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The characteristic feature of high energy inelastic interac

tions is the production of new particles. lt is known /l/ that the 

average multiplicity in these processes grows as some power 

of the incident energy and at an energy of a few TeV reaches 

large values. Prom this point of view the future theory of inelas

tic interactions must necessarily contain some elements of the 

sta~tics. Therefore a critical analysis and further development 

of the statistical models are of considerable interest. 

Let us consider the SU (3) version of the statistical model 

of multiple particle production /
2

/. In this case, besides the basic 

statistical approach, an additional assumption about the SU ( 3 ) 

symmetry in imposed on the amplitudes and on the particles 

involved in this process. Such an assumption reduces consider.-. 

ably the number of different "particles"-multiplets, which form a 

"final state". The state observed in an experiment is generated 

by· particles which are fixed representatives of the allowed multi

plets. The probability of this state is determined by a quantity 

called statistical weight. 
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Unfortunately, the calculation of the statistical weights for 

many-particle states is a difficult problem in the SU ( 3) approach. 

The difficulties sharply grow with the increase of the number of 

particles. They become almost unsolvable for states with six and 

more particles. This fact forced us to refuse the traditional methods 

of calculation and to adopt the method of Cerulus /
3

/ developed for 

the calculation of similar quantities in the SU ( 2 ) approach. 

To demonstrate the method suggested we consider, as an 

example, an arbitrary quark system. Such states are realized, e.g. 

in the additive quark model for inelastic interactions /4/ where 

hadrons of the final state are formed from a very large number 

of quarks and antiquarks. 

A realistic way for solving the problem implies that a closed 

expression should be constructed for the statistical weight •. The 

first step along this line is the parametrization of the considered 

group. 

It is known /
5

/ that the typical element of the three-dimen

sional unimodular unitary group is an 8-parameter expression. From 

~ physical point of view such matrix elements are of interest 

which are diagonal with respect to hI and h2 (the quantum 

numbers of the representation of the group in the Gelfand's 

scheme /
6

/) and to the internal states of the multiplet. These 

quantities (like those of the U ( 2 ) group) are called the diago-
[ h h 0 ] 

nal D e .1 e 2 (g) -functions (the index f running over all 

the multiplet states [ h 
1 

h 
2 

0 ). 
The ~eyhnique of calculation developed by Chacon and 

. ?f 
MoshinskY allows us to write the diagonal triplet D -functions 

in the form 
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The corresponding D [tto] - functions . e. f 
for t1 

are equal to the conjugated quantities. 

The sum of the D -functions over all the st 

triplet (antitriplet) defines the )( -character of th 

( )( * - antitriplet) representations.· Knowing tltetr 

that the character of Uw sum of representations eq• 

of the characters, and the direct product of repres< 

the product of the characters, it is easy to d~fine I 

of any representations we are interested in, for exc: 
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Finally, using the Murnaghan method /
5

/ it is 

calculate the volume element of the group 
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Th d . D [!tO] f t' e correspon tng - unc Ions 
' f. f 

for the antitriplet 

are equal to the conjugated quantities. 

The sum of the D -functions over all the states of the 

triplet (antitriplet) defines the X -character of the tl'iplet 

X * - anti triplet) representations. Knowing U tellt and noting 

that the character of th<~ sum of representations equnls the sum 

of the characters, and the direct product of representations equals 

the product of the characters, it is easy to define the character 

of any representations we are interested in, for example: 

[200] 2 * 
X =X -X 

[220] 
X (X*) 2 X 

[2!0] * 1 
X = X X -

(2) 

Finally, using the Murnaghan method /
5

/ it is possible to 

calculate the volume element of the group 
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Eqs. (1)-(3) are the parametrization of the 0 -functions, the 

characters and the element of volume of the group. 

