

ААБОРАТОРИЯ ТЕОРЕТИЦЕСКОЙ ФИЗИКИ

M. Huszár

SPHERICAL FUNCTIONS OF THE LORENTZ GROUP

ON THE TWO-DIMENSIONAL COMPLEX SPHERE OF THE ZERO RADIUS

1971

M. Hu szár *

SPHERICAL FUNCTIONS
 OF THE LORENTZ GROUP ON THE TWO-DIMENSIONAL COMPLEX SPHERE OF THE ZERO RADIUS

Submitted to "Communications in Mathematical Physics"

Научно-техническая библиотека OHSH

On leave of absence from the Central Research Institute for Physics, Budapest, Hungary.

Introduction

There exists a number of homogeneous spaces group of motion of which may serve for the definition of the Lorentz group. Out of these homogeneous spaces the most familiar is the threedimensional hyperboloid, It has turned out, however, that in certain respect it is expediently to treat the Lorentz group as a group of motion of the two (complex) dimensional complex sphere $\overrightarrow{\mathrm{S}}^{2}=\mathrm{S}_{1}^{2}+$ $+S_{2}^{2}+S_{3}^{2}$. Namely, it has been pointed out by H. Joos and R. Schrader $/ 1 /$ and by the authors of $/ 2 /$ that if the Lorentz group is considered in this spirit, matrix elements of its unitary representation take a rather simple form.

A three-dimensional complex vector \vec{S} is the self-dual part of the Lorentz covariant antisymmetric tensor $S_{\mu \nu}$, $i_{0} e_{0} S_{k}=S_{0 k}+$ $+\frac{1}{2} \epsilon_{k} \ell_{m} S_{l_{m}}(k, \ell, m=1,2,3)$ Since the real and imaginary part of \vec{S} transform like the electric and magnetic field respectively the invariance of $\vec{S}^{2} \approx(\vec{E}+i \vec{B})^{2} \quad$ under proper Lorentz transformation is evident. And conversely, it can be proved $/ 3 /$ that the connected part of three-dimensional complex rotation group is isomorphic to the proper Lorentz group.

1. Little Groups on the Complex Sphere of the Zero and Non-Zero Radius

Let us associate to a three-dimensional comple x vector $\overrightarrow{\mathbf{S}}=\left(S_{1}, S_{2}, S_{3}\right)$ the matrix $\hat{S}=\left[\begin{array}{cc}S_{3} & S_{1}-i S_{2} \\ S_{1}+i S_{2} & -S_{3}\end{array}\right]$. Under $g \in \operatorname{SL}(2, C)$ $\hat{\mathrm{S}}$ transforms as $\mathrm{T}_{\mathrm{g}} \hat{\mathrm{S}}_{\equiv} \hat{S}^{\prime}=\mathrm{g} \hat{\mathrm{S}}_{\mathrm{F}}{ }^{-1}$ and clearly $\overrightarrow{\mathrm{S}}^{2}=\mathrm{S}_{1}^{2}+\mathrm{S}_{2}{ }^{2}+\mathrm{S}_{3}^{2}$ is invariant. And conversely, it can be shown that if one excludes the point $\vec{S}=(0,0 ; 0)$ any two complex vectors $\overrightarrow{\mathbf{S}}, \overrightarrow{\mathrm{S}}^{\prime}$ of the same length can be translated to each other by means of a suitable $\mathrm{SL}(2, \mathrm{C})$ transformation. Consider now the point $\overrightarrow{\mathrm{S}_{0}}=$ $=(-i S, S, 0)(S \neq 0) \quad$ on the complex sphere of the zero radius Σ_{0}. The little group of this point i.e. the subgroup satisfying $\mathbf{T}_{\eta} \hat{S}_{0}=\hat{S}_{0}$ constitutes elements of the type $\eta=\left[\begin{array}{ll}1 & \eta \\ 0 & 1\end{array}\right]$. This is the horyspheric subgroup $/ 5,6 /$ isomorphic to the two-dimensional translation group $T(2)$. An arbitrary other point $\widehat{S}=T_{g} \hat{S}_{0}$ $(g \in S L(2, C)) \quad$ on Σ_{0} has the little group $\eta_{g}=g \eta g^{-1}$. The converse statement is also true i.e. any three-dimensional complex vector having the horyspheric little group η_{g} is on the sphere of the zero radius. It can be shown in an analozous way that the little group of a vector on the complex sphere of the non-zero radius is the group $H=\mathbf{S O}(2) \times \mathbf{S O}(1,1)^{/ 2 /}$. Spherical functions of the Lorentz group with respect to the subgroup H have been studied in $/ 2 /$. Here we derive the spherical functions with respect to the horyspheric subgroup.
2. Spherical Functions on the Complex Sphere
of the Zero Radius

