C 324,3 H-80

СооБщЕНия ОБЪЕДИНЕННОГО ИНСТИТУТА ЯДЕРНЫХ ИССЛЕДОВАНИЙ убна

S.S. Horuzhy, V.N. Sushko

GLOBAL AND LOCAL STRUCTURE
OF RELATIVISTIC QUANTUM SYSTEMS

1971
S.S. Horuzhy, V.N. Sushko

GLOBAL AND I.OCAL STRUC'TURE OF RELATIVISTIC QUANTUM SYSTEMS

Introduction.
Algebraic approach in relativistic quantum beory still contains a significant number of unsolved problims. There are among them the problems of paramount importance such as the definition of field starting from local obsurvable alebe ras ("F-problem" for the sake of brevity) and the construction of purely algebraic scattering formalism ('S-problem"). We suppose one of main reasons of this to be the following: the initial form of algebraic approach developec. by Hag, Araki and the other absorbed a very poor physici. 1 information, thus giving no possibility either to solve or en to formulate the problems like afore-mentioned ones, for which it was necessary to operate with objects not reducing to local observables (such as field or scatterjng state, rt.a.) for the solution of problems like these the algebra:c approach should be provided with additional information; i.e. an algebraic quantum theory a liowing the introduction $f f$ a field or S-matrix, etc.,should represent a net of local aigebras (abstract or concrete), which satisfy a set of findamental axioms (Haag-Kastler's or Haag-Araki's) as well as some additional conditions.

It seems very natural to expect that such aciditional conditions will include, first of all, certain conctraints on global structure of theory. In fact, all axioms are conditions on local algebras, whereas it is most probable that global
algebra of a phyiical system cannot be arbitrary too, especialy if the system in question enjoys some special properties, like the existense of field or S matrix, etc. This argument can be illustrated, for instance, by the situation in statistical mecharics, where conditions on global algebra exist always and are of essential importance. Nevertheless no general and physically grounded conditions fixing the global structure were proposed for relativistic quantum theory. (In $W^{\text {t }}$ approach one assumed often that global $W^{\boldsymbol{K}}$ - algebra R is a factor or is irreducible. However the first assumption was not justified b_{j} anything except mathematical convenience and the second, as is well-known, is too restrictive). Besides this, it is nut excluded at all that other additional conditions, those of local nature, will also be necessary to pick out of general formalism of local observables more concrete physical theorits.
with these erfuments in mind, we set ourselves as an object to develcp such a modification od Haag-Araki-Kastler theory, where pisysically will-grounded additional conditions to fundamental axioms were found and investigated. Due to these condition; it could be used as a basis for constructing algebraic struc ures corresponding, for instance, to field or B-matalx theorizs, physically more ifhem interesting than the general the ry of looal observables. In the first two parts of our work, publsshed in fussian in $/ 1,2 /$ and for convenience siated uxidfly fry fe wave analyzed the global structure of observoblo alfebras in "conciete" W^{*} - approach. We have found ciat that all phyatoal syotems poosessing surer-

by a very definite global structure, which was called the $\quad \|=\mathcal{H}_{p}$ structure" by us and presupposes, in particular, that gloval $W^{3}-$-algebra R is a direct sum of discrete factors. The latter are physically interpreted as global observable algebras of coherent superselection sectcrs. From purely mathematical viewpoint our proposition tc use as a global algebra R the direct sum of discrete factors (instead of older variants, $R=B(y)$, or R being an arbitrary factor) is of course, not so great innovation. However the main element which was here important to us is that in our scheme the global structure is not introduced ad hoc, but is prescribed directly by the analysis of physical phenomena.

Further, in § 2 we provide the deduced global structure $R=\oplus_{\alpha \in C} R_{\alpha}$ with a net $\{R(0)\}_{0 c m}$ of local algebras $R(0)$ satisfying Haag-Araki axioms. Then we study in detail an arising superposition of the global (sector) and 1 scal (net) structures and generalize to the resul.ting, "cross dd" structure all classical theorems and results of the liaa;-Araki theory. In particular, quasilocal $c^{*}-a g_{k} e b r a$ of our scheme appears to be simple, what is important for further developments. Also a number of new results is obta ned. They include, for instance, theorem 2.4 containing a strictly axiomatic proof of global nature of superselection rulis. The properties of translational automorphisms of algebri. Or are investigated. Using asymptotical abelianness of O with respect to translation group, we describe the structure of the set of all translation-invariant vectors as we: as properties of vacuum coherent sector and vacuum state. This completely clarifies the problem of relations betyeen many
possible formulations of "vacuum postulate". As a result, we obtain for any theory of $\mathcal{H}=\mathscr{X}_{p}$ class a well-developed scheme of axiomatic theory of local observables, hoping by this to provide a basis for all possible applications of the theory. In tris section the structure $\mathcal{H}=\mathcal{K}_{P}$ is our only additional condition.

In § 3 we proceed to problems connected with introducing of a field ard we find our global structure to be quite suitable for these purposes. We represent the coherent superselection sectors as representations \mathbb{T}_{α} of the quasilocal $C^{3 *}-a l_{\mathrm{E}} e b r a \operatorname{Ond}$ study equivalence properties of those representations as well as their restrictions to different subalgebras $O_{1} \subset R$ (keeping in mind that starting objects for the construcion of fields must beintertwining operators of some or othe:: representations connected with coherent sectors /3-6/. We completely describe the equivalence properties of representations π_{α} (i.e. the global equivalence properties of coherent iectors) and then proced to local equivalence properties wich are of greater importance for the F-problem. At first we consider the equivalence properties of restrictions $\left.\pi_{\alpha}^{(0)} \doteq \pi_{\alpha}\right|_{R(0)}$ with 0 , by definition, a bounded region. Here i: turns out that local unitary equivalence of coherent sectors \mathcal{H}_{α} and $\mathcal{H}_{\beta}\left(\Pi_{\alpha}^{(0)} \simeq \pi_{\beta}^{(0)}\right)$ requires, besides the $\operatorname{zxioms,~certain~additional~conditions~relating~to~}$ dimensions of irreducible subspaces of algebras R and R ' in sectors $\mathcal{H} \mathcal{K}_{\alpha}$ and $\mathscr{X} \mathcal{K}_{\beta}$. This means that our starting condition $\mathscr{H}=\mathscr{K}_{p}$ is joined with another additional condition, also of global nature. This new condition is rather general and unrestrictive.

Finally, we investigate in § 4 properties of our scheme with respect to unbounded regions. Following / $3-6 /$ we characterize these properties by two families of C^{*}-algebras: $\sigma^{c}(0) \div R(0)^{\prime} \cap O \quad$ and $O\left(O^{\prime}\right) \div V R(\hat{O}) \quad\left(\because^{*}\right.$-algebra generated by local algebras $R(\hat{O}), \hat{O} \subset O^{\prime}, \hat{O} \in B(M)$. Equivalence properties of corresponding representations $\pi_{\alpha}^{c} \doteq \pi_{\alpha} \mid \sigma^{c}(0)$ and $\pi_{\alpha}^{\left(O^{\prime}\right)} \doteq \pi_{\alpha} \mid \sigma_{\left(0^{\prime}\right)}$ ire of most importance for the F -problem because intertwinin; operators of representations $\pi_{\alpha}^{\left(0^{\prime}\right)}$ and $\pi_{\alpha}^{\left(0^{\prime}\right)}$ o $\mathcal{Z} \pi_{\alpha}^{c}$ and π_{β}^{c} (if such exist) possess localization properties and san directly be used for constructing a field group and field operators. We find, however, that the behaviour of the theory in unbounded regions, as described by the families $\left\{\pi_{\alpha}^{c} / \alpha \in \sigma\right.$ and $\left\{T_{\alpha}{ }^{\left(0^{\prime}\right)}\right\}_{\alpha \in \sigma}$ strongly differs from that in bounded regions described by the family $\left\{\pi_{\alpha}^{(0)}\right\}_{\alpha \in \sigma}$. lIllie reason is that weak closures of algebras $\left(r^{c}(0)\right.$ and $\sigma\left(U^{\prime}\right)$ do not belong to O in $G \in n e r a l$ case; that's why the er uivalence properties of corresponding representations are lot governed by the fact of simplicity of O and worsen considerably. We study at first the representations π_{α}^{c} and weak duality condition $/ 4,5 /$ closely connected with them. Under the very general global conditions we prove the fulfillment of weak duality in coherent sectors and then, adcing one more global condition, which means physically the absence of continuous superselection rules, we prove weak duality in the whole space $\mathcal{H}=\bigoplus_{\alpha \in \sigma} \mathcal{H}_{\alpha}$ and pairwise disjointness of all \prod_{α}^{c}. This means that these representations are useless for the F-problem.
, e proceed then to the representations $\pi_{d}^{\left(0^{\prime}\right)}$ and draw the conclusion (however not having the formal proof for the time being) that local observable theory even if provided with ang glcbal constraints, allows the arbitrariness in equivalence proferties of these representations. It means (if the primariness of the $\Pi_{\alpha}^{\left(0^{\prime}\right)}$ is taken into account) that all local observable theories with superselcotion rules can be divided into two clisses, the first of them having $\pi_{\alpha}{ }^{\left(0^{\prime}\right)} \approx \pi_{\beta}^{\left(0^{\prime}\right)}$ and the second $\pi_{\alpha}^{\left(0^{\circ}\right)} \delta \pi_{\beta}^{\left(0^{\prime}\right)}$ for all $\alpha, \beta \in \sigma$. All field theories fa.l in the first class and so the problem of formulating the iecessary and sufficient conditions of belonging to this clas becomes of a real interest. The role of these conditions s to sincle out the class of field theories within the larger slass of relativistic quantum theories of local observables. ve have proved that one form of such criterion consists in the presence in every coherent sector \mathcal{H}_{α} of a total set $\because l(0)$ of vectors representing states strictly localized in the region $0: ~ L\{S \mathscr{S}(v)\}=\mathcal{H}_{x}$ for all $0 \in B(N)$. Phe existence of other similar criterions is not impossible at all, but the physical meaning of tinem is always the same, i.e. to put restrictions on the behaviour of states at the infinity in space-like directions. Loosely speakinc, this means that field theories can be picked out in the set of all loc: observable theories by means of some "asymptotical condition", oi which one possible form was found by us. As a result, we obtain a full picture of equivalence properties of coherent sectors for all regions. This picture becomes qui te clear in the light of the following inclusions

$$
\begin{equation*}
R(\hat{0}) \subset a\left(0^{\prime}\right) \subset a^{c}(0) \subset a \tag{0.1}
\end{equation*}
$$

(where \hat{O} is a bounded region lying in 0). Inceed, if $\mathcal{K}_{1,2}$ are 0^{x}-algebras such that $\Pi_{1} \subset \Pi_{2}$ and π_{i}, are some representations of O_{2}, then equivalence properties of the restrictions $\left.\pi_{i}\right|_{\alpha_{1}}$ and $\left.\Pi_{k}\right|_{\varepsilon_{2}}$ may be stronger in gene ral case than the equivalence properties of Π_{i} and π_{k} themselves. In virtue of this fact, in the chain (0.1) the representations $\pi_{d}{ }^{(0)}$ must enjoy the strongest equivalence properties, while the representations Π_{α} the weakest ones. This is in complete accordance with our results, which give $\pi_{\alpha}^{(0)} \simeq \pi_{\beta}^{(0)}$ and $\pi_{\alpha} \delta \pi_{\beta}$. The asymptotical representations $\pi_{\alpha}{ }^{c}$ and $\pi_{\alpha}^{\left(0^{\circ}\right)}$ are intermediate between local and giobal ones, and so their equivalence properties jecome well-determined only under additional restrictions.

The methods and aims of our work lie close to the works by Borchers /3,4/ and especially by Doplicher, Haag and Roberts /5, 6/ dedicated to the F-problem. Detailed comparison with the Doplicher, Haag and Roberts, results is made in the Conclusion. As a main general distinction of roth schemes we can point out that at the moment we have gone not so far in what concerns the direct construction of a fie:d (which was the main task of voplicher et al.), but in retirn we have developed a more general and elaborated formalysm, which is suitable, as we hope, for wider range of applications. Also we regarded more critically to the introductior of additional conditions, controlling their independence fron each other and from the axioms and their necessity for desired results. In correspondence with this principle, our scheme starts with the global condition $y e=\mathcal{X}_{p}$, which is necessary for the
formulation of the superselection theory, and ends (at the present stage) with the local condition $L\{S \mathcal{L}(0)\}_{\alpha}=\mathcal{K}_{\alpha}$ which is necessary for the existence of fields. NOTATIONS. Most part of our notations follows the books by $J . D i x m i e r / 7,8 /$, the references on which are denoted as DW and DC respectively, so that, for instance, [DW-5] means page 5 of $/ 7 /, R^{1}\left(C^{1}\right)$ is the set of all real (resp. complex) numbers. The four-dimensional Minkowski space will be denoted by M, open bcunded regions in M by O, and $B(M)$ is the notation for the set of all such 0 in M. 0 denotes the set of all points ir. M, which are space-like to all points of 0 . If

 any subset JYZ in the topology \widetilde{q} will be denoted by the line provided with corresponding index: $\overline{\widetilde{\jmath}}{ }^{\varepsilon}$. The closure In the norm .opology of any Banach space will be denoted by the line without the index. In Hilbert space \mathcal{H} we denote as $B(\notin)$ thi: algebra of all linear bounded operators on the, and $C(H)$ th: algebra of all multiples of the identity operator \mathbf{I}. The subspaces in \mathcal{H} generated by the action of a * -set of overators $A \subset B(y)$ on a subset Yjc \subset 呈

 sphere in y^{\prime} '. The weak, strong and uniform operator topologies in $B\left(\begin{array}{l}(, r e) \text { are denoted as by the indices } w, ~ s, ~ u ~ r e s p e c-~\end{array}\right.$ tively.
vector stat \underline{S}_{w} in the representation $\mathbb{T} \in$ kep O such that $\pi!\Leftrightarrow!=R_{\text {one }}$ one posible variant of such connection will be described in $\oint 3$ below. Definition 1.1.
state of physical system described by w^{*}-algebra of observables $K \subset B(<)$ is linear functional ω on the algebrai R, positive $\left(\underset{A \in R}{\forall}(\omega)\left(A^{*} A\right) \geq 0\right)$ and normed to the unity $(\omega(I)=1)$. The set of all states will be denoted as $\mathrm{K}_{1}{ }^{\boldsymbol{*} \boldsymbol{*}}$ Extremel points of the set $\mathrm{R}_{1}{ }^{\mathrm{xt}}$ will be called pure staLes, all other points mixed states (mixtures).

