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Introduction. 

Algebraic approach in relativistic quantum .heory still 

contains a significant number of unsolved probl :;ns. There 

are among them the problems of paramount importance such as 

the definition of field startinB from local obs,:rvable n]geb

ras ("F-problem" for the sake of brevity) and tile construc

tion of purely aleebraic scatterinR formalism (' 3-problem"). 

we suppose one of main reasons of this to be th• followinc: 

the initial form of alBebraic approach developec by Haag, 

Araki and the other absorbed a very poor physic<.l information, 

thus giving no possibility either to solve or e1 en to formula

te the problems like afore-mentioned ones, for ~ich it was 

necessary to operate with objects not reducing ~.o local 

observables (such as field or scatlerjn6 Gt·1•:, 't~·.'· i•'or 

the solution of problems like these the algebra~c approach 

should be provided with additional information; i.e. an alge

braic quantum theory a.t:.owing the introduction c f a field or 

S-matrix, etc.,should represent a net of local aJ gebras 

(abstract or concrete),which satisfy a set of ftndamental 

axioms (Haag-Kastler's or Haag-Araki's) as well as some ad

ditional conditions. 

It seems very natural to expect that such additional con

ditions will include, first of all, certain co~traints on 

global structure of theory. In fact, all axioms are conditions 

on local algebras, whereas it is most probable that global 
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algebra of a phy>ical system cannot be arbitrary too, espe-

cialy if the system in question enjoys some special properties, 

like the e>eistenJe of field or S-matrix, etc. 'rhis argument 

can be illustrated, for instance, by the situation in statis-

tical mechanics, where conditions on global algebra exist 

always and are of essential importance. Nevertheless no gene-

ral and ph,ysically grounded conditions fixing the global struc· 

ture were proposed for relativistic quantum theory. (In 1or -
approach one as::umt:d often that r;lobal W* - algebra R is a 

factor or is irreducible. However the first assumption was 

not justifieo b;y anything Except mathematical convenience and 

the second, as js well- known, is too restrictive). Besides 

tlllci 1 it is not excluded at all that other additional condi-

tions, those of local nature, will also be necessary to pick 

out of general lormalism of local observables more concrete 

pil.)'Sic::ll t!leori! s. 

,;j~th tlle:3e <.rf;llments in mind, we, set ourselves as an 

object to devel< p :it;ch o. moJiJ:ication of Haag-Araki-Kastler 

theory, where p;,ysic'llly wc::il-l;rounded ndditional conditions 

to fundamental <tX iorns vve re l'ou nc1 <:md inv es tiga ted. Due to 

these condition; it could be used as a basis for constructin.>S 

algebraic struc.ures corresponding, for instance, to field or 

~)-mat.rlx theori:s, physically more llc.:h Oriml interestir:g tha.r; 

the general theJry of Jocnl obsorvablco. In the first two 

partf> of ou.l wo"k, pub1:s!ii?d lr; i'ussian in /l, 2 / and for 

convenience stated 01 j t:fl,y l r, ; l, we have 01.nal,yzed the global 

atructur<; of ob3ervD'olr: ,;.l,~,ebr<'s tn "concu~te" w*- appruach. 
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by a very definite global structure, which was called 

11'1i:'f11., b the "'- <1\..-~ structure" y us and presuppoces, in par-

ticular, that global ~-algebra R is a direct sum of discrete 

factors. The latter are physically interpreted as global ob-

servable algebras of coherent superselection sectcrs. From 

purely rna them a tical view Point our proposition tc use as a 

global algebra R the direct sum of discrete factors (instead 

of older variants, R = ~ ('~ .. ) , or R being an arbitrary fac

tor) is of course, not so great innovation. However the main 

element which was here important to us is that in ::>ur scheme 

the global structure is not introduced ad hoc, but is prescri-

bed directly by the analysis of physical phenomena. 

Further, in § 2 we provide the deduced global 3tructure 

R = G} R.<:l. with a nett R(O))ocl--l of local algebras H(O) 
<AE:C 

satisfyinr, llaag-Araki axioms. 'l'hen we study in det1il an 

arising superposition of the global (sector) and lJcal (net) 

structures and generalize to the resulting, "cross!d" struc-

ture all classical theorems and resuJts of the Ilaa;-Araki 

theory. In particular, quasilocal c* - algebra Ot. of our 

scheme appears to be simple, what is important for further 

developments. Also a number of new results is obta.ned. They 

include, for instance~ theorem 2.4 containing a Gtr.ctly axio

matic proof of global nature of superselection rul,·s. The 

propertiee of translational automorphisms of algebr<. D( are 

investigated. Using asymptotical abelianness of Qt with 

respect to translation group, we describe the stru< ture of 

the set of all translation-invariant vectors as we:.l as pro-

perties of vacuum coherent sector and vacuum state. This 

completely clarifies the problem of relations betveen many 

5 



possible formulations of "vacuum postulate". As a result, 

we obtain for any theory of Jf "- ~p class a well-developed 

scheme of axjomatic theory of local observables, hoping by 

this to provjde a basis for all possible applications of the 

theory. In His section the structure 1e." 'J-£-p is our only 

additional ccndition. 

In § 3 we proceed to problems connected with introducing 

of a field ard we find our global structure to be quite 

suitable for these purposes. We represent the coherent super

selection se< tors as representations 'IT tJ.. of the quasilocal 

C~-aleebra OL and study equivalence properties of those rep

resentations as well as their restrictions to different sub

algebras Ot.i c R. (keeping in mind that starting objects for 

the construc·.ion of fields must be intertwining operators of 

some or othe:· representations connected with coherent sectors 

/3-6/. we co11pletely describe the equivalence properties of 

representati11ns 'II J.. (i.e. the global equivalence properties 

of coherent :;ectors) and then proceed to local equivalence 

properties wtich are of greater importance for the F-problem. 

At first we Jonsider the equivalence properties of restric-
rr.CoJ 'fl I tions 11 J. - c1. It lo) with o, by definition, a bounded re-

gion. Here i; turns out that local unitary equivalence of 
'-u1 L,,. _ (o) '1."" (o) ) 

coherent sec~ors <1'-<i and"'-~ ( IIJ. ~ '' f3 requires, 

besides the ucioms, certain additional conditions relating to 

dimensions of irreducible subspaces of algebras Rand R' in 

sectors 'd-eJ.. and 1<:-p. • This means that our starting condition 

'Jt" 1-e. p is joined with another additional condition, also of 

global nature. This new condition is rather general and un-

restrictive. 

6 



Finally, we investigate in § 4 properties of our scheme 

with respect to unbounded regions. ~allowing /3-6/ we charac-

terize these properties by two families of c~-algebras: 
----~w 

and OL ( o')-:: Y 1\ ( 6) 

generated by local algebras R( 6 ), 0 c Q' 

c:::*-al3ebra 

0 E ~ (,..._) 

Lquivalence properties of corresponding representations 

<07"" c . cr.- I 
\\ d. -:::: I\ .,1. (h. c ( ()) and '1\(o')-= 1\ ·\ ue of most 

~ "- OL(o') 

importance for the F-problem because intertwininl operators 
~ (O') ,...,.,_(o') _c. _ ~ 

of representations /1.1. and II~ o"l: II" and llf3 (ii 

such exist) possess localization properties and Jan directly 

be used for constructing a field group and field operators. 

We find, however, that the behaviour of the theo·y in unboun-
1 -C. 

ded regions, as described by the families L it.,. 1 J.. £ c-

and z Ti "'< o'J ) cJ-. E c;- strongly differs from that in bounded 
J. - IO) ( 

'L'Le reason is regions described by the family 

that weak closures of algebras 

1.._ II" J &. f <> 
c: 

Ot.. (0) and 0L(t1 ') uo not 

belong to Oc in general case; that's why the e1 uivalence 

properties of corresponding representations are 1.0t r,overned 

by the fact of simplicity of Ot and worsen con~iderably. 

we study at first the representations TIC 
cl. <1nd weak 

duality condition /4, 5/ closely connected with them. Under 

the very general global conditions we prove the iulfillment 

of weak duality in coherent sectors and then, adcing one 

more global condition, which means physically thE absence of 

continuous superselection rules, we prove weak dcality in 

the whole space ';j{_"' ED 1e 6. and pair-wise disjointness of 
«.Ecr 

all 'il ~ . This means that these representations are useless 

for the F-problem. 

7 



(o') 
,,e proceed then to the representations 'iT <A and draw 

the conclusion (however not having the formal proof for the 

time being) that local observable theory even if provided 

with any glcbal constraints,allows the arbitrariness in equi

valence pro1erties of these representations. It means (if the 
- (o') 

primarines::; of the /1 d. is taken into account) that all local 

ob::;ervable 1heories with superselcction rules can be divided 
-((" (o') 0'. ~IJ/o') into two cl:.sses, the first of them having ~ ·- ,-

_11(o') I ,-(o') 
ami the sec<~nd <~. o II (~ for all d, ~ Ec C". All field 

theories fa .1 in the first class and so the problem of formu-

latinc the :1ecessary and sufficient conditions of belonging 

to thls cla.;s becomes of a real interest. The role of these 

condition::; -~ to Gin~le out the class of field theories within 

the larger )lass of relativistic quantum theories of local ob

servables. ~e have proved that one form of such criterion 

consists in the presence in every coherent sector Je~ of a 

total set ~·J( 0) of vectors representing states strictly 

loc:11ized in the region 0: /.., z S!(u)) =. 'J.(ci- for all 

0 f. D(~l). r he existence of other simi lur cri terions is not 

impossible 3.t all, but the physical meaning of ti1em is always 

the same, i.e. to put restrictions on the behaviour of states 

at the infinity in space-like directions. Loosely speakinc, 

this means that field theories can be picked out in the set 

of all loc:l observable theories by means of some "asymptoti-

cal conditjon", of which one possible form was found by us. 

As a rtsult, we obtain a full picture of equivalence pro-

perties of coherent sectors for all regions. This picture 

becomes qu: te clear in the light of the following inclusions 

(0.1) 
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(where 0 is a bounded region lying in 0 ). Inc eed, if Ql 1 2 I 

are ex-algebras such that DL -t c C1 ~and Tl ~ , < are some 

representations of Oc !l, then equivalence p1operties of the 

restrictions Tli. \Ott_ and fl"' l0-c..i may be stronger in gene

ral case than the equivalence properties of 'T: ~ and ciT I< 

themselves. In virtue of this fact, in the chain (0.1) the 
' '" ( 0) representations 1\a must enjoy the strongest equivalence 

properties, while the representations T\:;. the weakest ones. 

This is in complete accordance with our results, which give 
(i<(o) r.--1\ (o) 

\I J. ::y (b 

'IT c_ tions I J- and 

and 'flo.. 6 \If\, The asyrnptotic3.1 representa
( o') 

n~ are intermediate between local and nlo-

bal ones, and so their equivalence properties Jecome well-de-

termined only under additional restrictions. 

The methods and aims of our work lie close to the works 

by Borchers /3,4/ and especially by Doplicher, Haag and Ro

berts /5, 6/ dedicated to the F-problem. Detailed comparison 

with the Doplicher, Haag and Roberts• results is made in the 

Conclusion. As a main general distinction of 1oth schemes we 

can point out that at the moment we have eone !lOt so far in 

what concerns the direct construction of a fie:.d (which was 

the main task of Lloplicher et al. ), but in ret1•rn we have 

developed a more general and elaborated formalJsm, which is 

suitable, as we hope, for wider range of appli<ations. Also 

we regarded more critically to the introductior of additional 

conditions, controlling their independence froo each other 

and from the axioms and their necessity for desired results. 

In correspondence with this principle, our scheme starts with 

the global condition d(:: Je p , which is necessary for the 
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formuL.J.tion of the superse lection theory, and ends (at the 

present stage) with the local condition Lt.Si'(oJL. JtJ.. 
which is necessary for the existence of fields. 

NOT1,TIONS. Most part of our notations follows the books by 

J.Dixmier /7, 8/, the references on which are denoted as DW 

and DC respectively, so that, for instance,[mv-5]means 

page 5 of /71. R1 (c1
) is the set of all real (resp. complex) 

numbers. The four-dimensional Minkowski space will be denoted 

by M, open bcunded regions in M by o, and B(M) is the nota

tion for the set of all such 0 in M. O'denotes the set of 

all points ir. M, which are space-like to all points of o. If 

m is any sul set of some linear space, L L nl-) denotes the 

linear hull <•f JJ-t • In topological spaces the closure of 

any subset JrL in the topology C( will be denoted by the 
--'L 

line provide!! with corresponding index: 'J'J'L . The closure 

in the norm ·.apology of any Banach space will be denoted by 

the line witl1out the index. In Hilbert space ~ we denote 

as J>( X) thn algebra of all linear bounded operators on k , 
and C(.K.) th•l algebra of all multiples of the identity ope

rator I. The subspaces in }( generated by the action of a 

if -set of o ~era tors s4 c ~ (X) on a subset JU c ';;-{__ 

will be denoted as K ~ i.e. k~ -=-L{iTn.).Projeo-
.,4 CIA 1 

tion on 'J.< "l'l'L. is denoted as r~ . S denotes the unit 

sphere in ~~ • The weak, strong and uniform operator topo

logies in~~) are denoted as by the indices w, s, u respec

tively. 
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vector stat!s in the representution ----w 'i! E Hep Or_ such 

thcct Ti 1
: (~'- 1 "' ~\.One possible variant of such connection will 

be descrlbei in ~ 3 below. 

Definition 1.1 • 

..it<.J.te of phJsical system described by w*-algebra of 

observables H c ~~ i<-J is linear functional W on the algeb

ru. H, positive I 'j CJ (A" A J > 0) and normed to the unity 
' A E iC 

( W (1:) = 1.). 'rhe set of all st<ltes will be denoted as H
1 
** 

bxtrem~l points of the set R
1
x+ will be called pure sta

tes, all other points mixed states (mixtures) • 

..itate tefined for all A~ R by means of the correspon-

dence A -> f\ ~,It) with If 0 ·rz and li C£ i\-c i will be called vec

tor state <.nd denoted as W 't. The set of <.>11 vector states 

on H will l1e denoted as V(H) and the set of all pure vector 

states u.s 'V(H). 

Vector <jl ( :\{' such thc,t CJ 11 ~ 11 -< <E E l'V(H) will be 

called pur·~ vector, and the set of all such vectors will 

be denoted as g). 
The mo>t convenient object of stadying possessing in 

addition clear physical interpretation, appears to be the 

set of u.ll vectors in ~ representing the same vector state 

on H. 

Definition 1.2. 

For every vector state WqJ E V(R), the set of all unit 

vectors 'lf E ':\Z such that W l.f: ~ c.J <!l is called the H-image 

j
.... 1. 

of C.J~ ard denoted as J"c 'i. I.e., 

m~ ~ t_'tlE-'k\\\'l\\~t,·.; c~'l.'-tl"<"<¥.<I>) c1.1) 
1\tll.. 
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If and only if R = ~ ( d<..) , H-im .... ges of all vector 

states from V(R) are unit rays, ll f ;b ( +<:) implies the pre-
,,., 

sence of non-onedimensional H-images. From physical viewpoint 

introducing of the H-image notion seems to be qJite natural. 

