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Introduction.

Algebraic approach in relativistic quantum .heory still
contains a significant number of unsolved probl:ms. There
are among them the problems of paramount importince such as
the definition of field starting from local obsirvable algeb-
ras ("F-problem" for the sake of brevity) and the construc-
tion of purely algebraic scattering formalism (' S~-problem").
We suppose one of main reasons of this to be the following:
the initial form of algebraic approach developec. by Haag,
Araki and the other absorbed a very poor physic:.l information,
thus giving no possibility either to solve or even to formula-
te the problems like afore-mentioned ones, for wtich 1t was
necessary to operate with objects not reducing ‘o local
observables (such as field or scatlering st te, ct:.), or
the solution of problems like these the algebra:c approach
should be provided with additional information; i.e. an alge-
braic quantum theory adiowing the introduction ¢f a field or
S-matrix, etc,should represent a net of local algebras
(abstract or concrete),which satisfy a set of findamental
axioms (Haag-Kastler’s or Haag-Araki’s) as well as some ad-
ditional conditions.

It seems very natural to expect that such additiomal con=-
ditions will include, first of all, certain constraints on
global structure of theory. In fact, all axioms are conditions

on local algebras, whereas it is most probable that global



algebra of a physical system cannot be arbitrary too, espe~-
cialy 4f the system in question enjoys some special properties,
like the existence oi field or S-matrix, etc. This argument
can be 1illustrated, for instance, by the situation in statis-
tical mechanics, where conditions on global algebra exist
always and are of essential importance. Nevertheless no gene-
ral and physically pgrounded conditions fixing the global struce
ture were proposed for relativistic quantum theory. (In Wx -~
approach one aszumed often that global we - algebra R is a
factor or i5 irrxeducible. However the first assumption was
not justified by anything except mathematical convenience and
the second, as is well~- known, is too restrictive). Besides
this, it 1is not excluded at all that other additional condi~-
tions, those of local nature, will also be necessary to pick
out of general iormalism ol local observables more concrete
physical theories.

#ith these :¢rpuments in mind, we Set ourselves as an
object to develcp such a modification of Haag-Araki-Kastler
theory, where piysically welil-grounded additional conditions

to fundamental axioms were Cound and investigated. Due to
these conditions it could bhe used as a basis for constructing

alpgebraic struc.ures corresponding, for instance, to field or
S-mairix theori:s, physically more 1ich and interesting than

the geperal thesry of local observables. In the first two

/1,2/

parts of our work, published In Pussian in and for

convenience siated bricfly in 51, we have analyzed the global
. . *
structure of observavle algebras in "cencrete" W& - approach.
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We have found cul that all physical systems possessing super-

3
selvetion tules { L.e, Yoo, wide vlass of agstems 1n-ludlng,

f1eld o, utenn ) are characterized
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by a very definite global structure, which was called
the ")(:th structure" by us and presuppotes, in par-
ticular, that global w'-algebra R isa direct sum of discrete
factors. The latter are physically interpreted as global ob-
servable algebras of coherent superselection sectcrs. From
purely mathematical viewboint our proposition tc use as a
global algebra R the direct sum of discrete factors (imstead
of older variants, R = (3), or R being an arbitrary fac-
tor) is of course, not so great innovation. However the main
element which was here important to us is that in our scheme
the global structure is not introduced ad hoc, but is prescri-
bed directly by the analysis of physical phenomena,

Further, in § 2 we provide the deduced global structure
R = f%cgt& with a net {_R(O)}O(:H of local algebras R(0)
satisfying lHaag~-Araki axioms., Then we study in detiil an
arising superposition of the global (sector) and lycal (net)
structures and generalize to the resulting, "cross:d" struc-
ture all classical theorems and results of the llaa;-Araki
theory. In particular, quasilocal c* - algebra ()L of our
scheme appears to be simple, what is important for further
developments. Also a number of new results is obta:.ned. They
include, for instance, theorem 2.4 containing a str:.ctly axio-
matic proof of global nature of superselection rules. The
properties of translational automorphisms of algebr:. Ck are
investigated. Using asymptotical abellanness of C& with
respect to translation group, we describe the struc ture of
the set of all translation-invariant vectors as we:l as pro-
petties of vacuum coherent sector and vacuum state. This

completely clarifies the problem of relations betveen many
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possible formulations of "vacuum postulate®". As a result,

we obtain for any theory of H= MP class a well-developed
scheme of axlomatic theory of local observables, hoping by
this to provide a basis for all possible applications of the
theory. In tris section the structure = }ép is our only
additional ccndition.

In § 3 we proceed to problems connected with introducing
of a field ard we find our global structure to be guite
suitable for these purposes. We represent the coherent super-
selection sectors as representations rle_ of the quasilocal
Cx—algebra 0C and study equivalence properties of those rep-
resentations as well as thelr restrictions to different sub-
algebras O(ic R (keeping in mind that starting objects for
the construc.ion of fields must be intertwining operators of
Some or othe:*r representations connected with coherent sectors
/3=6/. We conpletely describe the equivalence properties of
representations rWA (i.e. the global equivalence properties
of coherent :iiectors) and then proceed to local equivalence
properties wiich are of greater importance for the F-problem.
At first we sonsider the equivalence properties of restric-
tions (ﬁ(:) = (\T¢\ R (o) with 0, by definition, a bounded re-

gion. Here i: turns out that local unitary equivalence of
(o) (e)
d - T“F' ) requires,

coherent sectors dC, and \J{P ¢ n
besides the ixioms, certain additional conditions relating to
dimensions of irreducible subspaces of algebras R and R’ in
sectors }e& and LJ(P +« This means that our starting condition
Rz\}ﬁp is joined with another additional condition, also of
global nature. This new condition is rather general and un~-

restrictive.



Finally, we investigate in § 4 properties of our scheme
with respect to umbounded regions. Following /3-5/ we charac-

terize these properties by two families of C*—algebras:

OC(O)2RO)'N G ana 0L(0)=: VR(O) (¥-ulgebra

generated by local algebras R(O), O < OI, 0 € &M,

iguivalence properties of corresponding representations
rﬁ(0’)

< - O SN
\\d_TJ\mc(o) and N = \\‘\OL(O’) ire of most

importance for the F-problem because intertwinin; operators
— (07) — (o7 - < S
of representations /!, and Tlg o I, and llp (if
such exist) possess locallzation properties and :an directly
be used for constructing a field group and field operators.
we find, however, that the behaviour of the theo 'y in unboun-
ded regions, as described by the families /L ﬁ: la € o
and J( ﬁd( °? lj& ¢ - sStrongly differs from that in bounded
regions described by the family J(“A(O) [J(“o . T)ie reason is
that weak closures of algebras O(/C(O) and OL(U’) do not
belong to Cu in general case; that’s why the ecuivalence
properties of corresponding representations are 1ot governed
by the fact of simplicity of OL and worsen con:iderably.
we study at first the representations W; and weak
duality condition /4, 5/ closely connected with them., Under
the very general global conditions we prove the fulfillment
of weak duality in coherent sectors and then, adcing one
more global condition, which means physically the absence of
continuous superselection rules, we prove weak dvality in
the whole space LB”(: QV\KA and pair-wise disjointness of

C
all qu . This means that these representations are useless

for the F-problem.



(o)
4€ proceed then to the representations ar " and draw

the conclusion (however not having the formal proof for the
time being) that local observable theory even if provided
with any glcbal constraints,allows the arbitrariness in equi-
valence projerties of these representations. It means (if the
primariness ol the 7T;w) is taken into account) that all local
observable fheories with superselcction rules can be divided
into two clisses, the first of them having ﬁ;<07<x (nﬁ(nv
and the second M7 4 {)T;;‘) for all d,$€C" All field
theories fa .l in the first class and so the problem of formu-
lating the ecessary and sulficient conditions of belonging
to this clasis becomes of a real interest. The role of these
conditions .s to single out the class of field theories within
the larger :lass of relativistic quantum theories of local ob~-
servables. Ve have proved that one form of such criterion
consists in the presence in every coherent sector §€* of a
total set inf( 0) of vectors representing states strictly
localized in the region O: Eﬁz?ifzajgﬂ: H, for all
0 € B(M). lhe existence ol other similar criterions is not
impossible at all, but the physical meaning of them is always
the same, i.e« to put restrictions on the behaviour of states
at the infinity in space-like directions., Loosely speaking,
this means that field theories can be plcked out in the set
ol all loccl observable theories by means of some "asymptoti-
cal condition", oi which one possible form was found by us.

As a result, we obtain a full picture of equivalcnce pro-
perties ol coherent sectors for all regions. This picture

becomes qui.te clear in the light of the following inclusions

R(G) € O (0) <« o (0) <« (0.1)
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(where 0 is a bounded region lying in 0 ). Inceed, if Cﬁ,i 9

are GF—algebras such that Ol,ic Glzand 7TL ¢ are some

)
representations of OL,Q, then equivalence pioperties of the
restrictions Wy and ﬂ~ may be stronger in gene-
L\OLL Kl(}Lg‘ Y . g (-g
ral case than the equivalence properties of |.; and W
themselves, In virtue of this fact, in the chzin (0.1) the

' (
representations 'ﬁa'o)

must enjoy the strongest equivalence
properties, while the representations TTA the weakest ones.
This is in complete accordance with our results, which give
ﬁi:“ ~ TTéO) and Ty & 7n3, The asymptotical representa-
tions —F&c and 'ﬁjo are intermediate between local and glo-
bal ones, and So their equivalence properties djecome well-de~
termined only under additional restrictions.

The methods and aims of our work lie close to the works
by Borchers /3,4/ and especlally by Doplicher, Haag and Ro-~
berts /5, 6/ dedicated to the F-problem. Detailed comparison
with the Doplicher, Haag and Roberts’ results is made in the
Conclusion. As a main general distinction of toth schemes we
can point out that at the moment we have gone 1.0t so far in
what concerns the direct construction of a fie..d (which was
the main task of Doplicher et al.), but in return we have
developed a more general and elaborated formalism, which is
suitable, as we hope, for wider range of applications. Also
we regarded more critically to the introductior of additional
conditions, controlling theilr independence from each other
and from the axioms and their necessity for desired results.

In correspondence with this principle, our Scheme starts with

the global condition df = geP , which 13 necessary for the
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formulation of the superselection theory, and ends (at the
present stage) with the local condition I 5_5{(0)5& = l}CA
which is necessary for the existence of fields.

NOTATIONS. Most part of our notations follows the books by
J.Dixmier /7, 8/, the references on which are denoted as DW
and DC respectively, so that, for instance,[DW-—ﬂ means

page 5 of /7/,}'(1 ((,‘1) is the set of all real (resp. complex)

numbers. The four-dimensional Minkowskl space will be denoted

by M, open bcunded regions in M by 0, and B(M) is the nota-
tion for the set of all such O in M. O’denotes the set of
a4ll points ir M, which are space-~like to all points of 0., If
hxe is any sutset of some linear space,LiﬁI}I denotes the
linear hull of J3C . In topological spaces the closure of

any subset JYL in the topology T will be denoted by the

line provided with corresponding index: Jre T, The closure
in the norm -.opology of any Banach space will be denoted by
the line witliout the index. In Hilbert space 3{ we denote
as 2)(3() the algebra of all linear bounded operators on 3 ’
and é(k) th: algebra of all multiples of the identity ope-
rator T. The subspaces in ‘K, generated by the action of a

x =set of ojerators \S* < ;b(‘ét) on a subset V)TZ, c ¥
will be denoted as Xﬁ\ﬂ, i.e. Kiﬂ‘l\){\*mﬁ_f’rojec—

A A

tior on & 1y, 1s denoted as Qm . S denotes the unit
sphere in 3—‘1 . The weak, strong and uniform operator topo-
logies 1n’§tr&) are denoted as by the indices w, s, u respec-

tively.
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vecltor st.:lta_s_w in the representuation Wwoe Rep Gt such
that WIGUY = R, One possible variant of such connection will
be describei 1in é 3 below.
pefinition 1.4.

state of physical system described by Wx-algebra of
observables It © B(¢) is linear functional (J on the algeb-
ra R, positive ( AV(R(J(AxA)?O) and normed to the unity
(W (1) =1). The set of all stutes will be denoted as R,l**

sxtremel points of the set R1x+ will be called pure sta-
tes, all other points mixed states (mixtures),

sState (efined for all A € R by means of the correspon-
dence 4 — A% %) with € ¢ X ana i ®N=1{ will ve called vec-
tor state «nd denoted as ¢ . The set of all vector states
on Kk will he denoted as V(R) and the set of all pure vector
stutes as V().

vector P €3 such that (Jyg1qe €  PV(R) will be
called pure vector, and the set of all such vectors will
be denoted as 33,

The most convenient object of stadying possessing in
addition clear physical interpretation, appears to be the
set of all vectors in 3{ representing the same vector state

on R.

Definition 1.2.

For every vector state (Jo@ € V(R), the set of all unit
vectors Y €3 such tbat W = &g 1is called the H-image

.y 1
of (Dq ard denoted as 3}’1‘1 .Il.e.,

g 2 W e RINT =1, 7 (AL, ¥)(A9Q) (1.1)

AER
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If and only if R = 25(3() y H~imuges of all vector
states from V(R) are unit rays, R # ?)(44) implies the pre~
sence of non-onedimensional H~images. From physical viewpoigl
introducing of the H-image notion seems to be gquite natural.
The object (related to 3{_) directly manifesting itself in
the experiment and thus in the exact sense repr2senting phy-
sical state, is not the vector P € 3 itself, out the set
of all expectation values ( A(Q,<E ) for all observables ..
By definition, for all vectors in the same H-image this set
of expectatién values is the same.