State cefined for all $A \in i$ by means of the correspondence $\dot{A} \rightarrow A \Phi, \Psi)$ with $\Psi(H$ and $\| \Psi=1$ will be called vector state ind denoted as $\mathcal{W} \Phi$. The set of all vector states on R will lie denoted as $V(R)$ and the set of all pure vector states as 'V(K).

Vector $\Phi \in \mathcal{H}$ such that $\mathcal{W}_{\|Q\|^{-1} \Phi} \in \quad P V(R)$ will be culled puri: vector, and the set of all such vectors will be denoted as P.

The most convenient object of stadying possessing in addition clear physical interpretation, appears to be the set of all vectors in the representing the same vector state on F .

Definition 1.2.
For every vector state $\omega_{\varphi} \in V(R)$, the set of all unit vectors $\psi \in \mathcal{H}$ such tbat $\omega_{\Psi}=\omega_{\Phi}$ is called the H-image of ω_{Φ} ard denoted as $\mathcal{J J Z}_{Q}^{1}$. I.e.,

$$
\Psi_{\Phi}^{1} \doteq\left\{\Psi \in \mathcal{H}\| \| \|_{A}=1, \underset{A \in R}{ }(A Y, \Psi)=(A \Phi, \Phi)(1.1)\right.
$$

If and only if $R=B(\dot{R}), H-i m u g e s$ of all vector states from $V(R)$ are unit rays, $R \neq \mathcal{B}(x)$ implies the presence of non-onedimensional H-images. From physical viewpoint introducing of the H-image notion seems to be quite natural. The object (related to \mathscr{H}) directly manifesting itself in the experiment and thus in the exact sense reprasenting physical state, is not the vector $P \in$ ye itself, sut the set of all expectation values ($A \Phi, \Phi$) for all observables \therefore. By definition, for all vectors in the same H-image this set of expectation values is the same.

Now let us list a few main properties of H -images.

1) for every vector state ω_{Q} the closure of the linear
敢 R_{Q}^{\prime} :

$$
\begin{equation*}
\overline{L\left\{j \mathcal{T}_{\Phi}^{1}\right\}}=\mathcal{Z}_{\Phi}^{R^{\prime}} \tag{1.2}
\end{equation*}
$$

2) the state $\omega_{Q} \in V(k)$ is pure if and only if

$$
J J{ }_{Q}^{1}=4 K_{Q}^{R^{1}} \cap \hat{B}^{1} \quad(1.3)
$$

Class of W^{*}-algebras possessing pure vector states is closely related to the class of type $I W^{\mathbf{X}}$-algebcas, as the simple property shows:
the following three sets are in one-to-one zorrespondence between each other: 1) the set $\operatorname{PV}(R)$ of all jure vector states on the W^{x}-algebra $R ; 2$) the set of all minimal projections in $R ; 3$) the set of all minimal projecions in R^{\prime}.

If R is a factor, this property means that

$$
P V(R) \neq \phi \Leftrightarrow R \text { is of the type } I . \quad(1.4)
$$

If $3 \neq C(x e)$ this relation can be destroyed in jeneral case,
but any algeora R with $P V(R) \neq \varnothing$ still cannot belong to the types $1 I$ and $1 I I$.

For the compirison of algebraic theory with the old Hilbert space L anguage (in which all pure states are considered to be unit rays in \mathfrak{H}) the following questions are of interest: 1) under what conditons the H-image of a given vector state is unit ray? 2) under what conditions all pure vector states are represented by unit rays? Below the precise answers to u oth questions are given.

Proposition I.I.
The H-image of vector state ω_{Φ} is unit ray, i.e. $\mathcal{M}_{\mathscr{1}}^{1}=\left\{e^{i f \Phi}\right\}_{\Psi \in R^{1}}$
if and only if

1) $\hat{H}_{\Psi} \in \operatorname{PV}(K)$
2) $\operatorname{He}_{\Phi}^{R}$, H $H^{R^{\prime}}$

The conditiou (2) can be replaced by the equivalent one: 2) $\mathrm{te}^{k} \Phi=\operatorname{le}^{3} \begin{aligned} & \\ & \Phi\end{aligned}$.

Proposition 1.2
H-images of all pure vector states are one-dimensional if and only if the algebra k is of the following form:

After thase preliminaries let us introduce the algebraic structure, waich will be at very centre of all the further account.

Definition 1.3.
We shall say that ${ }^{\text {F }}$-algebra k possesses sufficient amount of pure vector states or, equivalently, belongs to the " $\mathscr{H}=\mathscr{H}_{\rho}$ class", if the linear hull of the set of vectors $\Psi \in \mathcal{X}$ representing pure states is dense in $\mathcal{H}:$

$$
\mathcal{X}_{P} \doteq L\left\{\Psi \in X X \mid \omega_{\Psi} \in P V(R)\right\}=J . \quad \text { (1.5) }
$$

The class of von Neumann algebras satisfying this definition is completely characterized by the following theorem. Theorem 1.3*)

The following conditions are equivalent:

1) W^{*}-algebra k belongs to the $\mathcal{H}=\mathcal{H}$ class,
2) K is w^{W}-algebra of the type I and its centre 3 contains only the operators with purely point spectrum, 3) R is direct sum of type I factors.

Next, we establish that W^{*}-algebras of the $\mathcal{H}_{\mathrm{H}}=\mathcal{H}_{\mathrm{p}}$ class can be physically interpreted as observable algebcas of physical systems with superselection rules; conversely, every physical systam with superselection rules corresponds to observable algebra belonging to the $\mathcal{H}=\mathcal{K}_{p}$ class.

We draw these conclusions from the andilysis of concrete physical systems possessing superselection rules. On the grounds of such analysis we formulite a comprehensive algebraic definition of arbitrary superselection rule,

Definition 1.4
Let quantum system be given with observable a gebria $R \subset B(\mathcal{X})$. We shall say that a superselection ru.e is acting in this system, if there exists the decomposition $\mathcal{H}=\underset{\alpha \in \sigma}{\oplus} \mathcal{H}_{\alpha}$ satisfying the conditions I - III below, and each of these conditions implies two others.

[^0]I. Livery vector not lying in some H_{α} corresponds to mixed state.
II. Transitions between different L_{α} by means of observable operators are forbidden
$$
\underset{A \in R}{\forall} \underset{\alpha_{1} \neq \alpha_{2}}{\forall}\left(A \Phi_{\alpha_{2}}, \Phi_{d_{1}}\right)=0 \quad(I I, \alpha)
$$
and in addit.on all the H-images of vector states $\mathcal{U}_{\Phi_{\alpha}}$ with $\Psi_{\alpha} \in{ }^{\prime} H_{\alpha}$ lie entirely in \mathcal{J}_{α} :
\[

$$
\begin{aligned}
& \forall Y_{\alpha}+H_{A_{\alpha}}^{1}<H_{\alpha} \quad \text { (II, } \beta \text {) }
\end{aligned}
$$
\]

III. There esists an operator $\left.T_{\imath}\right\}$ (i.e. affiliated to ${ }^{3}$ and unboundea in general case) such that all $\mathcal{Y} \mathcal{C}_{\alpha}, \alpha \in \sigma$ are its eige $2-s p a c e s$.

In this situation the subspaces te ${ }_{\alpha}$ are called superselection sestors and the operator T superselection operator (corresponding to a given superselection rule). Theorem I. 4

Quantum system possesses superselection rules if and only if its observable algebra k belongs to the $\mathcal{H}=H_{p}$ class. Bach operator $T_{q} 3$ determines uniquely a certain superselection rule, i.e. the structure $\mathcal{H}=\underset{\alpha \in \sigma}{\oplus} \mathcal{H}$, satisfying the definition I.4.

Let us rote main features peculiar to this treatment of superselection rules.

1) In the definition I. 4 only the condition (II, c) and the requirenent of equivalence of the conditions I - III were not marked in previous literature. is a consequence, all the new features of our scheme go back to these two distinctions. Namely, the condition (II, β) implies that
superselection operators have to be affiliated rot only to the commutant R^{\prime} but to the centre 3 of k; the equivalence of the properties I - III implies the necessity for observable algebras of systems with superselection rules to belong to the $\mathscr{H}=\mathscr{H}_{\rho}$ class. Properties that follow represent the secondary consequences of the same initial distinctions. 2) All superseleotion rules comute automatically between each other.
2) Let quantum system be given possessing the decomposition of the following form:

$$
H=\int^{\oplus} d \mu(\xi) x(\xi) ; R=\int^{\oplus} d_{\mu}(\xi) R(\xi),(1.6)
$$

where $k(\xi)$ are factors almost everywhere in tie measure 4 and so the algebra of diagonalizable operators is some abelian W^{*}-algebra generated by an operator $T ; 3$ with continuous spectrum. Such decompositions are impossible in "tt $={ }_{l} t_{p}$ and in our scheme they are refused to be interpreted as superselection structures. This follows automatically from the scheme, but we also represented the independint arguments In fisvour of this (in $/ 2 /, \S 2$), which are close t) those developed by J.Antoine /9/.

Rbsence of the decompositions (I.6) does not mean at all that continuous superselection rules are excluded in our scheme. What is excluded is only one a priorl possible kind of them, namely, the superselection rules, for which the superselection operator possesses continuous spectrum. But still is perfectly allowed another kind, the superselection rules, for which the set σ of all coheren: superselection seotors is uncountable. We verified that all known
examples of ;he continuouos superselection rules (such as Bargmann's siperselection rule or the superselection rule in the BCS midel found by Emch and Guenin /10/) belong to the second kind. The assertion about complete impossibility of the first mentioned kind of continuous superselection rules may be consicered as a prediotion made by our scheme.

Thus we cefine the discrete and the continuous superselection rule:; as those characterized respectively by the countable anc the uncountable set σ of coherent sectors; but in botb cases by an operator with point speotrum only. As the folloving simple proposition abows, these cases correspond to tro subclasses of the $\mathcal{H}=\mathcal{H}_{-p}$ class, which differ by an essential structural property. Proposition J. 5

Algebra 1 . of the $\mathcal{H}=\mathcal{H}_{p}$, class describes the quantum system with ciscrete superselection rules if and only if the centre ?) is a countably decomposable algebra. Otherwise (3 is not countably decomposable) R describes the quantum systen with continuous superselection rules. 4) is is well-mmown, existence of decomposition of the theory into coherant superselection sectors is very desirable for any superseleotion soheme. This proparty is also reached automatically in our treatment.

Definition I. 5

Let the Hilbert space $\mathscr{H}=\mathscr{H}_{p}$ be decomposed into a
 The subspace ${ }^{t} \ell_{\alpha}$ in this deamposition will be oalled coberent superselaction sector, if $\mathcal{H e}_{\alpha}$ is the superseleotion
sector for any of superselection rules presented and within y_{α} there are no more supersele ction sectors.

Proposition I. 6

Any theory possessing superselection rules (in the sense of our definition I. 4 and theorem I.4) allows the decomposition into coherent superselection sectors:

$$
\begin{equation*}
\mathcal{H}=\underset{\alpha \in \sigma}{\oplus} \mathcal{X}_{\alpha} \quad ; \quad R=\underset{\alpha \in \sigma}{\oplus} R_{\alpha} \tag{1.7}
\end{equation*}
$$

and the observable algebras R_{α} of the coherert sectors are factors of the type I.

The problem arising immediately with the decomposition (I.7) is to study the internal structure of coterent sector. In this point our scheme represents the generajization of the usual treatment, in which only irreducible subspaces of $R\left(R_{\alpha}=B\left(x_{\alpha}\right)\right)$ were considered as coherent sectors. (The reason lies again in the condition II, β, due to which the eigen-spaces of our superselection operators aje irreducible for 3^{\prime}, but not for k in general case). Fij'st of all, this generalization implies that in the case $H_{4} \neq B\left(H_{\alpha}\right)$ the vectors representing mixed states are possjble in coherent sectors.

Proposition I. 7
Let \mathcal{H}_{α} be coherent superselection sector. Then all vectors Ψ which are of the form $\Psi=\Phi_{1}+\Phi_{q}$ vith Φ_{1} and Φ_{2} pure and belonging to different irreducible subspaces of R, as well as to different irreducible subsjaces of k^{\prime}, represent mixed states:

Every non-pure vector in J_{α} is the linear combination of the vectors of the form (I.8) and the set of all such ventors is void if and only if $R_{\alpha}=B\left(\mu_{\alpha}\right)$.

Due to this proposition, the superposition principle in its usual form

$$
\Phi_{1}, \Phi_{2} \in \mathcal{P} \Rightarrow \Phi_{1}+\Phi_{2} \in P_{1}
$$

is not fulfilled in Je_{d}. That's why we introduce a certain generalization of this principle, valid in all coherent sectors.

Definition I. 6
Wo shall soy the at in the subspace $\mathscr{H}_{2} \subset \mathscr{H}$ generalized superposition principle is fulfilled, if for every vectors $\Phi_{1}, \mathcal{G}_{x} \in \mathcal{H}_{1} \cap \mathcal{G}^{\prime}$ there can be found vectors $\Psi_{1}, \mathcal{Y}_{2} \in \mathcal{X}_{1} \cap \varphi$ corresponding to states $\mathcal{W}_{\Phi_{1}}$ and $\mathcal{L}_{\Psi_{2}}$ respectively and such that $\Psi_{1}+\Psi_{2} \leqslant \mathscr{H}_{1} \cap \mathcal{F}$. I.e.

Proposition I.E
In every ocherent sector \mathscr{K}_{α} the generalized superposing" tion principle (I.9) holds.