The object (related to ~) directly manifesting itself in 

the experiment and thus in the exact sense repr~senting phy

sical state, is not the vector T E J<- itself, ~ut the set 

of all expectation values ( A <t, <£ ) for all observables ,·,. 

By definition, for all vectors in the same H-im~ge this set 

of expectation values is the same. 

Now let us list a few main properties of H-Lmuges. 

1) for every vector state W~ the closure Jf the linear 
-t 

hull of its Il-imc.ge JJ't 'jl coincides with cyclic subsp;,ce 
'K \\' 

~ 

= 

2) the state CJ ~ t V(H) is pure if and only if 

Class of \'~-algebras possessing pure vector states is 

closely related to the class of type I wx-algeb c-as, as the 

simple property shows: 

the following three sets are in one-to-one ~orresponden

ce between each other: 1) the set PV(R) of all ?Ure vector 

states on the Wx-algebra R; 2) the set of all m~nimal pro

jections in R; 3) the set of all minimal projec:ions in R'. 

If R is a factor, this property means that 

PV(R)t¢ ~ H is of the type I . (1.4) 

If 3 =1=- C(~) this relation can be destroyed in ~eneral case, 
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but u.ny algeora H with PV(R) ~ ¢ still cannot belong to the 

types 1! and l!I. 

For the comp~rison of algebraic theory with the old Hil

bert space l~nguage (in which all pure states are considered 

to be unit r~ys in dt ) the following questions are of inte

rest: 1) und~r what conditons the H-image of a given vector 

state is unit ray'( 2) under what conditions all pure vector 

states are r~presented by unit rays? Below the precise ans-

wers to ooth questions are given. 

rroposition I.l. 

'rhe H-im1ge of vector state Wq> is unit ray, i.e. 

'"'->r 1 J.> ~ ~ 

if and only Lf 

1) C.J'f t PV(.H) 
I<' 

2) •:..z l<<jl .J ',\-<: q> 

The conditiol (2) can be replaced by the equivalent one: 
K 3' 

2 ) ';{ q, -= 'K <±-

Proposition 1.2 

H-lmages of all pure vector states are one-dimensional 

if and only Lf the algebra .H is of the following form: 

After thlse preliminaries let us introduce the algebraic 

structure, w 1ich will be at ver;y· centre of all the further 

account. 

De fin it i Jn 1 • 3. 

\le shall say that ii*-algebra R possesses sufficient 

amount of pure vector states or, equivalently, belongs to 

the II Jt-= Je ? class 11 , if the linear hull of the set of vee-

tors ~E}( representing pure states is dense in 1e. : 

14 



( 1. 5) 

The class of von Neumann algebras satisfying this defi

nition is completely characterized by the following theorem. 

Theorem 1 .3 "") 

The following conditions are equivalent: 

1) w*-algebra lt belongs to the d{_:: 'Xp class, 

2) H is WlE-algebra of the type I and its centre 3 contains 

only the operators with purely point spectrum, 

3) R is direct sum of type I factors. 

Next, we establish that w*-algebras of the ~ =-Jer class 

can be physically interpreted as observable algeb~as of phy-

sical systems with superselection rules; conversely, every 

physical system with superselection rules corresplnds to 

observable algebra belonging to the 'J.e.. = kp cla ;s. 

\ie draw these conclusions from the analysis o [' concrete 

physical systems possessing supersclection rules. On the 

grounds of such analysis we formuL.te a comprehen.;ive alge-

braic definition of arbitrary superselection rule, 

Definition 1 .4 

Let quantum system be given with observable a.gebra 

R c p(~). \le shall say tb"'t a superselection ru .e is acting 

in this system, if there exists the decomposition.}!~ EB :}{'._ 
"~ .... 

satisfying the conditions I - III below, and each of these 

conditions implies two others. 

~Examples of statistical systems with observab.e algebras 

of the types II and III being explicitly known, i. is clear 

that in the statistical mechanics (in contrast to relativis

tic quantum theory) the structure proposed by us :annat be 

too universal. 
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I. Every vec1or not lying in some 'J.e.d. corresponds to mixed 

state. 

II. Transiti<ms between different kd. by means of observab-

le operators are forbidden 

AfcR i.~_j;l 
( A '±'.. 'P ) = o 

'"I d'l. (II, rJ. ) 

and in addit .on all the H-images of vector states 

with ~ ... ~ 'tt. lie entirely in K"- : 
u lf-..-'J 1 
v JJ \.... (.___ 

([ <p J-
rd.~ ,.\-~:f.. 

(II, ~ ) 

III. There ecists an operator T ~ ~ (i.e. affiliated to 3 
und unboundoi in genercJ.l case) such that all 'cH'.._ 

are its eige1-spaces. 

In this ;i tuation the subspaces 'Je"- are called super-

selection seJtors and the operator T superselection 

operator (corresponding to a given superselection rule). 

Theorem 1.4 

Quantum system possesses superselection rules if and 

only if its observable algebra H belongs to the 'k" kp 

class. Each operator T ~ 3 determines uniquely a certain 

superselection rule, i.e. the structure k =ED](, satisfying 
.1.< r 

the definition I.4. 

Let us rote main features peculiar to this treatment 

of superselEction rules. 

1) In the definition 1.4 only the condition (II,,~ ) and 

the re quiren.ent of equivalence of the conditions I - III 

were not m<u·ked in previous literature. J\s a consequence, 

all the new features of our scheme go back to these two 

distinction:•. Namely, the condition (II, ~ ) implies that 
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superselection operators huve to be affiliated rot only to 

the commutant R' but to the centre 3 of H; the equivalence 

of the properties I - III implies the necessity for observab-

le algebras of systems with superselection ruleE to belong 

to the dt "dt'P class. Properties that follow represent the 

secondary consequences of the same initial distinctions. 

2) All superseleotion rules commute automatically between 

each other. 

3) Let quantum system be given pos:;essing the decomposition 

of the following form: 
\ED c 

J oltd~\)~(~) 
6l 

R::) Jt'(~)R(\),(I.6) 
where R ( j ) are factors almost everywhere in t1e measure '-'\ 

and so the algebra of diagonalizable operators is some abe

lian wK-algebra generated by an operator T '( 3 lfith conti-

nuous spectrum. Such decompositions are impossible in 

and in our :;cheme they '"re ref11se<l to be interpr~ted as su-

perselectlon structures. This follows automaticaLly from 

the scheme, but we also representPd the independ ~nt arguments 

in favour of this (in /2/,§2), Hhich are close tl those de

veloped by J. Antoine /9/. 

;,bsen(e of the decompositions (I.6) does not mean at 

all that continuous superselect.ion rules are excLuded in 

our scheme. What is excluded is only one a priorL possible 

kind of them, namely, the superselection rules, ear which 

the superselection operator possesses continuous spectrum. 

But still is perfectly allowed another kind, the superselec

tion rules, for which the set G" of all coheren; superse

lection sectors is uncountable. We verified that all known 
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examples of ;he continuouos superselection rules (such as 

Bargmann's S'tperselection rule or the superselection rule 

in the BCS m 1del found by Emch and Guenin /10;)belong to the 

second kind. The assertion about complete impossibility of 

the first mentioned kind of continuous superselection rules 

may be considered as a prediction made by our scheme. 

Thus we <.efine the discrete and the continuous superse

lection rule:> as those characterized respectively by the 

countable an< the uncountable set \J of coherent sectors; 

but in both uases by an operator with point spectrum only. 

il.s the follov ing simple proposition ahows, these cases cor

respond to tt o subclasses of the de.-= "J.E'_I' class, which 

differ by an essential structural property. 

Proposition J .5 

"lgebra l of the K=- Kp, class describes the quantum 

system with ciscrete superselection rules if and only if 

the centre is a countably d.ecomposable algebra. Other-

wise ( ~ 1~ not countably decomposable) R describes the 

quantum system with continuous superselection rules. 

4) ;~ is well-known, existence of decomposition of the theo

ry lnto coherent Stlperselection sectors is very desirable for 

an,y supe:rselection scheme. This property 1.s also reached 

automatically in our treatment. 

Definition I.5 

Let the HUbert space ';te:: 'Jep be decomposed into a 

certain direct sum of superselection sectors, K = !!a- kJ.. 

The subspace ~~ in this decomposition will be called cohe

rent supersel~ction sector, if ~~ is the superseleotion 
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sector for an,y ol' SUlH.>rselection rules present~ d and wit!Jin 

'}{a- there are no more supersele ction sectors. 

Proposition I. 6 

Any theory possessing superselection rules (in the sense 

o!' our definition !.4 und theorem !.4) allows 1 he decomposi-

tion into coherent superselection sectors: 