$$
\begin{aligned}
& \text { Consider the state } \mid>\text { satisfying } \\
& \qquad \mathbf{T}_{\eta} \mid>=1>,
\end{aligned}
$$

where \mathbf{T}_{η} is the unitary representation of the horyspheric subgroup. Then spherial functions of the Lorentz group with respect to the subgroup η are defined as

$$
\begin{equation*}
f_{\Phi}\left(\Sigma_{0}\right)=\langle\Phi| T| \rangle^{*} \tag{1}
\end{equation*}
$$

Here \mathbf{T}_{g} is the unitary representation of the Lorentz group and $\mid \Phi>$ is a basis vector specified below. The quantity Σ_{0} indicates that $f_{\Phi}\left(\Sigma_{0}\right)$ is a function over the factor space \dot{g} / η, i.e. it is defined over the complex sphere of the zero radius Σ_{0}. Explicit form of the spherical functions (1) can be found by solving the eigenvalue equation of the Casimir operators. To this end we introduce the combination

$$
\vec{J}=\frac{1}{2}(\vec{M}+i \vec{N}), \quad \vec{K}=\frac{1}{2}(\vec{M}-i \vec{N})
$$

where $\overrightarrow{\mathbf{M}}$ and $\overrightarrow{\mathbf{N}}$ are the infinitesimal generators of the spatial and hyperbolic rotations. At first the basis $|\Phi\rangle$ will be labelled by the eigenvalues of J_{3} and $K_{3} i_{0} e$ by $m=(\mu+i \nu) / 2$, $m^{*}=(\mu-i \nu) / 2 \quad(\mu=0, \pm 1, \pm 2, \ldots,-\infty<\nu<\infty$ continuous).

Introduce the following coordinate system on Σ_{0}

$$
\begin{gather*}
S_{1}=-i \cos \Theta \cos \Phi-\sin \Phi, \quad S_{2}=-i \cos \Theta \sin \Phi+\cos \Phi \tag{2}\\
S_{3}=i \sin \Theta .
\end{gather*}
$$

Here

$$
\Theta=\Theta_{1}+i \Theta_{2}, \Phi=\Phi_{1}+i \Phi_{2}, \quad 0 \leq \Theta_{1}<\pi, \quad 0 \leq \Phi_{1}<2 \pi,-\infty<\Theta_{2}, \Phi_{2}<\infty .
$$

The spherical functions in unitary spinor basis satisfy the eigenvalue equations of the Casimir operators J^{2}, K^{2} and the generators J_{3}, K_{3}. From (2) we obtain

$$
\begin{gathered}
{\left[\operatorname{tg}^{2} \Theta \frac{\partial^{2}}{\partial \Theta^{2}}-\frac{1}{\cos ^{2} \Theta}-\frac{\partial^{2}}{\partial \Phi^{2}}+2 i \frac{\sin \Theta}{\cos ^{2} \Theta} \frac{\partial^{2}}{\partial \Theta \partial \Phi}+\operatorname{tg} \Theta\left(2+\operatorname{tg}^{2} \Theta\right) \frac{\partial}{\partial \Theta}+\right.} \\
\\
\left.+\frac{i}{\cos ^{3} \Theta} \frac{\partial}{\partial \Phi}\right] f_{m m^{*}}^{j j^{*}}=j(j+1) f_{m m^{*}}^{\mathrm{jj}}
\end{gathered}
$$

$$
\left[\operatorname{tg}^{2} \Theta^{*} \frac{\partial^{2}}{\partial \Theta^{*}}-\frac{1}{\cos ^{2} \Theta^{*}} \frac{\partial}{\partial \Phi^{*}}-2 i \frac{\sin \Theta^{*}}{\cos ^{2} \Theta^{*}} \frac{\partial^{2}}{\partial \Theta^{*} \partial \Phi^{*}}+\operatorname{tg} \Theta^{*}\left(2+\operatorname{tg}^{2} \Theta^{*}\right) \frac{\partial}{\partial \Theta^{*}}-\right.
$$