Further, for every coherent sector \mathcal{T}_{α} we prove the representations:
 Hence it follows that every coherent sector is completely determined by corresponding values of the following aigebratio invariants:

$$
\begin{equation*}
x_{i} \dot{=} \operatorname{dim} y_{Q_{\alpha}}^{R} ; x_{\alpha}^{\prime}=\mathrm{dim} \operatorname{Je}_{\Phi_{\alpha}}^{R^{\prime}} . \tag{I,II}
\end{equation*}
$$

It is easy to show that

$$
X_{\alpha}=\operatorname{card} K_{\alpha} ; X_{\alpha}^{\prime}=\operatorname{card} K_{\alpha}^{\prime}, \quad(I, 12)
$$

where card $K_{\alpha}\left(\operatorname{caid} K_{\alpha}^{\prime}\right)$ is the power of the conplete orthogonal system of projections in R (resp. R^{\prime}). Tie case $\mathscr{R}_{\alpha}^{\prime}=$ $=$ I corresponds to the old definition of coherunt sector ($R_{\alpha}=B\left(H_{\alpha}\right)$) and will be called abelian cohe:ent sector /5/. Generally speaking, both parameters x_{α} ind x_{α}^{\prime} are allowed to take the values of any cardinal number. However, it will be established in § 2 that local struc\%ure of the the ory implies the infinity of the physical al;ebras R_{α}. This means that R_{α} are factors of the type $I_{o s}$ or, equivalently, $x_{d} \geq \aleph_{0}$ (the countable set cardinal. Further, it will be shown in § 3 that a special class is formed by the conerent sectors ' \mathcal{K}_{α} with $x_{\alpha}^{\prime} \leqslant \mathcal{K}_{0}$. The following proposition gives complete characterization of such sectors.

Proposition I. 9

Let $J l_{\alpha}$ be coherent suparselection sector. The follo~ wing conditions are equivalent:

1) $x_{\alpha}^{\prime} \leqslant \lambda_{0}$,
2) $R_{\text {a }}$ possesses cyclic vectors,
3) R'is a countably decomposable algebra,
4) Irreducible subspaces of R^{\prime} (or, equivalently, the H-images of pure veotor states from \mathcal{H}_{α}) are separable.

Of course, the completely analogous proposition holds for R_{α}. These propositions give us, in particular, the neoessary and sufficient conditions of existencs of oyclic and separating vectors for sector algebras R_{α} and R_{α}^{\prime}.

Later on we shall need such conditions also for the "full" algebras $R, R^{\prime}, 3$. It is easy to verify that these conditions are the following ones:

$$
\underset{\Psi \in \mathcal{R}}{\exists} \overline{R Y}=J K \quad \Leftrightarrow \forall \notin \sigma d x_{0}^{\prime}, \text { card } \sigma \leq \mathcal{N}_{0}
$$

$$
\begin{equation*}
\underset{\Psi \in \mathcal{R}}{\exists} \overline{R^{\prime} \Psi}=H \Leftrightarrow \not \mathcal{W}_{\in \sigma} x_{d} \leqslant \aleph_{0} \text {, card } \sigma \leqslant \aleph_{0} \tag{I,13}
\end{equation*}
$$

$\exists \quad \overline{3^{\prime} \Psi}=7 \Leftrightarrow \quad$ card $\sigma \leqslant \mathcal{K}_{0}$. $\Psi \in \boldsymbol{z}$
The conditions of separability of the spaces \mathcal{H}_{α} and \mathcal{L} will also be useful:
H_{1} is separable $\Leftrightarrow x_{2} \leqslant \aleph_{0}, x_{2}^{\prime} \leqslant M_{0}$
He is separable $\Leftrightarrow x_{\alpha} \leqslant \lambda_{0}, x_{2}^{\prime} \leqslant \lambda_{0}$, card $\sigma \leqslant \aleph_{0}$. Finally, the whole theory of the $\mathcal{H}=\mathcal{H}_{p}$ class is completely determined ty the following set of algebraic invariants:

$$
\left\{\Sigma \doteq \operatorname{cord} \sigma ; \underset{\alpha \in \sigma}{\forall} x_{\alpha} ; \underset{\alpha \in \sigma}{\forall} x_{\alpha}^{\prime}\right\} .
$$

According tc proposition $I, 5$, the cases $\Sigma \leqslant \mathcal{N}_{0}$ and $\Sigma>\aleph_{0}$ correspond to theories with discrete and continuous superselection rules respectively. The formulas (I.13) show that one of the principal distinctions of these theories is that In the continuous case algebras $\mathrm{R}, \mathrm{R}^{\prime}, 3,3^{\prime}$ cannot possess either colic or separating vectors.

2. THE ORY OF IOCAL OBSERVABLES FOR SYSTEMS WITH SUPERSELECTION RULES

Now let us proceed to our main problem, which consists in investigation of correlation between global and local properties cf general systems with superseleotion rules. As the first step to this we shall adopt the starting positions of the Hang Araki concrete algebraic formalism. This means
to suppose that assooiated with each open bounied region 0 In the Minkowski space M there is a W^{*}-algebra $K(0)$ acting on a H1lbert space $\mathcal{H e}$ and the set $\{R(0)\} 0 \in B(M)$ of all these algebras satisfies the following (Haag-iraki) postulates. I. Isotony

$$
\mathrm{O}_{\mathrm{I}} \mathrm{CO}_{2} \Rightarrow \mathrm{H}\left(\mathrm{O}_{\mathrm{I}}\right) \in \mathrm{R}\left(\mathrm{O}_{2}\right)
$$

If the set $B(M)$ is considered as partially ordered by the inclusion relation $O_{1} \in 0_{2}$, then it follows Erom the postulate I that the sequence $\{R(0)\} 0 \in B(M)$ reprisents a net. Indeed, $B(M)$ is in this case a filtrating partially ordered set, 1.e. for each pair $O_{I}, O_{2} \in B(M)$ there exists $O_{3} \in B(M)$ (for instance, $O_{3}=O_{I} \cup 0_{2}$) such that $O_{I}, O_{2} \subset 0_{3}$, and from here I ensures that $R\left(O_{I}\right) \cup R\left(O_{2}\right) \subset R\left(O_{3}\right)$. Accurding to the usual definition, this means that $\{R(0)\} o \in l, m$ is a net.

Sometimes we shall require the fulfillment of the following stronger form of I.
$I-\alpha$. Continuous isotony $/ 11 /$: Let $\left\{O_{k}\right\}_{x=1}^{\infty}$ be a decreasing sequence of regions $O_{k} \in B(M), C_{1} \supset O_{2} \supset C_{3} \supset \ldots$ and $0=$ int $\prod_{\alpha=1}^{\infty} O_{k}$. Then $R(0)=\prod_{\alpha=1}^{\infty} R\left(C_{k}\right)$.

II. Additivity

$$
R\left(O_{1} \cup O_{2}\right)=\overline{k\left(O_{1}\right) \vee \overline{R\left(O_{1}\right)}}
$$

On the basis of I and II we can also assoc ate a W^{K}-algebra $R(\widetilde{0})$ with each unbounded region $\tilde{0} \subset M, p ı t t i n g$ by definition

$$
\begin{equation*}
R(\tilde{0})=\overline{V R(0)} w \tag{2.I}
\end{equation*}
$$

where the unicn is taken over all bounded regions 0 contained in $\widetilde{0}$.

II- + Heak adicitivity

$$
\forall_{0 \in B(M)} \sum_{a \in M} R(C+a) \quad \cdots=R(M) \text {. }
$$

III. Causelit: (Locality): $O_{1} \subset O_{2}{ }^{\prime} \Rightarrow R\left(O_{1}\right) \subset R\left(O_{2}\right)^{\prime}$. IV. Primitive causality: Every time-siice $\tau_{\varepsilon} \doteq\left\{x \in M ; \mid x^{\circ} i<\varepsilon\right\}$ satisfies the condition $R\left(\varepsilon_{\varepsilon}\right)=R(M)$.
V. Translational covariance: An unitary strongly continuous representatioli U of the translation group M of Minkowski space is acting in te

$$
M \ni c \rightarrow U(a)=\int e^{i p a} d E(p)
$$

such that
$\begin{array}{ll}\forall & \forall \\ 0 \in B(M) \\ G \in M\end{array}\|(i) R(0)\|(-a)=R\left(O_{a}\right)$
0_{a} being the image of 0 under the translation $a \in M$.
\bar{Y} is usually treated as a part of the physically more important postulate

Y-d. Relatipistic covariance: There exists a unitary representation in \mathcal{H} of the Poincaré group with the properties analogous to (2.2).

However, existence of the Lorentz transformations is not used by us anywhere and so we consider the translation group separately.
VI. Spectrum condition: Support of the spectral measure $E(p)$ of the representation U is contained in the forward light cone, 1.e.

$$
\text { sipp } E(p)<\bar{V}_{+} \doteq\left\{p \in M \mid p^{2} \geq 0, p^{0} \geq 0\right\}
$$

The succession of axioms adopted here somewhat differs from the usuc. 1 one, but it seemed to us more natural. The
first group of the axioms (I - IV) concerns only with the structure $G=\bar{V} \underset{O \in B(H)}{R(o)}$ i.e. C^{*}-algebra with the net, while the second group (V,VI) concerns with the structure $\{a, 4\} ?$ C^{*}-algebra with the net and the group of automor pbisms. $W^{\text {K}}$-algebras $K(0)$, satisfying I - VI, will be called algebras of local observables (local algebras). The union $A=\bigcup_{0 \in B(M)} R(0)$ is called x - algebra of all local observables, its uniform closure $\Omega \doteq \bar{A} \quad$ is called algebra of quasilocal observables (quasilocal C^{*}-algebra), its weak olosure $R(M)=\bar{A}^{W}$ is called algebra of global cbservables (global w^{*}-algebra).

Main premises of the Haag-Araki approach inclide also that global algebra $R(M)$ coincides with the obse rvable algebra R of described system. Taken together with th: $\S 1$ results. this gives us the following fundamental

Property 0

For every physical system with superselection rules, global observable algebra $R(M)$ is a $W^{*}-a l g e b r a ~ o . . ~ t h e ~ H o ~ H p$ class.

This fact represents the initial formulation of the interrelation between the local struoture descriled by the axioms I - VI and global structure generated by superselection rules. Its immediate consequenoe is that the algebra $R(M)=R$ represents itself in the form $R=\underset{d \in \sigma}{\oplus} R, R_{\alpha}$ being disorete factors, and the Hilbert space h is decomposed into a direot sum $\oplus_{d \in \sigma} \mathcal{J e}_{d}$ of coherent superselection seotors H_{α} with the projeotions P_{α} belonginE to the centre 3 of R. Next task is to investigate what the pro-
perty 0 implies for the algebras $R(0), \mathcal{A}, O$. Let us begin with

Definition 2 I
Inductio is of algebras $R(0), A, O, R$ by the projections $P_{\alpha} \in R^{\prime}=C r^{\prime}=A^{\prime} \subset R(0)^{\prime}$ will be called seotor algebras and denoted $X=X_{P}, X$ being any of these algebras. The algebras X will be called sometimes "full algebras" as distinot from sector ones.

Proposition ?.I.

The net $\{R(0)\} o \in B(M)$ of looal sector algebras satisfies the axioms I, I- α II, II- α, III - VI, if the full net $\{R(0)\}, \in B(M)$ does. Besides this,
$A_{\alpha}=\bigcup_{0 \in B(m)} R(1)_{\alpha}, \quad C_{\alpha}=\bar{A}_{\alpha}, R_{\alpha}=\bar{A}_{\alpha}^{w}$.
Proof. Validity of the axioms I - IV for $\left\{R(0)_{\perp}\right\}_{O \in B(M)}$ can be established trivially, using the properties of the induction oferation /DW-18/.

To obtain $I-\alpha$, we have to make sure that $R(0)=\bigcap_{k=1}^{\infty} R\left(O_{k}\right)$ with $C=$ int $\bigcap_{k=1}^{\infty} O_{k} \quad$ implies $R(0)_{\alpha}=\bigcap_{k=1}^{\infty} R\left(O_{k}\right)$.
It is more convenient to deduce the equivalent property: $R(0)_{x}{ }^{\prime}=\left\{\int_{k}^{\infty} R\left(O_{k}\right)_{1}^{\prime}\right\}^{\prime \prime}$. It follows from $R\left(O_{1}\right)^{\prime} \subset R\left(O_{2}\right)^{\prime} \subset$... that $\ddot{i}_{k} R\left(O_{k}\right)^{\prime}$ is a $*$ - algebra, which is w-dense in $R(0)^{\prime}=\left\{\bigcup_{k-1}^{k} R\left(0_{k}\right)^{\prime}\right\}^{\prime \prime}$ due to the axiom I- d for $R(0)$. Projection P_{y} lying in $R(0)^{\prime}$, we have from/DW-18/ that the induction $\left[\bigcup_{k=1}^{\infty} R\left(O_{k}\right)\right]_{P_{\alpha}}$ is w-dense in $R(0)_{\alpha}^{\prime}$ 1.e.

$$
\left\{\left[\bigcup_{k=1}^{\infty}\left\{\left(O_{k}\right)^{\prime}\right]_{p_{\alpha}}\right\}^{\prime \prime}=R(0)_{\alpha}^{\prime}\right.
$$

whence desided property follows immediately. The proof o:: II- d is analogous.

V and VI fo: low from the Araki-Borchers theorem (see proposition 2,19 below) stating that translation operators $U(a)$
belong to R. Due to this theorem, $P_{\infty} \in U(M)$ and the induction $U(M)^{\prime \prime} \rightarrow U(M)_{P_{\alpha}}^{\prime \prime}$ defines in the sector ${ }^{i f}$, s-continuous unitary representation $U \alpha$ of translation group, satisfying V, VI. Properties of the representations U and $U \not{ }_{A}$ will be considered in more detail at the end of this section in connection with the discussion of vacuum sector.

Finally, in the last assertions of propositions 2.1 those for a A_{d} and R_{α} are obvious (due to (DW-18) , So we have to prove only that $O_{2}=\bar{A}_{x}$. At first let us remark that the induction $\mathrm{K} \rightarrow \mathrm{R}$ a being a * - homomorphism, 1mage a_{+}of C^{*}-algebra cr c is also a $C^{\frac{K}{K}}$ algebra, whence it follows that

$$
r_{\alpha} \supset \bar{A}_{\alpha} .
$$

Let us obtain an inverse inclusion. For each $A_{A} \in Y_{n}$, there is $A \in O$ such that the restriction $A \mathcal{H}_{2}$ of A to 'H is equal to $A \neq$. If $\left\{B^{n}\right\}_{n=1}^{\infty}$ is a sequence of local observables $B^{n} \in A \quad u$-converging to A, then the rest:rictions $\left.B^{n}\right|_{\mathcal{H}_{\alpha}} \equiv B_{\alpha}^{n}$ belong to A_{α} and form the sequence $\hat{1}_{B_{x}}^{n} ; \beta_{n}^{\infty}$, u-converging to A_{α} in virtue of $\left\|A_{\alpha}-E_{\alpha}^{\prime \prime} i_{-t_{\alpha}}=\right\| A_{\alpha}-Z_{n} \|$. This means that $i_{\alpha} \in \bar{A}_{x}$ hence the result follow:.