1t= @ J(,;. R::: <£1 R."' 
~~~ ~~" 

( l. 7) 

and the observable algebras R o.. of the coherer t sectors 

are factors of the type I. 

The problem arising immediately with the dEcomposition 

(I.7) is to study the internal structure of coterent sector. 

In this point our scheme represents the generalization of 

the usual treatment, in which only irreducible subspaces of 

R (Rd.= ;i) (~&))were considered as coherent ~actors. (The 

reason lies again in the condition II, ~ , due to which the 

eigen-spaces of our supcrselection operators aJ·e irreducib

le for ~' , but not for H in general case). FiJ·st of all, 

this generalization implies that in the case H.L i= :? ( .~-+.:.,) 

the vectors representing mixed states are possjble in cohe-

rent sectors. 

Proposition I. 7 

Let dto,_ be coherent superselection sector. 'rhen all 

vectors 1f which are of the form ii =<Ill..+ ~3. ~·ith <p1 and 

~~ pure and belonging to different irreduciblE subspaces 

of R, as well as to different irreducible subspaces of H', 

represent mixed states: 
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\1 

Every non-pure vector in ~~ is the linear combination of 

the vectors of the form (1.8) and the set of all such vec

t oro is void ij and only if R.,~ = ~ ( 'w.-. ) . 

Due to thi~ proposition, the superposition principle in 

its usual form 

<p!_ I <£:( ~ gJ --) <p\. + <±_):1 E g; 
is not fulfillEd in ~d • That's why we introduc~ a certain 

generalization of this principle, valid in all coherent sec-

tors. 

Definition I.6 

ihJ shall sr;y that in the subspace ';Kl. c X generalized 

superposition Irlnciple is fulfilled, if for every vectors 

(\> (\' . ·~ 1\ ~) 
1:~,r.l'= 1..'·· 

there can be found vectors '±!1.,4:~ t' del r1 <f 

corres~onding to states and C...:· <p t respectively and 

such that I.e. 

<1\~l E '1<..1 n P 
Proposition I.E 

In every ccherent sector d<~ the generalized su.perposi·· 

tiou principle (1.9) holds. 

'Fur~her, fc r every ooherent sector J€.~. we prove the 

representations: 

where is any orthonormal basis in 

Hence it follows that every coherent sector is completely 

determined by corresponding values of the following algeb-

raio invariants: 

de i.: dim 
'· 

I 
()(d.. = dim (I, II) 
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It is easy to show that 

~.I. = card :X. J. ; <£ ~ = card 1\._ '~ , (I, 1 2) 

where card )\_ ~ ( (cJtol 'X:) is the power of the co aplete ortho

gonal system of projections in R (resp. R' ). Tte case ~ ~ =
= I corresponds to the old definition of cohe~!nt sector 

(Rd. = $ ( k<~..)) and will be called abelian cohe ~ent sector 

/5/. Generally speaking, both parameters ~.... and ~ ~ are 

allowed to take the values of any cardinal num:1er. However, 

it will be established in § 2 that local struc·;ure of the 

theory implies the infinity of tho physical algebras R J.. 

This means that Rd. are factors of the type I 00 or, equi

valently, Jed.~ 'N 0 (the countable set cardinal>. Further, 

it will be shown in § 3 that a special class i~ for-med by 

the coherent sectors ~.1. with ()2~ ~ Ho. The J"ollowing pro

position gives complete characterization of su<h sectors. 

Proposition I.9 

Let ~t"'- be coherent suparaelection sector. The follo-

wing conditions are equivalent: 

1) 

2) R " possesses cyclic vectors, 

3) R:is a oountably decomposuble algebra, 

4) irreducible subspaoes of R'(or, equivalently, the H-ima·

ges of pure vector states from )(J.. ) are separable. 

Of course, the completely analogous proposition holds 

for R <k • These propositions give us, in particular, the 

necessary and sufficient conditions of existenc~ of cyclic 

and separating vectors for sector algebras R J.. and R' ~ 
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Later on we shall need such conditions also for the "full" 

algebras R, R', ~ • It is easy to verify that these condi-

tions are the following ones: 

card G- .s J-f o (I,13) 

card c- ~ )'{ o 

The conditicns of separability of the spaces "J{J.. and 'J-( 

will also be useful: 

';}(, is separable <::'=~ ~ .. ~ f{o 1 -;x._' ~ }/. o 

"l{_ is separable ~ ;,eJ. ~ J-l~, -:K.~.' ~ Nc , c_~.,{ ().:: Slo 

Finally, the whole theory of the :!e.." del' class is completely 

determined by the following set of algebraic invariants: 

1 L- ="'- c.""'Lc\ c- . \:J ~.. · V ~/ l 
1~ } ,L fa- } ,J. (... J . 

According tc proposition I,5, the cases .L. ~ }Co and L..> f.l..o 

correspond to theories with discrete and continuous super

selection rules respectively. The formulas (I.13) show that 

one of the !rincipal distinctions of these theories is that 

in the continuous case algebras R,R', 3, 3' cannot possess 

either cyclic or separating vectors. 

2.TH.EORY OF LOCAL OBSERVABLES FOR SYsrEMS WITH 

SUPERSELECTION RULES 

Now let us proceed to our main problem, which consists 

in investigation of correlation between global and local 

properties cf general systems with superseleotion rules. As 

the first step to this we shall adopt the starting positions 

of the Haag-Araki concrete algebraic formalism. This means 
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to suppose that assooiated with each open bounied region 0 
,._ 

in the Minkowski space M there is a w-algebra H(O) acting on 

a Hilbert space 'Je and the set [ R(O) J 0 f: B( 'II) of all the

se algebras satisfies the following (Haag-ilrakl) postulates. 

I. Isoton,y 

OIC02 -==<> R(OI) c R(02 ) 

If the set B(M) is considered as partially ordered by 

the inclusion rel~tion orco2, then it follows from the pos

tulate I that the sequence {R(O)J 0 EB(M) repr!sents a net. 

Indeed, B(M) is in this case a filtrating part~ally ordered 

set, i.e. for each pair OI' 0 2 E- B(M) there exLsts o3 <= l:l(M) 

(for instance, o3 = OIU o2 ) such that OI' o2 c o3 , and from 

here I ensures that R(OI) U R(02 ) c R(03 ). Acc>rding to the 

usual definition, this means that tR(O) J 0 Ec. "< "'l is a net. 

Sometimes we shall require the fulfillment of the follo-

wing stronger form of I. 

I - cl.. • Continuous isoton,y /11 I : Let t 0 .. ~ I(~ 
1 

be a de crea-

sing sequence of regions O~t.E I:>(H), C1.:> 0:~, =>0~ ~. 

and 0 = int f\ O~.c. . Then R(O) = 

II. Additivity 

On the basis of I and II we can also assoc .ate a wx-al

gebra R(O) with each unbounded region 0 c. M, p ttting by defi

nition 
----'--.1 
v " ( 0) 
oc6 

2) 

(2.I) 



where the unicn is taken over all bounded regions 0 contai

ned in 0 
li- -<. Weak adc i t1 vi ty 

= R_ (M). V 'V ~(C+c-) 
Q£e,(M) GIEH 

III. Causalit' (Locality) : 

IV. Primitive causality: Every time-slice ~[ "'t:o:: rM \ lxoi<£} 

satisfies the condition R( ~~) = R(M). 

V. TranslatiowJ.l covariance: An unitary strongly continuous 

representation U of the translation group M of Minkowski 

sp~•ce is actiHg in ){_ . 
M 3 '-' - L\ (c._) = ) (._, fC\. cl E ( p) 

such that 

v ll(<\ R(C) \.\(-~) = \<.(0") 
IA'H (2.2) 

0 <-~being the Lmage of 0 under the translation C\ t= M. 

Y is usual~v treated as a part of the physically more 

important postulate 

V-~.Relati~stic covariance: There exists a unitary 

representatio:l in ';}( of the Poincare' group with the proper

ties analogous to (2.2). 

However, existence of the Lorentz transformations is not 

used by us anywhere and so we consider the translation 

group separately. 

VI. Spectrum condition: Support of the spectral measure 

E(p) of the Iepresentation U is contained in the forward 

light cone, j.e. 

stpp E(p) <; V... ~ tpf M \ p"~o 1 fl
0 '!0J. 

The succEssion of axioms adopted here somewhat differs 

from the usuLl one, but it seemed to us more natural. The 
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first group of the axioms (I - IV) concerns onlJ with the 
. --- \< 

structure Oc. ==- V R<o) i.e. C -algebra with the net, while 
Ol' e,(") 

the second 
lf 

group (V, VI) concerns with the stru< ture lOt 
1 
ll) ., 

C -algebra with the net and the group of automolphisms. 

Wx-algebras H(O), satisfying I - VI, will be called 

algebrAs of local observables (local algebras). The union 

_s4:: U R(O) is called 
O~Mt,) 

~- algebra of all local observables, 

its uniform closure Oc-= A is called algebra of quasi local 

observables (quasilocal c*-algebra), its weak closure 

R(M) : jf~ is called algebra of global observablas (global 

'N*-algebra). 

Main premises of the Haag-Araki approach incl1de also 

that global algebra R(M) coincides with the observable algeb

ra R of described system. Taken together with th,t § 1 results. 

this gives us the following fundamental 

Property· 0 

For every physical system with~perselection rules, 

global observable algebra R(M) is a w*-algebra o' the ';}{ ~ def' 

class. 

This fact represents the initial formu~tion of the 

interrelation between the local structure descril ed by the 

axioms I - VI and global structure generated by !.uperselec

tion rules. Its immediate consequence is that thE algebra 

R(M) = R represents itself in the form R :: Gl R" 
1 

R d.. 
ol{a-

being discrete factors, and the Hilbert space d<.. is de com

posed into a direct sum ~ ':K~ of coherent supe rselection 
.~ ..... 

sectors ";).{d. with the projections Pd. belongine to the 

centre ~ of R. Ne•t task is to investigate what the pro-
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perty 0 impl Les for the algebras R(O), A Oc.. Let us begin 
1 

with 

Definition 2 L.! 

Inductio 1s of algebras R(O), .>4 1 O't , R by the projections 

P .~. E R
1= cJt'=_,(c R(o)'will be oalled sector algebras and 

denoted X ~ Xp , X being any of these algebras. The algeb

ras X will b! called sometimes "full algebras" as distinct 

from sector ~nes. 

Proposition 2.I. 

The net lR(O) \ o E e.CH) of local sector algebras satis-

fies the axioms I, I- d II, II- d. , III - VI, if the full 

net tR(O)~oE BCM) does. Besides this, 

~d.:: u Ill.,),~. OL,~. = ~.~. I R.A..-= JL"' 
0 ( !!>( ._) 

~· Val1dlty of the axioms I - IV for { R(O),.. j 0 t e,(.., > 

can be established triviallJ, using the properties of the 

induction OJeration /DW-18/. 

To obtain I- J. , we have to make sure that R(O) =fl. R (0._) 

with C ~ int n 0..._ implies R(O)~ ~ (\ R(Ok) • 
"-" '1 I<~ 1 

It is more convenient to deduoe the equivalent property: 

R(O)~' ~ '1\~R(Ok);.J': It follows from R(0 1 )' c R(02)'c 

that i.'i R(Ok)' is a lf - algebra, which is w-dense in 
I< ' 

R(O)' = l9._, R(Ok) '} '' due to the axiom I- d. for R(O). Pro-

jection P:! lying in R(O)' , we have from /DW-18/ that the 

induction [ § R(Ok) J Po~. is w-dense in R(O) ~ 
i.e. 

RCo)~ 

whence desiJ•ed property follows immediately. 

The proof o: · I I- ,J.. is analogous. 

V and VI fo:.low from the Araki-Borchers theorem (see propo

sition 2,19 below) stating that translation operators U( ~) 
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belong to R. Due to this theorem, P~ E U(M) ~nd the indu-

ction U(M) 
11 

~ U(M); .. defines in the sec tor ''{ s-conti-

nuous unitary representation U ~ of translation group, sati

sfying v, VI. Properties of the representations U and U " 

will be considered in more detail at the end of this section 

in connection with the discussion of vacuum sector • 

. Hnally, in the last assertions o:t' propositions 

2.1 those for Oc~ and ~rL are obvious (due to 

(DW-18)~ So we have to prove only that lh "' 
= ;4"' 

At first let us remark that the induction H ~ H"' being 

a ·'Jic - homomorphism, imu.ge Oc._ ot c*-algebra C"c c H is 

also a c!algebra, whence it follows that 

Ot. d. ::> )\: • 

Let us obtain an inverse inclusion. For each A, E r~., there 

is A E 0c such that the restriction A '1 1e ~ of A to 'K',._ 
9G 

f n' is equal to A J. • If 1. B J "" 1 
is a sequence •>f local obser-

vables Bn E' A u-converging to A, then the rest:·ictions 

Bn11<.._'= BnJ.. belong to A,_ and form the sequenc•· \ Bn, ; .~ 
u-converging to A J. in virtue of II A~ - t·',. 1,1-.,. ~ '.II\.- c,·· ll · 

This means that I~,. E. A._ hence the result follow: .• 

As a consequence, there arise in our scheme two kinds 

of local observable theories: the "full" theory in '* c K p 

and the sectorial or 11 coherent 11 theories in ea<:h Hen-

ceforth we shall study both these kinds of theo:·ies in paral-

lels. ·first of all we see that a number of well··known results 

obtained in the Haag-Araki theory holds automat: cally in our 

scheme. These are the results, which can be pro·~d using the 

axioms I - VI only, without any assumptions abot.t the struc

ture of global algebra R. Such rl!'sults are val.J d in our 
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formalism fo:· full algebras as well as for sector ones. 

The most imp•lrtant of them are the following: the theorem 

by Borchers ·m ideals in quasilocal algebra Oc ; the Reeh-

Schlieder th•,ore~I on analytical for the energy vectors; the 

theorem by Blrchers about belonging of translation operators 

to algebra H. 

~uch of ;bese theorems implies in our formalism a num-

ber of impor;ant consequences and so appears to be a kernel 

of a certain complex of properties. Now we shall consider 

these three Jomplexes in consequtive order. 

!_:_reposition ?.2 (Borchers /12/) • 

.Let tbe J.xioms I - Ili, V, VI be satisfied. Then the 

set J c C'\_ i 3 a closed two-sided ideal in G\ if and only 

if J n '3 is a non-trivial ideal in ~ 

'l'his leais immediately to important results. 

Theorem 2.3 

Let quantum theory in x~ d\.p be given and the axioms 

I-III, v, VI be satisfied. Then quasilocal algebra OL as 

well as quasllocal sector algebras Ot~ are simple. 

Proof. Takins into account the propositions 2.1 and 2.2 and 

the theorem [ we see that sector algebras Oc-,( cannot contain 

closed two-sides ideals,because the centre of R is being tri· 

vial. As a consequence,the c"-algebra~""' cannot contain an,y 

two-sided id3als, i.e. l\,~. is simple for any J. E c-. 

Let us assum3 now that there is a two-sided ideal J #(0~ 

in (}c • 'I'hen there exists always some Jo f IJ such that 

JJ.o#- \. 0), where J 1 • is the image of J under the indue-

tion R ~ 
R "'• 

defined by projection P l-o E- ~. It is easy 

to see that J J, 0 should be a two-sided ideal in Oc~ o 
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in contradiction with the simplicity of the lat .er. Thus 0c_ 

is simple. 

Let us note here that global algebra R of the 

class (with non-trivial v ) can never be simp:.e because 

the inductions R - R,.are * -homomorphisms with non

zero kernels. Further, due to the fact that H(01 c. Dt but in 