$$
\left.-\frac{i}{\cos ^{3} \Theta^{*}} \frac{\partial}{\partial \Phi^{*}}\right] \mathrm{r}_{\mathrm{mm}}^{\mathrm{jj}}=i^{*}\left(i^{*}+1\right) \mathrm{f}_{\mathrm{mm}}^{\mathrm{jj}}{ }^{*}
$$

$$
\begin{equation*}
\frac{1}{i} \frac{\partial}{\partial \Phi} \mathrm{f}_{\mathrm{mm}}^{\mathrm{jj}} \mathrm{~m}^{*}=\mathrm{m} \mathrm{f}_{\mathrm{mm}}^{\mathrm{j}}{ }^{*}, \frac{1}{\mathrm{i}} \frac{\partial}{\partial \Phi^{*}} \mathrm{f}_{\mathrm{m} \mathrm{~m}^{*}}^{\mathrm{jj}}=\mathrm{m}^{*} \mathrm{f}_{\mathrm{mm}}^{\mathrm{j} \mathrm{j}^{*}} \tag{5}
\end{equation*}
$$

Here j is related to the familiar quantum numbers $i_{0}, \sigma|4|$ as $i=\frac{1}{2}\left(i_{0}-1+i \sigma\right)(j=0,1,2, \ldots,-\infty<\sigma<\infty$ continuous).
The solution of equations (3), (4), (5) can be written in the

form

$$
f_{m m}^{j j^{*}}=\frac{1}{2 \sqrt{2}} \frac{1}{(2 \pi)^{2}}\left(\cos \frac{\Theta}{2}\right)^{1-m}\left(\sin \frac{\Theta}{2}\right)^{1+m}\left(\cos \frac{\Theta^{*}}{2}\right)^{-j^{*}-1+m^{*}}\left(\sin \frac{\Theta^{*}}{2}\right)^{-j *-j-m^{*}}(6)
$$

$$
: e^{1\left(m \Phi^{2}+m^{*} \Phi^{*}\right)}
$$

These functions are normalized as follows
$\left\langle j^{\prime} j^{*} ; m^{\prime} m^{*} \mid i^{i^{*}} ; m m^{*}\right\rangle=\left(\frac{i}{2}\right)^{2} \int \cos \Theta \cos \Theta^{*} d \Theta d \theta^{*} d \Phi d \Phi^{*}\left(f_{m}^{j^{\prime} m^{*}} m^{*}\right) * f_{m m *}^{j f^{*}}=$

$$
=\delta_{j_{0}^{\prime}, 0} \delta\left(\sigma^{\prime}-\sigma\right) \delta_{\mu}^{\prime} \mu \delta\left(\nu^{\prime}-v\right)
$$

It is worthy of note that $\mathrm{f}_{\mathrm{mm}}^{\mathrm{H}^{*}}$ is a single valued function. If we cut the $\sin \frac{\Theta}{2}$ plane it is easily seen that as a consequence of integral valuedness of $\mathrm{j}_{0} \pm \mu$ the discontinuity over the cuts is equal to zero. Or conversely, the requirement of single valuedness leads to the quantization of \mathbf{i}_{0}.

In order to obtain the spherical functions in another basis we have to introduce a suitable coordinate system, e.g. the coordinate system

$$
\begin{gather*}
S_{1}=e^{a+i \psi}(-\sin \phi+i \cos \theta \cos \phi), S_{2}=e^{a+1 \psi}(\cos \phi+i \cos \theta \sin \phi) \\
S_{3}=-i \sin \theta e^{a+i \psi} \tag{7}\\
-\infty<a<\infty, \quad 0 \leq \phi, \psi<2 \pi, 0<\theta<\pi
\end{gather*}
$$

leads two the spherical functions in angular momentum basis $\left(|\Phi\rangle=\mid \mathrm{i}_{0} \sigma ; \ell \mu>\right) ;:$

$$
\mathbf{f}_{\ell \mu}^{\mathrm{J}_{0}^{\sigma}}=\sqrt{\frac{2 \ell+1}{8 \pi^{3}}} \mathrm{e}^{\mathrm{a}(-1+i \sigma)} \mathbf{D}_{\mu \mathrm{J}_{0}^{\ell}}^{\ell}(\phi, \theta, \psi)
$$

where $D_{\mu_{j_{0}}}^{\ell}$ is the representation of the real three-dimensional rotation group.