Now let us list a few main properties of H-imuges.

1) for every vector state (Wqg the closure of the linear
hulllof its H~image 3}7,; coincides with cyclic subspiice
3{Kg .

’

T TS o ®
] — i
LAttey = &g 1.2)
2) the state (Jg ¢ V(R) is pure if and only 1if

Rt

T g = g NOE 4.3)

Class of Wx-algebras possessing pure vector states is
closely related to the class of type 1 wx—algebras, as the
simple property shows:

the following three sets are in one-to-one sorresponden-
ce between each other: 1) the set PV(R) of all jure vector
states on the Wx—algebra R; 2) the set of all minimal pro-
jections in R; 3) the set of all minimal projec:ions in R’.

If R is a factor, this property means that

PV(R)## & R is of the type I . (t.4)

If 3 # 3(3¢) this relation can be destroyed in zeneral case,
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but any algeora R with PV(R) # ¥ still cannot belong to the
types 1I and 1II.

For the compurison of algebraic theory with the old Hil-
bert space Linguage (in which all pure states are considered
to be unit rays in 3 ) the following questions are of inte-
rest: 1) und:r what conditons the H-image of a given vector
state is unit rayv 2) under what conditions all pure vector
states are rzpresented by unit rays? Below the precise ans-
wers to both questions are given.

Proposition I.I,
The H-imige of vector state (Wg¢ 1s unit ray, i.e.
N 1 _ )'\f >4
P = ¢ ¢ Jwertr
if and only Lf
1) Cige PV(R)

., R N R’
2) Kg 2 HQ
The conditioa (2) can be replaced by the equivalent one:

L N
2) ’(@_ = :?(_Q
Proposition 1.2

H~-images of all pure vector states are one-dimensicnal

if and only if the algebra R is of the following form:

=K, ® R, with R, = ® 5(¥y) and PV(R,) = L.

1 2 1 ver 2
ifter thise preliminaries let us lntroduce the algebralc

structure, wiich will be at very centre of «ll the further

account.

Definition 1.3,

We shall say that wx-algebra R possesses sufficient
amount of pure vector states or, equivalently, belongs to
the :%1:369 class", if the linear hull of the set of vec—

tors ife }( representing pure states is dense in 36 :
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The class of von Neumann algebras satisfying this defi-
nition is completely characterized by the followiang theorem.
Theorem 1.3 *

The following conditions are equivalent:

1) w¥-algebra R belongs to the of= Ko class,

2) R is wW¥-algebra of the type I and its centre 3 contains
only the operators with purely point spectrum,

3) R is direct sum of type I factors.

Next, we establish that wx—algebras of the ?(=4€P class
can be physically interpreted as observable algebras of phy-
sical systems with superselection rules; conversely, cvery
physical system with superselection rules correspinds to
observable algebra belonging to the 3(f:}<9 class.

WWe draw these conclusions from the analysis of concrete
physical systems possessing superselection rules. On tLhe
grounds of such analysis we formulate a comprehensive alge-
braic definition of arbitrary superselection rule,

Definition 1.4

let quantum system be given with observable a .gebra
R < 35(31)_ Wie shall say that a superselection ru.e is acting
in this system, if there exists the decomposition }t:,?rgf*
satisfying the conditions I - III below, and each of Lhese

conditions implies two others.

OExamples of statistical systems with observab .e algebras
of the types II and III being explicitly known, 1. 1is clear
that in the statistical mechanics (in contrast to relativis-
tic quantum theory) the structure proposed by us :annot be

too universal,
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I. Lvery vecior not lying in some }C¢ corresponds to mixed
state.
IT. Transitions between different 3{¢, by means of observab-

le operators are forbidden

v V (A(P“L (qu_\: O
AeR dy#4, ¢
and in addit.on all the H-images of vector states (L)Qi

(11,4 )

[
with @“f K., lie entirely in Qﬂi :

1 N
Vool ¢ K
¢ oyt e * (1L, ¢ )
4

I1I. There e¢ists an operator T‘Z 3 (i.e. affiliated to -}
and unboundel in general case) such that all 3€, , &€
are 1ts elgei-spaces.

In this situation the subspaces }ei are called super-
selection sectors and the operator T superselection
operator (corresponding to a given superselection rule).
Theorem I.4

Quantum system possesses superselection rules if and
only if its observable algebra R beliongs to the 3€ff9<9
class. Lach operator T? 3 determines uniquely a certain
superselection rule, i.e. the structure }CZJf;K‘ satisfying
the definition I.4.

Iet us rote main features peculiar to this treatment

of superselection rules.,
4) In the definition I.4 only the condition (II,« ) and
the requirenent of equivalence of the conditions I - III
were not mairked in previous literature. AS a consequence,
all the new features of our scheme go back to these two

distinction:s. Namely, the condition (II, ] ) implies that

16



superselection operators have to be affiliated rot only to
the commutant R’ but to the centre 3 of R; the equivalence

of the properties I - III implies the necessity for observab-
le algebras of systems with superseleclion rules to belong

to the }(:ﬁkp class. Properties that follow represenl the
secondary consequences of the same initial distinctionse.

2) All superselection rules commute automatically between
each other.

3) Let quantum system be glven possessing the decomposition

of the following form: o

Je =V d s R R Y da(HRE) (re)

where R ( § ) are factors almost everywhere in tne measure 4
and so the algebra of diagonalizable operators is some abe-
lian Wx—algebra generated by an operator T_Y 5 #ith conti-
nuous spectrum. Such decompositions are impossible in "Jt,:)ﬂf
and in our scheme they are refused to be interpr:ted as su-
perselection structures. This follows automatically from
the scheme, but we also represented the independ:nt arguments
in favour of this (in /2/,§2), which are close t> those de-—
veloped by J.Antolne /9/.

sbsenge of the decompositions (I.6) does not mean at
all that continuous superselection rules are excluded 1n
our scheme. What 1s excluded is only one a prioril possible
kind of them, namely, the superselection rules, for which
the superselection operator possesses continuous spectrum.
But still 1s perfectly allowed another kind, the superselec-
tion rules, for which the set G~ of all coheren: superse-

lection seotors 1s uncountable. We verified that all known
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examples of :he continuouos superselection rules (such as
Bargmann’s siperselection rule or the superselection rule
in the BCS model found by Emch and Guenin /10/)belong to the
second kind. The assertion about complete impossibility of
the first mentioned kind of continuous superselection rules
may be considered as a prediction made by our scheme.

Thus we «efine the discrete and the continuous superse-
lection rule:i as those characterized respectively by the
" countable anc. the uncountable set G of coherent sectors;
but in both cases by an cperator with point speoctrum only.
iAs the folloving simple proposition ahows, these cases cor-
respond to tvo subclasses of the 3€.=‘}QP class, which
differ by an essential structural property.
Proposition J.5

slgebra 1. of the 3=, class describes the quantum
system with ciscrete superselection rules if and only 1f
the centre ?) is a countably decomposable algebra. Other~
wise ( Tj s not countably decomposable) R describes the
quantum system with continuous superselection rules.
4) i3 1s well-kunown, existence of decomposition of the theo-
ry into coherent superselection sectors 1s very desirable for
any superseleotion soheme. This property 1s also reached
automatically in our treatment,

Definition I.5

Let the Hilbert spaoce 3{:=3€P be decomposed into a
certain direct sum of superselection sectors, = i%d_?(A .
The subspace }14 in this decomposition will be ocalled cohe-

rent supersel:ction sector, 1if ?(i is the superselection
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sector for any of superselection rules presented and within
3{¢ there are no more superselection sectors.

Proposition I.6

Any theory possessing superselection rules (in the sense
of our definition I.4 und theorem I.4) allows the decomposi-

tion into coherent superselection sectors:

y:@k‘* . R: @ R¢ (1.7)

d € ) 4 €6

and the observable algebras R, of the coherert sectors
are factors of the type I.

The problem arising immediately with the decomposition
(1.7) is to study the internal structure of colerent sector.
In this point our scheme represents the generaiization of
the usual treatment, in which only irreducible subspaces of
R (R, = 27(3{1)) were considered as coherent sectors. (The
reason lies again in the condition 1I, p , due to which the
eigen~spaces of our superselection operators are lrreducib-
le for 5/ , but not for R in genmeral case). Flist of all,
this generalization implies that in the case R, # 35('4<d)
the vectors representing mixed states are possible in cohe-
rent sectors.

Proposition I.7

Let 3{¢ be coherent superselection sector. Then all
vectors ¥ which are of the form Q: ‘PL+ Qi vith (Pi and
(Pi pure and belonging to different irreducible subspaces
of R, as well as to different irreducible subsjaces of R’,

represent mixed states:

R R R !
O f PV(R) = 020,40, @ €T egNicy W MKy O (1.8)
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Every non—pure vector in gﬁi is the linear combination of
the vectors of the form (I.8) and the set of all such vec—
tors is void i1 and only 1f R,= ®(%¢,).

Due to thi: proposition, the superposition principle in
its usual form

(Pi’(EQeg—) = (le"(}?i 5@

is not fulfilled in }, . That’s why we introduce a oertain
generalization of this principle, valid in all cohersnt sec-
tors.

Definition 1.6

do shall sey that in the subspaoce Bf; C 'R generalized
gsuperposition rrinciple is fulfilled, 1f for every vectors
@qugre ¢, NG’ there can be found vectors 19;/925:k1ﬂq3
corresponding to states Q)Q and Qﬁyi respectively and

such that 4 -+ % « H,oN I.e.

\d ‘; ﬁﬂ;)’rkém(,Q \(ii (f+1( GX(L{)(I 9\
‘PiQeKn@p Y, Y€ Ky

Proposition I.E€

In every ccherent ssoctor 3<A the generalized superposi-
tion principle (I.9) holds.
Further, for every ooherent seotor 364 we proves the
representations:
R’ 3 R i
Je ‘}e @'Meg ¥ BK R Bixe ) ¢
Vo= T ey LNLR L W"(((“%)(mo)
F,e?
RI
where R‘Qui x ¢ ., 18 any orthonormal basis in 3 e,
Hence it follows that every coherent seotor 1s completely

determined by corresponding values of the following algeb-

ralc invariants:
% :atn KY 3 ox! ozatm kO (1,1I)
.. Q‘ H d Qi .
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It is easy to show that

%, = card X, ; %= card %o, (1,12)
where card X , (uwudll)is the power of the conplete ortho-
gonal system of projections in R (resp. R”). Tie case &, =
= I corresponds to the o0ld definition of coher:nt sector
(R, = B(%,)) and will be called abelian cohe‘ent sector
/5/. Generally speaking, both parameters %, und ®{ are
allowed to take the values of any cardinal number. However,
it will be established in § 2 that local struc-ure of the
theory implies the infinity of the physical al;ebras R 4
This means that R are factors of the type Igo or, equi-
valently, %, 2 }éo (the countable set cardinal '. Further,
it will be shown in § 3 that a special class i: formed by
the coherent sectors 3€¢ with 22; N }éo_ The following pro-
position gives complete characterization of such sectors.

Proposition I.S

let ‘3(& be coherent superaselection sector. The follo~
wing conditions are equivalent:
1) = s Ng |

2) R a bossesses cyclic wvectors,
3) Rjis a countably decomposuble algebra,
4) irreducible subspaces of R (or, equivalently, the H~ima-
ges of pure wveotor states from 364 ) are separable.

Of course, the completely analogous proposition holds
for R P These propositions give us, in particular, the
necessary and sufficient conditions of existencs of cyclic

and separating vectors for sector algebras R , and R'm .
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Later on we shall need such conditions also for the "full®
algebras R, Ry, 3 . It is easy to verify that these condi-

tions are the following ones:

'EQ-K RY = 3 C%X{Sﬁ'card [l No
R' = =
1?(‘;( ¥ =K <_>d\v:c-%‘ ¢ N , card G- < No (1,13)
R card ¢~ = Ng .
Y €3

The conditicns of separability of the spaces J¢, and \3{
will also be useful:

’

J¢, is separable &> 2, s No | X, <« N

3 13 separable <> %, < No ®, < No , cand = No.
Finally, the whole theory of the R:XP class is completely
determined by the following set of algebraic invariants:

L2 oS e oy ¥ xSy
According tc proposition I,5, the cases Z < No and Z>No
correspond to theories with discrete and continuous super-
selection rules respectively. The formulas (I.13) show that
one of the rrincipal distinctions of these theories is that
in the continuous case algebras R,R", 3, 3’ cannot possess

elither cyolic or separating veotors.

2.THEORY OF LOCAL OBSERVABLES FOR SYSTEMS WITH
SUPERSELECTION RULES

Now let us proceed to cur main problem, which oconsists
in investigstion of correlation between global and local
properties cf general systems with superselecticn rules. As
the first step to this we shall adopt the starting positions

of the Haag;Araki concrete algebraic formalism. This means
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to suppose that assoslated with each open bounied region O
in the Minkowskl space M there is a W:algebra. ®(0) acting on
a Hilbert space ¢ and the set }\R(O)j 0 € B(¥) of all the-
se algebras satisfles the following (Haag-iraki) postulates.
I. Isotony

0,€0, = R(OI) < R(Oz)

If the set B(M) is considered as partially ordered by
the inclusion relatlion 0I¢02, then it follows from the pos-
tulate I that the sequence {R(O)j 0 € B(M) repr:sents a net.
Indeed, B(M) is in this case a filtrating partially ordered

set, l.e. for each pair Op, 0, € B(M) there exists 05 € B(M)

2
(for instance, 04 = OIU 02) such that Oy, O, € O, and from
here I ensures that R(OI) U R(Oz) CR(O3). Accorrding to the
usual definition, this means that {R(O) ﬁoe () 15 a net.