general case R(O) ¢ Ot. for 0 i B(M), the simp:.icity of Ot. 

(and non-simplicity of R) induces differences between pro-

perties of observable algebras associated with 1he bounded 

and unbounded regions. These differences will pjay the most 

essential part in §§ 3, 4 where we study field-like proper-

ties of our ttJeory. Here we collect another com equences of 

the simplicity of Ol , which are also of importance, but 

are not related to field-like properties. 

Theorem 2.4 (Global nature of superselection rules), 

Let quantum theory of the ){' "Jep class be ~ iven and all 

the axioms I-VI (except possibly IV) be satisfied. Then 

centre J of global algebra R does not contain etther local 

or quasilocal observables: 

Oz..n"J =C(d<-) 

Proof. Let us take an arbitrary operatorS EC\.n~, SfO. 

Due to the theorem 1.3, item 2 and the proposition I.6, s 

~ s~ p. and due to s t 0 there is 
"-Ecr 

Let us introduce restriction Tr d. 0 

d.oE u such that So~..., f o. 

of the induction i . 
... 0 • 

R ~ R ""o to the algebra Ch... 1T.J>
0
iS a lf - :representation 

of 0t_ in ~ ('J<<.). Considering this representation on the 

element T c (I - s-.~.10 5 ) E: 0{_ we obtain 

0 
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i.e. ·r E ker II do However, ~ 
¥-

is simple c-algebra and 

so ker Ti.; 0 0 what implies T = o. Whence it follows that 

s = S .x
0
l ~· s<~- Ec. ) 0 

~ Ocfl ':) =- c ( ~<-). and 

In terms <four theory of superselection rules the result 

of the theoretl 2.4 means that all superselection operators, 

and first of c.ll, the projections P d- on coherent sectors, 

are purely gl<bal observables. For a long time this fact was 

assumed for ph~ sical reasons but had no general axiomatic proof 

Corollary 2. 5 

let quantt.m theory in 'X= 'Jep satisfy the axioms I- J.. -VI 

and t be re gi OIL D be an "diamond n, D "' D 

1) local algel•ras R(D) are factors, 

2) ~ (:D ') c ~ 

• Then 

3) seotor obst•rvable algebras R(D) d- and R(D' <~- are factors. 

~· Statemt·nts of the point (3) follow from (I) and (2) 

respectively. To deduce the latter let us use the result by 

Kraus /II/, a11cording to which the axioms I- r:l and IV imply 

R(D V D') = R Whence it follows with the aid of the axiom 

II that R(D)' n R(D')'= R~ From here the axiom III gives 

immediately :.(.D) c: :3 and '3(Jl')c';'3. The statement (2) is pro

ved, and soil (1) if we take into account that 

and 

Corollary 2.6 

Quantum t 1eory of the ';K = *P class satisfying the axioms 

I-VI,. satisfi !S also the postulate of extended locality /13/ 

i.e. for any ~wo diamonds n
1 

and n2 space-like to each other 
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~·Due to the axiom III and corollary 2.5 

Besides the extended locality for diamond3, the theory 

in 1t ~ )\p satisfies the strict locality ccnd ction /II, 14, 

15/. 

Proposition 2.7 

Let 1{. J(p and the axioms I-VI be satisfie(l. If region 

0 E B(M) is space-like to diamond D, A <e R(<•), B "' R(D) and 

A =/0, B =#0, then AB =#Q. 

Proof consists in direct application of tte following ge-

neral 

Lemma 2.8 

Let n1 be a factor in Hilbert space J;:J ~ nd n2 c. 

c ~(~) be a w*-algebra commuting with R1 : R2 c R1 • Then 

for all pairs (}fA ""Rk' k = 1,2 we have A1 ~ =/0. 

Proof of the lemma. Let us assume thu.t A1 A2 = o. ~ince Jl1 "f 0 

there exists <p E ~ such that A1 <f * 0. Further, R1 being a 

factor, we have o' = ;_BCJ?).This gives us 

"'--'"Ky -1-t~l. ' -,.~~ 
_).)- Al. q: - 1\1 "1'rL I CL~ j'J(_ ~ .t\_ <I 

By the other side, taking into account that A2 !: n2 c R' 
1 

we obtain 

A~~ 
R~ '}{ Rl -::: 0 -== A 'KAt n't 1\i A 1m 

and this is in contradiction with ~ O. 

Proposition 2.9 (Borchers /12/ ) 

Let all the axiorns I-VI (except possibly Ii') be satisfied 

and regions o1 and 0 2 be such that 01 c 0 and 0~ (\ e F xr. 

Then every projection P £ R(01 ) is infinite wi~h respect to 

the algebra R(O). 
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Corollary 2.10 

In the the Jry of the i'Jt :: ~~ class for any region 0 c M 
I 

(bounded or 

algebras R(O) 

nJt) full local algebras R(O) and sector local 

as well as commutants R(O)~ R(OJ are infi
~ 

nite w*-algebr~s. 

The proof Jf this fact in the original works /16-18/ 

was based on t1e assumption that R(O) (or R(O)cl ) possess 

cyclic and sep~rating vectors. According to § 1 results, in 

our theory this assumption can be not valid in general case. 

Corollary 2.11 

All coherent sectors R<}. are infinite-dimensional, i.e. 

in terms of § 1 

Corollary 2.12 

-
Let (; be an arbitrary region (possibly unbounded one) 

with o'"" tp , Then R(O) -F H. 

Proof. O'F ¢ implies the existence of a non-void open re-

gion 01 C 0'. For this region the assumption R(O) = R leads 
to R.(c,) c R,(C') c. R( 6)' = R' c._ R.to.)' 

i.e. R(01 ) is abelian what contradicts to the corollary 

Developmer t of the corollary 2.12 leads to the following 

Proposition 2.13 (Wightman's inequality /16/) 

Let dt ::::;Lp, the axioms I,II- d. , III, V be satisfied 

and 01 c 0 c. M. If the euclidean distance c/ [ ~ Oi , cJ 0] 

between the b11undaries o 01 and ~0 of the regions 01 and 

0 is strictly positive then 

and 
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= R(O)d.. for some o2. t G' Proof. Let us assume that R(01 )d 

It follows from d [ () 01 I () o] > 0 and proposition 2.1 that 

there exists a neighbourhood N of zero in M such that 

V R(O.+€)J..:::U_,(~lR(O~)~U.tc-e)--: R(O) ~:.R(o.), 
~'-tV ... .,. .... ,,.. 

Since any vector Cl f M can be represented as sum of vectors 

from N, so 

Hence Ret;::: V R(01 -ta..)wCR.(O) i.e. Rd.= R(01 ), in contra-
a.to M d- d- <>-

diction with the corollary 2.12. 

Further information about the structure of R :o), OC , R 

in the theory of the 'Jt = dtp class can be extrac·;ed from the 

analysis of the set of all analytic for the energy vectors. 

Definition 2.2 

Let P
0 

be the generator of time translations (the energy 

operator). Vector ·y E dt is called an analytic :'or the 

energy vector if \f '\"' dom (P0 )n and the serjes 
QO n-=O,-i

1
l, .. , 

L II(P"r¥11 ].." has non-zero radius of con,.ergence. The 
n::O n! 
set of all analytic for the energy vectors will le denoted 

as It 
Proposition 2.14 

Let dt = dtp and the axiom V be satisfied. Tl:en 

a) the set "ft. is linear and dense in dt , 
b) there is in every coherent sector Jed. a linear dense 

set It~ of vectors analytic for the energy and there are 

pure vectors in Ot J. so that n d.. (\ ~ -=!=- ¢ 

c) the set It f\d{. is linear and dense in every subspace • 
d{.~ c U such that the projection Pi E. R'. 
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d) 4: E. 11 inplies R
1 

'If'<.. 'YL . If, besides this, '"Y is 
1 ' 

pure, i.e • '\ .t )'{, •l tJ1 then m '1j: L l1 and Jt_itV C::.. n. 
Proof. The o:>erator P0 being self-adjoint, (a) follows from 

the well-kno·.m Nelson's criterion of self-adjointness. Other 

assertions can be deduced in a straightforward way from the 
R 

definition 2.2 and properties of cyclic subspaces ~y and 
p.' 

k V gi von, for example, in /1 j. 

Proposition .~.15 (Reeh-Schlieder /19/, Borchers /3/ ). 

Let the .~ioms II- ~ , v, VI be satisfied. Then for any 

vector 'r- an.~lytic for the energy and for any region oc: M 

(unbounded i1 general case, but spatially incomplete) 

"'' R l .o) _ .,,, R 
0\.-'lf -~y 

If in additiJn 1t- is separating for 3, then it i~ separating 

for all rt(o) and all R(O)' n R. 

Proof. ·rhe fLrst part of the statement is virtually proved 

by Borchers Ln /3/ and he proved also that when "'¥' is sepa-

rating for :) 
' 
v is separating for all H(O) and all 

R(O)' (\ R with 0 € B(M). 'Ehe extension of these results to 

-unbounded regions can be made straightforward. Let 0 be un-
~, ~, 

bounded regi:m with 0 -1- ¢. Then there exist 01 c 0 , 

01 E B(M) ae~d by the axiom III R(01 ) C R(OY as well as 

R(01 ) VR' w C R(O)~This means that all vectors separating 

for R(01 )' (! R are also separating for R(O'). Finally, 

taking any c2co, o2 <: B(M) we see that all vectors separa

ting for R(C2)'nn are also separating for R~o)' n R 
and the pro1osition is proved. 
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Corollary 2 .16 

Every vector If analytic for the energy ~nd lying in 

the coherent sector dt~ is cyclic for R ( 0 ),,~. \ K~ w and 

separating for R(O)~ , 0 c M being any regio 1 with 0' ~ ¢. 

Proposition 2.17 

Let d-t""' dtjl and all the axioms I-VI be sa :isfied, except 

-possibly IV. Then for any spatially incomplet•l region 0 c. M 

there are the following necessary and suffici~tnt conditions 

of the existence of cyclic vectors for sector R(O).~ and 

full R(O) local algebras respectively: 

RtO),). 

3 dty -= dtd..-< ;> ~~ ~ '){" 
'Ycj..f:K,.,_ d. (2.3- ~ ) 

~ > -\1 ~~!: .><'", U-Jii./rj ~f (2. 3- ~ ) 
ri.~(j 

Proof. According to proposition 1.9 the folloving relation 

takes place : 
R 

1 dt 1' -::. '*-~ (2.4). 
'P J. t: ';jt d. ~ 

From here the formulas (2.3- ~~~)will be deduced as fol-

lows. 

a) If '\.y'ci. is cyclic for R(O)d.. then 'Y.;.. is cyclic for H.;t 

and consequently de.~ :::, 't<o . 
b) Let now be ~~ ~ r<~ then there exists in virtue of (2.4) 

a vector "Pd. cyclic for R ~ • In this case the vector 

'Y = e_""P
0 

~ is also cyclic for Rd. and is in addition 
d- ~ 

analytic for the energy. Hence it follows that due to pro-

position 2.15 
1{. Rlol = dtR = dt 

'lfo. ycl- d... 
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,.. 
i.e. \¥~is cy( lie for R(O)~ 

c) 'rhe conditi< n (2.3- .)3 ) follows from (2.3- ~ ) 1f we take 

into account tl.at R-cycl1c vector exists if and only if card() 

and R~ -cyclic vectors exist for all cl ~ v, 

According ·.o (1.10) every coherent sector can be repre

sented in the . 'orm 

"Jt.-:1.-::: {~. ?. 
~a,:).;j... J (2.5) 

R' 
where { <l> ... ,oL) if.., k~ is an orthonormal basis in 

and 'jl C: ,-:-lj n · This leads to the following 
,1. ct::l--

·d(_ 
~d

corollary 

convenient for application. 

Corollary 2.18 

under the >ssumptions of the preceding proposition, any 

vector '¥~ E dt~analytic for the energy is cyclic for 

R(O)J. , if it; possesses non-zero projections on each sub-
R 

space dt from some decomposition of the form (2.5). 
' 1l,.,d. 

The set of all such vectors will be denoted as 'ILJ. Oc' • 
I 

The point (b) in the proof of the proposition 2.17 shows 

that this set is non-void. 

The last cyole of properties we want to describe in this 

section concerns with the structure of the representation 

U of the trans la t1on group M in Jt = ';}{_ p , 

Propos1 t1on 2.1 9 

Let d{_:: d-,p and all the axioms I-VI be satisfied, except 

possibly IV. ~hen 

a) all transl< tion operators U( a... ) belong to H, 

b) spectrum oJ' the representation U as well as spectrum of 

the restricti<n U~ 

unbounded. 

of U to any coherent sector dtol--

)6 
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c) translation operators U( ~ ) cannot represent superselec-

tion operators: 

d) the set of all translationally invariant observables con

tains the centre 3 but does not coincide with it: 

(2.6) 

e) quasilocal algebra Jt does not contain non-trivial trans

lationally invariant observables 

U(M)'not =c!.tX) 
what implies, in particular, that all spectral pr)jections 

of the energy-momentum operator are purely global observables. 

Proof. 

a) is the well-known Borchers' theorem /20/ 1 

b) According to the same work by Borchers /20/, t.1e spectrum 

of translation group representation is unbounded :.f there 

exists a region 0~ B(M) and a neighbourhood N of he zero in 
w 

M suoh that V R l 0.,. a.-) "* R. Hemembering the cor<•llary 2.12 
0..~1\1 

we conclude that this inequality takes place for :·uu as well 

as sectorial theories and for any region 0 ~ l:l(M) <.nd any 

bounded neighbourhood of the zero in M. 

c) If there exists a translation a.. 1' 0 such that U(a..) E- 3 
then all spectral projections of the representaticn U belong 

to 3 , and this gives U(M)''c3, In this case the restric-

t1on U~ to an,y sector de,~ is a trivial representation 

with bounded spectrum, what is impossible according to the 

preceding point. 
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d) First part of this assertion is the well-known Araki 

theorem /21/ <.nd follows in our case from (a). The inequality 

in (2.6) foll11ws from (c) and (a) put together. 

e') Let us pro·.-e firstly the corresponding result for the co-

he rent sector:;: 

V(MJ~ ()etc). =-C(dtc~.)~ (2.7) 

Taking into a.:count that all 'VJ.. € 'd-t~ are separating for 

~.;~..::: ~ ( dt~) and repeating Borchers' arguments in the proof 

of theorem I :.n /3/, it is easy to show that for any A<J (: 

Eot ,,._ 

vectors 

ther1' exists a sequence {a...., ~ uo 
J\'\=1 

a..." E M such that 

of space-like 

U.,..(ct....,) A~ Ud-(-CL..,) ~ x~(A,Jl~ 1 
where z.-~. ( A.l.) is complex number depending on A~ in gene-

ral case. Hen:e, if Bd.. f -'Citd.'~U!M)~ then z.,~.ll3,._) I~ 

:w-limiJ (C..,)f G (-a.)=. B_, what means exactly (2.7). 
"" ·J. "" ... "" 

Now let us ta~e an arbitrary AE I .. ;(M)
1 (\Ct. In virtue of 

(2.7), A= !" zd.- Pel. and for the algebra of the 

class this is equivalent to A E 3, In other words, 

A E: L l M/ () (} _ implies A € 01.- n 3 and this is equal to 

Clck) due to ;heorem 2.4. 

Now let u> consider the set ·1{ of all translationally 

invariant ve c ~ors in 3t : 

y ~ r .o_ Edt 1 v v(<).JU -::. o. J 
l O..E=M 

~ being ~subspace, let us denote the corresponding pro-

jection as r~. It is clear that P,... E U(M)'' C. R. The struc· 

ture of the s lbspace v appears to be governed by the pro-

perty of asymptotical abelianness of OT.... 
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Proposition 2.20 

Let 'dt ~ ~I' and the axioms I-III, V, VI be satisfied. 

Then 

a) Quasilocal algebra ':i is asymptotically abelian with 

respect to the representation U of the transl~tion group, in 

the Stormer's sense /22/: for every quasilocal observable 

A E: Q there exists a sequence { Q"' (A)~~"' 
1 

of trans-

lations GLniA) ~ M depending on A in general case and such 

that 

jj [c(a..,(A))AU(-O...,IAl),l3)1i ::.(). 
(2.8) 

b) All translationally invariant vectors ~ l belonging to 

coherent sector ~J are pure: 

v ~-- ~ 1 v n 'd{ c T . 
~t;J ~ .Y' (2.9) 

c) For ever~ non-zero ..:l.J ~ 1·: the projection 1;~ on the 

subspace dt~ n If consisti~g of all translationally in-
~ "i.w r:. 

variant vectors in the cyclic subspace (f\; n, is one-dimen-

sional 

• R ·n J E -= p ~ = PL~Ly.. ' (2.10) 