3. Relation to Gelfand's Homogeneous Functions

Consider now the following parametrization of Σ_{0}.

$$
\begin{equation*}
S_{1}=-i\left(u^{2}-v^{2}\right), S_{2}=u^{2}+v^{2}, S_{3}=2 i u v \tag{8}
\end{equation*}
$$

It can be easily shown that if u and v transform as spinors of the $\mathrm{SL}(2, \mathrm{C})$ group i.e. $\binom{\mathbf{u}^{\prime}}{,\mathbf{v}^{\prime}}=\left(\begin{array}{ll}a & \beta \\ \gamma & \delta\end{array}\right)\binom{\mathbf{u}}{\mathbf{v}}$ then S transforms as a vector of the three-dimensional complex rotation group. Parametrizations (2), (7) can be considered as special cases of (8) and correspond to the following parametrization of spinors

$$
u=\cos \frac{\Theta}{2} e^{-i \frac{\Phi}{2}}, v=\sin \frac{\Theta}{2} e^{i \frac{\Phi}{2}}
$$

and

$$
u=-\sin \frac{\theta}{2} e^{\frac{\mathrm{a}}{2}+i \frac{\psi-\phi}{2}}, v=\cos \frac{\theta}{2} e^{\frac{\mathrm{a}}{2}+i \frac{\psi+\phi}{2}}
$$

Spherical functions in terms of \mathbf{u}, \mathbf{v} in the unitary spinor básis read

$$
\underset{\mathrm{fm}^{*}}{\mathrm{j} j^{*}}=\frac{1}{2 \sqrt{2}} \frac{1}{(2 \pi)^{2}} u^{j-m} \mathbf{v}^{j+m} u^{*^{-j^{*}-1+m^{*}} \cdot \mathbf{v}^{-j^{*}-1-m^{*}} .}
$$

If one consideres the linear $\operatorname{manifold}_{\infty}$

$$
\mathrm{f}(\mathrm{u}, \mathrm{v})=\sum_{\mu=-\infty}^{\infty} \int_{-\infty}^{\infty} \mathrm{d} \nu_{\mathrm{mmm}^{*}} \mathrm{f}_{\mathrm{mm}}^{\mathrm{j} *}
$$

then under the $S L(2, C)$ group the function $f(u, v)$ transforms as

$$
\mathrm{T}_{\mathrm{g}} \mathrm{f}(\mathrm{u}, \mathrm{v})=\mathrm{f}\left(\mathrm{~g}^{-1}(\mathrm{u}, \mathrm{v})\right)=\mathrm{f}(\delta \mathrm{u}-\beta \mathbf{v},-\gamma \mathbf{u}+\alpha \mathrm{v}),
$$

furthermore, it has the degrees of homogeneity $2 \mathbf{i},-2 \mathbf{i}^{*}-2$ with respect to u, v and u^{*}, v^{*}. Thus, if we fix a basis, say
m, m^{*} the homogeneous functions investigated by Naimark and Gelfand $|5,6|$ take the form of the spherical functions (6) defined over the two-dimensional complex sphere of the zero radius.

Acknowledgements. The author whishes to thank Prof. J. Smorodyns for helpful discussions.

References

1. H.Joos, R.Schrader. DESY preprint 68/40, 1968.
2. M. Huszár, J. Smorodynsky. JINR, E2-4225, Dubna, 1968; Theor. and Math. Phys. (Moscow), 4, 328, 1970.
3. M. Huszár, J. Smorodinsky. JINR, E2-5020, Dubna, 1970...
4. H.Joos. Fortschr. d. Phys., 10, 65, 1962.
5. M.A. Naimark. Linear Representation of the Lorentz Group (Pergamon, New York, 1964).
6. I.M. Gelfand, M.I. Gaev, N.Ya.Vilenkin. Generalized Functions (Academic, Neiv York, 1966) vol. V.

Received by Publishing Department on April 9, 1971.