The statistical weight is equal to the square of the projec

tion of the vector A, which in this case is the direct product 

of the corresponding number of triplets and antitriplets on the 

subspace transforming according to the irreducible representation 

[ h h 0 ] • This quantity equals 
I 2 

I < [ h I h2 0 ] I A > I 
2 ,.[h h 0 ] 

<AlP 12 lA> (4) 

where the operator i'· [h, h20 is of the form 

p[h, h20] (g) [h h o] [h h o] " 
N I 2 f )( * I 2 ( g) 0 ( g) dg (5) 

and projects the vectors of the subspace in which the operator 
" 
f) (g) acts, onto the above mentioned subspace. For the volume 

el:~ent of the group normalized to unity N [h t h 2 ° ] is equal to 

the dimension of the [ h 1 h 2 0 ] representation. 

Inserting (5) into (4) we get the final result: the statistical 

weight of the state containing m quarks and (n-m) antiquarks 

is equal to 

I < [ h, h 2 0 ] I A > I 

n m 
II II 

f=m+l k=l 
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where i = 1,2, 3 
I j = l, 2 '3 I 

D [ttO] 
If • If is tl 

member of the f- th antitriplet, and 0 
[too] 
ik • j k 

is the 

of the k -th triplet. 

In the processes of multiple particle production ea 

of the final state belongs to either an octet or a decupl 

than a triplet and an antitriplet, as it has been conside 

earlier. 

Let us now show, however, that any diagonal [) 

of the octet or decuplet may be represented by the s 

product corresponding to the number of triplet and antitt 

0 -functions (not only diagonal). So far as the barJ 

is an external quantury-t number related to the multiplets 

octets may be constructed from either three triplets, or 

and an antitriplet. The second possibility seems to be r1 

preferable. Then taking into account the "quark contPnt" of 

functions of octet particles /
8

/ it is easy to get 
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I, I 

n [~to] 
3, 3-

0 [2 1 o] 
N,N 

from Eq. (7) by the substitution 1 
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correspondingly from 

by the replacement 3 
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and 

2 

and 
[2! 0] 

0 !-.! _ is got from (8) by the substitutions 1 

2 '.! • The remaining octet functions are related to t 

functions by 
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member of the E- th antitriplet, and D .[to~] is the j-th member 
Jk • J k 

of the k -th triplet. 

In the processes of multiple particle production each particle 

of the final state belongs to either an octet or a decuplet rather 

than a triplet and an antitriplet, as it has been considered 

earlier. 

Let us now show, however, that any diagonal () -function 

of the octet or decuplet may be represented by the sum of the 

product corresponding to the number of triplet and antitriplet 

D -functions (not only diagonal). So far as the baryon charge 

is an external quantum number related to the multiplets of SlJ ( 3 ), 

octets may be constructed from either three triplets, or a triplet 

and an antitriplet. The second possibility seems to be more 

preferable. Then taking int1 account the "quark contPnt" of tho wave 

functions of octet particles /
8

/ it is easy to get 
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• The upper indices of the D -functions correspond to the 

irreducible representations of SU ( 3) in Gelfand's scheme, 

The I ower indices of triplet 0 -functions mark the states 

between which the transitions are regarded inside a triplet or an 
antitriplet. In the octet 0 -functions listed here the lower 

indices correspond to the states of a baryon octet. F'or boson 

octets the lower indices of the 0 -functions are to be 

altered in an appropriate manner without changing the right-ha.nd 

side of the equations. To construct the diagonal decuplet 0 -

-functions from the triplet ones let us consider a "quark content" 

8 

of the wave functions of the particles occupying a 

this case the orthonormal symmetrical three-quark c 

must be connected with each particle of the decupl 

fact it is easy to get the equations relating the dia 

0 -functions with the triplet ones. 
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of the wave functions of the particles occupying a decuplet, In 

this case the orthonormal symmetrical three-quark composition/sf 

• must be connected with each particle of the decuplet, Using this 

fact it is easy to get the equations relating the diagonal decuplet 

D -functions with the triplet ones, 

D [8oo] 

N*++,N*++ 

[too] [too] [too] 
D D D 1 • t t, t t. t 

(11) 

Functions 
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Eqs. (7)-(13) enable us to calculate the statistical weight 

of many-particle states on "quark level". 
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