Sometimes we shall require the fulfillment of the follo-
wing stronger form of I.

I - 4 . Continuous isotony /11/ : let JLC'K_‘;K” be a decrea=-

sing sequence of regions O € B(M) ¢, 204 2C, > ..
R{c.).

oc

and 0 = int N\ O« _ Then R(0) =

II. rdditivity

‘A

R(0,U03) = K(02)V R(Ca),

On the basis of I and II we can also assoc.ate a w¥-al-
gebra R(O) with each unbounded region O < M, pitting by defi-

nition

R(8) = v _R(oy
0c<c0 !

(2.1)
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where the unicn is taken over all bounded regions 0O contai-
ned in a .
LI~ 4 Weak adcitivity

Vv R(Cra) = R(M).

¢ € B(™) a €r P ,
III. Causalit; (Locality): 0,c 0y = R(04) < R(os) .

IV. Primitive causality: Every time-slice T, = fxemyixticg]

satisfies the condition R( Ty ) = R(M).

V. Translatlional covariance: An unitary strongly continuous

representation U of the translation group M of Minkowski
spuce 1s acting in £ Lpa

M3c¢ —> u(c\):ga de (p)
such that

b Yoo UGy RES)y W) = R(0a
0eB(n) BeEm ) (2.2

0, being the image of O under the translation a4 e M,
Y is usually treated as a part of the physically more
important postulate

Y-4.Relativistic covariance: There exists a unitary

representation in ¥ of the PoincarJ group with the proper-
ties analogous to (2.2).

However, existence of the lorentz transformations is not
used by us anywhere and so we consider the translation
group separately.

VI. Spectrum condition: Support of the spectral measure

E(p) of the 1epresentation U is contained in the forward

light cone, 1.e.
—_ . 2 o
sipp E(p) © Vi = LpeMip 20 97208,

The succession of axioms adopted here somewhat differs

from the usu:l one, but it seemed to us more natural. The
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first group of the axioms (I - IV) concerns only with the
structure Ot = ;i&&fo) i.e. Ck—algebra with the net, while
the second group (V, VI) concerns with the stru<turei6l,kl37
C*—algebra with the net and the group of automo1phisms.
wx—algebras R(0), satisfying I - VI, will be called
algebras of local observables (local algebras). The union

#+ U R(0) is called x - algebra of all local cbservables,
0€t(n)

its uniform closure (L= }( is called algebra of quasilocal
observables (quasilocal C*—algebra), its weak closure
R(M) = j—w is called algebra of global cbservables (global
w"-algebra).

Main premises of the Haag—Araki approach inclide also
that global algebra R(M) coincides with the obsecrvable algeb-
ra R of described system. Taken together with th: § 1 results.
this gives us the following fundamental
Property O

For every physical system withsuperselection rules,
global observable algebra R(M) is a w¥-algebra o’ the H = ¥p
class.

This fact represents the initial formulation of the
interrelation between the local struoture descrited by the
axioms I - VI and global structure generated by :uperselec-
tion rules. Its immedliate consequence is that the algebra

R(M) =R represents itself in the form R = 49 R, , R,
€a

being disorete factors, and the Hilbert space . 1s decom
posed 1nto a direot sum :{¢3C¢ of coherent superselection
seotors 3¢, with the projeotions P, belonging to the
centre 5 of R. Next task is to investigate what the pro-
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perty O implies for the algebras R(0), }4, 0. Let us begin
with
Definition 2,1

Inductiois of algebras R(O))ﬁ, 4 s R by the projections
P, € R'= (,‘t'r)"c R(O)'will be called seotor algebras and
denoted X = Xp » X being any of these algebras. The algeb-
ras X will b: called sometimes "full algebras® as distinot
from sector snes.

Proposition 2.I.

The net {R(O)S o€ B(m) Of looal sector algebras satis-
fies the axioms I, I~ d II, II-d4 , III - VI, if the full
net {R(O)E(q;e g(ny does. Besides this,

A,sU RO o= A, Rat A

P_r_c_cif&w(i:)ndtty of the axioms I - IV for {R(0), Y ¢ gcm,
can be established trivially, using the properties of the
induction oreration /DW-~18/.

To obtain I- 4 , we have to make sure that R(O) =E.R(O")

o ]
with € = int 0N O implies R(0), = N R(O,).-
K=1 w=1

It is more convenient to deduce the equivalent property:
R(O)i/ = ﬂf{n(ok)i’] ’ It follows from R(0,) = R(0,) ‘<

«se that ka. R(Ok)' is a » - algebra, which is w-—dense in
R(O)’ = IE'R(Ok)'j” due to the axiom I- 4 for R(0). Pro-
jection P, lying in R(0) " , we have from /DW-18/ that the
induction | g' R(Ok) JP‘ is w-dense in R(O);
l1.e. - . ,

L [\g:‘ {(ok)']p‘} = R(0),

whence desiied property follows immediately.
The procf o:' II- d4 1is analogous.
V and VI fo.low from the Araki-Borchers theorem (see propo-

sition 2,19 below) stating that translation cperators U( Q)
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belong to Re Due to this theorem, P, € U(M)’ and the indu-
ction U(M)” — U(M);A defines in the sector ¥ s-conti-
nuous unitary representation U " of translation group, sati-
sfying V, VI. Properties of the representations U and U ,
will be considered in more detail at the end of this section
in connection with the discussion of vacuum sector.

Finally, in the 1last assertions of propositions
2.1 those for “ﬁb and ﬂé are obvious (due to

(DW-182L S0 we have to prove only that (¢ , = 4,

At first let us remark that the induction R — R _ beling
a x - homomorphism, image (v, ot C¥-algebra (% c i is

also a CEalgebra, whence 1t follows that

O, > Ay
let us obtain an inverse inclusion. For each A, € C%\ there
is A € Ot such that the restriction A\~k’ of £ b My
is equal to 4, . Ir {B®Y_.

. is a sequence of local obser-

vables B® ¢ A u~-converging to A, then the restrictions
oo

Bl uif Bni belong to ,44 and form the sequence {H?‘;

g
u-converging to A , 1in virtue of WAL - EXKL“‘ s WAL - B
This means thathdﬁ.;; hence the result follow:.

As a consequence, there arise 1in our scheme two kinds
of local observable theories: the "full" theory in * ° Xp
and the sectorial or " coherent" theories in each 7¥f,_ Hen-
ceforth we shall study both these kinds of theo:'ies in paral-
lels. First of all we see that a number of well--known results
obtained in the Haag=Arakl theory holds automat:cally in our
scheme. These are the results, which can be pro'ed using the

axioms I - VI only, without any assumptions aboit the struc-

ture of global algebra R. Such results are valid in our
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formalism fo:* full algebras as well as for sector ones.
The most important of them are the following: the theorem
by Borchers .n ideals in quasilocal algebra % ;s the Reeb-
Schlieder theorem on analytical for the energy vectors; the
theorem by Brrchers about belonging of translation operators
to algebra R.

isach of .hese theorems implies in our formalism a num-
ber of impor.ant consequences and so appears to be a kernel
of a certain complex of properties. Now we shall consider
these three omplexes in consequtive order.
Froposition 2.2 (Borchers /12/).

let tne aixioms I - IiI, V, VI be satisfied. Then the
set J < (X 15 a closed two-sided ideal in (X 4if and only
if 3 13 1is a non-trivial ideal in 5 .

This leals immediately to important results.
Theorem 2.3

Iet quantum theory in \K=§7(p be given and the axioms
I-II1, V, VI be satisfied. Then quasilocal algebra oL as
well as gquasllocal sector algebras OLJL are simple.
Proof. Takinz into account the propositions 2.1 and 2.2 and
the theorem [ we see that sector algebras OL(I cannot contain
closed two-sides ideals,because the centre of R i3 being tri-
vial. As a consequence,the C*—algebra a:b ocannot contain any
two-sided idsals, i.e. O, 1s simple for any & €.
let us assum2 now that there is a two-sided ideal J #{0}
in (U . Then there exists always some Jd, € e~ such that
J&ci ’[0}, where J , is the image of J under the induc~
tion R — Rdu defined by projection P, ¢ 5., It is easy
to see that J 4o should be a two~sided ideal in OL,O
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in contradiction with the simplicity of the lat.er. Thus O(
is simple.

let us note here that global algebra R of the &€ = ko
class (with non-trivial G ) can never be simpl.e because
the inductions R — R‘are ¥ =—homomorphisms with non-
zero kernels. Further, due to the fact that R(0)< (& but in
general oase R(0) ¢ (i for 0 ¢ B(M), the simp.icity of OC
(and non-simplicity of R) induces differences between pro-
perties of observable algebras assoclated with the bounded
and unbounded regions. These differences will piay the most
essential part in §§ 3, 4 where we study field-like proper-
ties of our theory. Here we collect another consequences of
the simplicity of 0 , which are also of importance, but
are not related to field-like properties.
Theorem 2.4 (Global nature of superselection rules).

let quantum theory of the ¥ = X, class be given and all
the axioms I-VI (except possibly IV) be satisfied. Then
centre 3 of glcbal algebra R does not contain eirther local
or quasilocal observables:

O N> = ().

Proof, Let &s take an arbitrary operator S € (xn 3, S# 0.
Due to the theorem 1.3, item 2 and the proposition I.6, S =
E%VS‘ P, and due to S # O there is do€ o such that S, # 0.
let us introduce restriction 77&, of the induction (ﬁ40:
R —> R, to the algebra Ot T, is a x - representation
of 01, in B (3<‘). Considering this representation on the

element T = (I - S:;f; ) € O¢ we obtain

WT&o(TB :_Tpdg: Py, - S;t gPav: ©
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t.. T € ker Mg _ . However, Ot is simple C-algebra and
so ker ‘ﬂ,o == 0 what implies T = O. Whence it follows that
S=54,1 E;5,,€ c* and 0N = ().

In terms (f our theory of superselection rules the result
of the theoreri 2.4 means that all superselection operators,
and first of ¢1l, the projections P " on coherent sectors,
are purely glcbal observables. For a long time this fact was
assumedﬁnrph;sical reasons but had no general axiomatic proof
Corollary 2.5

let quantim theory in 3{=:KP satisfy the axioms I- 4 ~-VI
and the region D be an "diamond”, D = D . Then
1) local algeliras R(D) are factors,

2) 3(D) B,

3) seotor obscrvable algebras R(D) , and R(D), are factors.
Proof. Statements of the point (3) follow from (I) and (2)
respectively. To deduce the latter let us use the result by
Kraus /11/, according to which the axioms I~ 4 and IV imply
R(D UD’) = R Whence it follows with the aid of the axiom

II that R(D)” N R(D")" = R{ From here the axiom III gives
immediately (D) ¢ % and 3(I')c Y. The statement (2) is pro-
ved, and so i (1) if we take into account that

3(3) < and &N = C(x),

Corollary 2.6
Quantum tieory of the 3¢ =X, class satisfying the axioms

I-VI, satisfi:s also the postulate of extended locality /13/

i.e. for any :two diamonds D, and D2 space-like to each other

RoD:) N R(Dy) = C(w)
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Proof. Due to the axiom III and coro llary 2.5
ROHNNRG) < ROONARI,D) = 3(d)=d ().

Besides the extended locality for diamonds, the theory
in }€=3<P satisfies the strict locality cecndition /II, 14,
15/«
Proposition 2.7

Let 1€=1ﬁ,and the axioms I-VI be satisfied. If region
0 € B(M) is space-like to diamond D, A ¢ R(0), B ¢ R(D) and

A =#0, B =£0, then AB =£0.

Proof consists in direct application of tie following ge-

neral
lemma 2.8

Let R1 be a faotor in Hilbert space Sb end R2 <
c:ﬁ(js) be a W¥-algebra commuting with Rj: R, © R1’. Then

for all pairs O#A <R, k = 1,2 we have i, 4, =#0.

Proof of the lemma. let us assume that A1A2 = 0. Since iy #0

there exists P € % such that AE #0. Further, R, being a

factor, we have 3= B(%). This gives us
_ N Ry . '
B Haq 'LKA;"m.’l%w TR = W

By the other side, taking into account that A, ¢ R

- ’
2 2 < By

we obtain
R

Ri g fa = Q
AQSB = A\a{t\t‘ﬁi Ag A, T
and this is in contradiction with A2 = 0.

Proposition 2.9 (Borchers /12/ )

let all the axioms I-VI (except possibly IV) be satisfied
and regions 0, and O, be such that 0, < O and 0; ne #4.
Then every projection P € R(01) is infinite wi:h respect to
the algebra R(O).
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Corollary 2.10

In the thesry of the ' = }Cpclass for'any region 0 € M
(bounded or n>t) full local algebras R(0) and sector loocal
algebras R(0) as well as commutants R(0)} R(OZ; are infi-
nite W*—algebrzs.

The proof >f this fact in the original works /16-18/
was based on tae assumption that R(0) (or R(0), ) possess
cyclic and sepirating vectors. According to § 1 results, in
our theory this assumption can be not valid in general case.

Corollary 2.11

All coherent sectors }Ld are infinite~dimensional, i.e.
in terms of § 1 .
Yox, UN, .