As a consequence, there arise in our scheme two kinds of local observable theories: the "full" theory in $=x$ and the sectorial or " coherent" theories in earh " + , Henceforth we shall study both these kinds of theo:ies in parallels. flrst of all we see that a number of well-known results obtained in the Hag-Araki theory holds automat: cally in our scheme. These are the results, which can be proved using the axioms I - VI only, without any assumptions abol.t the structure of global algebra R. Such results are valld in our
formalism fo: full algebras as well as for sector ones. The most impartant of them are the following: the theorem by Borchers in ideals in quasilocal algebra O; the ReebSchlieder th:orem on analytical for the energy vectors; the theorem by Brchers about belonging of translation operators to algebra R .

Luch of these theorems implies in our formalism a number oí impor iant consequences and so appears to be a kernel of a certain complex of properties. Now we shall consider these three somplexes in consequtive order. Proposition ?.2 (Borchers /12/).

Let the x ixioms I - III, V, VI be satisfied. Then the set $J \subset C$ is a closed two-sided ideal in $C(i f$ and only if $J \cap 3$ is a non-trivial ideal in 3 .

This leals immediately to important results.

Theorem 2.3

Let quantum theory in ${ }^{\prime} \in{ }^{\prime}{ }^{\prime}{ }^{\prime} p$ be given and the axioms I-III, V, VI be satisfied. Then quasilocal algebra O as well as quasllocal sector algebras O, are simple.

Proof. Taking into aocount the propositions 2.1 and 2.2 and the theorem [we see that sector algebras $O \alpha$ cannot contain closed two-sides ideals,because the centre of R is being tri. vial. As a consequence, the $C^{*}-a l g e b r a \alpha_{\alpha}$ cannot contain any two-sided idэals, i.e. $\quad r_{\alpha}$ is simple for any $\alpha \in \sigma$. Let us assump now that there is a two-sided ideal $\mathrm{J} \neq\{0\}$ in O. Then there exists always some $\alpha_{0} \in \sigma$ such that $J_{\alpha_{0}} \neq\{0\}$, where $J_{J_{0}}$ is the image of J under the induction $R \rightarrow R_{\alpha_{0}}$ defined by projection $P_{\alpha_{0}} \in 3$. It is easy to see that $J_{\alpha_{0}}$ should be a two-sided ideal in $O_{x_{0}}$
in contradiction with the simplicity of the litter. Thus O is simple.

Let us note here that global algebra R of the $\mathcal{H}=H_{p}$ class (with nontrivial σ) can never be simpi.e because the inductions $R \rightarrow R_{\alpha}$ are $*$ homomorphisms with nonzero kernels. Further, due to the fact that $R(0, i c o s$ but in general ouse $R(\tilde{0}) \not \subset$ or for $\tilde{0} \notin B(M)$, the simplicity of $o r$ (and non-simplicity of R) induces differences between proparties of observable algebras associated with the bounded and unbounded regions. These differences will play the most essential part in $\S \S 3,4$ where we study field-like properties of our theory. Here we collect another consequences of the simplicity of G, which are also of importance, but are not related to field-like properties.

Theorem 2.4 (Global nature of superselection rules).
Ie quantum theory of the $\neq \mathscr{H}_{p}$ class be ε iven and all the axioms I-VI (except possibly IV) be satisfied. Then centre 3 of global algebra R does not contain ether local or quasilocal observables:

$$
\theta \cap 3=c(x)
$$

Proof. Let us take an arbitrary operator $S \in Q \cap 3, S \neq 0$. Due to the theorem 1.3, item 2 and the proposition I.6, $S=$ $\sum_{\alpha \in \sigma} S_{\alpha} P_{\alpha}$ and due to $S \neq 0$ there is $\alpha_{0} \in \sigma$ such that $S_{\alpha_{0}} \neq 0$. Let us introduce restriction $\pi_{\alpha_{0}}$ of the induction $\hat{\pi}_{\alpha_{0}}$: $R \rightarrow R_{d_{0}}$ to the algebra $O \Pi_{d_{0}}$ is a $*$-representation of G in $B\left(X_{\lambda}\right)$. Considering this representation on the element $T=\left(I-S_{d_{0}}^{-1} S\right) \in O_{\text {we obtain }}$

$$
\pi_{d_{0}}(T)=T p_{\alpha_{0}}=P_{\alpha_{0}}-S_{\alpha_{0}}^{-1} S_{p_{d_{0}}}=0
$$

i.e. $T \in \operatorname{ker} \Pi_{0}$. However, O is simple C-*algebra and so ker $\Pi_{o_{0}}=0$ what implies $T=0$. Whence it follows that $S=S_{\alpha_{0}} I \quad I_{3} ; S_{\alpha_{0}} \in C^{1}$ and $a \cap B=d(y)$.

In terms (f our theory of superselection rules the result of the theorea 2.4 means that all superselection operators, and first of $\varepsilon, l l$, the projections P_{α} on coherent sectors, are purely glebal observables. For a long time this fact was assumed for physical reasons but had no general axiomatic proof Corollary 2.5

Let quantim theory in $\mathscr{H}=\mathscr{H}_{p}$ satisfy the axions I- $\alpha-V I$ and the regior. D be an ndiamond $n, D=D "$. Then

1) local algelras $R(D)$ are factors,
2) $3\left(D^{\prime}\right) \subset 3$
3) seotor obstrvable algebras $R(D)_{\alpha}$ and $R(D)_{\alpha}$ are factors. Proof. Statements of the point (3) follow from (I) and (2) respectively. To deduce the latter let us use the result by Kraus /II/, alscording to which the axioms I- α and IV imply $R\left(D \cup D^{\prime}\right)=R$ Whence it follows with the aid of the axiom II that $R(D)^{\prime} \cap K\left(D^{\prime}\right)^{\prime}=R^{\prime}$. From here the axiom III gives immediately $\because(D) \subset 3$ and $3\left(D^{\prime}\right) \subset 3$. The statement (2) is prored, and so i: (1) if we take into account that

$$
B(D) \times c \text { and } c \cap B=d(x) \text {. }
$$

Corollary 2.6
Quantum tieory of the $\mathscr{H}=\mathscr{H}_{p}$ class satisfying the axioms I-VI, satisfi:s also the postulate of extended locality /13/ i.e. for any two diamonds D_{1} and D_{2} space-like to each other

$$
R\left(D_{1}\right) \cap R\left(D_{2}\right)=C(x)
$$

Proof. Due to the axiom III and corollary 2.5

$$
R\left(D_{1}\right) \cap R\left(د_{\bar{\Sigma}}\right) \subset K\left(D_{1}\right) \cap R\left(D_{1}\right)^{\prime}=3\left(D_{1}\right)=C(+) .
$$

Besides the extended locality for diamond; the theory in $\not \mathscr{H}_{\rho}=$ satisfies the strict locality condition $/ I I, 14$, 15/.

Proposition 2.7

Let $\mathscr{H}=\mathscr{H}_{p}$ and the axioms I-VI be satisfiell. If region $0 \in B(M)$ is space-like to diamond $D, A \in R(1), B \in R(D)$ and $A \neq 0, B \neq 0$, then $A B \neq 0$.

Proof consists in direct application of tre following general

Lemma 2.8
Let R_{1} be a faotor in Hilbert space \mathcal{S}_{ρ} and $R_{2} C$ $\subset B(S)$ be a W^{*}-algebra commuting with $R_{1}: R_{2} \subset R_{1}$. Then for all pairs $0 \neq A_{x} \in R_{k}, k=1,2$ we have $A_{1} A_{2}=\neq 0$.
Proof of the lemma. Let us assume that $\Lambda_{1} A_{2}=0$. Since $\Lambda_{1} \neq 0$ there exists $\Phi \in \mathcal{S}_{2}$ such that $A_{1} \Phi \neq 0$. Further, K_{1} being a factor, we have $Z^{\prime}=\beta(\sqrt[S]{ })$. This gives us

$$
S_{Q}=x_{A_{1} \varphi}^{3^{\prime}}=J_{A_{1}}^{R_{1}} \gamma, \text { ige } j \sum_{\varphi}^{\prime}=H_{1}^{R_{1}^{\prime}}
$$

By the other side, taking into account that $\Lambda_{2} \in R_{2} \subset R_{1}^{\prime}$ we obtain

$$
A_{2} S=A \underbrace{R_{1}^{\prime}}_{A_{1} B r}=H t_{A_{2} A_{1} r 22}^{R_{1}}=0
$$

and this is in contradiction with $A_{2}=0$. Proposition 2.9 (Borchers /12/)

Let all the axions I-VI (except possibly IV) be satisfied and regions 0_{1} and 0_{2} be such that $0_{1} \subset 0$ and $0_{1}^{\prime} \cap \theta \neq \theta$. Then every projection $P \in R\left(O_{1}\right)$ is infinite wi h respect to the algebra $R(0)$.

In the the ory of the $\mathrm{M}=\mathrm{H}_{\mathrm{p}}$, class for any region $0 \subset \mathrm{M}$ (bounded or n, t) full local algebras $R(0)$ and sector local algebras $R(0)$ as well as commutants $R(0) ; R(0)_{\alpha}^{\prime}$ are infinite $W^{\#}$-algebris.

The proof of this fact in the original works / $16-18 /$ was based on tie assumption that $R(0)$ (or $R(0)_{\alpha}$) possess cyclic and sepurating vectors. According to $\S 1$ results, in our theory this assumption can be not valid in general case. Corollary 2.11
$\Lambda 11$ coherent sectors H_{α} are infinite-dimensional, i.e. in terms of § 1

$$
\underset{\alpha \in 5}{\forall} x_{\alpha} \geqslant \lambda_{0}
$$

Corollary 2.12

Iet \bar{i} be an arbitrary region (possibly unbounded one) with $\widetilde{0} \neq \varnothing$. Then $\mathrm{R}(\overline{0}) \neq \mathrm{K}$. Proof. $\tilde{0}^{\prime} \neq \psi$ implies the existence of a non-void open region $O_{1} \subset \tilde{O^{\prime}}$. For this region the assumption $R(\tilde{0})=R$ leads to $\quad R\left(C_{1}\right) \subset R\left(\tilde{O}^{\prime}\right) \subset R(\bar{\sigma})^{\prime}=R^{\prime} \subset R\left(O_{1}\right)^{\prime}$
i.e. $R\left(O_{1}\right)$ is abelian what contradicts to the corollary 2.10.

Developmert of the corollary 2.12 leads to the following Proposition 2.13 (Vightman's inequality /16/)

Let $y_{i}=y_{j}^{\prime}$, the axioms $I, I I-\alpha$, III, V be satisfied and $O_{1} \subset 0 \subset M$. If the euclidean distance $d\left[\partial O_{1}, d O\right]$ between the buundaries ∂O_{1} and $\partial 0$ of the regions O_{1} and 0 is strictly positive then

$$
\underset{N \in \sigma}{\forall} R\left(O_{1}\right)_{\alpha} \neq R(O)_{\alpha} \quad \text { and } \quad R\left(i_{1}\right) \neq R(C)
$$

Proof. Let us assume that $R\left(0_{1}\right)_{\alpha}=R(0)_{\alpha}$ for some $\alpha \in \sigma$ It follows from $d\left[\partial O_{1}, \partial 0\right]>0$ and proposition 2.1 that there exists a neighbourhood N of zero in M such that

$$
\underset{b \in N}{\forall} R\left(0_{1}+b\right)_{\alpha}=U_{\alpha}(b) R\left(0_{1}\right)_{\alpha} U_{2}(-b) \subset R(0)_{\alpha}:=R\left(0_{1}\right)_{\alpha} .
$$

Since any vector $a \in M$ can be represented as sum of vectors from N, so

$$
\underset{a<M}{\forall} R\left(O_{1}+a\right)_{\alpha}=R\left(O_{1}\right)_{\alpha}
$$

Hence $R_{\alpha}=\bar{V}_{a \in M} R\left(O_{1}+a\right)_{\alpha}^{w} C R(c)_{\alpha} 1 . e . R_{\alpha}=R\left(O_{1}\right)_{\alpha} \quad$ in contradiction with the corollary 2.12.

Further information about the structure of R ' 0), O, R in the theory of the $\mathcal{H}=\mathcal{H}_{p}$ class can be extracted from the analysis of the set of all analytic for the energy vectors. Definition 2.2

Let P^{0} be the generator of time translations (the energy operator). Vector $\forall \in \mathscr{X}$ is called an analytic :'or the energy vector if $\forall=\forall \in \operatorname{dom}\left(P^{0}\right)^{n}$ and the series $\sum_{n=0}^{\infty}\left\|\left(P^{0}\right)^{n} \psi\right\| \frac{2^{n}}{n!} \quad$ has non-zero radius of convergence. The set of all analytic for the energy vectors will te denoted as \mathcal{M}

Proposition 2.14

Let $H=H_{p}$ and the axiom V be satisfied. Then
a) the set M is linear and dense in H,
b) there is in every coherent sector H_{α} a linear dense set M_{\not} of vectors analytic for the energy and there are pure vectors in \varkappa_{α} so that $\varkappa_{\alpha} \cap \rho \neq \varnothing$
c) the set $\mathcal{M} \cap \mathcal{H}_{i}$ is linear and dense in every subspace $\mathcal{H}_{i} \subset \mathcal{H}$ such that the projection $P_{1} \in R^{\prime}$.
d) $\Psi^{\circ} \in \chi$ inplies $R^{\prime} \Psi^{\circ} \subset \chi$. If, besides this, ψ is pure, i.e. $\psi \in \mathcal{M} \cap \rho$ then $\mathcal{Y}_{\psi}^{1} \subset M$ and $\mathcal{H}_{\psi}^{R^{\prime}} \subset M$. Proof. The overator P^{0} being self-adjoint, (a) follows from the well-knoin Nelson's criterion of self-adjointness. Other assertions citn be deduced in a straightforward way from the definition 2.2 and properties of cyclic subspaces $\operatorname{He}^{R} \psi$ and $\chi_{Y^{\prime}}^{R^{\prime}} \quad$ givun, for example, in $/ 1 /$.
Proposition 0.15 (Reeh-Schlieder /19/, Borchers /3/).
Let the ixioms II- $\alpha, V, V I$ be satisfied. Then for any vector ψ anilytic for the energy and for any region $\widetilde{0} \subset \mathrm{M}$ (unbounded il general case, but spatially incomplete)

$$
\psi_{\psi}^{R(\tilde{O})}=\operatorname{H}_{\psi}^{R}
$$

If in addition ψ^{*} is separating for \mathcal{Z}, then it is separating for all $K(\tilde{0})$ and all $R(\tilde{0})^{\prime} \cap K$.

