)s . 8lw’-v).
olo kg
* .

It is worthy of note that f i:n* is a single valued function, If we
cut the sin %—— plane it is easily seen that as a consequence Of
integral valuedness of j,t the discontinuity over the cuts is

equal to zero. Or conversely, the requirement of single valued-

ness leads to the quantization of io .

In order to obtain the spherical functions in another basis

we have to introduce a suitable coordinate system, e.g. the coor-

dinate system

S, = ea+“/,(-sin¢+icos fcosd ), S, = ea+“l-' (cos @ +1i cos Osin &)

+ 1¢ ' : (7)

» . a8
S, =—isin 0c
—w<a<w, 0<¢,¢¥<2wm, 0<f<

leads two the sphericalAfunctions in angular momentum basis

(J@>=1j 00;2y>);:

19 28+1

a( —14+10)
(]
E}l 8773

¢
Dy (#:0:4)

g .
where D i, is the representation of the real three -dimensional

rotation group,



3. Relation to Gelfand’s Homogeneous Functions

Consider now the following parametrization of X, .

'S!=—i(u2—-v2),.52=u2+ v3, 8, =2iuv . (8)

It can be easily shown that if v and Vv transform as spinors

of the SL(2,C) group i.e. (: )= (‘; g ) (‘i) then'S transforms{

as a vector of the three-dimensional complex rotation group,
Parametrizations (2), (7) can be considered as special cases

of (8) and correspond to the following parametrizétion of spinors

i) i)
—f — . { —
u = cos e 2 , v=sin—e 2
and . ‘
' Lo 2 i ded
e 7 tl 3 0 2 )
u = - Sin (] sy V=COS— € . .
2 2
Spherical functions in terms of v , v in the unitary
" spinor basis read
H . *
fh* = 1 1 pi ™ yitm oy =;<-1*—-1+m*Av,,<--l*—1—rI1

mo* 9 /T (2r)2

If one consideres the linear manifold
g ii*
flu,v)= 2 dvamm*f *

mm
= e 00 e OO

then under the SL(2,C) group the function f(u,v) transforms

as

Tgf (u,v)=1 (g~ tu,v))="1 (u-Bv,-yu +av)‘,

furthermore, it has the degrees of homogeneity 2j , -2j*-2
with respect to u ,v and u*,v*, Thus, if we fix a basis, say
m, m* the homogeneous functions investigated by Naimark and

Gelfand 5.6/ take the form of the spherical functions (6) defined

“over the two-dimensional complex sphere of the zero radius,
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