Jey

Corollary 2.12

Iet C bve an arbitrary region (possibly unbounded one)
with O'#¢ . Then R(0O) # R.
Proof. 6'; ¢ 1implies the existence of a non-vold open re-

€ 0°. For this region the assumption R(S) = R leads
0 R(C.)c R(E)c RLE) =R ROy
i.e. R(01) is abelian what contradicts to the corollary

gion O1

2.10.
Developmert of the corollary 2.12 leads to the following
Proposition 2.43 (Wightman’s inequality /16/)

let H =3.p, the axioms I,II-a , III, V be satisfied
and 0, € 0 < M. If the euclidean distance d[aoi, do]
between the boundaries @ 0, and d0 of the regions 0, and

0 is strictly positive then

¥ o R0, #R(0), asd R(,) # R(C)

~eQd
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Proof. Let us assume that R(O1 )d = R(O)d~ for some AL €G
It follows from d[20,, 90] > 0  and proposition 2.1 that

there exists a nelghbourhood N of zero in M such that

@VN R(0,+8), = U, (BIR(0.) U, (-8)c RI0), =R (Ty), -
(4

ok

Since any vector @ € M can be represented as sum of vectors

from N, so

&, R(O,+a), = RI(0,) .

Hence R, :a':-/;m&wc R(O)s. 1.e. R, = R(O, )& in contra-
diction with the corollary 2.12.

Further information about the structure of R0), OC R
in the theory of the 3 = ;K)’P class can be extrac:.ed from the
analysis of the set of all analytic for the ener;;y vectors.

Definition 2.2

Let P° be the generator of time translations (the energy
opqrator). Vector N/é X 1is called an analytic :'or the

energy vector 1fnY04 2"\@ dom (po)n and the series

“YA L

oo

pa ||(D°)"W||Z_' . has non-~zero radius of conivergence. The
nz=0 n!

set of all analytic for the energy wvectors will te denoted
as Tl

Proposition 2.14

let :}?,22%? and the axiom V be satisfied. Tten
a) the set VU 1is linear and dense in ¥ ,
b) there 1s in every coherent sector }C& a linear dense
set TLJ, of vectors analytic for the energy and there are
pure vectors in ‘M& s0 that Tl’o\ (\@ * ¢
c) the set TL(\'J{L 1s linear and dense in every subspace
'}{,L < ‘' such that the projection P, € R.
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a) W €7 inplies P\I‘WCTL, If, besides this,l'\ij is
pure, i.e. W€ VNP then m;f— Tl and }{,p;r <.
Proof. The o)erator P° being self-adjoint, (a) follows from
the well-known Nelson’s criterion of self-adjointness. Other
assertions cin be deduced in a straightforward way from the
definition 2.2 and properties of cyclic subspaces 'J‘CR.V and
}(,Kv given, for example, in /1/.

* Proposition .15 (Reeh—Schlieder /19/, Borchers /3/ ).

let the axioms II-d , V, VI be satisfied. Then for any
vector \r anilytic for the energy and for any region ECM

(unbounded 11 general case, but spatially incomplete)
R

. o .
EIANEE
If in addition “Qf is separating for 3, then it 1s separating
for all 3(3) and all R(a)'ﬂ R.

Proof. The first part of the statement 1s virtually proved
by Borchers Ln /3/ and he proved also that when '\V' 1s sepa-
rating for .3 , W 1is separating for all R(0) and all

R(0O)" N R with 0€ B(M). The extension of these results to
unbounded regions can be made straightforward. Let 0 be un-
bounded region with 6/# @ . Then there exist 0, ¢ 6’,

0, ¢ B(M) &@ad by the axiom III R(01) < 3(6)" as well as
-mwﬁ R(5)’:This means that all vectors separating

for R(01)’ N R are also separating for R(S). Finally,
taking any C2C5, 02 € B(M) we see that all vectors separa-
ting for R(Cz)’ﬂR are also separating for R(f)')’ﬂR

and the prorosition is proved.
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Corollary 2.16

Every vector ‘l{f analytic for the energy and lying in
§ A LT w
the coherent sector 3{,& is cyclic for R((J))_\ R/.l and
separating for R(0); , 0 & M being any regioa with 0" # b,

Proposition 2.17

Let R=Kp and all the axioms I-VI be sa:isfied, except
possibly IV. Then for any spatially incomplet: region Sc M
there are the following necessary and sufficicnt conditions
of the existence of cyclic vectors for sector H(O),;_ and
full R(0) local algebras respectively:

RO,

3 X, = > 2 2N
Ver, Y4 X & ¢ (2.3-2)
R(G)

7 K gy TR Lo=> ¥ 25X Wl eR (2.3-9 )
Ve'R ikl
Proof. Aocording to proposition 1.9 the folloving relation

takes place:
R .
I R, ¥, &SPl ey
P > °
fpde }e& *
From here the formulas (2.3~ 4,$ ) will be deduced as fol-

(2.4).

lows.

a) If 'Vi is cyclic for R(O)d_ then '\J/._k 1s cyclic for K,
and consequently 98, = N .

b) Let now be 22;_ £ M. then there exists in virtue of (2.4)
a vector ’-PQL cyclic for Ra . In this case the vector

) _p°
Y =P (]Jfi is also cyclic for Ry and is in addition
&

analytic for the energy. Henoce it follows that due to pro—

position 2.15 RLS) n

W =R, =%,
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. ~

i.e. '\Y‘L is cyclic for R(O

dy -

¢) The conditicn (2.3- & ) follows from (2.3~ ) if we take

into account that R-cyclic vector exists if and only if card(
< 7\’“ and R,; -cyclic vectors exist for all & €G,

According .o (1.10) every coherent sector can be repre-

sented in the :‘orm

R
H, = & ;R'q) )
3+ .
| 1% .3 K, o (2.5) |
where {,(D"»’LSK‘ K is an orthonormal basis in I, »
ot
and ’P‘L €3N Ay, This leads to the following corollary

convenient for application.,

Corollary 2.18

Under the issumptions of the preceding proposition, any
vector V&e ":]f.&_ analytic for the energy is cyclic for
R(O)A' y 1f 1t possesses non-zero projections on each sub-
space ';}QR from some decomposition of the form (2.5).

K, d
The set of all such vectors will be denoted as T

J oo
The point (b) in the proof of the proposition 2.17 sh'ows
that this set 1s non-void.

The last cycle of properties we want to describe in this
section concerns with the structure of the representation
U of the translation group M in X :’JLP,
Proposition 2.19

et = },P and all the axioms I-VI be satisfied, except
possibly IV. Then
a) all translction operators U( Q. ) belong to R,
b) spectrum o1 the representation U as well as spectrum of
the restricticn Ug_ of U to any coherent sector 3(0{' is

unbounded.

36



c) translation operators U( ¢ ) cannot represent superselec-
tion operators:

UM’ N3 =GLae)
d) the set of all translationally invariant observables con-

tains the centre 5 but does not coincide with it:

i) AR 23 (2.6)
e) quasilocal algebra JL does not contain non-trivial trans-
lationally invarliant observables

UM Not =Cx)
what implies, in particular, that all spectral pr>jections
of the energy-momentum operator are purely global observables.
Proof.
a) is the well~known Borchers® theorem /20/,
b) According to the same work by Borchers /20/, t.e spectrum
of translation group representation is unbounded :.f there
exists a region O0€ B(M) and a neightourhood N of ~he gero in

———— e
M such that V R{(O+a) <+ R, Kemembering the corvllary 2.12
aeN

we conclude that this inequality takes place for :'ull as well
as sectorial theories and for any region O € B(M) ¢nd any
bounded neighbourhood of the zero in M.

¢) If there exists a translation @ #{ such that U(a)e 5
then all spectral projections of the representaticn U belong
to & , and this glives U(M)"C:S_In this case the restric-
tion U&_ to any sector 36& is a trivial representation
with bounded spectrum, what is impossible according to the

preceding point.
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d) Pirst part of this assertion is the well~known Araki
theorem /21/ «nd follows in our case from (a). The inequality
in (2.6) follews from (¢) and (a) put together.

€) let us prore firstly the corresponding result for the co-

herent sectoxr::

U(M):L nat, =é(}€4)’ (2.7)

Taking into account that all ’W&é '}es. are separating for
» 7)(’L = é(g{‘&) and repeating Borchers’ arguments in the proof
, of theorem I :n /3/, it 1s easy to show that for any Abl &

o

€ UL“,_ ther: exists a sequence {a,HS of space-like

n=4
vectors O, € M such that

, w
U (an) Ay U (o) = B A L,
where zd(Ar,_) is complex number depending on Ad. in gene-
ral case. Hen:e, if B, € ’GL(;,\U(M); then z ,(8,) I, =
=z w-1im Ud.(a.\)P*bd_ba,h) = BGL what means exactly (2.7).
Now let us ta:e an arbitrary A€ uim) NCL, In virtue of
(2.7), & = =
class this 1is equivalent to A € 5 » In other words,
A€ LlM)InO'. implies A € OL /] % and this is equal to

z, P, and for the algebra of the H = GbP

é(;}{)due to .heorem 2.4.
Now let us consider the set T of all tramslationally

1

invariant vec:.ors in a’&.

"V‘é{Q € | ¥ UL = Q—}
O-&EM
"U’ being i1 subspace, let us denote the corresponding pro-

jection as P’f . It 1s olear that P_u_,é U(M)"* < R. The struc-
ture of the saibspace ”U' appears to be governed by the pro-

perty of asymptotical abelianness of or.
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Proposition 2.20

let ¥=%, and the axioms I-III, V, VI be satisfied.
Then
a) Quasilocal algebra o is asymptotically abelian with
respect to the representation U of the translution group, in
the Stdrmer’s sense /22/: for every quasilocal observable

[ ]
A € (1 there exists a sequence {CLh{A)S, of trans-

n=4
lations (L,{A) & M depending on A in generazl case and such
that

Vo bm [ Viaain)A U('an(A)))B]if:O-

Bpegy h—> (2.8)

b) All translationally invariant vectors ;:L

) belonging to

coherent sector ?{} are pure:

) STy )
v L? "L(\H},CS-

}e; (2-9)
¢) For every non-zero ::lf érl;'the projection “P on the
subspace 3{?1 {\ va consisting of all translationally in-
variant vectogs in the cyclic subspace 3{,§1_ is one-dimen-
sional ,

. R -
E=p° p_= PLQF], (2.10)
i ~ ¥ g W

where pl_£1‘3] is the projection on subspace spanned by the
vector :29\

Proof. Formula (2.6) can be deduced with the aid of the fact
that 4 and B from Ol can ve uniformly approximated with
arbitrary exactness by elements from local algebras R(OA)

and R(OB) respectively. Since 0, and Oy are chosen, the

. o
sequence {CLn(A)S should be chosen 1in such a way that
n=1
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the region O + An(A) becomes space-like to Op in the limit
n-= oo  Further, properties (2.9) and (2.10) follow from
general theory cf asymptotically abelian C'—algebras (see,
for instance, the theorem /5.2/ of Stérmer’s work).

Now let us denote as fSi_ the set of all coherent sec-—

tors Qtp containing at least one translationally invariant

vector:

~ = { . T o0l .

I {pec] 5{}(\1 ¥ 3 (2.11)
Projection on tte setrl; defined in the formula (2.9) will

be denoted us P_r . It is easy to see that
P

= )“‘M)’ el .
Theorem 2.2% (Urilqueness of the vacuum state in the coherent
sector).

The set of ¢«1l normed translutionally invariant vectors
belonging to a ,iven sector H )Fé 31, coincides with the
li-image of unique pure vector state &, € PV(R):

. - i 1
¢ -
v, 1 ns" = mn.s (2.13)
ﬁéqv P )

5:2? being any 1ormed vector from 1} . The formula (2.13)

is equivalent t»

!

T T, T T .
'1,} = $ (2.14)
The set U "Lg of all pure translationally invariant
eq '

vectors 1s dens:> in the set.b so that

=0 TV (2.15)
€5 S
Proof. The formila (2.13) will be proved on the basis of

the polnts b) and ¢) in proposition 2,20, According to c),
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R
if the subspace 3(, with 47 < dﬁp contairs a normed
translationally 1nvar1ant ray fl y then such a ray is
unique in }CQP , and in ddditlon such 3t¢p is irreducible
due to b). PFurther, owlng to the formula (2.12), the following

simple relation takes place:
= w5 <Y
QPGU} — M‘Q'V (3 (2.16)

Now let us assume that there can be found in the sector two

different translationally invariant states, say,tg&L and &, -
’ E S 2

R R’ ;
Then irreducible subspaces 3{’11 and }t‘l of R° do not
1 : 2

intersect with each other and, on the contrary, they inter -
R
sect non-trivially with every lrreducible subspace §€¢ of

R (see the corollary to the proposition 13 of /10. Hence 1t
follows together with (2.16) that, for instancs, :H“ill con~-
tains two different normed translationally invariant rays.
This contradicts ¢) in proposition 2.20 and so (2.13) 1§ pro-
ved. The equivalence of (2.13) and (2.14) is oosvious in the
light of the properties (I.2) and (I.3) of H-inage.

Finally, the formula (2.15) follows from tie definition

o~

of \)17 , the mutual orthogonality of coherent sectors and

the relationship
— PP =2 p
> =2 Pt
P‘U’ (u«P ) v Res, PV €6, }
Corollary 2.22

The following enhancement of the point b) in proposition
2.20 takes place: every irreduclible subspace 3€q$
in the sector I&{P, peG;rcontains one, and onl’ one normed
translationally invariant vector (a vacuum vec:or, in the

usual terminology).
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Proof follows :traightforward from the theorem 2.21 and co-~
rollary to projyosition 13 of /I/.