- .] J ll. r lY 

where P L D f'. is the projection on subspace spanned by the 

vector .2~' 
Proof. Formula (2.6) can be deduced with the aid of the fact 

that J, and B from CJt can be uniformly appro:ximated with 

arbitrary exactness by elements from local algebras R(OA) 

and R(OB) respectively. Since OA and OB are chosen, tne 

sequence tet.,(A)j:"
1 

should be chosen in such a way that 
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the region 0 + An(A) becomes space-like to OB in the limit 

Further, properties (2.9) und (2.10) follow from 

general theory cf asymptotically abelian c"'-algebras (see, 

for instance, the theorem /5.2/ of Stormer's work). 

Now let us denote as '-)L__ the set of all coherent sec

tors dt~ containing at least one translationally invariant 

vector: 

Projection on tre set 1.; defined in the formula (2.9) will 

be denoted as P, 1t is easy to see that 
i' 

p"L~" 
= p '-'tM)' 

for any Q.P E u; . (2.12) 
uf> 

'rheorem 2.~ ( Ur .iquene ss of the vacuum state in the coherent 

sector). 

The set of <.11 normed translationally invariant vectors 

belonging to a 1;iven sector d-tJ; ~ E 0,_- coincides with the 

ll-image of uniqlle pure vector state 

J>E.Jy 
being any 1ormed vector 

11L1.. 
n., 

) 

from ~J. The 

(2.13) 

formula (2.13) 

is equivalent t > 

(2.14) 

The set V 1- of all pure translationally invariant 
.f>t:O"" j 

vectors is dens~ in the set l/"' so that 

1-t-' = $ ~ (2.15) 
~EIJ'v J 

Proof. The formJla (2.13) will be proved on the basis of 

the points b) and c) in proposition 2.20. According to c), 
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if the subspace "' R :rv q>ll with 411 ~ ·;}{ f> contairs a normed 

invariant ray ~~a , then such a ray is translationally 
R 

unique in 'Jt cp 
,J R 

, and in addition such Jt is irreducible 
~ 

due to b). }urther, owing 
1>fl 

to the formula (2.12), the following 

simple relation takes place: 

=> dt R' 
2}) E- vJ n~ (2.16) 

Now let us assume that there can be found in the sector two 

different translationally invariant 
R.' 

Then irreducible subspaces dt .n 
1. 

states, say, U...:,5~.. and Wn_. 
~~ 1. L 

and dt of R' do not 
. .0. z. 

intersect with each other and, on the contrary, they inter•
'-IPR 

sect non-trivially with every irreducible subspace <11... ~ of 

R (see the corollary to the proposition 13 of /1~. Hence it 
...,. R 

follows together with (2.16) that, for instanc3, <~Ln. con-
1. 

tains two different normed translationally inv~riant rays. 

This contradicts c) in proposition 2.20 and so (2.13) ii pro

ved. The equivalence of (2.13) and (2.14) is OJvious in the 

light of the properties (1.2) and (1.3) of H-inage. 

Finally, the formula (2.15) follows from t1e definition 

of ~ , the mutual orthogonality of coherent sectors and v 
the relationship 

p = (~ p ) p 
V' .. ~(j d- v 

Corollary 2. 22 

The following enhancement of the point b) Ln proposition 
-'ioR 

2.20 takes plaoe: every irreducible subspace ~~ 

in the sector d-el' 1 ~ c G"-v-contains one, and onl.r one normed 

translationally invariant vector (a vacuum vec;or, in the 

usual terminology). 
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Proof follows 1.traightforward from the theorem 2.21 and co

rollary to proJ•osi tion 13 of /I/. 

Hesults of the statements 2.20, 2.21 and 2.22 provide 

us with compleie description of the "vacuum structure" of an 

arbitrary theoiy of the Jt:.='Jtr class and make it possible 

to analyze and compare different possible forms of the postu-

late of the exjstence and uniqueness of vacuu~. 

1) In gene1al case (no restrictions on vacuum structure) 

theory posseSSES arbitrary set ()'V of VaCUUm COherent sec-
' 

tors dty , each of them containing the unique and pure va-

cuum state witt the H-image of the arbitrary dimension.Besi

des this, therE are also mixed vacuum states wJl.) 

.2, := ~ 1>11 1 1>
5 

C':.o ~: • 

lftUv "' 
2) The wea1est possible restriction on vacuum structure 

is the conditicn of the uniqueness of vacuum sector. Accor-

ding to theoren 2.21, this condition is completely equivalent 

to (a priori) rruch stronger one: there exists a unique vacuum 

state (still with the arbitrary B~image). 

3) The strcngest (and also the most wide-spread) form of 

the "vacuum poetulate 11 is the requirement of the existence 

of a unique vacuum vector. This simplest vacuum structure 

can be described by the following elementary 

Corollary 2.23 

Let 'Jt::. dtr· Then the following conditions are equiva

lent: 

1) there exists in dt a tmique vacuum vector, 

2) the vacuum sector is unique and abelian 

3) the vacuum sector is unique and contains a cyclic (for R~, 

of course) vacuum vector. 

~ can be performed easily by any reader. 
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3.FIELD-LIKE .PROPERTIE!:> OF QUAN'I'UM 'l.'HEOJ.H!:> 

IN ::Jt. = :k.p! BOUNDED Rt;GIONS 

Now we have demonstrated that our scheme in 'J(_ =- ·;;( {' 

possesses practically all properties which can le required from 

a well-developed axiomatic theory of local obselvablcs. After 

this we intend to show that due to its specific global structure 

the scheme possesses also a wide complex of othtr properties which 

are characteristic for field theories. However, the real existen

ce of a field appears to be ensured only under ~till another ne

cessary constraints, besides our starting conditon 1t=:ltr, 
It is known for a long time /3-5/ that field properties of 

algebraic theory are connected with the existence of operators 

mapping states and observables from one coherent sector into ano-

ther. A natural way to constructing such operatcrs is to make of 

our coherent sectors representations of some c*-algebra and 

then to establish equivalence properties of these representati

onsx). In other words, as a preliminary we have to reformulate 

our theory in form of Haag-Kastler's abstract algebraic approach. 

Doing this we must take into account that fundamental algebra 

of abstract algebraic theory, for which all "concrete" or "cohe-

rent" physical theories are its representations, is by its physi

cal meaning the algebra of quasilocal but not global observables. 

This circumstance was firstly pointed out by Haag and 

Kastler /23/ on the basis of quantum measurement theory argu-

x) Of course, it is possible in our scheme to st~dy the rela
tions between coherent sectors by means of the theory of 
w*-algebras, without introducing representatiJnS Of C*-algeb
ra. However such a way is less e!!·ective and t1inders the 

comparison with known results. 
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ments. Practicall,y, if we have an abstract c*-algebra <.)[ 

and some ph,yslcal rlpresentation Tt of a ' the image 

r ( ()1) '---~(J() is no- a w*-algebra in general case' so it does 

not include global Jbs£rvables and the latter are added only 
~ ) VII 

by the weak closure operation: Ti( Ct) ~ ')I ( {J(. , Due to this 
' 

performing an abstr>ct reformulation of our theory we should 

consider not the gl. Jbal 1 but the quasi local algebra (:'I a.s a 

fundamental CJf-alge Jra,representations of which are coherent 

sectors. Then the i lli.J.ges of these representations should coin

cide obviously with quasilocal sector algebras OL-oL and H 

will play the part Jf an enveloping vl-algebra of c*-algebra 

(;[. 

Thus we shall cJnsider the sectorial structures as repre-

sentations of quasilocal algebra 

0 
and we can define c~nonical extensions of these representa-

tions to representations of global algebra R: 

r:- (ul • .-,- \ 
as well as local restrictions: ll d. ::::.. '11<1- for bounded 

~ RIC) 
regions 0 E B(M) and Jrc-ICJ = 11 \ for unbounded regions 

,.. Ct< C) 
0. All representations introduced we shall set in a completely 

explicit form by defining tne mappings 

as follows 
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A ~A 
p.,J.._ 

~3.1) 

what implies 

~3. 2) A~ Ap_. 
.... A 

In other words, we realize the representatio~s ~~~ 

as the inductions (because of P .l. G: R') of W3!-alg~bra R. In 

this point our scheme allows a certain arbitrariaess, which 

belongs to its specific distinctions from the uslal Haag

Kastler formalism. In fact, by giving a coherent sector we 

determine only the space ";}{d. of the representation Ti.,L and 

the image Jrd. (ere.)= tr(c)_ of the latter; but after this the ele

ment-wise action of the f - homomorphism 

().3) 
still can be very diverse and not at all coinciding with 

(3.1). Nevertheless, this arbitrariness has no essential in-

fluence on equivalence properties of 11 T1 to) 11 r CJ (we are 
..J.J <).. ) ... 

onl,y interested in). JIB can be seen, for example, from well-

known criterions of quasuequivalence and unitary equivalence 

of representations 

Jf~ ~ ]1
1 

.::: > 3- ~f'r i")o. = 3- ~i' eP ~ 'Ti,. ~ 11 ~ ~ 'J t'TI.J = v ('~~) 
( V (']i) C 01* + being the set of all vector functio-

nals in the representation '11 ) the relations -~ and -~ 

are completely determined by spaces ·J.t.,~. ,d<J and algebras ]1
6 

(Gl~ 

.Jrl'(Ot) and the same is valid, of course, for any restriction 

Til 1Cl L01.0nly weak equivalence,][- JTr, depends on the 
.q Ol"l. 1 ~ J 

element-wise correspondence (3.3), according to the criterion 

ker 1f0. ::: kerTI~. However in this case it is ob\lious that 
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such a choice of the correspondence (3.3) will be physically 

preferable, whicl ensures the fulfillment of weak equivalence 

and we shall shov that this is just the case for the corres

pondence (3.I) •• e can now summarize that the choice of the 

correspondence (: .3) makes no difference for equivalence re-

l<.J.tions and ':::::. and for the relation "' the choice of 

this corresponderce in the form (3.I) is preferable. So it 

is this choice U.at will be accepted by us from now on. 

Now when the reformulation of our scheme in form of the 

family of c*-algt bra representations is completely stated, 

let us give 

Definition 3.I 

Coherent suptrselection sectors 

terized by repre::entations 1TJ.. and 

ra OC will be <:alled: 

JeJ. and ,d{_JS charac-

1lf of quasilocal algeb-

1) physically equivalent, if 1r.~- "'JT? 
2,3) locall,y (as;·mptotically) ph,ysically equivalent, if 

'ft' to)"' jl loJ(reSJl•, Jj
0

to')""" Tlr.,( 0 ~) for all 0 <: B(M), 
cJ. p I 

4) quasiequivaleHt, if lTd.-:::;:, If~ 

5 1 6) locall,y (as;·mptoticall,y) quasiequivalent, 
r.:- (ll') - to') ) 

(resp., II&~~"~ forallO~B(M), 

7) un1taril,y equ:.valent, if Tid- ~ Tff!> 

if 1r (o)"' Tf (o) 
.~. , r 

8,9) locally (as;·mptot1oally) unitarily equivalent, if 

r.--11 to)....,_ r.l I o) "'to') •. JT (o') 
.J. 11 f (rosp. 1ld. ·::. I~ ) for all OE B(M). 

It is clear ;hat any equivalence property of representa-

tions 11~ 1 lt~ 

tions Tt \ 
~ ot.1. 

lance relation 

.mplies the same property of their restric

f Jr any OL. 1 C. Dr. and analogously any equi va
.,-;- (0') 

b 1tween til! implies the same relation 
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between 1f 1ft::.) because alwa.,ys 0 <::. v
1

1 

for some o
1 
~ B(M). ils a 

consequence, the following implications take pLace: I ~ 

3 ::9 2, 4 :::=:;.6 2;> 5, and 7~9=;>8. By the o;her side, the 

usual relations between equivalence properties(-=.. ::::;> ~ =>"") 
give us 7 ·=7 4 =;>I, 8 =;;> 5 ==;;> 2 and 9-=:;> 6 -=;> 3. 

In this section we give complete descriptiJn of equivalen

ce properties of the representations '1f.J.. and /l.;.(oj. 
Proposition 3.1 

Let quantum theory of the dL-=d<-pclass be gLven, satisfy

ing the axioms. Then all coherent sectors are: 

1) physically equivalent 

2) locally quasiequivalent 

3) disjoint 

Proof. 1) Physical (i.e. Weak) equivalence of ;he sectors ~k~ 

and dt j> means that some arbitrary isomorphism Jf Cf d. and 

QL) exists. The existence of the isomorphism follows direct

ly from the simplicity of (;[, • (]( being simple, all the rep

resentations 1f l! 
1 

~t: cJ are faithful and so t 1e isomorphisms 

exist: llcr; (!{_ ~ M'!), lft6" as well as the i1verse isomor

phisms 1T; :1. • It is obvious that the composi t Lon It =ll "~-;~. 
" ,J p ,~ r 

of the mappings li.~ 1 lip exists and represents the desired 

isomorphism of (}(. J.. and GL]>, It is also clear that IS f 
cannot be extended to 

-.v 
closures RJ. ~ Gt.J. and 
A 

isomorphism of corresponiing weak 

R ~ or-w because the extensions 
~ F 

Tflr ; R- R~r are not faithful representations (due to ker 1f.r-3 

-~ p d- for all J..£- 0'1 d:t,r.). 

2) However, local restrictions 1f .J.(o J of representa-

tiona are faithful representations of R(O)'s and generate 
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an isomorphism ·1 <oJ = rr fo) ("to)}- L 
.J.~ ''d 0 ,, p which is at the 

·r,- (OJ ( ) 
same time the is)marphism of algebras '' ~ R ( 0) and 

as well as their weak closures ( TliJ(o) ( R ( o)) = 
being w*-algebras). Further, from the definition 

we hav~: 

Tr:oJ(A):: Tr,1;(TJI'.{o)(A/' (3.4) 
AH.t'J) .,..1' I' ) 

\f 

so that 
11 (0) ( 
IJ. md Jff o} are quasiequivalent. 

3) Now we s 1all establish the disjointness of TJ and 
,J.-

11~ 
ts. 

by proving o~thogonality of corresponding central suppor-

11~ and '~p Jeing subrepresentations of the identical 

representation o~ ~ , their central supports coincide, by 

definition, with those of the projections P~ in 
• -w, r-:t 

W -algebra Ot = R'. Due to Pd. , P~ E .J these central 

supports coincidot with P~ and P ~ and are orthogonal. 

The property of local quasiequivalence, proved in this 

proposition, is :losely connected with a number of other 

structural prope.~ties of local algebras. In order to describe 

these connection.! we shall prove 

Proposition 3.2 

let quantum ;heory of the dt =def class be given and let 

Ill~ be the set >f all analytic for the energy vectors from 

arbitrary se :tor :+td.. Then the following conditions are 

equivalent 

1) all sectors a::e locally quasiequivalent, 

2) 

3) 

inductions R(ll) - R(O)p are isomorphisms, 
cl-

all ·~ t. )1,d.. are separating for R(O), 
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4) there exists "P~ E: ;:}(.,~.. separating for R(O:•, 

5) all -~y~ E: ~are separating for '3(0} .: K(ilJ •l R.( 0}
1 

6) there exists 'lr'al~:odtJ...separating for 3CO). 

Proof. There are the following obvious implica1ions between 

the conditions (I- 6); 2 ~ 1, 3 ==> 4, 5 :=;. 6 1 3 ::::;'>5, 4 ~ 6 

It is easy to verify that it is sufficient now to deduce the 

relations I ~ 2, 2 ~ 3 and 6 -==";>2. 