Proof. The first part of the statement is virtually proved by Borchers $\ln / 3 /$ and he proved also that when ψ is separating for $3, \mathcal{Y}$ is separating for all $R(0)$ and all $R(0)^{\prime} \cap R$ with $0 \in B(M)$. The extension of these results to unbounded regions can be made straightforward. Let $\tilde{0}$ be unbounded region with $\tilde{0}^{\prime} \neq \phi$. Then there exist $0_{1} \subset \tilde{0}^{\prime}$, $O_{1} \in B(M)$ and by the axiom $\operatorname{III} R\left(O_{1}\right) \subset R(\tilde{0})$ as well as $\overline{R\left(O_{1}\right) V R^{\prime}}{ }^{w}$ C: R($\left.\tilde{U}\right)^{\prime}$ This means that all vectors separating for $R\left(O_{1}\right)^{\prime} \cap K \quad$ are also separating for $R(\tilde{0})$. Finally, taking any $C_{2} \subset \tilde{0}, O_{2} \in B(M)$ we see that all vectors separating for $R\left(C_{2}\right)^{\prime} \cap R$ are also separating for $R(\tilde{O})^{\prime} \cap R$ and the profosition is proved.

Corollary 2.16

Every vector ψ analytic for the energy and lying in the coherent sector \mathscr{H}_{α} is cyclic for $\overline{R(\tilde{U})_{\alpha} \backslash R_{\alpha}^{\prime}}$ and separating for $R(\tilde{0})_{\alpha}, \tilde{0} \subset M$ being any region with $\tilde{0}^{\prime} \neq \phi$. Proposition 2.17

Let $\mathcal{H}=\mathscr{H}_{p}$ and all the axioms $I-V I$ be saisisied, except possibly IV. Then for any spatially incomplete: region $\tilde{0} \subset \mathrm{M}$ there are the following necessary and sufficient conditions of the existence of cyclic vectors for sector $R(0)_{2}$ and full $H(0)$ local algebras respectively:
$\underset{\psi_{\alpha}^{\prime} \in X_{\alpha}}{\exists} H_{\psi_{\alpha}^{\prime}}^{R(\tilde{0})_{\alpha}}=\mathcal{H}_{\alpha} \Longleftrightarrow \mathscr{X}_{\alpha}^{\prime} \leq \lambda_{c}^{r} \quad(2.3-2)$

Proof. According to proposition 1.9 the following relation takes place:

$$
H_{p_{\alpha} \in H_{\alpha}}^{R} H_{\alpha} \Leftrightarrow X_{\alpha}^{\prime} \leqslant X_{,} \quad \text { (2.4) }
$$

From here the formulas (2.3- x, β) will be deduced as follows.
a) If Ψ_{α} is cyclic for $R(\tilde{0})_{\alpha}$ then ψ_{α} is cyclic for K_{α} and consequently $X_{\alpha}^{\prime} \equiv X_{0}$.
b) Let now be $\mathscr{X}_{\alpha}^{\prime} \leq X_{c}$ then there exists in virtue of (2.4) a vector P_{α} cyclic for R_{α}. In this case the vector $\psi_{\alpha}=e^{-P^{0}} \Phi_{\alpha}$ is also cyclic for R_{α} and is in addition analytic for the energy. Hence it follows that due to proposition 2.15

$$
H_{\psi_{\alpha}}^{R(\tilde{o})}=H_{\psi_{\alpha}}^{R}=H_{\alpha}
$$

1.e. ψ_{α} is cyclic for $\mathrm{R}(\tilde{0})_{\alpha}$.
c) The conditisn (2.3- β) follows from (2.3- α) if we take into account tlat R-cyclic vector exists if and only if card σ $\leqslant \lambda_{0} \quad$ and R_{d}-cyclic vectors exist for all $\alpha \in \sigma$, According $.0(1.10)$ every coherent sector can be represented in the :orm

$$
\begin{equation*}
H_{x}=\oplus_{\left\{P_{k, x}\right\}} H^{R}{P_{k, \alpha}}^{R} \tag{2.5}
\end{equation*}
$$

where $\left\{P_{\alpha, \alpha}\right\}_{k \cdot K_{\alpha}^{\prime}} \quad$ is an orthonormal basis in $\mathcal{H}_{P_{\alpha}}^{R^{\prime}}$ and $P_{c \alpha} \in \hat{\jmath} \cap i \tau_{\alpha}$. Tbis leads to the following corollary convenient for application.

Corollary 2.18
Under the issumptions of the preceding proposition, any vector $\mathcal{\psi}_{\alpha} \in \mathcal{Z} \hat{\psi}_{\alpha}$ analytic for the energy is cyclic for $R(0)_{2} \quad$, if it possesses non-zero projections on each subspace $\mathscr{H}_{P_{k, \alpha}}^{R}$ from some decomposition of the form (2.5). The set of all such vectors will be denoted as $\Upsilon_{\not, \infty}$. The point (b) in the proof of the proposition 2.17 shows that this set is non-void.

The last cyole of properties we want to describe in this section concerns with the structure of the representation U of the translation group M in $\neq \neq \mathcal{H}_{p}$.
Proposition 2.19
Let $\mathcal{H}=Y, p$ and all the axioms $I-V I$ be satisfied, except. possibly IV. Iben
a) all translition operators $U(Q)$ belong to R,
b) speotrum of the representation U as well as spectrum of the restricticn U_{2} of U to any conerent sector H_{α} is unbounded.
c) translation operators $U(\alpha)$ cannot represent superselection operators:

$$
U(M)^{i \prime} \cap 3=G(J E)
$$

d) the set of all translationally invariant observables contains the centre $\sqrt{3}$ but does not coincide with it:

$$
\begin{equation*}
U M)^{\prime} \cap R \underset{\neq 3}{ } \tag{2.6}
\end{equation*}
$$

e) quasilocal algebra \mathcal{T} does not contain non-trivial translationally invariant observables

$$
U(M)^{\prime} \cap C=(\mathcal{C}(X)
$$

what implies, in particular, that all spectral projections of the energy-momentum operator are purely global observables. Proof.
a) is the well-known Borchers' theorem $/ 20 /$,
b) According to the same work by Borchers /20/, t.ie spectrum of translation group representation is unbounded :.f there exists a region $0 \in B(M)$ and a neighbourhood N of he wero in M suoh that ${\bar{V} \underset{a \in N}{ } R(O+a)}^{w} \neq R$. Remembering the corcllary 2.12 we conclude that this inequality takes place for :ull as well as sectorial theories and for any region $0 \in E(M)$ cnd any bounded neighbourhood of the zero in M.
c) If there exists a translation $a \neq 0$ such that $U(a) \in 3$ then all spectral projections of the representaticn U belong to 3 , and this gives $U(M)^{\prime \prime} \subset Z_{\text {. }}$. In this case the restriction U_{α} to any sector H_{α} is a trivial representation with bounded spectrum, what is impossible according to the preceding point.
d) First part of this assertion is the well-known Araki
theorem /21/ ind follows in our case from (a). The inequality in (2.6) follows from (c) and (a) put together.
e) Let us prore firstly the corresponding result for the coherent sector: :

$$
\begin{equation*}
v(M)_{\alpha}^{\prime} \cap \tau_{\alpha}=\varepsilon\left(\mathcal{H}_{\alpha}\right) . \tag{2.7}
\end{equation*}
$$

Taking into arscount that all $\mathcal{\Psi}_{\alpha} \in \mathcal{H}_{\alpha}$ are separating for $\exists_{<\chi}=£\left(\psi_{\alpha}\right)$ and repeating Borchers' arguments in the proof of theorem I in $/ 3 /$, it is easy to show that for any $A_{\alpha} \in$ $\in O \mathcal{L}_{a} \quad$ there: exists a sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ of space-like vectors $a_{n} \in M$ such that

$$
U_{\alpha}\left(a_{n}\right) A_{\alpha} U_{\alpha}\left(-a_{n}\right) \xrightarrow{w} z_{\alpha}\left(A_{\alpha}\right) I_{\alpha}
$$

where $z_{\alpha}\left(A_{\alpha}\right)$ is complex number depending on A_{α} in general case. Hen:e, if $B_{\alpha} \in G_{\alpha}, M(M)_{\alpha}^{;}$then $z_{\cdot \alpha}\left(B_{\alpha}\right) I_{\alpha}=$ $=w-\lim U_{\alpha}\left(a_{n}\right) P_{\alpha} L_{\alpha}\left(-a_{n}\right)=B_{\alpha} \quad$ what means exactly (2.7). Now let us taie an arbitrary $\Lambda \in U(M)^{\prime} \cap C l$. In virtue of (2.7), $A=\sum_{\alpha} z_{\alpha} P_{\alpha}$ and for the algebra of the $\mathcal{H}=\mathcal{H}_{p}$ class this is equivalent to $A \in \mathcal{B}$. In other words, $A \in L(M)^{\prime} \cap C^{+}$. implies $A \in O \cap B$ and this is equal to $己(\lambda)$ due to iheorem 2.4.

Now let u; consider the set T of all translationally invariant veciors in \mathcal{H} :

$$
V \doteq\{\Omega \in H \mid \underset{a \in M}{\forall} v(a) \Omega=\Omega\}
$$

\checkmark being a subspace, let us denote the corresponding projection as $P_{\text {, }}$. It is clear that $P_{\mathcal{V}} \in U(M) \cdots \subset$. The struc. ture of the sibspace V appears to be governed by the property of asymptotical abelianness of π.

Proposition 2.20

Let $\nVdash=H_{p}$ and the axioms I-III, V, VI be satisfied.
Then
a) Quasilocal algebra t is asymptotically abelian with respect to the representation U of the translation group, in the Störmer's sense /22/: for every quasilocal observable $A \in G$ there exists a sequence $\left\{a_{n}(A)\right\}_{n=1}^{\infty} \quad$ of transrations $a_{n}(A) \in M$ depending on A in general case and such that

$$
\lim _{B \in む}^{\forall} \lim _{n \rightarrow \infty} \|\left[U\left(a_{n}(A)\right) A \cup\left(-\dot{a}_{n}(A)\right), B\right] \dot{\|}=0
$$

b) All translationally invariant vectors 2_{3} belonging to coherent sector \mathcal{H}_{β} are pure:

$$
\begin{equation*}
t_{\beta \in \sigma} Z_{\beta}^{\prime} \doteq \chi^{-} \cap \mathcal{H}_{\beta} \in \rho \tag{2.9}
\end{equation*}
$$

c) For every non-zero $\Omega_{\beta} \in \mathcal{Z}_{\beta}^{\prime}$ the projection is β on the subspace $H_{\Omega_{\beta}}^{R} \cap \Upsilon \Gamma$ consisting of all translationally invariant vectors in the cyclic subspace χ_{Ω}^{κ}; is one-dimensional

$$
\begin{equation*}
E_{\beta} \doteq P_{\Omega_{F}}^{R} F_{\gamma}=P\left[\Omega_{\beta}\right] \tag{2.10}
\end{equation*}
$$

where $P\left[\Omega_{j}\right]$ is the projection on subspace spanned by the vector Ω_{β}.
Proof. Formula (2.6) can be deduced with the aid of the fact that h and B from C can be uniformly approximated with arbitrary exactness by elements from local algebras $R\left(O_{A}\right)$ and $R\left(O_{B}\right)$ respectively. Since O_{A} and O_{B} are chosen, tie sequence $\left\{a_{n}(A)\right\}_{n=1}^{\infty}$ should be chosen in such a way that
the region $0+A_{n}(A)$ becomes space-like to O_{B} in the limit $\mathrm{n} \rightarrow \infty$. Further, properties (2.9) and (2.10) follow from general theory of asymptotically abelian C^{*}-algebras (see, for instance, the theorem i5.2/ of Störmer's work).

Now let us denote as ${ }^{5}$ z the set of all coherent sectors \mathcal{H}_{ρ} containing at least one translationally invariant vector:

$$
\sigma_{v} \doteq\left\{\beta=\sigma \mid \mathcal{H}_{\beta} \cap \mathcal{L}^{-} \neq 0\right\}
$$

Projection on the set 7_{β}^{r} defined in the formula (2.9) will be denoted as $P_{r_{\beta}}$. It is easy to see that

$$
P_{Z_{\beta}}=V_{\Omega_{\beta}}^{L_{1} M} \quad \text { for any } \Omega_{\beta} \in V_{\beta} \text { (2.12) }
$$

Theorem 2. 2^{3} (Uniqueness of the vacuum state in the coherent sector).