Results of the statements 2.20, 2.21 and 2.22 provide
us with complete description of the "vacuum structure" of an
arbitrary theory of the Bt='3tp class and make it possible
to analyze and compare different possible forms of the postu-~
late of the existence and uniqueness of vacuum.

1) In general case (no restrictions on vacuum structure)
theory g?ssesses arbitrary set 6}7 of vacuum coherent sec-
tors 3?5 y each of them containing the unique and pure va-
cuum state witl the H-image of the arbltrary dimension.Besi-

des thils, there are also mixed vacuum states CJn_)
ﬂ:s%(fvfp“ By by

2) The weakest possible restriction on vacuum structure
is the conditicn of the uniqueness of vacuum sector. Accor-
ding to theoren 2.21, this condition is completely equivalent
to (a priori) nuch stronger one: there exists a unlgue vacuum
state (still with the arbitrary Hrimage).

3) The strcngest (and also the most wide-spread) form of
the "vacuum postulate® is the requirement of the existence
of a unique vacuum vector. This simplest vacuum structure

can be described by the following elementary

Corollary 2.23

Let %{z?KF,Then the following conditions are equiva-
lent:
1) there exists in 3{ a unique vacuum vector,
2) the vacuum sector is unique and abelian
3) the vacuum sector is unique and contains a cyclic (for Ry,

of course) vacuum vector.

Proof can be performed easily by any reader,
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3.FIKLD-LIKE PROPERTIES OF QUANTUM THLOIIES
IN H = X ,¢ BOUNDED REGIONS

Now we have demonstrated that our scheme in " J{ ;‘J(P
possesses practically all properties which can le required from

a well-developed axiomatic theory of local observables. After

this we intend to show that due to its specific global structure
the scheme possesses also a wide complex of other properties which
are characteristic for field theories, However, the real existen-
ce of a field appears to be ensured only under £till another ne-
cessary constraints, besides our starting conditon ¥= Qér;

It is known for a long time /3=5/ that field properties of
algebraic theory are connected with the existence of operators
mapping states and observables from one coherent sector into ano~-
ther. A natural way to constructing such operatcrs is to make of
our coherent sectors representations of some C*—algebra and
then to establish equivalence properties of these representati-
onsx). In other words, as a preliminary we have to reformulate
our theory in form of Haag-Kastler’s abstract algebraic approach.
Doing this we must take into account that fundamental algebra
of abstract algebraic theory, for which all "concrete" or "cohe=-
rent" physical theories are its representations, is by its physi-
cal meaning the algebra of quasilocal but not global observables.
This circumstance was firstly pointed out by Haag and

Kastler /23/ on the basis of quantum measurement theory argu-

x) 0f course, it 1s possible in our scheme to study the rela-
tions between coherent sectors by means of the theory of
w*-algebras, without introducing representations of C*—algeb-
ra. However such a way is less ertective and hinders the
comparison with known results.
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ments. Practically, if we have an abstract Cx—algebra Lﬁl
and some physical r:presentation T er CL , the image
T(Ot)gqlg(ﬂt) is no: a W¥-algebra in general case, so it does
not include global >bservables and the latter are added only
by the weak closure operation: W((l) —» W 01) w: Due to thi%
performing an abstraict reformulation of our theory we should
consider not the gisbal, but the quasilocal algebra ¢l as a
fundamental Cx—algeJra,representations of which are coherent
sectors. Then the imges of these representations should coin-
cide obviously with quasilocal sector algebras 574_ and R
will play the part >f an enveloping W*—algebra of C*—algebra
ct .

Thus we shall consider the sectorial structures as repre-
sentations of quasilocal algebra

T, O /7('5(3(4)

and we can define cainonical extensions of these representa-

tions to representations of global algebra R:

Tt R = D(%,)

— 0 .

as well as local restrictions: ‘\ﬁ ::Wf; \R(C) for bounded

regions 0 € B(M) and H;jo) = for unbounded regions

|
Su(c)
0. All representations introduced we shall set in a completely
explicit form by defining tne mappings 0]6 ‘*’éE)( gﬁd.)

as follows
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AYM Tl_d-: A _-)AP.; ’3.1)

what implies
v ”

T . o . 3.2

ap Mo 1 A Ay 22

In other words, we realize the representatioas 1

ot
as the inductions (because of P, € R") of w¥-algabra R. In
this point our scheme allows a certain arbitrariaess, which
belongs to its specific distinctions from the usial Haag-

Kastler formalism. In fact, by giving a coherent sector we
determine only the space }CGL of the representation J

o
the image JI;(O()I (7(DL of the latter; but after this the ele-

and

ment-wise action of the # - homomorphism

Ae ot —->‘|Fol//i)ét“lcL (5.3)
still can be very diverse and not at all eoinciding with

(3+1). Nevertheless, this arbitrariness has no essential in-
fluence on equivalence properties of ’IT+’Tf;°)) )FJ < (we are
only interested in). As can be seen, for example, from well-

known criterions of quasuequivalence and unitary equivalence

of representations _
Ty 3T = Be swpp P = Bmsupplp ) W= Ty € VUML) 2 ViT))
(v(T)c C"L*+ being the set of all vector functio-~
nals in the representation ']T ) the relations <+ and =

are completely determined by spaoes 3{, \ }and algebras J\;(Gl)}
JT?(GT.) and the same is valid, of course, for any restriction
’,T [ ,ajal,Onl,y weak equj.va.lence,J[)“]]'P depends on the

1
element~wise correspondence (3.3), according to the criterion

ker rﬁd. = kerT . However in this case it i1s obvious that

P
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such a choice of the correspondence (3.3) will be physically
preferable, whict ensures the fulfillment of weak equivalence
and we shall shov that this is just the case for the corres-—
pondence (3.I). ve can now summarize that the choice of the
correspondence (:.3) makes no differenoe for equivalence re-
lations = and =~ , and for the relation ™~ the choice of
this corresponder.ce in the form (3.I) is preferable. So it
is this choice ttat will be accepted by us from now on.

Now when the reformulation of our scheme in form of the
family of Cx—algebrarepresentations is oompletely stated,
let us give
Definition 3.I

Coherent supe¢rselectlion sectors 9{; and =3{P charac~
terized by repre:sentations 7t* and W} of quasilocal algeb-
ra Ol will be called:

1) physically equivalent, if H; ~ T

2,3) locally (as;mptotically) physically equivalent, if
ﬂ‘:mw I“{oj(res]).’ ]rdwl)’\' TF,(O')) for all 0 € B(M),

4) quasiequivalent, if 121 X TFF

5,6) locally (as;mptotically) quasiequivalent, if TE:O): ﬁ'(q
(resp., (ﬁf"x 'TP‘OI) ) for all 0¢€ B(M), F
7) unitarily equ:..valent, if ﬂ; ~ IWE

8,9) locally (as;mptotically) unitarily equivalent, if

—12) (o) (o' (o)
g = ' (rnsp.’ﬁ-o)i.]rP ) for all 0O€ B(M).

&

It is olear :hat any equivalence property of representa-
tions (ﬁ; ,1Tp .mplies the same property of their restric-
tions'ﬂ; £o>r any OC,; < Ol and analogously any equiva-

lence relation b:tween 1T£°” implies the same relation
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between TTK‘a)because always U< C,/ for some 0, € B(M). 4s a
consequenoce, the following implications take place: I =>
3 = 2, 4 =6 =5, and 7=>9=>8. By the o:her side, the
usual relations between equivalence properties ('1'- > :>’\)
give us 7=>4=1, 8= 5=2 and 9= 6 = 3.

In this section we give complete descriptisn of equivalen-

ce properties of the representations ﬂ; and ﬂ;{o).

Proposition 3.1

Let quantum theory of the gﬁzgtpclass be given, satisfy-
ing the axioms. Then all coherent sectors are:
1) physically equivalent
2) locally quasiequivalent
3) disjoint
Proof. 1) Physical (i.e. weak) equivalence of :he sectors (}(&
and 9(} means that some arbitrary isomorphism »>f CCQL and
OZ} exists. The existence of the isomorphism follows direct-
ly from the simplicity of ([ . ({ being simple, all the rep-
resentations TTB) Y€ G are faithful and so tie isomorphisms
exlst: Tz; 0L - Otxlxe‘:ﬁ as well as the iiverse isomor-
phisms TTgi . It is obvious that the c:ompositLon.Tl;Pé’ﬂ”o'ﬁ%>
of the mappings "T.;, -JTF exists and represents the desired
isomorphism of 0‘(* and Gcﬁ‘ It is also clear that Tr“F
cannot be extended to lsomorphism of corresponiing weak
closures P\&= —(/'Td_w and RP: R;;w because the extenslons
T?E: R— RK are not faithful representations (due to ker"ﬂ"‘ﬂ
5 P, for all *€ T, 3FY),

(o)
2) However, local restrictions (‘Td_ of representa-

tions are faithful representations of R(O)’s and generate

47



an isomorphism ’TJ}:) = T[d“’)o(n‘P‘“) -t which is at the
same time the 1ssmorphism of algebras 'ﬁj:a)( R(O)) and
ﬁrgo)(RIDD as well as their weak closures (‘F;“)('R(o)) =
= R(O)& being Wx—algebras). Further, from the definition

(9 ..
of TT_;P we hav::

(o) ‘o
Mo ()= 'ﬁj;’(np‘ '(h) Gy

A€RID)
9)
so that ﬁ; ind ﬁ}(ﬁ are quasiequivalent,
3) Now we siall establish the dlsjointness of 77; and

—

'P by proving o:thogonality of corresponding central suppor-
tse (“:L and (WP )eing subrepresentations of the identical
representation o? nd s thelr central supports coincide, by
definition, with those of the projections Pr). and P} in
, —w, ,
W -algebra OL = R’. Due to P, , P;s € '3 these central
supports coincids with Pa' and P;s and are orthogonal.

The property of local quasiequivalence, proved 1n this

proposition, is :losely connected with a number of other

structural prope.*ties of local algebras. In order to describe

these connections we shall prove

Proposition 3.2

let quantum .heory of the ;}t",=3€? ¢lass be given and let
TL@L be the set »f all analytic for the energy vectors from
arbltrary sextor }6& . Then the following conditions are
equivalent
1) all sectors are locally quasiequivalent,
2) inductions R(DH) — R(O)Paare isomorphisms,

3) all ‘rwdé)lc)\u.re separating for R(0),
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4) there exists '\P € ¥, separating for R(O),

5) all Y, € ,td are separating for ‘3(0) (o)A R(O)/

6) there exists qf} &36* separating for '3 (0).

Proof. There are the following obvious implications between
the conditions (I ~6); 2 =1, 3 =>4, 5 =6, 3=>5, 4 =>6
It is easy to verify that it is sufficient now to deduce the
relations I = 2, 2 = 3 and 6 =2,

I =>2. We whall show that the central support of qu(o) as a
subrepresentation of the identical representation of R(0),
equal to the central support of P, 1in algebra R(0)", is

equal to I. According to general formula, 3 (C)-supp By =

3(0)’ .
=P3€ and using /DC-5.3.1/ we obtain
-k
(9) (o) 5(0)’ "ﬁL-J
T,7 = T = P =P
a. } 3
Iet here & be fixed and P run over all the set.” Then
taking into account I & R(0) we have
‘3(0) 3(0)’
'3( S A 3&
d—
whence 1t follows
3(0)

Q{:QR (9@

pev €,

This means that pD(O) = I and the property 2) is fulfilled. -

'
2 => 3. By the Reeh-Sohlieder theorem (propositlion 2.15) all

’\;{ieﬂuare separating for R(O)& « From here we shall deduce
with the ald of the condition 2) that all such vectors

are separating for R(0). For all ‘P‘*e Q{Q* and 0 ¢ A € R(O)
we have AP iP Aqi. If rR(O) — R(O)& is an isonorphism,
then A = O implies AP&= 0. Thus if 'WoL is separating for
R(O)& i.e.
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then <+
L4 A\y‘i:c :—;AP’\,;:(;:>AP:Q=>A=G
AeR(o) < o
qeeed,
6 => 2. let us use the standart expression for central support
— () c RL2)
of representation g FS(O):supp Py = P:)L . We have
Rt
=p ) Pllm) 7"‘5(9) and -

R
* *

'3(6)—supp Bp=I &> L{ %0 %y

Now it is clear that if there is a cyclic vector for 3(0)

in ét&_(condition 6 ), then :5(0)—supp P, =I, whence the
condition 2) fcllows.

48 1t follcws from the conditions 3,4 due to proposition
3.2 everyone from the conditlons (1 - 6) implies the follo-
wing property: R(O) is countably decomposable, Vice versa,
the commutant F(0)” being an infinite Wx—algebra, countable
decomposability of H(O) implies the existence of vector
separating for it, according to the criterion/(DW-233)/.
However we cannot guarantee now that the set of R(O)-separa-
ting vectors includes all analytic for the energy vectors
from all 3{& or, at least, one such vector from each Qﬁe_.
i8 a result, the countable decomposability of R(O) is the
necessary but not sufficient condition of the properties
(I -6).