I ~2. We whall show that the central support of qj":o) as a 

subrepresentation of the identical representatjon of R(O), 

equal to the central support of P~ in algebra R(O)', is 

equal to I. According to general formula, :5 (c )-supp P~ 

and using /DC-5.3.I/ we obtain 

-r. (0) (0) p'3(0)1 --
Jid. ::.::. Yr <: > 

'Jt..~-
Let here d be fixed and J> run over 

taking into account I E R(O) we have 

~ C ~ '3Co/ = dt '3toJ' 
' ]t} dt,._ 

whence it follows 

This means that p~tOJ' "' I and the property 2) Ls fulfilled. 
at.~-

2 ~ 3. By the Reeh-Sohlieder theorem (proposition 2.15) all 

'4' E 'Jt are separating for R(O )_, • From here we shall deduce 
,J. ~ .,.. 

with the aid of the condition 2) that all such yeotors 

are separating for R(O). For all~\>.._ E: 'J{d- and 0 F A E: R(O) 

we have A P.._ ~"'-::A~. If R(O) ~ R(O)Ql. is an iso norphism, 

then A = 0 implies Ap "' o. Thus if "+-'.,~. is sepat>ating for 
d. 

R(O).k i.e. 

49 



A '\ .. T ::: C 
p<>i 0 

·=s> A -= c 
pd. 

then 

=;. A 'If "' c 9 A p .::. D -> A =- 0 
pd. cl ~ 

q.e.d. 

6 => 2. Let us use the standart expression 
r- (~} ~ 

of representa.tjon lit}. :_J(O)=supp PJ.. = 
p -= p P.tc) sc pfl.!OJ':: 1)'3tC)' and 
~ 'Jt ,.,_ ':k ..- r ':k .._ 

for central support 

P
Rto>' 

. we have 
~~ 

~ (c )-supp P~ = I <: 0!:> L t ~ (C)
1 
~d-_J ~ 

Now it is clea1 that if there is a cyclic vector for '3 ( 0)' 

in dtd- (condition 6 ), then 3 (0)-supp P..t =I, whence the 

condition 2) fellows. 

As it follcws from the conditions 3,4 due to proposition 

3.2 everyone fiom the conditions (1 - 6) implies the follo

wing property: R(O) is countably decomposable, Vice versa, 

the cornmuta.nt F(O)' being an infinite w*-algebra, countable 

decomposability of R(O) implies the existence of vector 

separating for it, according to the criterion/(mV-233)/. 

However we cannot guarantee now that the set of R(O)-separa

ting vectors includes all analytic for the energy vectors 

from all 'dtcl. or, at least, one such vector from each 'Jed. • 
J,s a result, the countable decomposability of R(O) is the 

necessary but not sufficient condition of the properties 

(I - 6). 

Returning to proposition 3.1 and definition 3.1, we see 

that our theory possesses the equivalence properties 1, 2, 3, 

5 and can never possess the properties 4,7. Now to exhaust 

the problem of iescribing equivalence properties related to 

50 



.- 1 o) -r. ( o) 
representations II~ and 11 f we have onl;· to consider 

the property B, local unitary equivalence of ooherent sec-

tors. This task is completely fulfilled by th1~ following 

Theorem 3.3. 

Let quantum theory of the de-= k~ class be given and let 

~~ and dtj be coherent sectors. Then: 

I. Let de;_ ~ N~ Then n;o) ~ TT ~o) if and mly if de:;~~" 
and d::d., ~;. , 

II. Let ~~ "> )'(
8

• Then Tl~oJ ~ 11;a) 
~~ = £j and dim dtel = dim JtJ ") 

if ~nd only if 

Proof. Throughout all the proof we shall take into account 

that according to proposition 3.I. 

TI(O)"' r:-(0) 
.,). - ll~ . (3.5) 

The proof consists in the deduction of necess~ry and suffici-

ent conditions under which the isomorphism corresponding to 

(3.5) is spatial. 

I- sufficiency. According to proposition 2.17, ~~ .:: 'K"' 

is the necessary and sufficient condition, under which local 

algebras R(O) ~ of arbitrary sector dtl!' poseess cyclic vec

tors. By the other side, there exists always separating vec

tors for R(O)~ , otV: As a result, condi tiom J::~ ~ >(.._ 
I 

and.')t~S{>(0 imply that algebras H(0).-1.. and R(O)_r; both 

possess cyclic and sep~rating vectors. Due tc the well-known 

criterion /DIV-233/, in this case any isomorplism of the al

gebras R(O)~ and R(O)} is spatial. 

") The last condition also can easily be wr:.tten in terms 

of parameters ~<~- .~ f> and(~~, £F with the aic. of the formula: 

~<J.. ,de~ ?, ((, .==;:> dim'dtd. = max { d:o~., dt:~ 1· Howeve: · such a form 
is less convenient because it depends on the rel~tionship 

between de.,)._ and ~.~ 1 Jt'~ and ~.f. . 
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I- necessity. :.et us prove firstly that the conditions 

1 
_ ,_I::J) -10) ; u 

.:>L.,~. ~ /"< 0 and I,_ .:::. II F' imply de.? f- r;,.. To this and we 

shall show thc.t if H(O)d. has cyclic vectors (what is the 

2 ) . I oJ r.-
1 

to) 
case according .o proposition .17 and Tr-:~. ~ 1 jl 

then R(O ).f has cyclic vectors too. Let V j3..l (0) be isometric 

operator from f(l- on dt_p implementing unitary eq_uivalence 

of algebras H(O I~ and H(O)} 

VJ<l- (c) l..~. = d<~; \F)c) RLC)d \j,.tcf 
1 

= Rl<')p · c3•6) 

Due to /DC-5.1..~/, the operator \/~.._(0) as intertwining ope

rator of subrep:·esentations of algebra R(O), has the follo-

wing property: 

\' lcJP, (R,(C)'. Jd. ... 
From here we ob·;ain the useful relationship: 

L I ) , f\!0} l\lO) 
v v

1
,(C <l :Jt 

<p-it: dt.,j_ r"' '1'~ \~.,~. l c J '1> .._ (3.8) 

In fact, using 1.3.7), property P~ E H(O)' and continuity 

of \f~rl.(v) one ol•tains (3.8): 

v, .... (c·) RlvJ(C-=: Vn,(lo)R(o}l'~:: RIO} v,.,_,.._(oJ'Pd- / 
r t' 'to P.< 0) 

Now we see from (3.8) and (3.6) that m.., ~ = j{'J. implies 

'i"Rlol-,- . rf) -V (' '1"l ~ . I·' cR. "Pp. - .J{~ w .th I) - pJ.. v) r·d- , i.e. the mappingV~J. 0/ 

transforms cycLe vectors of R(O)d. into cyclic vectors of 

R(O) p , The using of proposition 2.17 for sector ~} 

gives then 
.-1•) to) 

\'1e rem<..~.rk f11rther that IJd. -::_IT f implies obviously dim ':kd--"' 

= dim JtJ . According to § 1, S"-l.r-o dim Jt: 6 = ;):6 · :): ~ 

and according t11 corollary 2.II it follows from the axioms 

I-III, V, VI that dt.-j._ ? 1¥., a}>, 1'<'., If in additionc3::~ 1d'J~'y• 
then the eq_uali ;y dim dto... = dim dtjl provides us with the 

last condition 11e need: 'de :::-.}:1'.. 
cJ.. J. 
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II - sufficiency. We shall prove that under the condition 

a:; = ati the algebras R(O),J.. and R(O)j3 sa.ti lfy the follo

wing criterion /DW-321/: 

Let R1 and R2 be von Neumann algebras • Let us suppose 

that there exists in R~ (resp., R; ) an in~inite family 

{E~j~f:J (resp., {F<teJ ) of projection;, which are 

(D) mutually equivalent, orthogonal, with the S!m equal to 
I 

I and such that R1. E· 
< 

(resp., R 2 F· ) a~e 
' 

countably 

decomposable. Then every isomorphism 'lT of algebra 

R1 on R2 is spatial. 

Rd.- being type I factor for all ..1 t: (} , the spaJe ~1t,_ can 

be represented in the form~~:: ~dt~,:here ';it~.~ are the spa

ces on which mutually unitarily equivalent irreiucible rep-

resentations JT~,<:I- of the algebra H are acting. Due to 

P f: R'and proposition 2.14, every 'de_._, contains a linear 
K 1J, ~ r-

dense set of analytical for the energy vectors. For all such 

vectors'\~ , using irreducibility of dtv with 
.~ ~~ 

Reeh-$chlieder theorem and the property P~ E 
~,<:~-

obtain 

R ( 0 ) t • ; - R c c J t.e = R '+ p T k J. - "'- k ,<~- d. k I. 

respect to R, 
I 

R(O) we 

ld. I 

This means'that all~~ • .,. are cyclic vectors fez R(O)p 
I I ~~ "'-

and separating for R(O)p • As a result, R(O)~, is coun-
" I c:J... [ ,..t. 

tabl.y decomposable in virtue of /DW-6/. 

Further, unitary equivalence of '1\K <~- and H,;,,.J.. implies 
·:1, • 

according to /DC-5.I.3/ that corresponding pro;ections PK ~ 
~, 

and P 
1(2)d.. 

are equivalent with respect to algebra R~ 

(mod R') 
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since for all \'/>£-algebras R1 , H2 and projections l', Q E' l~ 

H1 C R
2

, 1' "o:mod ~) -~ p,..__ Q(mod ~). 

So Ne lluve )Ompletel,y shown that for any sectors Jt.~-

and df.1 the f 1mil1es of projections {p~ ... 1. C H(O)~, 
. I ' Ju:u ""' 

and l Pf C\ J. . -: H(O )'R possess all properties r;"'q_uired by 
Jr t. t )( jl .r 

the criterion 'u) with the exce11tion, possibly, of the con-

dition card }('--. card k p • lJu t if we have in addition 
· IS.J 

.)t -~:. cltj then .his condition ~'Satisfied too, since it takes 

place exactly 8e~ card J(.d.. .1C~ = card .J<.jl As a 

result, we ho.ve proved that for any ~~ ),. N, 1 Jt,~ =a:~ 

plus, of course. dim dt.J... = dim ~} give 1\~o) ~ 'lftJ. 
II- necessity. Let dt"'-,dtJ be coherent sectors such that 

1 ' • (0) <?'7-(0) ad.. 1 a-J )' 1'r. "nd 'IT d. ~ II f by means of partially iso-

metric operator V~,'l. lc). We shall deduce that in this case 

~~::~p· 

.Let us use <.gain the system of projections { ~\,.,._} K" .X.~., C 
I 

C H(O)<>I.. and corsider how \,fod-(0) is acting on the subspaces 

}t K ~·Since there exists a non-void set of a~alytlcal 
) 

'Y'I >-~£; 'ic )?.10) 
for the energy vectors OL- 1, .... C a(K ).then 'Jt. =-CR. 

I' ,, K,~ ~ ~<,.,.. 

for an~ 'lt'l<.J.J... c 11K,.,I.., Hence it follows due to (3.8): 

R ) RIO} 
'11. ~ '' (u)'~.P = V (u) j(. to =- ~1t ) . 
Jl.K,_~ -- V p:1. -:rt-1',.4, f•·L ' l.f~:_,...:_ \ij~.,~._(O 't'l<,,,t 

From here w.: see that projection on 'd{. 1::,F, Pl<,~f R(O/. 

Further, the ope rat or v~d-(0) being isometric on ~'"'--' the 

pair-wise orthogmality of all P "'•'"'- implies pair-wise ortho

gonality of all E' 1<., p • This means that V~d-.(0) transforms 

the system of prJjections {P.: .,J.. L C::. R(0)
1
, into the 

I j )( t J<.1 "" 
system of mutual L,y orthogonal, non-zero projections 
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{ P",]\) 11.e-J( c. R(o)~ with the sum equal to I. By the other 
d- r ' 

side, there exists in R(O)J the system of projections 

{ Pe
1
J\ 3etXjl with the properties described 1n the crite-

rion (D), i.e. such that, in particular, all tte algebras 

R(O)'p· are countably decomposable. In suet a situation 
t)~ 

there exists necessarily a definite relation bttween the car-

dinals of the sets ](.~ and -~p 

wing lemma by Dixmier (DW-235): 

, according to the follo-

Let R be von Neumann algebra, { Ei) l t j in::inite family 

of projections from R , with upper bound I and such that 

all~. 
t 

are oountably decomposable ;tFk ~ j( f Jl family of 

non-zero pair-wise orthogonal projections from R. Then 

card K ~ card I. 

Applying this lemma to the systems t p "-, ~ J \( ~ X~ and 

i Pe,~jee]{Jl in the algebra R(O)J we obtain 

card 'J< d. = ~ ~ ~ card Jl J :: ~ ~ ( 3. 9) 

It is not difficult to deduce an inverse inequllity too. Con

jugate operator v~~ (0)¥ realizes an isometricll mapping of 

d-(1' on d(,1• which possesses all the same prop~rties as the ; 

mapping v,J. lo) • Therefore the system { Pe,ss ~E: ( -:kfo c. R(C)p 

is transformed by v,d.. (o)• into a system of non-zero pair-wise 

orthogonal projections { Pe d. l ,, C. Rto)~ where Peel- = , Jet){.~ , 
:::: V (ol' PeR VRJ...(c)*-:1. Application of Dixmier's lemma to 

~J. 'r r 
the systems {PIC ~ ,; and S Pe .,~. 7,t.., of 

,<J. J 1a J<. .~. l , J ~... " Jl 
projections in the algebra R(O)~ gives us tte inverse in-

equality to (3.9). 

The theorem 3.3 is completely proved. 

This theorem means, in particular, that ill the general 
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case of a theory with arbitrary set of coherent sectors, 

local unitary eqllivalence is not guaranteed by the Haag

Araki axioms, in contrast to equivalence properties 1, 2, 3, 

5. J.:ny two locaL.y unitarily equivalent sectors obey, besi

des the axioms, :.orne definite constraints, which express 

themselves in te:·ms of sector invariants and so are the con-

ditions on H and not on R(O). In other words, the constraints 

put by local unitary equivalence are of the global but not 

local nature. GeJ,erall,y speaking, these constraints require 

the definite relLtionship bP.tween dimensions of H-ima.ges of 

pure vector states belonging to locally unitarily equivalent 

sectors. It is ii.teresting to note that abelian coherent sec

tor ( de' = I) aJ•pears to be local.L3 unitarily equivalent 

not only to all ~actors with finite-dimensional H-images of 

pure states ( ~,: ~ ~'., ) but also to all sectors with sepa

rable H-images ( de.~ : Xo ). let us remind also, that in 

particular case cf superselection theory connected with a 

compact gauge grcup /5/ (in such a theory only the values 

~~" l'v..._ < <:><) are possible) the parameters ~~ possess a 

physical interpretation as multiplicity of a particle multi-

plet covariant urder corresponding irreducible representa-

tion of the grou1. Since in usual field theories the action 

of the field doe~ not change this multiplicity, that parti

cular example shews already that the existence of a field 

requires further restriction5. 

Further, acccrding to the theorem, all the set of cohe-

rent superselection sectors can be divided into two classes. 

' I The first of the~e classes includes all sectors with de~ l::-/(
0

, 

the second one t~e sectors with ~: > J(o 
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and the sectors belonging to different classes c<.n never be 

connected by local unitary equivalence. The firs1 class sec-

tors possess more usual properties and are charat:terized in 

detail in proposition I.10. Since the property o:· local uni-

tary equivalence can with assurance be expected :·rom any rea-

listie theory, all coherent sectors in such theo:·ies belong 

to the same class. If in addition the theory con·.ains a vacu

um sector ;}{ .n. , then the class of the theory i:: defined 

by the para.me ter d€:0. , the dimension of the H-: .mage of the 

vacuum state, or, if we want to put it into "mort· physical" 

terms, by the "degree of vacuum degeneration". In this con-

nection some interesting problems arise, such as are the 

theories possible to exist, where the vacuum sta .e (and so 

all other coherent sectors) belong to the 11exot:.c" class 

Je.'> N0 ? J\nd what specific properties do such th,:ories pos-

sess? 

4. FIELD-LII:ili PROPERI'IES OF QUANTUM THEO.H.IE i IN 

de ::: 'Jtp: UNBOUNDED !iliGIONS 

In this section we shall study (the most imp>rtant for 

the F-problem) equivalence properties of the representations 

'J\d.. restricted to ~-algebras of unbounded regi ms. we re

late to such regions the following two kinds of ;K-algebras: 

The corresponding restrictions 

are 
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At first we co 1sider the algebras -·c:t'=·(o} and the representa

tions Ji_: • T 1eir structure is closely connected with the 

weak duality c<mdition /4, 5/. 

Definition 4.I 

lie shall say that in theory of the Jt= 1tp class the 

condition of 11eak duality (resp., sectorial weak duality) 

is fulfilled, :.f 
---.-. -w 
-()L · ( o) = R ~ t o J = R< o >' n R (4.I) 

or respectivel;· 

-otf!_( otw -:::. Re.( O)c.L ~ R(O)~ n Rd.. (4.I= d.) 

Theorem 4.I 