The set of coll normed translationally invariant vectors belonging to a i ivan sector $\mathscr{H}_{\beta}, \beta \in \mathcal{J}_{2} \quad$ coincides with the H-1marge of unique pure vector state $\omega_{\Omega_{\beta}} \in \operatorname{PV}(R)$:

$$
\begin{equation*}
\forall_{\beta \in v_{V}} \eta_{\beta}^{-} \cap S^{1}=\gamma M_{\Omega_{j}}^{1} \tag{2.13}
\end{equation*}
$$

Ω_{β} being any wormed vector from \mathcal{L}_{β}. The formula (2.13) is equivalent t,

$$
\begin{equation*}
F_{z_{\beta}}=P_{\Omega_{\beta}}^{\cup(M)^{\prime}}=P_{\Omega_{\beta}}^{R^{\prime}} \tag{2.14}
\end{equation*}
$$

The set $\underset{\beta \in \sigma_{\sigma}}{\bigcup} Z_{j}$. of all pure translationally invariant vectors is dens? in the set \downarrow^{\smile} so that

$$
\begin{equation*}
T V=\underset{\beta \in \sigma_{V}}{ } V_{\beta} \tag{2.15}
\end{equation*}
$$

Proof. The formula (2.13) will be proved on the basis of the points b) and c) in proposition 2.20. According to c),

If the subspace $\mathcal{H}^{R}{\Phi_{\beta}}^{R}$ with $\psi_{\beta} \in{ }_{\beta}$ contains a normed translationally invariant ray Ω_{ρ}, then such a ray is unique in $\mathcal{H}_{\Phi_{\beta}}^{R}$, and in addition such $\mathcal{H}_{P_{\beta}}^{R}$ is irreducible due to b). Further, owing to the formula (2.12), the following simple relation takes place:

$$
\begin{equation*}
\Omega_{\beta} \in V_{\beta} \Rightarrow \psi_{\Omega_{\beta}}^{R^{\prime}} \pm V_{\beta} \tag{2.16}
\end{equation*}
$$

Now let us assume that there can be found in the sector two different translationally invariant states, say, $\omega_{R_{1}}$ and $\omega_{\Omega_{i}^{\prime}}$ Then irreducible subspaces $H_{\Omega_{1}}^{R^{\prime}}$ and $H_{\Omega_{2}}^{R^{\prime}}$ of R^{\prime} do not intersect with each other and, on the contrary, they inter sect non-trivially with every irreducible subspace H_{φ}^{R} of R (see the corollary to the proposition 13 of $/ 1\rangle$. Hence it follows together with (2.16) that, for instancy for $_{\Omega_{1}}^{R}$ conthins two different normed translationally invariant rays. This contradicts c) in proposition 2.20 and so (2.13) is prored. The equivalence of (2.13) and (2.14) is obvious in the light of the properties (I.2) and (I.3) of Hi naga.

Finally, the formula (2.15) follows from tie definition of $\mathcal{T}_{\mathcal{F}}$, the mutual orthogonality of coherent sectors and the relationship

$$
P_{V}=\left(\sum_{\alpha \in \sigma} P_{\alpha}\right) P_{V}=\sum_{\beta \in \tau_{V}} P_{\beta} P_{V}=\sum_{\beta \in \sigma_{V}} P_{V} .
$$

Corollary 2.22
The following enhancement of the point b) in proposition 2.20 takes place: every irreducible subspace H_{Φ}^{R} in the sector $\mathcal{J} \ell_{\beta}, \beta \in \sigma_{\gamma}$ contains one, and only, one normed translationally invariant vector (a vacuum vector, in the usual terminology).

Proof follows :traightforward from the theorem 2.21 and corollary to projosition 13 of /I/.

Results of the statements $2.20,2.21$ and 2.22 provide us with complete description of the "vacuum structure" of an arbitrary theory of the $\overline{j t}={ }^{\prime} \not H_{p}$ class and make it possible to analyze and compare different possible forms of the postulate of the existence and uniqueness of vacuum.

1) In general case (no restrictions on vacuum structure) theory possesses arbitrary set $\sigma \mathcal{V}$ of vacuum coherent sectors \mathcal{H}_{β}, each of them containing the unique and pure vacuum state witt the H -image of the arbitrary dimension. Besides this, there are also mixed vacuum states ω_{Ω}, $\Omega=\sum_{\gamma \in \sigma_{\tau \gamma}} P_{\gamma}, P_{\gamma} \in Z_{\gamma}^{\gamma}$.
2) The weakest possible restriction on vacuum structure is the conditicn of the uniqueness of vacuum sector. According to theoren 2.21 , this condition is completely equivalent to (a priori) nuch stronger one: there exists a unique vacuum state (still with the arbitrary Hrimage).
3) The strcngest (and also the most wide-spread) form of the "vacuum postulates is the requirement of the existence of a unique vacuum vector. This simplest vacuum structure can be described by the following elementary

Corollary 2.23
Let $\mathcal{H}=\mathcal{H}_{p}$. Then the following conditions are equivalent:

1) there exists in \mathcal{H} a unique vacuum vector,
2) the vacuum sector is unique and abelian
3) the vacuum sector is unique and contains a cyclic (for R_{α}, of course) vacuum vector. Proof can be performed easily by any reader.

3.FIELD-LIKE PROPERTIES OF QUANTUM THLOF IES

IN 北 $=\chi_{p}$: BOUNDED REGIONS
Now we have demonstrated that our scheme in " $X=$ " $;$ possesses practically all properties which can le required from a well-developed axiomatic theory of local observables. After this we intend to show that due to its specific global structure the scheme possesses also a wide complex of other properties whicb are characteristic for field theories. However, the real existence of a field appears to be ensured only under still another necessary constraints, besides our starting conditon $\nVdash=\mathcal{H}_{p}$:

It is known for a long time /3-5/ that field properties of algebraic theory are connected with the existence of operators mapping states and observables from one coherent sector into another. A natural way to constructing such operatcrs is to make of our coherent sectors representations of some $C^{* *}-a l g e b r a$ and then to establish equivalence properties of these representations ${ }^{x}$). In other words, as a preliminary we have to reformulate our theory in form of Hag-Kastler's abstract algebraic approache Doing this we must take into account that fundamental algebra of abstract algebraic theory, for which all "concrete" or "coherent" physical theories are its representations, is by its physical meaning the algebra of quasilocal but not global observables. This circumstance was firstiy pointed out by Haag and Kastier /23/ on the basis of quantum measurement theory argu-

[^1]ments. Practically, if we have an abstract C^{x}-algebra $(\pi$ and some physical rypresentation π of $C($, the image $T(\dot{\tau}) \cup B(J)$ is no: a $W^{\#}$-algebra in general case, so it does not include global sbservables and the latter are added only b_{j} the weak closure operation: $\pi(C l) \rightarrow \overline{\pi(C l)}$. Due to this, performing an abstrict reformulation of our theory we should consider not the global, but the quasilocal algebra ct as a fundamental $C^{\#}$-alge ora, representations of which are coherent sectors. Then the inages of these representations should coincide obviously with quasilocal sector algebras $O C_{z}$ and R will play the part of an enveloping w^{*}-algebra of c^{*}-algebra $C 2$.

Thus we shall consider the sectorial structures as representations of quasilocal algebra

$$
\pi_{+}: \quad 0: B\left(x_{+}\right)
$$

and we can define cinonical extensions of these representations to representations of global algebra R :

$$
\hat{\pi}_{\alpha}: R \rightarrow B\left(\not \varkappa_{\alpha}\right)
$$

as well as local restrictions: $\left.\pi_{\alpha}^{(v)} \doteq \pi_{\alpha}\right|_{R(0)}$ for bounded regions $0 \in B(M)$ and $\left.\pi_{\alpha}(\vec{c}) \doteq \pi_{\alpha}\right|_{\sigma(C)} \quad$ for unbounded regions 0. All representations introduced we shall set in a completely explicit form by defining the mappings $\pi \rightarrow B\left(y_{\alpha}\right)$ as follows
$\underset{A \in G}{\forall} \quad \pi_{\alpha}: A \rightarrow A_{P_{\alpha}}$
what implies

$$
\underset{A \in R}{\forall} \hat{\pi}_{\alpha}: A \rightarrow A_{P_{\dot{\alpha}}}
$$

In other words, we realize the representatio.1s $\hat{\prod}_{\alpha}$ as the inductions (because of $P_{\alpha} \in R^{\prime}$) of $W^{3}-a l g o b r a$ R. In this point our scheme allows a certain arbitrariness, which belongs to its specific distinctions from the ussal HaagKastler formalism. In fact, by giving a coherent sector we determine only the space \mathcal{H}_{α} of the representation J_{α} and the image $\pi_{\alpha}(\Omega)=\Pi_{\alpha}$ of the latter; but after this the ele-ment-wise action of the $*-$ homomorphism

$$
\begin{equation*}
A \in O \longrightarrow \pi_{\alpha}(A) \in C I_{\alpha} \tag{3.3}
\end{equation*}
$$

still can be very diverse and not at all coinciding with (3.1). Nevertheless, this arbitrariness has no essential influence on equivalence properties of $\pi_{+}, \pi_{\alpha}^{(0)}, \prod_{\alpha}^{(\tilde{c})}$ (we are only interested in). As can be seen, for example, from wellknown criterions of quasuequivalence and unitary equivalence of representations
$\pi_{\alpha} \approx \pi_{\beta} \Longleftrightarrow 3-\operatorname{supp} P_{\alpha}=3-\operatorname{supp} P_{\beta} ; \pi_{\alpha} \simeq \pi_{\beta} \Leftarrow V\left(\pi_{\alpha}\right)=V\left(\pi_{\beta}\right)$. $\left(V(T) \subset C \pi^{*}+\right.$ being the set of all vector functionals in the representation π) the relations \because and $=$ are completely determined by spaoes $\mathscr{H}_{\alpha}, \mathcal{H}_{\beta}$ and algebras $\pi_{\alpha}(a)$, $\pi_{\beta}(O Z)$ and the same is valid, of course, for any restriction $\left.\pi_{\alpha}\right|_{\sigma_{1}}, C Z, C O T, 0 n l y$ weak equivalence, $\pi_{\alpha} \sim \pi_{\beta}$ depends on the element-wise correspondence (3.3), according to the oriterion ker $\mathbb{T}_{\alpha}=$ ker \mathbb{T}_{β}, However in this case it is obvious that
such a choice of the correspondence (3.3) will be physically preferable, which ensures the fulfillment of weak equivalence and we shall show that this is just the case for the corvespondence (3.I). re can now summarize that the choice of the correspondence ($: .3$) makes no difference for equivalence relations \approx and \simeq, and for the relation \sim the choice of this correspondence in the form (3.I) is preferable. So it is this choice that will be accepted by us from now on.

Now when the reformulation of our scheme in form of the family of $C^{\boldsymbol{H}}$-alg brarepresentations is completely stated, let us give

Definition 3.I
coherent superselection sectors \mathcal{H}_{α} and \mathcal{H}_{β} characterized by representations π_{α} and π_{β} of quasilocal algerra $O C$ will be called:

1) physically equivalent, if $\Pi_{\alpha} \sim \Pi_{\beta}$

2,3) locally (as:mptotically) physically equivalent, if
$\pi_{\alpha}^{(0)} \sim \pi_{\beta}^{(0)}\left(\right.$ resile.,$\left.\pi_{\alpha}^{\left(0^{\prime}\right)} \sim \pi_{\beta}^{\left(0^{\prime}\right)}\right)$ for all $0 \in B(M)$,
4) quasiequivalent, if $\pi_{\alpha} \approx \pi_{\beta}$

5,6) locally (as:mptotically) quasiequivalent, if $\pi_{\alpha}^{(0)} \approx \pi_{\beta}^{(0)}$ (resp., $\pi_{\alpha}^{\left(0^{\prime}\right)} \approx T_{\beta}^{\left(0^{\prime}\right)}$) for all $0 \in B(M)$,
7) unitarily equ: valent, if $\pi_{\alpha} \simeq \Pi_{\beta}$

8,9) locally (asymptotically) unitarily equivalent, if $\pi_{\alpha}^{(0)} \simeq \pi_{\beta}^{(0)}\left(\right.$ rasp. $\left.\pi_{\alpha}^{(0)} \simeq \pi_{\beta}^{(0)}\right)$ for all $0 \in B(M)$.

It is clear that any equivalence property of representstions $\pi_{\alpha}, \pi_{\beta}$.plies the same property of their restrictrons $\left.\pi_{\gamma}\right|_{\sigma_{1}} f i r$ any $\sigma_{1} \subset O a^{\prime}$ and analogously any equivalance relation between $\pi_{\gamma}^{\left(0^{\prime}\right)}$ implies the same relation
between $\pi_{\gamma}^{(0)}$ because always $U<0_{i}^{\prime}$ for some $0_{1} \leqslant B(M)$. is a consequence, the following implications take place: $I \Rightarrow$ $3 \Rightarrow 2,4 \Rightarrow 6 \Rightarrow 5$, and $7 \Rightarrow 9 \Rightarrow 8$. By the other side, the usual relations between equivalence properties ($2 \Rightarrow \approx \Rightarrow \sim$) give us $7 \Rightarrow 4 \Rightarrow I, 8 \Rightarrow 5 \Rightarrow 2$ and $9 \Rightarrow 6 \Rightarrow 3$.