Returning to proposition 3.1 and definition 3.1, we see
that our theory possesses the equivalence properties 1, 2, 3,
5 and can never possess the properties 4,7. Now to exhaust

the problem of describing equivalence properties related to
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(9
representations lld'

and TP( °) we have onl;’ to consider
the property 8, looal unitary equivalence of unoherent sec-
tors. This task is oompletely fulfilled by thc following
Theorem 3.3,

Let quantum theory of the gt = Q-C? class be given and let
gé& and R\P be coherent sectors. Then:

I Let %, ¢ N, . Then T/~ m!%

e
N B if and Hnly if X, ¢ N,

and X, = aep .
II. Iet &, > Ny, Then T'7 =~ '  if ind only if
. 2 °: n " = |? if ind only
A oA u)

2.*-38} and dim gtol = dim Slcf
Proof. Throughout all the proof we shall take into account
that according to proposition 3.I.

L ¢ T,” =5, (3.5)

& . 3.5

3,pes  0€B(M) . P
The proof consists 1n the deduction of necessary and suffici-
ent condlitions under which the isomorphism corresponding to
(3.5) is spatial.
£ N

I - sufficienﬂ.‘According to proposition 2.17, ?k;

is the necessary and sufficient condltion, under which local

algebras R(O)x of arbitrary sector MK possess cyclic vec-
tors. By the other side, there exlsts always separating vec~—

tors for R(O)g y Yt As a result, conditions &; S X,
/

andafpée(o imply that algebras R(O)"L and R(O)F both
possess cyclic and sepurating vectors. Due tc¢ the well-known
criterion /DW-233/, in this case any isomorptism of the al-

gebras R(O)QL and R(O)ﬁ is spatial.

*) The last condition also can easily be wr:tten in terms
of parameters 35&»33; and(tt;)a" with the aic¢ of the formula:
2,,%, %N, = da¥ = max{a;d.&; S Howeve:* such a form
1s less convenient because it depends on the relutionship
between €, and Pt;l“c)CF and Pfs, .
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I - necessity. et us prove firstly that the conditions

. 12 _¢o) P
AL SN and T, =T imply %p € N.. To this end we
shall show that 1if 1((0)‘_)' has cyclic vectors (what is the
case according .o proposition 2.17) and ']Tla) ~ Tto)
then R(0)a has cyclic vectors too. Let V-‘g_(O) be isometric

operator from :KL on :k‘; implementing unita.ry equilvalence

of algebras HCO)(-)., and R(O)}

-1

c z C = .
V_Pa‘(b);k'l F/ ( )R(C)d P‘* - R(C>P (3-6)
bue to /DC-5.1..)/, the operator \,p&(o) as intertwining ope~
rator of subrep-esentatlons of algebra R(0), has the follo-

wing property:

\}&(0) P, €R(CY

(3.7).
From here we obialn the useful relationship:
; . RO _ R(o)
V \4 (C) < - .
Pe%, M s Vpal0) Py (.8

In fact, using (3.7), property Py € R(0)” and continulty
of \/P'* O) one ohtains (3.8):
——————
\/P (0) Rio) T (0) 1T <o) R(0)P, = RO) Vi, (o) By
Now we see from (3 8) and (3 6) that :}e 9. = 5{ implies
RCO) - >
q)}s = :}(F w..th fPP = p& u) ’P& , l.e. the md.ppingv (0>

transforms cycl..c vectors of R(O)qL into cyclic vectors of

R(O)P. The using of proposition 2.17 for sector @6}
glves then 13 <N
(o .
vie remurk further that 'l N ﬁ )1mplies obviously dim '}(of

= dim \3()3 . According to § 1,5§r dim 3(8 S td

and according tou corollary 2.II it follows from the axioms
~ ; N . 4 3
I-I1L, Vy VI that S 2N g > . If in addition, Ep e,

then the equali.y dim g»t = dim 3(} provides us with the

Y
last conditlon ve need: ’Qed_:a:}:
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II - sufficlency. We shall prove that under the condition

X, = ae};' the algebras R(0), and R(O)F satisfy the follo-
wing criterion /DW-321/:
Let H1 and R2 be von Neumann algebras . Let us suppose
that there exists in R4 (resp., R2' ) an in’inite family
{Ezﬁteg (resp., {Fl.zkc:) ) of projections;, which are
(D) mutually equivalent, orthogonal, with the sim equal to

/ ;
I and such that R1E~ (resp., RZF- ) are countably
< t

decomposable. Then every isomorphism ‘W of algebra
R1 on R2 is spatial,
R& being type I factor for all &€ & , the spase ';k$ can

- - s pa—
be represented in the form ;}(&‘ K?pt'(’txvhere g("m‘ are the spa
ces on which mutually unitarily equivalent irreiucible rep-

resentations JT;N of the algebra R are actiang. Due to

Px N & R'and proposition 2.14, every C}Ek,a, contains a linear
1)

dense set of analytical for the energy vectors. For all such
vectors(\}; oL using irreducibility of ;}f_xiwith respect to R,
4 !
!
Reeh-Schlieder theorem and the property P dhé R(0)
7

obtain ——
Rt O)P k'Jk )3 = REeLY, o Ra \P - 3& oL
This means that allq/.( 4 are cyclic vectors for R(O)P

and separating for R(O)P . AS a result, R(O)F 1s coun—
tably decomposable in virtue of /DW=6/.

implies

Further, unitary equivalence of ‘Il kg and TI;““L

according to /DC-5.I.3/ that corresponding pro;ections P <

)

and P are equlvalent with respect to algebra R;_
Kz)d.

¥ v P ~ D,(Ug_ (mod R")

K,od
déq K, ¥ zeJ(d_ 1
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since for all W’(—algebras R‘I’ 1{2 and projections b, Q € Rz
R, € Ry,
So we have sompletely shown that for any sectors '}}{d_

P~ Qlmod R1) => P .~ Q(mod H’Z)'

and H the fimilles of projections P <n O)I
Ko @
TkeX,

and JLPG 3 e R(O)’ possess all properties required by
Bde K3 B

the criterion ‘D) with the exception, possibly, of the con-

dition card }(4 = card kﬁ « But 1f we have in addition
; is

'}‘ri l(x? tnen .his condition téatisfied too,since 1t takes

/ ’
place exactly ®, = card JCGL s 96@ = card .]{j‘ . 43 a
- P ~ / Y . L7
result, we have proved that for any 'X,L 2)\){,, a((; :&.F

plus, of course dim ?:’td\ = dim 3{} glve T;o) ~ ‘TTJ;(O)

II ~ necessity. Let ;}6&;'3’( be coherent sectors such that

[SS
metric operator Vﬁ(l(c’).\‘le shall deduce that in this case

X = ¥p,

3((1 ) &F/ > X, ¢nd ']—T(O) ~ (Wfio) by means of partially iso-

let us use zgain the system of projections {pk o j <
- JKe }(d\
/
- H(O)§L and corsider how \ﬁ&(o) is acting on the subspaces
:}t K q ¢ Since there exisls a non-vold set of apalytical
J

e R0
< ;Kkml then gtk’}t)-_ S-t

for the energy vectors T

' ,L/"* \r‘/ek

for any r\-{’k)d_ ¢ 71 i o ¢ Hence 1t follows due to (3.8):

( . Vo (o) %Rlo) ‘€R(°)

- \ = { pd o
. O ’ - p tY) < <

E)fkl,g) JPL{ )3{‘["‘{ pe Lf/k,.{ Vil‘*(o) Yo

From here we see that projection on ';}{ X, § 0 Pk pé R(O)/.
/ ’

Further, the operator VMCO) being isometric on '}}{& y the

pair-wise orthogonality of all P implies pair-wise ortho-

Kok

gonality of all P . This means that \/}&(0) transforms

K, §

/
h tem of projections ‘{P S < R(O into the
the system of prsJ e lyew, DN
system of mutually orthogonal, non-zero projections
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{- C L]
'P}H’]{ R(O)}5 with the sum equal to I, By the other
side, there exists in R(O)} the system of projections
{PQ;PSQGJ(} with the properties described in the crite~
rion (D), i.e. such that, in particular, all tte algebras
R(O)'P, are countably decomposable. In suct a situation
L8
there exists necessarily a definite relation be tween the car-
dinals of the sets X& and -7<P y according tc the follo-
wing lemma by Dixmier (Dw=235):

Iet R be von Neumann algebra, {Et} in:linite family

(€]

of projections from R s with upper bound I and such that

all REI are countably decomposable;{_FkSKeM family of

non-zero pailr-wise orthogonal projections from R. Then
card K < 9ocard I.

Applying this lemma to the systemg { Pe PS and

Ke g
{Pe PSeeRﬁ in the algebra R(O)}3 we obtain
card:]'{‘*:&; < card J{} = &;3 (3.9)
It is not difficult to deduce an inverse inequility too. Con-
Jugate operator V}&(O * realigzes an isometrical mapping of
9(}" on g(d_ which pcssesses all the same propsrties as the
€cX, < R(C)F

1s transformed by V a.(o) into a system of non-zero pair-wise

mapping V}J_(O) . Therefore the system LPeFS

orthogenal projections {Pe‘*ﬁee ‘;(— R(O)d where P,
V (O) Pe B VP-L(C) Application of Dixmier’s lemma to
the stems (P and {P S of
3y { }Key‘ e':). té)‘g
projections in the algebra R(O); gives us tte inverse in-
equality to (3.9).
The theorem 3.3 is completely proved.

This theorem means, in particular, that in the general
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case of a theory with arbitrary set of coherent sectors,
local unitary equivalence i1s not guaranteed by the Haag-
firaki axioms, in contrast to equivalence properties 1, 2, 3,
5. hny two locall.y unitarily equivalent sectors obey, besi-
des the axioms, :cme definite constraints, which express
themselves in te:'ms of sector invariants and so are the con-
ditions on R and not on R(0). In other words, the oonstraints
put by local uniiary equivalence are of the global but not
local nature. Gererally speaking, these constraints require
the definlite relctionship between dimensions of H-images of
pure vector states belonging to locally unitarily equivalent
sectors. It is irteresting to note that abellan coherent sec~
tor ( ' = 1I) appears to be locally unitarily equivalent

not only to all rectors with finlte—~dimensional H~ilmages of
pure states ( Et(f < X, ) but alsc to all sectors with sepa-
rable H~images ( 3(; =X, ). Let us remind also, that in
particuluar case ¢f superselection theory connected with a
compact gauge grcup /5/ (in such a theory only the values

at': /\'&400 are possible) the parameters &; possess a

&

physical interpretation as multipliclity of a particle multi-
plet covariant urder corresponding irreducible representa-
tion of the groul. Since in usual field theories the action
of the field doe:s not chunge this multiplioity, that parti-
cular example shcws already that the existence of a fleld
requires further restrictions.

Further, acccrding to the theorem, all the set of cohe-
rent superselection sectors can be divided into two classes.
The first of these classes includes all sectors with 3(15)(;’

/
the second one the sectors with 3& > X, ,
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and the sectors belonging to different classes cin never be
connected by local unitary equivalence. The firsi class sec-—
tors possess more usual properties and are characterized in
detail in proposition I.10. Since the property o:" local uni-
tary equivalence can with assurance be expected :'rom any rea-
listic theory, all coherent sectors in such theo:'ies belong
to the same cliss. If in addition the theory con-.ains a vacu-

um sector }C;L , then the class of the theory 1: defined
!

n 7
vacuum state, or, if we want to put it into "more physical®

by the parameter 2@ the dimension of the H-:mage of the
terms, by the "degree of vacuum degeneration®. In this con-
nection some interesting problems arise, such as are the
theories possible to exist, where the vacuum sta.e (and so
all other coherent sectors) belong to the "exot.c" class

9€'>UN% ? ind what specific properties do such thi:ories pos-

sess?

4. FIKLD-LIKE PROPERTIES OF QUANTUM THLORIE 3 IN

K= Ky UNBOUNDED HEGIONS

In this sectlion we shall study (the most imprrtant for
the F~problem) equivalence properties of the repcesentations
GT& restricted to C’—algebras of unbounded regij’ns. We re-

late to such regions the following two kinds of Jx-algebras:

AL°(0) = R NBL; a(o’)—;—}/R_I(S)léeBw)

®
The corresponding restrictions of the representatlons TE;

are
, ~LlC) o~

re=g T = T,
AU(0)

ok C Y \JO'LG(O) S
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At first we cosider the algebras ’OI-C(O) and the representa-

"

tions Ji_L + Their structure 1s closely connected with the
weak duality condition /4, 5/.

Definition 4.1

We shall siy that in theory of the a{r‘-KP class the
condition of veak duality (resp., sectorial weak duality)
is fulfilled, :.f

oL e)” = R%0) = R(OY (R 4.D
6r respectivel;’
Prorsapaaly
0L5(0), =R

Theorem 4.1

“(0), 2RO NR, 1=a)

The theory of the "}'G Z{P class satisfies the weak duali-
ty condition 1i:] and only if the sectorial weak duality is
fulfilled in e'rery coherent sector and all the representa-
tions (JT; are palr-wise disjoint. I.e. )
TO) "= RMO&E=> W 10), = o), and ¥ T,” &
Proof. Necessiiye If (4.I) holds, then it is cT:a}r that

/0(°(O): R® (O)P = ( R(o) /\R)

For every Ay ot R® (o) there exists B ¢ RC—(O) such that
"/"\.,L: Pag B\& . Hence RXS R® LC) implies A =P B\‘Ré
. RV b a . g
¢ R(C), and B &R implies =P B\‘}L 4 R
what gives Al*é R(o):L N Rd_ , L.e

R (C)y < RO, NR (4.2)

Now let us take A € RlO N R*‘ It follows fromp € R(o) /]R
: = € A, = €
that B B AR, R(o)nn and A P‘*B\‘K,L (Reo)’ nR)Pd” e

(VIS i
S LO)P‘\ D R0, AR
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Together with (4.2) this gives the sectorial we.ak duality
(4.1~ & ).