The theory of the dt= 'Jtp class satisfies the weak duali

ty condition 1:: and only if the sectorial weak duality is 

fulfilled in e·'ery coherent sector and all the 'representa-
,.,_ <! 

tions 'JI ~ art' pair-wise disjoint. I.e. 

i;tt.( 0) "'= R t.( o)<; > '-m_r(O) w-= R(lO) O..l'lcl ·'tf T/ 6 Jlr~ 
d.. d- ~1= ~ T 

Proof. Necessi1~· If (4.I) holds, then it is clear that 

--OC" l o) "' -::: R c l o) p = ( R l o )' f\ R) p . 
c. • ""- d.. 

For every AJ.. :, Rc(O)p there exists BE Re(o) such that 

A.._==- P..._P:>\~,_. Hence"" ~~Rc.LC) implies Ad.=P.J.B\'RE-
E: R- (C)~ and B <= R implies A<J...::: Pd. I) \'lt- E: Rd.. .~. 
what gives A.;. f RlOJ~ n Rd..) ~.e. d.. 

Rr..tC)p c RlO)~ (\ Ro~.... (4.2) 
.,._ / I 

Now let us takt A<J.. E: RtO)d.. (\ R.~... It follows from Pd. E 1\(o) flR 

that B ~ P..~.A.lP~ER(O)'f'tR and Ac:~..=Pd.B('3{E(Rlo)'()R) 1 ~.e. 
c, i .1. i>d. 

~ (O)p ::> R (0)..1. (\Rd.. 
,j, 

58 



Together with (4.2) this gives the sectorial we.<k duality 

(4.I- d.. ). 
r.-e_ 

To prove the disjointness of 'Jid.. let us no~e that the 

central support P.-3-c:..;:; 3\o)-suppJ\~~:- ( 3c.(o) ~ R.' (o) (\ Q,(( l:l)) 
L l . I 

of the representation Jr.~ can be represented 1s p .c-t. I") 
R('..(OJ' K;.. 

and the projection P~ as P~ = ~ The condition (4.I) 

claarl.,y implies 

p e- = p-t-'1...:.. ( o)' 

d.. 'lt~ 
and orthogonality of P~ and 

,,..,.,..JI e.. 
disjointness of * 

' 'lt;.. 

pi<.ctc/ 
;}{~ 

P~ with d--=t- p gives the desired 

Sufficiency. If all Jl~e.. are pair-wise disjoint, their cent

ral supports enjoy the property pd. I':- ep c = 'Sd .. ~ 
for every 1 t CJ 

f); . Next, 

p _e.- ::: p iJt.Clo)' /./ 

d.. kef.. 

,) K._((-J)' = 
I P.._ 

:}{.-)._ 

whence P '?c:.. I'.J,. =b.,),_~ P.,_ Hence it foll<ws 

pe.. ~ P(. z: r-==- z:. Pl'>e. P.~. = L. 'Z"..)."' PoL=- P~ 
~ P .J.. ~o<J ~ deG' r J..<=<J r 

If in addition (4.I-J.)holds, then fer every hE: Rc.lO)> 

lA -::: p AI t: --otc(o' ""- Re. ) 
..t d. l':k :.t p - t l 0 P , Hence l'ith the 

~ ~ ~ 

account for P ,J.c. f --trL e.. l C) w we obtain A = L_ P~ A P -l-= 

~ pf. . ~- w 
=L Poi. A . E 4 lO) i.e. RclO) C 

d..eO" d. "'-

Taken together with the trivial inclusion 

this gives us (4.I). 

.--J..tCJ 

-o-v=- l o J w . 

.(]tc(Oj C.. Re.(O) 

The problem of finding the necessary and s1fficient 

criterion of weak duality is of great interest. This problem 

is not solved until now, but we can point out l very general 

sufficient condition of global nature. 
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Theorem 4.2 

liJJJ' coheren. sector ':}(::1- such that::)(.;~ J{v satisfies 

the sectorial wnak duality. If ~; ~ Yu for all coherent 

sectors, and in addition the set r:l of all sectors is coun

to..ble (i.e., th•~re are only discrete superselection rules) 

then the theory S;..ttlsfies weak duality. I.e. 

> ( 4.3- ::1 ) 

--z-w c.. 
cardiJ ~ ~~ =::!;> fJ7.., (D) = R (0)(4.3) 

Proof •. ;e shall prove only (4.3-d...), the proof of (4.3) 

being complete~· analogous. 
A 

Let the reg.on 0 E B(M) be given and 0 E B(M) belong to 

o'. 1.ccording t > corollary 2.18, in the case .):~ ::=: }i" 

there is a non- roid set 11 , C 1{ consisting of analy-
<>., u.:> -d.. 

1\ A 

tical for the e wrgy vectors cyclic for R(O) • Since R(O) C 
·c:J. d. 

C ·tt"( C) C ~~ ~( 0) such vectors are also cyclic for 
P..._ P,,_ 

~~(C)f'and Ql(u)p, Hence it folloNs that for every 
f-1- (,I. . 

y E Jt p:: p -ct'tc) _ p R.l,l c) By the other side, propo-
o. ).,oo> J- ~... - '\f,... 

sitlon 2.17 implies that 'If. is separating for R e..( C)p , 
~ ~ 

In this situati>n the desired result directly follows from 

Lemma 4.3 

"" Let W;K-alge Jra R be a,cting in ..J? and containing a 11-

subalgebra fr vith the identity operator. Let further fr 
satisfy the following condition: there exists a vector (}fe.)? 

PK pft -w 
separating for R and such that 'i :: V Then R:: ft , 
Proof. For everr A €: R there exists a sequence (An\:'=~ 

of elements A" - Jt such that A \f = s-lim A~ 'Y , Hence 
"'~"" 

it follows for 3very T E R' that AT\f "' s-lim A ..,T 'tr 
h~oo 
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'4J being cyclic for R', this equality implies that our se

quence t A., ~: 1 converges strongly to A on the set R''4' 

dense in Sl . Further, for every<¥ E. n and ~ ) (J there 

can be found V € R' V such that I( A..., ( C1' · V )I\ < l. for all 

n. Hence it follows that 

1':.5' S~p ljA., 'fl\ ~ !>~p II A.,(<f>-'li)ll+ ~f' liA,'/[1 < c,o. 

vo 

This means that the sequence t Anjh~ 1 satisfies t1e condi-

tion of the s-convergence criterion (/24/, ch. II, § I) and 
s 

so ~~A. Thus every element of R belongs to the strong clo-
-s -s -w 

sure ft of the algebra J, i.e. R c. Jl -::: .Jl • 
This proves lemma 4.3 and at the same time the theorem 

Corollag 4.4. 

I.et quantum theory in Jt= 'kp be given sat:l.sfylng the 

axioms I-VI as well as the conditions 

\) I L \; 
\l i~d ' 1" 0 

dtcr' 

Then all the representations 

' card t:-,-~ <.:-: t<' , 
·- c 
j\<t · are pair-wise dLsjoint. 

Proof reprenonts the obvious combination of the thJorems 

4 .• I and 4.2. 

ilB a result we find that under fairl,y general }Onditions 

the representations j~c 1.._ do not generate an,y lnte ~twining 

operators of coherent sectors. This means that stuly of them 

is hardly interesting from the viewpoint of obtainlng field

-like properties of the theory. 

Finally, let us proceed to the analysis of the represen
lo') 

tat ions 'll ~ , In this point we shall consider as a rule the 

regions-diamonds, 0 "' D "' D". According to coroll.1ry 2.5, 
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.. ) i p ') ' J) the algebras ~~ ( 1:: <J.. = JI.J. ( "(.l ( l.J' are factors and by the 

l;roperty of the primary representations, only two situations 

are possible: 

- ( l ') 
)I ·~ - (1:') 

7- ·~ Jt I~ or 

'l'he case when the asymptotical quasiequivalence takes place 

for one part <r1 C j of coherent sectors, and the asymptoti

cal disjointness for the another part <!';L , reduces also to 

{4.4), becausE the theory splits into two independent theo

ries with the sets of sectors J 1- and :5 ;_ • We shall develop 

successively 1he description of the situations (4.4-a) and 

(4.4-b) and stall compare tneir properties. At first we con

sider the cast (b). 

Proposition 4.1_ 

Let quantt~m theory in 'Jt = ':ltp be given and the axioms 

I-VI be satis:'ied. Then the following conditions are equiva-

len: 

1) 1,11 cohere 1t sectors 'dt,}... are asymptotically disjoint 

-- I o' J J ( L>') 
\d. 0 1T p 

J,~ f<) 

for every diamond D 

2) All super>election operators are "asymptotical observab-

les" 
\r v p<il f Rl~') 

.. f:-(f De.. M 

3) \T R ( D') ::: (fl R (D')<>~-
'bt.fl<l 

~t:.rr 

4) R _ n R(o') = e ccatc~..) 
11.; OeB/M} ~tu 

Proof. 2 -~I is obvious, since for all OCM, Pd. € R(O)' 
(D) ;"'\ 

and then 2) gives that '3 (D' )-supp TI cl.. = 'J..' 3 ~ 2 is 
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obvious since due to 3), :J(D') =lfi~C<k.~)-)1~.;: ---'->3 follows 
<}.~6 

from the property of inductions of any \i~-algel>:ra R : if 

projection P belongs to the centre of H. then H = HP d· K, 
1
, 

4==y21s obvious right away. lcs a result, we h<.ve to estab-

lish only I:.:::;> 4. We 
p '3iD'~ p Ri D')

1 

d{d- 'dt .,J.. 

I) the projection 

start with the formula 
IP' :1 (D')-supprs. ~ 

If ,,2. to is fixed then due to 
R (P'J' 

11R.C D'J~ pis orthogonal to i.ll I) 
I'd{~/~ Jtl! J 

'+d._ (and the latter are in their turn orthog< nal to ec:.ch 

-- - p FU o·J I I r other) and so to their sum L-- /: - ,- ;,s u con-
j>:td. ';}(~ / ,j._ • 

sequence, I) implies that i) iU o·J' -:::: n or, eq_t i valently r· 'dt ,-~ 

Pd. t R(D;) (the property 2)).~Thus we huve decuced 

P~ (: n R ( D') = R ~:> and now we shall demonst ra.te that 
Dc.M 

R IOJ ") . R (D) 
11:1 ::: R~ • J.Z i11 '- ~ by definition. Inverse inclusion 

will be deduced from the fact that every bounded region 

OEB(M) belongs to some diamond D(O) and conversely, in eve

ry diamond D there exists some bounded region (for instance, 

0 = D). Hence the desired result follows rei.!.dily 

Rtc)CR(P(o)); Rtc)' _)R,(P(o))' 

R ( D1o>)' = (! 
Oio)<:.M 

and the proof is finished. 

It is easy to verify thCJ.t the "algebra of asymptotical 

observables" Rds' introduced in the propo:sition, belongs 

always to the centre 3 of global algebra. Ind~ed, by de

fin1t1.on Ras C:: H. "' R(M); by the other side, due to localHy 

Ras = () R(O') C()R(O)' = R'so that Ra
5
c':). This meCJ.ns 

Ctt.&.tM) uEBtM) 
tLat. Ras belongs to the type of 11asymptotioal c:mtral sub-

algebras" studied by Haag, .IW.d1son and Kilstler 125/ •. ·.ccor-
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d lng to general res Jlts of these authors, properties of rep

rec;ent.ctions of l ~-algebra with a net of local subalgebras, 

generalized with respect to l~s in the sense of § I in /25/, 

ch 1racteriz•~ the as,ymptotlcal properties of the theory. Our 

concrete choice cf Ha;; somewhat differs from that of Haag

K:cdlso•c-!Ccstlur tut it coincides with the choice proposed 

hjpothutlcally by them (cf. /25/ 1 /26/, p. 29) for relati-

vi:>iic; •tuantuill tteor:1 not satisfying duality. 'rhe results of 

propositions 4.5 and 4.6 confirm that such a choice is a 

re.~sond.ble one. : n.v. v:r 1 these results do not give yet de-

tailed picLue oi ll.-J.. properties with respect to Eas and 

so the problem st i.l.l remains (although rather simple one) to 

[ilve :J. complete description of these properties in the 

spirit n.f /Z'J;. 

L~l': physically more interesting si tua-

tion ;· 1.4- r, -'• ~L.fficientl,y Complete characterization Of 

lts Jl''pertie:.> give:" t';c' .Collowing proposition. 

Propos".Uon 4.6 

'l'tlto !'ollowin[ oon:iitions are equivalent: 

1) .. 11 C'herent cectors '~re usymptotically quasiequiV'cJ.lent 

.i 1j>? •T i)C. 1", 

.- I[>') ( 0
1

) 

li . -~ II 
c> ~ 

2) w~-algebrari oi the regLons D' are factors 

3in)::Cidt) 
3) The ,tlgebra cf asymptotical observables is trivial 

Ro.~:::C(';K) 
besides this, oorditions (I = 3) are equivalent to conditions 

obtained froi!l theria (2- 6) of proposition 3.2 by changing 

in them region 0 bJ' !J'. 
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4) induction R(D') ~ R(D')~ is an isomoJ·phism, 

5) all 1( c l1o.are separating for H.(D'), 

6) there exists 't f:: J(d- separating for R( n') 1 

7) all lt" )1.J... are separating for ') (D') 

8) there exists lf f dtd- separcJ.ting for 3 (D' ). 

Proof. Firstly we shall demonstrate the equi vale1.ce of con

ditions I = 3 by proving the implications I ~ 2 3 =? I and 

2 ~ 3. To obtain I =;>2 we note 

I), Pd.- t\: 3(D') for all d t: cr 

that under the condition 
(0') l- (P') 

since otherwis( 7T~ c Jl f 
(proposition 4.5). By the ot.iwr side' 3 ( n') c 3 ' corollary 

2.5) and both facts taken together meu.n the absellce of non

trivial 1,rojections in 'J(I;') i.e., 'J(D'); C(~t~3 -~I 

follows from proposition 4.5 too, since this pro1osition 
~ . or!D') I. r:- (t>') 

implies th<ct I{..,_,::. C (~)excludes "d.. c ]I 11 ;J.nd con-

sequently ensures the fulfillment of I). 2 ---:> 3 follows 

from the inclusions R(\_1 C R. 1 
C !<,(()')' and f<llj ·=-- Rlr') 

for c.ll D c. M1 which give in tote1l: R.r<, C -:srct•). 

l'lirther, the proof of the equivalence of the condition::; 

I) to (4 - 8) goes exactly cJ.S in proposition 3.2, The only 

difference is that we now use not the usual vcrslon of the 

Hech-~chlieder theorem, but its extension to unbJunded re-

Gions, obtained in the proposition 2.15. 

In addition to the proposition just proved w1 nnw shall 

obtain the conditions 11nder which as,ymytotic<..~.l qlaSitJquv:>·-

lence implies asymptotical unitary equivalence. 
~ I o · l ,..._ 1 o•) , o' l 

to prove that 11 ::::. 11 follows from IT 
-~ ~ d. 

[t i::; e.>:;;: 

~- I o') 
~ )I ,, 

exactly under the same (necessary and suffioit)nt) condl t t •''"' . 
....-rol r.-loJ ,,, 

under which rid. ~ II~ follows fr<Hn T/cl ~ 

65 



I .I 

and which were f•1rmulated in detail in the theorem 3.3. To 

make sure of thi.; it is sufficient to note that due to H' C 

H(O')'for all Oc I, the algebras R(O')~ contain, exactly as 
, 

it was the case .'or H(O)~ , the families of projections 

f Pk .~ 'l. ... and these families anjoy with respect to the l ) .I "- t .'k'.l. 
o.lgebras H(O?{ all the same properties that with respect 

to H(O)~ In ot:ter words, we obtain the property 

" :.::: .It? --~ i .,., ~! o'J 
·II w J .- { '·J ~ 

_ 1o) _ II ·c) ..__- ,lf,~ :::.11/~ (4.5) 

nol- - 'r 
Comparing th•1 propositions 4. 5 and 4. 6 with each other 

we cc.n easil.y eltcidate physical distinctions of both situa-
-tP'J r.-{D'} 

tions. Nume ly, W•1 see that in the case lid. ~ II~ all 

the principal pr1perties of the algebras H(D') repeat the 

r.ID') I ·rr (O') 
corresponding pr 1perties of H(D). Conversely, if 110. 0 11 f 
then the pro pert ~es of H(D') are rather close to those of 

the global algeb ~a H::H(lvl). Further, the analysis of the 

pro~osition 4.5 •nd 4.6 as well as their consequences strong-

1,:; assures us th •t both situations (4.4- .}._ ) and (4.4- j3 ) 

are compatible wcth all axioms I-VI, although we have no 

rigorous proof of this for the time being. If this supposi-

tion is really true then both cases give us the correct 

axiomatic theory of local observables, but only in one case, 
,.,.._ lD') ~ {D') 

when h z 11 there exist intertwining operators bet-
-;. I 

ween coherent seJtors, which enjoy local properties, and so 

the construction of a field can be possible. In other words, 

tile main difference between field tlleory and general theory 

of local observables is that the latter enjoys in gener<J.l 

case the ~reater arbitrariness in its asymptotical behaviour. 
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Then the subclass of field theories should be sl1gled out 

from the set of all local observable theories by means of 

some "asymptotical condition", which forbids asy~ptotlcul 

disjointness of coherent sectors and ensures thcLr a.sympto-

tical unitary equiva.lence. In contrast to the lJcal unita.ry 

equivalence conditions found in § 3, such <J.symlJt Jtical condi-

tions appear to include not only global constra.i:tts ... e prove 

below one form of asymptotical condition, which ;bows clear-

ly that, indeed, these conditions represent rest.~iction:.; on 

asymptotical behaviour of states. 

Our condition will be formulated in terms of the so cal-

led strictly localized states. ~e shall use the :allowing 