In this section we give complete description of equivalence properties of the representations π_{α} and $\pi_{\alpha}^{(0)}$. Proposition 3.I

Let quantum theory of the $\mathcal{H}=\mathcal{H}_{p}$ class be given, satisfying the axioms. Then all coherent sectors are:

1) physically equivalent
2) locally quasiequivalent
3) disjoint

Proof. 1) Physical (i.e. weak) equivalence of the sectors \mathcal{K}_{α} and \mathscr{H}_{β} means that some arbitrary isomorphism of $C C_{\alpha}$ and $0 L_{\beta}$ exists. The existence of the isomorphism follows directIf from the simplicity of $\Pi, O Z$ being simple, all the representations $\Pi_{\gamma, \gamma \in \sigma}$ are faithful and so $t i e$ isomorphisms exist: $\pi_{\gamma} ; O \rightarrow \mathcal{M}_{\gamma, \gamma \in \sigma \text { as well as the i verse isomor- }}$ phisms π_{γ}^{-1}. It is obvious that the composition $\pi_{\alpha \beta} \doteq \pi_{, s} \sim \pi_{\beta}^{-1}$ of the mappings $T_{1,}, T_{\beta}$ exists and represents the desired isomorphism of Π_{α} and Π_{β}. It is also clear that $\pi_{\alpha \beta}$ cannot be extended to isomorphism of corresponding weak closures $R_{\alpha}=\bar{\sigma}_{\alpha}{ }^{w}$ and $R_{\beta}=\bar{\sigma}_{F}{ }^{W}$ because the extensions $\hat{\Pi}_{\gamma}: R \rightarrow R_{\gamma}$ are not faithful representations (due to jer $\Pi_{\gamma}{ }^{\prime}$ $\ni P_{\infty}$ for all $\alpha \in \sigma, \alpha \neq \gamma$).
2) However, local restrictions $\pi_{\alpha}^{(0)}$ of representtions are faithful representations of $R(0)$'s and generate
an isomorphism $T_{\alpha \beta}^{(0)}=\prod_{\partial}^{(0)} 0\left(\pi_{\beta}^{(0)}\right)^{-1} \quad$ which is at the same time the is amorphism of algebras $\pi_{\alpha}^{(0)}(R(0))$ and $\Pi_{\beta}^{(0)}(R(0))$ as well as their weak closures $\left(\pi_{\delta}^{(0)}(R(0))=\right.$ $=R(0)_{\gamma}$ being W^{*}-algebras). Further, from the definition of $\pi_{\alpha \beta}^{(0)}$ we have:

$$
\underset{A \in R(0)}{\forall f} \prod_{\alpha}^{(0)}(A)=\pi_{\alpha \beta}^{(0)}\left(\pi_{\beta}^{(0)}(A)\right)(3.4)
$$

so that $\pi_{\alpha}^{(0)}$ ind $\pi_{\beta}^{(0)}$ are quasiequivalent.
3) Now we stall establish the disjointness of Π_{α} and Π_{β} by proving osthogonality of corresponding central supports. π_{α} and \mathbb{T}_{β},eing subrepresentations of the identical representation $o: C C$, their central supports coincide, by definition, with those of the projections P_{α} and P_{β} in W^{*}-algebra $\overline{U K}^{w,}=R^{\prime}$. Due to $P_{\alpha}, P_{\beta} \in 马$ these central supports coincide with P_{α} and P_{β} and are orthogonal. The property of local quasiequivalence, proved in this proposition, is closely connected with a number of other structural properties of local algebras. In order to describe these connection. we shall prove

Proposition 3.2

Let quantum :heory of the $\mathscr{H}=\mathcal{H}_{p}$ class be given and let \mathcal{M}_{α} be the set if all analytic for the energy vectors from arbitrary se: tor it t . Then the following conditions are equivalent

1) all sectors ane locally quasiequivalent,
2) Inductions $R(1)) \rightarrow R(0)_{P_{2}}$ are isomorphisms,
3) all $\psi_{\alpha} \in \partial \chi_{\alpha}$ are separating for $R(0)$,
4) there exists $\psi_{\alpha} \in \mathcal{H}_{\alpha}$ separating for $\mathrm{F}(0)$,
5) all $\psi_{\alpha} \in \mathcal{Z}_{\alpha}$ are separating for $\left.\overline{3}(C) \doteq R(1)\right) \| R(0)^{\prime}$
6) there exists $\psi_{\alpha} \in \mathcal{H}_{\alpha}$ separating for $3(0)$.

Proof. There are the following obvious implications between the conditions (I -); $2 \Rightarrow 1,3 \Rightarrow 4,5 \Rightarrow 6 ; 3 \Rightarrow 5,4 \Rightarrow 6$ It is easy to verify that it is sufficient now to deduce the relations $I \Rightarrow 2,2 \Rightarrow 3$ and $6 \Rightarrow 2$.
$I \Rightarrow 2$. We wall show that the central support of $\pi_{\alpha}^{(0)}$ as a subrepresentation of the identical representation of $\mathrm{R}(0)$, equal to the central support of P_{z} in algebra $R(0)^{\prime}$, is equal to I . According to general formula, 3 (() -supp $P_{2}=$ $=\mathrm{P}_{H_{2}{ }^{3(0)}}$ and using /DC-5.3.I/ we obtain

$$
\pi_{\alpha}^{(0)} \approx \pi_{\beta}^{(0)} \Longleftrightarrow \rho_{H_{\alpha}}^{3(0)^{\prime}}=P_{H_{\beta}}^{3(0)^{i}}
$$

Let here α be fixed and β run over all the set. $\frac{\sigma}{}$ Then taking into account $I \in R(0)$ we have

$$
H_{\beta} \subset H_{H_{\beta}}^{3(0)^{\prime}}=H^{3(0)^{\prime}}
$$

whence it follows

$$
\begin{aligned}
& \text { follows } \\
& H=\underset{\beta \in \sigma}{ \pm} H_{\beta} \subset H_{H_{\alpha}}^{3(0)^{\prime}} .
\end{aligned}
$$

This means that $P_{\mathcal{H}_{\alpha}}{ }^{3}(0)^{\prime}=I$ and the property 2) is fulfilled. $\underline{2} \Rightarrow 3$. By the Reel-Sohlieder theorem (proposition 2.15) all $\psi_{\alpha} \in \Pi_{\alpha}$ are separating for $R(0)_{\alpha}$. From here we shall deduce with the ald of the condition 2) that all such vectors are separating for $R(0)$. For all $\varphi_{\alpha} \in \mathcal{H}_{\alpha}$ and $0 \notin A \in R(0)$ we have $A_{P_{\alpha}} \Phi_{\alpha}=A \Phi_{\alpha}$. If $\mathrm{R}(0) \rightarrow \mathrm{R}(0)_{\alpha}$ is an isomorphism, then $A=0$ implies $A_{P_{\alpha}}=0$. Thus if ψ_{α} is separating for $\mathrm{R}(0) \mathrm{O}_{\alpha}$ ie.

$$
A_{P_{\alpha}} \psi_{0}=c \Rightarrow A_{P_{\alpha}}=0
$$

then

$$
\underset{A \in R(0)}{\forall} A \psi_{\alpha}=c \Rightarrow A_{P_{\alpha}} \psi_{\alpha}=c \Rightarrow A_{P_{\alpha}}=0 \Rightarrow A=0
$$ q.e.d.

$6 \Rightarrow 2$. Let us use the standart expression for central support of representati on $\pi_{\alpha}^{(0)}: \exists(0)=\operatorname{supp} P_{\alpha}=P^{R(0)^{\prime}}$. We have
$p=P^{R(i)}$. $P_{A 2}=P_{\partial z_{\alpha}}^{R(i)}$ sc $P_{x_{\alpha}}^{R(0)^{\prime}}=P_{x_{x}}^{3(0)^{\prime}}$ and

$$
马(c)-\operatorname{supp} P_{\alpha}=I \Longleftrightarrow L\left\{3(0)^{\prime} \nexists t_{\alpha}\right\}=7
$$

Now it is clear that if there is a cyclic vector for $\overline{3}(0)^{\prime}$ in H_{α} (condition 6), then $\because(0)-\operatorname{supp} P_{\alpha}=I$, whence the condition 2) follows.

As it follows from the conditions 3,4 due to proposition 3.2 everyone from the conditions ($1-6$) implies the foliowing property: $R(0)$ is countably decomposable, Vice versa, the commutant $F(0)^{\prime}$ being an infinite W^{*}-algebra, countable decomposability of $R(0)$ implies the existence of vector separating for it, according to the criterion/(DW-233)/. However we cannot guarantee now that the set of $\mathrm{H}(0)$-separating vectors includes all analytic for the energy vectors from all H_{α} or, at least, one such vector from each \mathcal{H}_{α}. is a result, the countable decomposability of $R(0)$ is the necessary but not sufficient condition of the properties ($I-6$).

Returning to proposition 3.1 and definition 3.1, we see that our theory possesses the equivalence properties 1, 2, 3, 5 and can never possess the properties 4,7. Now to exhaust the problem of describing equivalence properties related to
representations $\pi_{\alpha}^{(0)}$ and $\Pi_{\beta}^{(0)}$ we have onl: to consider the property 8, looal unitary equivalence of soherent sectors. This task is oompletely fulfilled by the following Theorem 3.3.

Let quantum theory of the $\mathcal{H}=\mathcal{K}_{p}$ class be given and let H_{α} and \mathcal{H}_{β} be coherent sectors. Then:
I. Let $x_{\alpha}^{\prime} \leqslant X_{0}$. Then $\pi_{\alpha}^{(0)} \simeq \pi_{\beta}^{(0)}$ if and inly if $x_{\beta}^{\prime} \leqslant X_{e}$ and $x_{\alpha}=x_{\beta}$.
II. Let $\dot{X}_{\alpha}^{\prime}>X_{0}$. Then $\pi_{\alpha}^{(0)} \simeq \pi_{\beta}^{(0)}$ if and only if $x_{\alpha}^{\prime}=x_{\beta}^{\prime}$ and $\left.\operatorname{dim} \mathcal{H}_{\alpha}=\operatorname{dim} \mathcal{H}_{\beta}{ }^{*}\right)$
Proof. Throughout all the proof we shall take into account that according to proposition 3.I.

$$
\begin{array}{lcc}
\forall & \forall & \pi_{\alpha}^{(0)} \approx \pi_{\beta}^{(0)} . \tag{3.5}
\end{array}
$$

The proof consists in the deduction of necessary and sufficient conditions under which the isomorphism corresponding to (3.5) is spatial.

I - sufficiency. According to proposition 2.17, $x_{\gamma}^{\prime} \leq \lambda_{0}$ is the necessary and sufficient condition, under which local algebras $R(0)_{\gamma}$ of arbitrary sector H_{γ} possess cyclic vectors. By the other side, there exists always separating vectors for $R(0)_{\gamma}, \gamma \in \sigma$. As a result, conditions $X_{\alpha}^{\prime} \leqslant X_{S}$ and $X_{\beta}^{\prime} \leqslant \mathcal{X}_{0}$ imply that algebras $R(0)_{\alpha}$ and $K(0)_{\rho}$ both possess cyclic and sepurating vectors. Due tc the well-known criterion /DW-233/, in this case any 1somorplism of the algebras $R(0)_{\alpha}$ and $R(0)_{\beta}$ is spatial.
*) The last condition also can easily be wr.tten in terms of parameters $\mathscr{X}_{\alpha}, \mathscr{X}_{\beta}$ and $\mathscr{X}_{\alpha}^{\prime}, \mathscr{X}_{\beta}^{\prime}$ with the aic of the formula: $x_{\alpha}, x_{\alpha}^{\prime} \geqslant X_{0} \Rightarrow$ dim $\mathscr{H}_{\alpha}=\max \left\{x_{\alpha}, x_{\alpha}^{\prime}\right\}$. Howe ve: such a form is less convenient because it depends on the reliationship between \mathscr{X}_{α} and $x_{\lambda}^{\prime}, x_{\beta}$ and x_{ρ}^{\prime}.

I - necessity. Jet us prove firstly that the conditions $\bar{\lambda}_{\alpha}^{\prime} \leq \lambda_{0}$ and $T_{\alpha}^{(0)} \simeq \pi_{\beta}^{(0)}$ imply $\chi_{\beta}^{\prime} \leqslant \lambda_{0}$. To this and we shall show that if $K(0)_{\alpha}$ has cyclic vectors (what is the case according .0 proposition 2.17) and $\pi_{\alpha}^{(0)} \simeq \pi_{\beta}^{(0)}$ then $R(0)_{\beta}$ has cyclic vectors too. Let $V_{\beta \alpha}(0)$ be isometric operator from H_{α} on \mathcal{H}_{β} implementing unitary equivalence of algebras $K(0)_{\alpha}$ and $K(0)_{\beta}$

$$
\begin{equation*}
V_{\beta \alpha}(c) H_{\alpha}=H_{\beta} ; V_{\beta \alpha}(c) R(c)_{\alpha} V_{\beta \alpha}(c)^{-1}=R(c)_{\beta} . \tag{3.6}
\end{equation*}
$$

Due to /DC-5.I.:?/, the operator $V_{\beta \alpha}(0)$ as intertwining operato of subrepesentations of algebra $R(0)$, has the filowing property:

$$
\begin{equation*}
V_{\beta \alpha}(c) P_{\alpha} \in R(C)^{\prime} \tag{3.7}
\end{equation*}
$$

From here we ob:ain the useful relationship:
$P_{\phi_{\alpha} \in \mathcal{F}_{\alpha}}^{\forall} V_{\beta \alpha}(c) \hat{i} \hat{P}_{P_{\alpha}}^{R(0)}=\mathcal{H}_{V_{\beta \alpha}(0) P_{\alpha}}^{R(0)}$.
In fact, using (3.7), property $P_{2} \in R(0)^{\prime}$ and continuity of $V_{\beta \alpha}(U)$ one olitains (3.8):

$$
V_{\dot{p} \cdot \lambda}(U) \overline{R(0) T_{\lambda}}=\overline{V_{\beta \cdot i}(0) R(0) P_{\alpha}}=\overline{R(0) V_{\beta \times x}(0) P_{\alpha}}
$$

Now we see from (3.8) and (3.6) that $\mathscr{H}_{\varphi_{\alpha}}^{R(0)}=\mathcal{H}_{\alpha}$ implies $\mathscr{H}_{P_{\beta}}^{R(0)}=H_{\beta}$ with $P_{\beta}=V_{\beta \alpha}(v) P_{\alpha}$, i.e. the mapping $V_{\beta \alpha}(0)$ transforms cyclic vectors of $\mathrm{R}(0)_{\alpha}$ into cyclic vectors of $R(0)_{\beta}$. The using; of proposition 2.17 for sector ${ }^{\mathrm{H}} \ell_{\beta}$ gives then $X_{\beta}^{\prime} \leq \lambda_{c}^{\prime}$
we remark further that $\pi_{\alpha}^{(0)} \simeq \pi_{\beta}^{(0)}$ implies obviously dim $\mathcal{F}_{\alpha}=$ $=\operatorname{dim} \mathcal{H}_{\beta}$. According to $\S 1, \underset{\gamma \in \sigma}{\forall} \operatorname{dim} \mathcal{H}_{j}=x_{\gamma} \cdot x_{j}^{\prime}$
and according to corollary 2. II it follows from the axioms I-III, V, VI that $\dot{x}_{\alpha} \geqslant x_{0}^{\prime}, x_{\beta} \geqslant \gamma_{0}$. If in addition $x_{\alpha}^{\prime}, x_{\beta}^{\prime} \leqslant \gamma_{0}$ then the equality dim $\mathscr{H}_{\alpha}=$ dim \mathscr{H}_{β} provides us with the last condition we need: $\mathscr{X}_{\alpha}=\mathscr{X}_{\beta}$.