To prove the disJointnesa of JI let us no:.e that the
central support P = 3 (0)—supp_r ( 36(0 = R (o) N R((‘ o)’

of the representation .]T can be represented ais P‘C"-(‘DJ
(’\

and the projection P, as DRR )’ The condition (4 ’1)
£

clearly implies

. , [4 /
P@l‘- 4.‘1"(0) PR (c) - P
2 =P e I
+* +
and orthogonality of P\’L and Pp with o 3} gives the desired

e
disjointness of JL; .

Sufficienoy. If all 'jl;'“ are pair-wise disjoint, their cent-

N e
ral supports enjoy the property P Pc = 8 [v) . Next,
O} P
for svery * €T
3 ..CLC(O)I P\C(O)/
P =P > P =
* H, oA
- &
whence P P, = Sap Pu. Hence it follcws
2 P P = Z_ 0. P =P
Pfs PP AZQ.G‘ Pd' Jeq dET qLP - f

If in addition (4.I-4) holds, then for every / € RC(O))
. e
= f & ) -
A¢ P‘*H‘T}(d_ o )| = R (O) . Hence vith the
A

account for P:‘ € DL h) we obtain 4 = 7_ P /\P:

®_EG

_zPAP e 0L°(0)"1.e. RE(0) . TLE(D) (o)™

JdET
Taken together with the trivial inclusion {J‘LC ( O) . R (())

this gives us (4.I).

The problem of finding the necessary and sifficient
criterion of weak duality is of great interest. This problem
is not solved until now, but we can point out a very general

sufficient condition of global nature.
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Theorem 4.2

Any coheren: sector ?}é&. such that X;_ £ N satisfies
the sectorial weak duality. If 2;5 Y., for all coherent
sectors, and in additlon the set 3  of all sectors is coun~
table (i.e., there are only discrete superselection rules)

then the theory sutisfies weak duality. I.e.

IN

W
%, & N, = O, =RY%0), (43 )

(=]

M owleN, ) camTEN = Q) = RUON4.)

Proof. e shall prove only (4.3~ &), the proof of (4.3)
being completel,’ analogous.

let the reg.on 0 & B(M) be given and 0 e B(M) belong to
0”. nccording t» corollary 2.18, in the case X[ < N,
there 1s a non-rold set Y‘Ld w & M:L consisting of analy-

!

A A
tical for the elergy vectors cyclic for R(O),i . Since R(O):LC

c (L (C) ')v(U)P such vectors are also cyclic for
e
L (V) and R* (0) p, Hence it follows that for every
o€ Y\L )P pﬂ""} R “’) . By the other side, propo-
o A, o0 P

sition 2.17 1mpLies that "\+ is separating for RS Clp
In this situatio>n the deslred result directly follows fr:m
lemma 4.3

et wx—alge >ra R be acting in f? and contalning a * .
subalgebra ﬂf' vlth the 1dentity operator. lLet further ﬂ’
satisfy the following condition: there exists a vector'l}/é\(;z
separating for R and such that P\f = PV . Then R = F“"
Proof. For every A € R there exists a sequence {A IS:Q_
of elements A, & H such that AW = s-lim A '\t/ Hence

n >0

it follows for 2very T ¢ R’ that ATY = s-lim ALTY .
n->on
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(\( being cyclic for R”, this equality implies that our se-
quence {.A“?]'nu converges strongly to A on the set R/W

dense in 5} . Further, for every ¥ € 51 and £ >C there

can be found ‘\76 R"Y such that AL (P \?)l\ < ¢ for all
n. Hence 1t follows that

?f}\ Sp AL PN € sep LAWY+ sep HAW U< v

This means that the sequence { Ah?]:; satisfles tae condi-
tion of the s-convergence criterion (/24/, ch. II, § I) and
50 J\n-—s-> A. Thus every element of R belongs to the strong clo-
sure ;l—s of the algebra ﬁ—, i.ee R C ]-S: _}\—w.

This proves lemma 4.3 and at the same time the theorem

4,2.
Corollary 4.4.

Jet quantum theory in M:\RP be given satisfying the
axioms I-VI as well as the conditions
Qeq ‘1 . card 0 & X,
Then all the representations J‘() are palir-wise disjoint.
Proof represonts the obvlous combination of the th:orems
4.1 and 4.2.

i8 & result we find that under fairly general onditions
the representations :J_T; do not generate any intertwining

operators of coherent sectors, This means that stuly of them

is hardly interesting from the viewpoint of obtailning field-
~like properties of the theory.
Finally, let us proceed to the analysis of the represen-

(
tations ‘L 3In this point we shall consider as a rule the

regions-diamonds, O = D = D°”. According to corollary 2.5,
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the algebras FL(D’){L: ]TJ‘D)( 1T D')) are factors and by the
property of the primary representations, only two situations

are possible:

- — {1 _ = {2 —1z") (b)
4'\[;;_; )ld- o~ JIP( / or J(’* d/ JI_P . (44— C,b )

The case when the asymptotical guasiequivalence takes place
for one part 4)"1 C 7 of coherent sectors, and the asymptoti-
cal disjointness for the another part O'L , reduces also to
{4.4), because the theory splits into two independent theo-—
ries with the sets of sectors J, and j)_ . We shall develop
successively ihe description of the situations (4.4~a) and
(4.4-b) and st all compare tnelr properties. At first we con-
sider the case¢ (b).
Proposition 4.5

let quantim theory in = 'I)the given and the axioms
I-VI ve satis:’ied. Then the following conditions are equiva-
len:
1) ill cohereit sectors 'E}(”L are asymptotically disjoint

1D (o)
4 ‘d d ']I_is for every diamond D
c\,p (3%
2) All superselection operators are "asymptotical observab-

les™

L2l 4 P, € R(>)

dtg DM
3) v ORI[D) = @ RI(D),

L&

S.
9 R, t N Ro) =g Cl¥,)
cEBIM) AES
Proof. 2 =3 I is obvious, since for all 0CM, Py & R(0)’

and then 2) gives that % (D" )-supp ‘\TiD') = p&.B = 2 is
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obvious since due to 3), 3(D’) =®C(('3<d)9l2*. 2 =3 follows
aAtG
from the property of inductions of any w*—algehra R ¢ if

projection P belongs to the centre of R then R = RP g Ri

p
4 =>21s obvious right away. is a result, we hi:ve to estab-

lish only I-=3>4. We start with the formula O (D’ )—suppmmf
'5(0) R (D)’ )
= P If €0 is fixed, then due to
HH, v ‘ e
R(D)! R ()
1) the projection D ',;Pis orthogonal to ¢1l |J ,
o.

4
Pm,)\ (and the latter are in their turn orthogcnal tc ezch
R(DJ
other) and so to their sum ‘_/_ P > 1- r& , AS a con-
9
sequence, 1) implies that PR“’) = P, or, eqtivalently
el— [+ 8
P 3 R(D) (the property 2)). Thus we have decuced

P eN R(D)= Rh and now we shall demonstrate that
Dem

Ra= Rg,. R, < Ra,
will be deduced from the fact that every bounded region

te) by definition. Inverse inclusion

0 € B(M) belongs to some diamond D(0) and conversely, in eve-
ry diamond D there exists some bounded region (for instance,
0 = D). Hence the desired result follows readily

Ric) CR(PeY): R(6) DR (D(0))

R% SN R(P@) =N R(D) = RIA:)

Plo)c ™M DI M
and the proof is finished.

It is easy to verify that the "algebra of asymptotical
observables" Ras’ introduced in the proposition, belongs
always to the centre -3 of global algebra. Indzed, by de-
finition R, < R = R(M); by the other side, due to locality

N R(0*) <MR(0)" = R"so that RaSCrS.I‘his means
LeBm) UER(M)
that Ras belongg to the type of "asymptotical c:antral sub-

algebras® studlied by Haag, Kadison and Hastler /25/. .ccor-
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ding to general resilts of these authors, properties of rep-
resentations of C*—algebra with a net of local subalgebras,
generalized with respect to Ras in the sense of § I in /25/,
chi:racterize Lhe asymptotical properties of the theory. Our
concrete choice cf Hd“ somewhat differs from that of Haag-
Kidison=-Kastler tut it coincides with the cholce proposed
hypothetically by them (c¢f. /25/ , /26/, pe 29) for reluti-
vistic quantum theory not satisfying duality. The results of
probositions 4.5 and 4.6 confirm that such a choice is a
reasonuble one. |ow:var, these results do not give yet de=-

tailed picture of properties with respect to Rws and

fly
50 the problem still remalns (although rather simple one) to
give 2 complete description of these properties in the
spirit of /25/.

iow we pronceed L Luo physically more interesting situa-
tion fl.4—@ Y. Gufficiently complete characterization of
Lts properties giver the following proposition.

Proposition 4.6

Tne following conditions are equivalent:
1) .11 coherent fectors are asymptotically quasiequivalent

¥ v LRI Ll

‘ T
dpET DM @ p

2) W¥-algebrus of the regions D’ are factors
Tip) =Cla),
3) The algebra «¢f asymptotical observables is trivial
R as = C(d)
sesides this, corditions (I = 3) are‘equivalent to conditions
obtained from thcse (2 - 6) of propoesition 3.2 by changing

in them region O by L .



4) induction R(D") —» R(D')“_ is an isomorphism,

5) all Y € )Id_are separating for R(D’),

6) there exists t € J, separating for R( D’),

7) all e ), are separating for '3 (D")

8) there exists Y€ ¢, separating for 3 (D’).

Proof. Firstly we shall demonstrate the equivaleirce of con-
ditions I = 3 by proving the implications I =2 3 = I and
2 = 3., To obtaln I =>»2 we note that under the condition
), D&'é@ 3“7;) for all & € G , Since otherwise Wd(oy)é ]!‘F(Dl)
(proposition 4.5). By the other side, 3(D) <3 corollary
2.95) and both facts taken together mean the absence of non-~
trivial projections in 9(L') i.e., 3(D) = Cy(:(g} =1

follows from proposition 4.5 too, since this prososition
implies that QO_J: (f(:k) excludes TT;DI) L fl\p( i and con-
sequently ensures the fulfillment of [)., 2 == 3 follows
from the inclusions Ra, C R; < R(D')’ and Ra, "= RI(D)
for all b € M, which give in total: R, < B ).

Further, the proof of the equivalence of the conditions
I) to (4 - 8) goes exactly us in propositlion 3.2. The only
difference 1s that we now use not the usual vers.on of the
Reeh—-ichlieder theorem, but its extension to unbrunded re-
slons, obtained in the proposition 2.15.

In addition to the proposition Just proved w2 now shall
obtain the conditions under which asymptotical giasiequva-~

lence implies asymptotical unitary equivalence. [t is euuy

. (e o' o) — {0")
to prove that I‘:\. > rITP( ) follows from ﬁd‘ X )'s
exactly under the same (necessary and sufflelent) condtitloni,
[} (o) a — o
under which T, -~ W follows from [j' ‘ NET e
J F o f‘ ’
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and which were formulated in detail in the theorem 3.3. To
make sure of thiis it is sufficlent to note that due to R C
#(07) for all Oci, the algebras R(O’);~ contain, exactly as
it was the case lor R(O);_ , the families of projections
’{Pk,d }kely&and these families anjoy with respect to the

algebras R(Oﬁl all the same properties that with respect

to R(OZ; In otiier words, we obtain the property

T\(C') ﬁu.g_icj
RN 2 ,hP o~ “_(o,)\'ﬁ_(ov
TT(O) ~ 5 ‘o) ~ ALY —.JIP - (4.5)
« —f

Comparing th: propositions 4.5 and 4.6 with each other
we cun easily elicidate physical distinctions of both situa-

(n) ~{n’)

tions. Namely, w: see that in the case ﬂ; ~ all

the principal properties of the algebras R(D’) repeat the
corresponding properties of B(D). Conversely, if ﬁ;ové:17;b9
then the propert.es of R(D’) are rather close to those of

the global algeb-a k=R(M). Further, the analysis of the
proposition 4.5 ind 4.6 as well as their consequences strong-
1y assures us thit boih situations (4.4-4 ) and (4.4—‘p )
are compatible with all axioms I-VI, although we have no
rigorous proof of this for the time being. If this supposi-
tion is reually true then both cases give us the correct
axiomatic theory of local observables, but only in one case,

- (D" — .
!'1 ) X I)JD)there exist intertwining operators bet-

when
ween coherent sestors, which enjoy local properties, and so
the construction of a field can be possible. In other words,
the main difference between fleld theory and general theory
of local observables 1s that the latter enjoys in general

cuse the greater arbitrariness in its asymptotical behaviour.
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Then the subclass of field theories should be siigled out
from the set of all local observable theories by means of
some "asymptotical condition", which forbids asyaptotical
disjointness of coherent sectors and ensures their asympto-
tical unitary equivalence. In contrast to the lycal unitary
equivalence conditions found in § 3, such asymptortical condi-
tions appear to include not only global construiits. .e prove
below one form of asymptotical conditlon, which shows cleur-
ly that, indeed, these conditions represent restictions on
asymptotical behaviour of statese.