convenient de1'J.n1tion of them /5/: 

Definition 4.2 

We shall say that the state c..; on observablt· algebra 1.[ 

is strictly localized in region OC l>l, if the vc..lttes of ~ 

on all observables belonging to 0' coincide wl th •:orrec!'on-

ding values of the vacuum functional ~[L • 

For the theory in :tt = '.Jtp , pos:.;ecsin;:; tile :.nic;ue vacuum 

sector, the set of vectors representing vector scates strict

ly localized in o, will be denoted us ')f. l '--) 

\eto>-==\1lt:k\l..... 1 =~ \ L 
'P R!v'J ->L jZ(o') j (4.6) 

:rhe vectors 7 E ,(t(o) will be ca.lled st.rictly .. oc<J.lized 

vectors. 

'L'he asymptotical character of the strict loc<.lizability 

is clearly displayed by the follo·.ving property •. :f we intro-

duce the notations s.t= v '),t(c) und A.":l::. Uta.)A Lil-a.) 
V'-M 4,.:... 

for all "' t: H, Cl f M, then 
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N-\f A"CJt 
(A!. ..:: c 

(1'bi:.> relatior. holds automatically for all A~-~ and extends 

toll by moan~ of obvious estimates). 

The very L seful tool of studying strictly localized sta

tes we find ir our notion of the ll-imuge (see § 1 ). In fact, 

the formula c~.6) means exactly that every strictly locali-

zed vector mu::t belonG to the 11-image ')iL ·l_ ( ( I) 
2 of 

the vacuum st<cte C ~-L with respect to algebra H(O'): 

s J ( () H1' (C'). 
\2.._ (4.7) 

Such re-writirg of (4.6) immediately tells us, what is the 

subspace spanred by all vectors strictly localized in 0 c M. 

Namely, according to the formula (1.2) 

( 7 K(;: ')I 
Jt 5JY) = Ll SJ. (C.)j = ]t __,_£_ (4.8) 

'fhe set of all strictly localized in 0 vectors from coherent 

sector j{d.. will be denoted as ~ ci.l C).._ and the subspace 

spanned by this set as 1t S.i:c.:),~ 

\-t(c) ::: SJ:_I~J.I1t,::: 1rz.j_ ((/J.lk 
~ ~ ~ ~ 

1t ~,(.(C),~ = L.·\ f)1 ~ l 6') ,\ Jr~ -~ , 
(4.9) 

It is important that in general case only the inclusion 

j{_. Lf.tc) . ...._ ....::. ·jt S.i:.1o) .11{..._ 
takes place, but not the equality. The formulas (4.7- 9) 

will be our main tool in proving the following basic result. 

Theorem 4.7 

Quantum theory of the jt:: ::Rp class possesses the asympto 

tical unitary ~quivalence if and only if in every coherent 

sector dtd- ani for every 0 t:. B(M) there exists a total set 
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of strictlJ localized vectors and in addition tie (global) 

conditions of the local unitary equivalence are fulfilled: 

( -J-) 'v 
.) (: .) 

( [>) 'tj 

J( )J'i')~ 
(o') -WJ 
~ e::.nr 

,.J,~f 0 C! B!M) 

Proof.Necessity.First of all we note that for a:.l 0 C: B(lil) 

;> ,-1 - . 
;:~t Si.tv) - Jt 14,10) 

(the converse being not true in general case). :ndeed, by 

definition Jesglo),.j.. C. 1e H.lv) 

-.:.. dturo) whence (4.10). Next, it 
i. 

and hence tt.: 'jfSf:l 0 !_ c 
..J.t-6 

follows from ·.he definition 

1 .2 that every H-image '1ft 1' of a vector state "n any w*-

algebra enjoys the property 
It' R' 

't l: )Yl :t ====> 'j(. :- 'Jt 
~ 't 'P 

Using this for the H-image 1111. (C') and takin,; into account 
..n. 

formulas (4.8), (4.9) and 

j K.to'J' 
t 't. 

(4.10) we obtain 

_ ~RIO')':: _ 
- ~)\.., 2 ')e.. 

This means that all vectors from the (non-void ·ly supposi-

tion) set :";~(C).,. C.. 'Jtco~- are sep""rating for {(0' ). Owing 
,-...tO') _ (o1 l 

to the point 6) in proposition 4.6 this implies II "::: 11 / 
~ p • 

This result together with the formula (4.5) and the conai-
,-l~'J 1 c') 

tion (13) gives II ':::: Tl 
I co~- f~ ' 

Sufficiency. \'le shall verify firstly that total set of stric-

tly localized vectors exists always in the vaCUilm coherent 

sector. This follows from another simple proper;y of H~ima-

ges on any Wx-algebra~ : i!'Jl"..: is the set o: all unitary 
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operators from~' , then 

\- ')\l L J ~,._·<? 
?<- rK 1l 

(4.II) 

On account of locality this means in our case that 

~) J_t~'k:c )\l ~· D');J ~t..n-/[ R (()'J'v i2J ,") d{Sl.. "J R(u)v _Q_ 

and correspondinelY 

Taking into accoLnt that ~ is analytic for the energy and 
L 

is in our context an arbitrary vector from the H-imuge ')f'l £l.. 

E: R* T of the vacuum stc te L..... n. j_ we obtain 

-\f 'jt J "Jt.z 
. , S£,/C)SL .Q.~ (4.12) 

~""" nt::}_ 
rurther, the vactum state being pure (proposition 2.20) we 

can apply to it t be formula (30) from /I/: 

v -.;' 
l.·\ u dtR ) Jt 1' = ~E'V i-f )t('- If 

q> 
•raking this together with (4.12), we have the desired result: 

"5: 

~ S,J (u).n_ = dt Sl. :::. dt . .Q.. 

, ( o') 
From here and usjng 'lf~o) ::::: li\~ 1t is not difficult 

to deduce the cor dition i d-) of the theorem. Let us use 

Kadison's criterjon /27/ of the unitary equivalence~ 

Tld.ro·)~ Tl~o'J ~'> V { Fo.io')) = V 11f:o•J) 
Let us take here 11~ ::: TIJl. and an arbitrary ,..)_ ~ u 1 and 

let V~Q (0') be partially isometric operator realising the 
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(o') .---- to') 
unitary equivalence of 1c_ and 11

11
_ • Using the l:.:;ometry 

of V, -. (0') on }( we obtain: 
,-j. _, '- --il. 

By the other side, the property of V.;.. !.1. (0') u.s an intertwi

ning operator: \ ( c ') p C: P._{ c') I\.) <J.nd tile f'Ol'nJUla 
.,j ~l.. ->."l_ 

(4. II) give us 

The putting of this into (4.13) leads to ( ,~ ): 

To end the proof it is sufficient to note that dLe to the 

) 
.-- ro•J ~to') 

formula (4.5), (for all Of B(M) II..._ ~ ·11 f3 in plies 

-11 (o) "-' ·n I a) 

d- - 'r 
Corollary 4.8 

Let df.,J... be coherent superselection ::;ector ~uch tllu.t 
-co) .~{OJ ( 
lid. ~ l!..o_ , Then d ·J... contains 2.. total set of strictly 

localized vectors if and only if -rt-.;.. contains a1 le<:~.st one 

such vector: 

1-t = 'J{ < > (,_f_(c) =t ¢ 
.SJ:.co).... d-. ,,1_ 

Proof. The necessity is obvious, while the s uffi e:iency fo 1-

lows from the proof of the theorem. In fact' we ],ave seen 

that due to proposition 4.6 the existence in l{~ of only 

one strictly localized vector is 

sr tO') r.- (0') 
d-. ".:::.- II r . This means 

and S _f:. ( c ).,J... :t ¢ imply II 1 o') 
d-
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,-;r (v} _ ( o) 

that ''... ~ 11 p 
:::::- 71 c c') , an( l this, ac-
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cording to tte theorem, implies the existence in J(:..J... of a 

total set of strictly localized vectors. 

Note. It can easily be shown that the vacuum ~ as well as 

an,y vector aralytical for the energy cannot represent pure 

state on an,y local subalgebra R(O) or R(O'). On account of 

this and the property (1.3) of the H-image 

~ _f( v) = *.~ (u') * dt ~')' n <; ~ 
This opens tls possibility of a situation, in which 

dt - ): 1,( O'JI dt I ,..,.--·. - ::. . bu.t for some ~ ~ v , the coherent 
' <;.(( 0) ' .:>2.. ' 

sectors ?ted- co not contain an,y strictly localized vector, 

i.e. ~ .f: ( o) = y6 • By this reason the following implications ,;.. 

take place: 

r-- 1 .:>') I o') 
'i;:, - lc ~ 11~ ~ lln 
:Tl l.f:.(c)- ~ ~ r 

(the left ow· follows from the anal.rticity of 2 for the 

energy, whiL' the right one was established in the proof of 

the theorem), but no one of them can be replaced by equiva-

lence relatiJn. This means, in particular, that our formula-

tion of the ;heorem 4.7 does not allow any essential simpli-

fication. 

Now let lS discuss in more detail the obtained necessar.r. 

and sufficie1t condition of the asymptotical unitary equiva

lence. This Jondition is rather similar in form to our main 

initial condition '-U-:::-tc. However, the difference is that ,}\. ~t\.p 

in the latter case lhe "full" condition is completely equiva-

lent to the sum of sectorial ones: 
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whereas it is not so for the "asymptotical cond- tion" ( d ) : 

~ __ -<--------. 
'--::--

The physical content of the condition is als11 clear in 

general features. Like other asymptotical condi ;ions introdu

ced in quantum field theory (quasilocality comi _tion by l!aat_; 

/28/ space-like asymptotical condition by Huel _e /29/, etc.) 

this condition establishes for the expectation •alues of the 

theory a definite laW of asymptotical behaviour in space-like 

directions. Hut the detailed investigation or t1is condition 

is not performed yet. In the sphere of this inv :stigation 

fall several problems of significant interest, mch as decom-

positions of arbitrary states into strictly lo:alized states 

and/or relation of the class of strictly localized states 

to that of "states without long-range correlations" of Haag 
and Kastler/23/; relations between strict localizability, 

asymptotical abelianness end cluster properties, etc. •rhe 

last point is of interest, in particular, becau3e of possible 

dependence of cluster pruperties of the theory Jn tl1e type of 

its statistics . And also always in the clo3e analogy 

with the history of other asymptotical conditiJns, the prob-

lem is still open whether our asymtotical condition is the 

consequence of the Haag-Araki axioms or the independent addi-

tional restriction. 

CONCLUSION 

Here we shall compare results obtained with the results 

of Doplicher, Haag and Roberts /5/ (for the sake of brevity 

referred to below as DHR). 
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'L'lle general sc Jeme of UHR represents the algebraic theory 

in ililbert sr;ace 'J{_ 

l~s ami c"-;llgebr 1 t 
, on which C)l,-alg.:bra {;(_ of observab-

of fields are acting, both provided 

wLt.'l nets ol. local subalgebras, r R(o)7. an' iT(v)l. 
L h" IS ( M) '" l J c' B(M} 

rc<>:,~ctively. 1 Ls irreducible ( 'fw:: ~( ';}()) while R-:: {il..w 

belongs to a cErt 1in subclass o.f theories in dt = dep. Namely, 

n coincides with .he commut:J.nt l.;(G,)' of representation in 

compa :t gauge group u, and as a consequense is 

of the form H = $ Ro.. , all the H being type I factors • 
..-J.~~ 

However, in this .:ase tl:e algebra n' = UU1)'1 possesses only 

fini te-uimEnsiona: irreuucible representations. This means 

t!Jat _;lobal algeb: a of the ..!HR scheme is algebra of the Jf· 'Ke 

class, with the a< di tional restriction: for all.) "" '" , R .._ 

is fact:>r of the ',ype IN 1 Nd ~ v<l ; or equivalently, .~ 1 = JV .:: oo 
d- <:1. c. ' 

Apart from ti.is, another ciistinction of our global structu-

re is ti:at l'or it~ deduction we do not assume the existence 

of either tl;e ~_;roL p G or the algebra 1' , but use only a rni-

nimal necessary c,ncretization: the object of our study is 

an arbitrary quantum system with superselection rules. Fur

ther, the 0HH scheme includes also a great number of local 

additional conditjons. In most part, they are of the form of 

relations connecting with each other the nets {Rlo)j and 

-L 1 (0)~ and so they cannot even be formulated. in the "usual" 

axiomatic theory where the input includes only one of these 

objects. Besides of this, such questions as the range of ne-

cessity of 1ntrodused conditions, their independence on each 

other and on the ixiorns etc. were not answered most often. 

For all these reasJns we did not consider as superfluous 

after the works by DHR to return once more to the analysis of 

the F-problem. 
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Now we proceed to the consequtive comparisor. The § I of 

our work contains the physical basing of structLre used and 

so has no parallels in the UHH work. The conten1 of § 2 is 

equally not connected with UHH. With respEct to the f-problem 

(the only problem of DHR) the results of that s•·ction r1re ei-

ther quite irrespective of or very remote. Attention paiu by 

us to these results is explained by their indep:ndent interest 

and also by our hopes on other applications of our scheme, 

besides the F-problem. Next, the § 3 results (e (uivalence pro

perties of coherent sectors for global algebras and local algeb· 

ras of bounded regions) play only the preliminary part in the 

problem of relationship between fields and observables. For 

this reason and also, probably, due to the simplicity of their 

obtaining, they were practically not considered by JJJ!R. In 

fact, the only complicated result in § 3 is the theorem 3.3, 

but its complexity is caused entirely by the tcking into accou

nt arbitrary values of the parameters ~.~ ,.~;, In the uHH 

scheme where only the values .~;_-.::<A are allowt d tnis theorem 

reduces to a semi-trivial assertion. 

Further, analysis of the representations 1TQ~ and weak 

duality condition was undertaken by DHR in § 5 of /5/. In this 

point our results supplement and clear up the :·esults of JJHR 

and some of their additional conditions. Thus ;he theorem 4.! 

shows that the weak duality condition obtained by JJHR in their 

theorem 5.2 is not only necessary, but also su~ficient. Next, 

we prove the fulfillment of the weak duality i~ all coherent 

sectors ']t<l- with a:_; ~ ~o and also in the whole dt for the 

theories with discrete superselection rules only; for the same 

theories the axiomatic proof of the disjointness of all Jl~ 

is obtained. These results have no overlapping with DHR. Let 
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us mention also that the result of the theorem 5.6 by DHR 

(necessary condition of duality) was re-proved in the work 

by one of us /3C/ in the slightly more general form and 

without the assLmption of weak duality made by DHR. Finally, 
. i {)') 

anal,yzin,_; the rt presentations JL~ DHR proved their quasi-

equivalence witt the aid of strong restrictions on the con-

nection between the nets and The 

net l ~(;)); J• r, '1) beinG not given in our case, we cannot 

excluJe L1e altErm;tive situation, 
(U') j 1T (,1') 

lTd- 0 /1 {'> and 

so we perform t:.e detaihd analysis of both situations. Then 

we f 'rmulate in terms of local observables and prove the 

"asyml-Jtotical cor,Ji tion", wnich is necessary and sufl'tcient 
~i.:J') 

for the unitary equivalence of all 1\cl- • •rhe necessity of 

ti1is cundiUon v.as stated by lJHH without proof and under res

trictions on \ ~~lO) _) , 

As a result, from all the complex of properties, which 

is, accordinc to DHH /6/, sufficient for the construction of 

field gr.;up and field operators, the following properties are 

not yet obtained in our scheme: 

1) sufficient conditions of the fulfillment of duality in 

cohererit sectors; 

2) conditions of the existence of localized automorphisms. 

In future we >re intended to return to these properties. 
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