Our condition will be formulated in terms of the so cal-
led strictly localigzed states. e shall use the .lollowing
convenient detinition of them /5/:

Definition 4.2

We shall say that the state Cc on observable algebra 1T
is strictly localized in region 0C I, if the values of <
on all observables belonging to 0’coincide wilh corresvon-—
ding values of the vacuum functional gy o

For the Lheory in 9{ = g{[) y POSsessing the tnlgue vacuum
sector, the set of vectors representing vector s ates strict-

1y localigzed in O, will be denoted as S £ ()

SIESRAES L~ﬂ’\ruo') ) \R(c’) % (4.6)
The vectors (P €‘Qﬁ(0) will be called strictly ..ocalized
vectors.

The asymptotical character of the strict locilizability
is clearly displayed by the following property. ..f we intro-
duce the notatilons S"Eic\ch SL () and AW'i Gia) A vi-a)
for all . € R, @ € M, then
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v ¥ Lo e, (Aa) - o, (A)|
:P(‘(f Aéct O —» 0

oo~

wt e
(This relutior. holds automatically for all A € f and extends

to (T by mean: of obvious estimates).
The very tseful tool of studying strictly localized sta-
tes we find ir. our notion of the H-image (see § 1). In fact,

the formula (4.6) meuns exactly that every strictly locali-

zed vector must belong to the il~image W\Té; (c*) of
the vacuum stete (.., with respect to algebra R(07):
: ER 4 ot
S ) 7O (8), (4.7)

Such re-writirg of (4.6) immediately tells us, what is the
subspace spanred by all vectors strictly localized in O0C M.

Numely, according to the formulu (I.2)
RicY)’
: Sd (e
oo = LS = 2" (.8

The set of all strictly localized in O vectors from coherent

SL)

sector J, will be denoted as S&£(C), and the subspace
spanncd by thils set as }ﬁS{(o)
ok

CL, 2 SECIVKR, = M) R

>

(4.9)

Hoego, = LML (e) V% §
It is important that in general case only the inclusion
s, = Hseo ¥

takes place, but not the equality. The formulas (4.7 - 9)
will be our main tool in proving the following baslc result,
Theorem 4.7

Quantum thsory of the 3(: §{P class possesses the asympto
tical unitary zquivalence if and only if in every coherent

sector ;ke- ani for every 0€ B(M) there exists a total set
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of strictly localized vectors and in addition tie (global)

conditions of the local unitary equivalence are fulfilled

(v v W, o
Ye o, ot BIm) >3y 3 o _10Y)_ ()
120 2 N "’P
d,peg CEBM)
. [t [+ {o
) ¥ v e
diptn CER(M) ©
Proof.Necessity.First of all we note that for all 0& B(M)

\7 Jt.. o = gka. > T =t
o

S409)

14,10)

(the converse being not true in general case). ndeed, by

) ’ . 5 e <
definition 365&(0)4 < '}ﬁ&ﬁ(o) and henced:id tkgf('\))‘
Q.gfgilw whence (4.10). Nzxt, it follows from -he definition
1.2 that every H—:Lmatge'}’\“(,‘p of a vector state on any w¥e

algebra enjJoys the property '
R R’
1 ~

Using this for the H-image ‘]\‘('_;‘L(C’) and takin; into account
formulas (4.8), (4.9) and (4.10) we obtain

R0}’  R(0")’ |
\ = H L, TR
PeSL(C)y ¥ =
This means that all vectors from the (non-void Hy supposi-
tion) set L&(C), < ‘3( are separating for ((0') Owing
to the point 6) in proposition 4.6 this implies || ,T(o’/
This result together with the formula (4.5) and the cond/:JL—
~(<’) — /)

tion (P ) gives HQL T P .

Sufficlenoy. Ve shall verify firstly that total set of stric-
tly localized vectors exists always in the vacuum coherent
sector. This follows from another simple proper.y of H-ima-

3 iy
es on any wX-algebra : 1! is the set ol all unitary
g 4
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5
operators from:b s then

\ L iy
Yo, ok e (4.11)
PE I
On account of locality this means in our case that

Sd)gs ML SN RQI[ROND T 1 Hg D RENMA

and correspondingly

I

SL{R@ 2y RO .

SEo) g
Taking into account that 32 1is analytic for the energy and
1s in our context an arbltrary vector from the H-image QYL;i
of the vacuum stcte bvjle R*;- we obtain
i My R
_Q-X‘T,(&mjl }CS&(C)Q— i }CQK (4.12)
Further, the vacium state being pure (proposition 2.20) we

can apply to it the formula (30) from /I/:

Voo L{ v Btgg '

PeP P ye ¥
Taking this together with (4.12), we have the desired result:
g =3 =%
.. vl KoN

54(0)9_

, (2)

From here and using quo) Pad WTP it 1s not difficult
o

to deduce the corditiom (‘¥\ of the theorem. Let us use

Kadison’s criterion /27/ of the unitary equivalenoce:

{0~ t0) s F (0') Y {2)
02 = V) = V)
let us take here TTF = fF}L and an arbitrary )€ G , and

let V& Q-(O’) be partially isometric operator reallsing the
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—t0’)

(%)
unitary equivalence of 7E; and [“1 « Using the isometiry

of Vv, SL(O’> on yfiLwe obtain:

-— (
Hm\ G0 s L] sdie Ja L{“ “)S“()J

N (4.143)

By the other side, the property of V (0") us an intertwi-

o S0
ning operator: \451(637 ﬁLl eR(e)Y and the formula

(4.11) give us
\, (€0 S£(e) < Sfle) 1= SEOL

The putting of this into (4.13) leads to (3 ):

¥ ¥, =¥

deo Cgeo)

To end the proof it 1s sufficient to note tnat dve to the

formula (4. 5) (for all 0€ B(M)) T i 07 uF/o,) inplies
(0) T.P

Corollary 4.8
let qf be coherent superselection sector such that

TT(O)“' TTI o) Then 'j( contains & totaul set of strictly
s T RRES

localized vectors if and only 1if ﬁ(j‘ contains at least one

such vector:
¥ = <> S, # ¢
S£0) e
Proof. The necessity is obvious, while the sufficlency fol-
lows from the proof of the theorem. In fact, we lLave seen

that due to proposition 4.6 the existence in 3{d~ of only

one strictly localized vector i1s already sufficient for
o (o') ~ ~ (9
e . This means that I Lo

3> is :'P

and S £(c), * ¢ imply T ‘O):«T,‘C') , and this, ac—
&
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cording to tke theorem, implies the existence in 3{4_ of a
total set of strictly localized vectorse.
Note. It can easlly be shown that the vacuum ::l as well as
any vector aralytical for the energy cannot represent pure
state on any local subalgebra R(0) or R(0”). On account of
tnis and the property (I.3) of the l-image )

- 5 , LN - R(0Y)’

< f£(o) = WISL(U) g R, NS
This opens tle possibility of a situation, in which
’:}{g’ilo):&“g/ = H but for some L€G , the coherent
sectors X{A_Lo not contain any strictly locallzed vector,
i.e. S—fka#= ¥ . By this reason the following implications

take place:
)~ (0")

) e e ) e ' -
}tgﬁ(o)- <= “d - ‘P .u‘-\i' S{S'ﬂo)«\ Jet’"

(the left on: follows from the analyticity of 52 for the
energy, while the right one was established in the proof of
the theorem), but no one of them can be replaced by equiva-
lence relatij>n. This means, in particular, that our formula-~
tion of the .heorem 4.7 does not allow any essential simpli-
fication.

Now let 1s discuss in more detall the obtalned necessary-
and sufficieat condition of the asymptotical unitary equiva-
lence. This zondition 1s rather similar in form to our main
initial condition H{::gﬁP. However, the difference is that
in the latter case the "full" gondition is completely equiva-

lent to the sum of sectorial ones:

R <= %= (),
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whereas it 1s not so for the "asymptotical cond: tion" (& ):

3{:'}( Q‘\i ‘V 'M,p:'}ff_ﬁm) .

$&ro) Qc6 -

The physical content of the condition is also clear in
general features. Like other asymptotical condi :ions introdu-
ced in quantum field theory (quasilocality cond: . tion by Haag
/28/ space-like asymptotical condition by Ruel.e /29/, etc.)
this condition establishes for the expectation ralues of the
theory a definite law of asymptotical behaviour in space-like
directions. But the detailed investigation ol tiis condition
is not performed yet. In the sphere of this inv:stigation
fall several problems of significant interest, such as decom-

positions of arbitrary states into strictly 1lo:alized states
and/or relation of the class of strictly localized states

to that of “st?tes without long-range correlations" of Haag
2

and Kastler/ 3 3y relations between strict 1localizability,
asymptotical abelianness end cluster properties, etc. The
last point is of interest, in particular, because of possible
dependence of cluster properties of the theory >n the type of
its statisties . And also always in the close analogy
with the history of other asymptotical conditions, the prob-
lem is still open whether our asymtotical condition is the

consequence of the Haag-Araki axioms or the independent addi-

tional restriction.

CONCLUSION

Here we shall compare results obtained with the results
of Doplicher, Haag and Roberts /5/ (Lfor the sake of brevity

referred to below as DHR).
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The general scieme of DHR represents the algebraic theory
in fiilbert space I , on which C*-algebra (T of observab-
les and Ch—ulgebrl ’F of fields are acting, both provided

o€ R(M) and '{¥(O)§oe Bim)

with nets ol local subalgebras, {R(O)%
resnectively. T s irreducible(f“‘: B(H)) while R= e
> N

belongs to a certiin subclass of theories in }}(:L}&P. Namely,
R coincides with .he commutant U(G)’ oi representation in
?f(, of scme compat gauge group G, and as a consequense is

of the form B =@ Rd\ , all the R being type I factors.
: g
However, in this .ase the algebra R = (J(G)” possesses only

finite—-dimensiona! irreducible representations. This means

that ;lobal algeb:a of the JHR scheme 1s algebra ol the t}t’ '}(I,

’

class, with the acditional restriction: for all.d € 7 , R

is factor ol the {ype |

L
yNg &2+ or equivalently,'X; U
N
Apart from tiils, another distinction of our global structu-
re i1s that Lor itc deduction we do not assume the existence
of either the group G or the algebra ?; , but use only a mi-
nimal necessary cincretization: the object of our study is
an arbitrary quantum system with superselection rules. Fur-
ther, the UHR scheme includea 2lso a great number of local
additional conditions. In most part, they are of the form of
relations connecting with each other the nets.{R(o)E and
‘{'§(0)§ and so they cannot even be formulated in the “usual®
axiomatic theory where the input includes only one of these
objects. Besides of this, such questions as the range of ne-
cessity of introduced conditions, their independence on each
other and on the axioms etc. were not answered most often.
For all these reasons we did not consider as superfluous

after the works by DHR to return once more to the analysis of

the F-problem.
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Now we proceed to the consequtive comparisor. The § I of
our work contains the physical basing of structire used and
so has no parallels in the DHR work. The content of § 2 is
equally not connected with DHR. With respect to the I'-problem
(the only problem of DHR) the results of that scction are ei-
ther quite irrespective of or very remote. Attention paid by
us to these results is explained by their indep:ndent interest
and also by our hopes on other applications of our scheme,
besides the F-problem. Next, the § 3 results (ejuivalence pro-
perties of coherent sectors for global algebras and local algeb-
ras of bounded regions) play only the preliminary part in the
problem of relationship between fields and observables. For
this reason and also, probably, due to the simplicity of their
obtaining, they were practically not considered by uUHR. In
fact, the only complicated result in § 3 is the theorem 3.3,
but its complexity is caused entirely by the teking into accou-
nt arbitrary values of the parameters 3q*”g;; In the DHR
scheme where only the values ({gG:Va are allowed tnis theorem
reduces to a semi-trivial assertion.

Further, analysis of the representations TE;L and weak
duality condition was undertaken by DHR in § 5 of /5/. In this
point our results supplement and clear up the esults of DHR
and some of their additional conditions. Thus :he theorem 4.1
shows that the weak duality condition obtained by UHR in their
theorem 5.2 is not only necessary, but also suificient. Next,
we prove the fulfillment of the weak duality ia all coherent
sectors '}('d. with &; ¢ X, and also in the whole I} for the
theories with discrete superselection rules only; for the same
theories the axiomatic proof of the disjointness of all jﬂf

is obtained. These results have no overlapping with DHR. Let
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us mention also that the result of the theorem 5.6 by DHR
{necessary condition of duality) was re-proved in the work
by one of us /3(/ in the slightly more general form and
without the assumption of weak duality made by DHR. Finally,
analyzing the representations Jifov DHR proved their quasi-

equivalence wit! the ald of strong restrictions on the con-

nection hetween the netS»KR(O)R and % q?(o)% s The

;e

{

net 1 #(G)Ju& P being not given in our case, we cannot
(0%} ra’)

exclude the alternative situation, “g\ é ﬂip and
so.we perform tie detailcd analysis of both situations. Then
we formulate in terms ol local observables and prove the
"asymptotical condition®, wnich is necessary and suftficient
for the unitary equivalence of all WT;OW . The necessity of
thds condition was stated by DHR without proof and under res-
trictions on 'ﬁf[(o)ﬁ

As a result, from all the complex of properties, which
is, accordin;; to DHR /6/, sufficient for the construction of
field group and field operators, the following properties are
not yet obtalned in our scheme:

1) sufficlent conditions of the fulfillment of duality in
coherentsectors;

2) conditions of the existence of localized automorphisms.

In future we are intended to return to these properties,
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