II－sufficiency．We shall prove that under the condition $X_{\alpha}^{\prime}=\chi_{\beta}^{\prime}$ the algebras $R(0), \alpha$ and $R(0)_{\beta}$ satisfy the follo－ wing criterion／DN－321／：

Let R_{1} and R_{2} be vol Neumann algebras．Let us suppose
that there exists in R_{1}^{\prime}（resp．，R_{2}^{\prime} ）an infinite family $\left\{E_{i}\right\}_{i \in y}$（resp．，$\left\{F_{i}\right\}_{i=j}$ ）of projection；which are （D）mutually equivalent，orthogonal，with the sim equal to I and such that $R_{1 E_{i}}^{\prime}$（resp．，$R_{2 F_{i}}^{\prime}$ ）are countably decomposable．Then every isomorphism il of algebra R_{1} on R_{2} is spatial．
R_{2} being type I factor for all $\alpha \in \sigma$ ，the space＇执 can be represented in the form $\mathcal{H}_{\alpha}={ }_{k} \mathcal{H}_{k, \alpha}$ where $\mathcal{H}{ }_{k, \alpha}$ are the spa－ es on which mutually unitarily equivalent irreducible rep－ resentations $\Pi_{k, \alpha}$ of the algebra K are acting．Due to $P_{k, \alpha} \in R^{\prime}$ and proposition 2．14，every $\mathscr{H}_{k, \alpha}$ contains a linear dense set of analytical for the energy vectors．For all such vectors $\mathscr{H}_{k, \alpha}$ using irreducibility of $\mathcal{H}_{k, \alpha}$ with respect to R ， Reen－Schlieder theorem and the property $P_{k, \alpha} \in \quad R(0)^{\prime}$ we obtain

$$
\overline{R(O)_{P_{k, \alpha}} \Psi_{k, \alpha}}=\overline{R(C)_{\alpha} \Psi_{k, \alpha}}=\overline{R_{\alpha}} \Psi_{k, \alpha}=H_{k, \alpha}
$$

This means that all $\psi_{k, \alpha}$ are cyclic vectors for $R(0) \rho_{k, \alpha}$ and separating for $R(0)_{P_{k, \alpha}}^{\prime}$ ．As a result，$R(0)_{f_{k, \alpha}^{\prime}}$ is count－ stably decomposable in virtue of／DW－6／．

Further，unitary equivalence of $\pi_{k_{1, \alpha}}$ and $\pi_{k_{2}, \alpha}$ implies according to／DC－5．I．3／that corresponding protections $P_{K_{2}, \alpha}$ and $P_{K_{2}, \alpha}$ are equivalent with respect to algebra R_{α}^{\prime}

$$
\underset{\alpha \notin \sigma \quad k_{1}, k_{2} \in K_{\alpha}}{\forall} \quad P_{k_{1}, \alpha} \sim P_{k_{2}, \alpha}\left(\bmod R^{\prime}\right)
$$

since for all W^{\hbar}-algebras R_{1}, R_{2} and projections $P, Q \in R_{2}$ $H_{1} \subset R_{2}, P \vee Q^{\prime}\left(\bmod R_{1}\right) \Rightarrow P \leadsto Q\left(\bmod R_{2}\right)$.

So we have completely shown that for any sectors te $_{\alpha}$ and \mathcal{H}_{β} the f milies of projections $\left\{p_{k, \alpha}\right\}_{k \in \mathcal{K}_{\alpha}} \subset n(0)_{\alpha}^{\prime}$ and $\left\{P_{\epsilon, \beta}\right\}_{\ell \in K_{\beta}}=R(0)_{\beta}^{\prime} \quad$ possess all properties required by the criterion . ${ }^{\text {D) }}$ with the exception, possibly, of the condition card $K_{\alpha}=\operatorname{card} \mathcal{K}_{\beta}$. But if we have in addition $\lambda_{\alpha}^{\prime}=x_{\beta}^{\prime}$ then his condition ${ }^{\text {s }}$ Satisfied too, since it takes place exactly $x_{\alpha}^{\prime}=\operatorname{card} K_{\alpha}, X_{\beta}^{\prime}=\operatorname{card} K_{\beta}$. As a result, we have proved that for any $X_{\alpha}^{\prime} \geqslant X_{c}, X_{\alpha}^{\prime}=X_{\beta}^{\prime}$ plus, of course. dim $\mathcal{H}_{\alpha}=$ dim $\mathcal{H i}_{\beta}$ give $\pi_{\phi}^{(0)} \simeq \pi_{\beta}^{(0)}$. II - necessity. Let $\dot{H}_{\alpha}, \mathcal{H}_{\beta}$ be coherent sectors such that $x_{\alpha}^{\prime}, x_{\beta}^{\prime}>\lambda_{0}$ and $\pi_{\alpha}^{(0)} \simeq \pi_{\beta}^{(0)}$ by means of partially isometric operator $V_{\beta, \alpha}(C)$. We shall. deduce that in this case $x_{\alpha}^{\prime}=x_{\beta}^{\prime}$.

Let us use cain the system of projections $\left\{P_{k, \alpha}\right\}_{k \in K_{\alpha}} \in$ $\subset K(0)_{\alpha}^{\prime}$ and consider how $l_{\beta \alpha}(0)$ is acting on the subspaces

位 k, α. Since there exists a non-void set of analytical for the energy vectors $\mathcal{H}_{k, \alpha}<\mathcal{H}_{k, \alpha}$ then $\mathcal{H}_{k, \alpha}=\mathcal{H}_{\psi_{k, \alpha}}^{k(0)}$ for any $\psi_{k, \alpha}^{\prime} \in \mathcal{I}_{k, \alpha}$. Hence it follows due to (3.8):

$$
\mathcal{H}_{k, \beta} \doteq V_{\beta, \alpha}(0) \mathcal{H}_{1, \alpha}=V_{\beta, 2}^{\prime}(0) \mathcal{H}_{\psi_{k, \alpha}}^{R(0)}=\mathcal{H}_{V_{\beta, \alpha}}^{R(0)}(0) \psi_{k, \alpha}
$$

From here we see that projection on $\mathrm{He}_{k, \beta}, P_{k, \beta} \in R(0)^{\prime}$. Further, the operator $V_{\beta \alpha}(0)$ being isometric on H_{α}, the pairwise orthogonality of all $P_{k, \alpha}$ implies pairwise orthogonality of all $P_{k, \beta}$. This means that $V_{\beta \alpha}(0)$ transforms the system of projections $\left\{P_{k, \alpha}\right\}_{k \in K_{\alpha}} \subset R(0)_{\alpha}^{\prime} \quad$ into the system of mutually orthogonal, nonzero projections
$\left\{P_{k, \beta}\right\}_{k \in \mathcal{K}_{\alpha}} \subset \operatorname{R}_{(0)_{\beta}^{\prime}}$ with the sum equal to I. By the other side, there exists in $R(0)_{\beta}^{\prime}$ the system of projections $\left\{P_{e, \beta}\right\}_{e \in K_{\beta} \quad \text { with the properties described in the orite- }}$ rion (D), ie. such that, in particular, all the algebras $R(0)^{\prime} P_{\ell, \beta}$ are countably decomposable. In suck a situation there exists necessarily a definite relation between the cardinars of the sets K_{α} and \mathcal{K}_{β}, according to the polowing lemma by Dixmier (DW-235):

Let R be won Neumann algebra, $\left\{E_{i}\right\} i \in j$ in:inite family of projections from R, with upper bound I and such that all $R_{E_{i}}$ are countably decomposable; $\left\{F_{k}\right\}_{k \in \mathcal{K}} \quad$ family of non-zero pair-wise orthogonal projections from R. Then

$$
\text { card } K \leq \text { card } I
$$

Applying this lemma to the systems $\left\{P_{k, \beta}\right\}_{k \in \mathcal{K}_{\alpha}} \quad$ and $\left\{P_{e, \beta}\right\} e \in K_{\beta} \quad$ in the algebra $R(0)_{\beta}^{\prime} \quad$ we obtain

$$
\begin{equation*}
\operatorname{card} K_{\alpha}=x_{\alpha}^{\prime} \leq \quad \operatorname{card} K_{\beta}=x_{\beta}^{\prime} \tag{3.9}
\end{equation*}
$$

It is not difficult to deduce an inverse inequality too. Conjugate operator $V_{\beta \alpha}(0)^{*}$ realizes an isometrical mapping of \mathcal{H}_{β} on \mathcal{H}_{α} which possesses all the same properties as the mapping $V_{\beta \alpha}(0)$. Therefore the system $\left\{P_{e, \beta}\right\}_{E \in \mathcal{K}_{\beta}} \subset R(c)_{\beta}^{\prime}$ is transformed by $V_{\beta \alpha}(0)^{*}$ into a system of nor-zero pairwise orthogonal projections $\left\{P_{e, \alpha}\right\}_{\ell \in \mathcal{K}_{\beta}} \subset R(0)_{\alpha}^{\prime}$ where $P_{e_{, \alpha}} \doteq$ $\doteq V_{\beta \alpha}(0)^{*} P_{e, \beta} V_{\beta \alpha}(c)^{*-1}$ Application of Dixmier's lemma to the systems $\left\{P_{k, \alpha}\right\}_{K \in K_{\alpha}} \quad$ and $\left\{P_{e, \alpha}\right\}_{E \in \mathcal{K}_{k \beta}} \quad$ of projections in the algebra $R(0)_{\alpha}^{\prime}$ gives us the inverse inequality to (3.9).

The theorem 3.3 is completely proved.
This theorem means, in particular, that in the general
case of a theory with arbitrary set of coherent sectors, local unitary equivalence is not guaranteed by the HaagAraki axioms, in contrast to equivalence properties 1, 2, 3, 5. Any two local:.y unitarily equivalent sectors obey, besides the axioms, some definite constraints, which express themselves in teams of sector invariants and so are the conditions on K and not on $\mathrm{R}(0)$. In other words, the oonstraints put by local unitary equivalence are of the global but not local nature. Geierally speaking, these constraints require the definite rele.tionship between dimensions of H-images of pure vector states belonging to locally unitarily equivalent sectors. It is in.teresting to note that abelian coherent sector ($x^{\prime}=I$) alpears to be locallJ unitarily equivalent not only to all sectors with finite-dimensional H-images of pure states $\left(x_{1}^{\prime}<\lambda_{0}^{\prime}\right)$ but also to all sectors with separable H-images ($\partial_{\alpha}^{\prime}=\mathcal{X}_{0}$). Let us remind also, that in particular case $\subset f$ superselection theory connected with a compact gauge grcup /5/(1n suoh a theory only the values $x_{\alpha}^{\prime}=\Lambda_{\alpha}<\infty$ are possible) the parameters X_{α}^{\prime} possess a physical interpretation as multiplicity of a partiole multiplet covariant urder corresponding irreducible representation of the grour. Since in usual field theories the action of the field does not ohange this multiplioity, that particular example shcws already that the existence of a field requires further restrictions.

Further, acccrding to the theorem, all the set of coherent superselection sectors can be divided into two classes. The first of these classes includes all sectors with $\mathscr{R}_{\alpha}^{\prime} \leqslant \chi_{0}$, the second one the sectors with $\mathscr{X}_{\alpha}^{\prime}>\mathscr{X}_{0}$,
and the sectors belonging to different classes con never be connected by local unitary equivalence. The first class sectors possess more usual properties and are characterized in detail in proposition I.10. Since the property of local unitare equivalence can with assurance be expected :'rom any rearlistic theory, all coherent sectors in such theo:'ies belong to the same class. If in addition the theory con ins a vacuun sector \mathcal{H}_{Ω}, then the class of the theory $1: ;$ defined by the parameter $\mathcal{X e}_{\Omega}^{\prime}$, the dimension of the $H-$-mage of the vacuum state, or, if we want to put it into "more physical" terms, by the "degree of vacuum degeneration". In this conneotion some interesting problems arise, such as are the theories possible to exist, where the vacuum stare (and so all other coherent sectors) belong to the "exotic" class $x^{\prime}>\mathcal{N}_{0}$? And what specific properties do such theories posness?

4. FIELD-LTKE PROPERTIES OF QUANTUM THEORIE 3 IN

$\mathcal{H}=\mathcal{H}_{p}:$ UNBOUNDED REGIONS

In this section we shall study (the most important for the F-problem) equivalence properties of the rep cesentations T_{α} restricted to C^{x}-algebras of unbounded regions. We relate to such regions the following two kinds of $\frac{2}{}^{x}$-algebras:

$$
\tau^{c}(O) \doteq R(O)^{\prime} \cap \theta \ell ; \quad O\left(O^{\prime}\right) \doteq \overline{V_{\hat{O} \subset 0^{\prime}} R(\hat{\partial})}, \hat{O} \in B(M)
$$ The corresponding restrictions of the representations π_{α} are

$$
\pi_{\alpha}^{c} \pm\left.\pi_{\alpha}\right|_{\alpha 0^{c}(0)} ;\left.\quad \pi_{\alpha}^{\left(0^{\prime}\right)} \doteq \pi_{\alpha}\right|_{, v 2}\left(0^{\prime}\right)
$$

At first we consider the algebras $\tau^{2}(0)$ and the representtrons J_{-}^{c}. Their structure is closely connected with the weak duality condition / $4,5 /$.

Definition 4.I

We shall say that in theory of the $\mathcal{H}=\mathscr{H}_{p}$ class the condition of weak duality (resp., sectorial weak duality) is fulfilled, :.f

$$
\begin{equation*}
\bar{\sigma}^{\prime}(0)=R^{c}(0) \doteq R(0)^{\prime} \cap R \tag{4.I}
\end{equation*}
$$

or respective l.

$$
{\overline{0 R^{c}}(\bar{O})_{\alpha}}^{w}=R^{c}(0)_{\alpha} \doteq R(0)_{\alpha}^{\prime} \cap R_{\alpha} \quad(4 . I=\alpha)
$$

Theorem 4.I
The theory of the $H=H l_{p}$ class satisfies the weak dality condition $1::$ and only if the sectorial weak duality is fulfilled in every coherent sector and all the representations π_{γ}^{e} art pair-wise disjoint. I.e.
${\overline{\pi L^{c}(0)}}^{n}=R^{c}(0) \Leftrightarrow{\overline{\pi^{c}(0)_{\alpha}}}^{\omega}=R^{c}(0)_{\alpha}$ and $\forall \neq \beta \pi_{\alpha}^{c} d \pi_{\beta}^{c}$ Proof. Necessity. If (4.I) holds, then it is clear that

$$
{\bar{\pi}{ }^{c}(O)_{C}}^{v}=R^{c}(C)_{P_{\alpha}}=\left(R(0)^{\prime} \cap R\right)_{P_{\alpha}}
$$

For every $A_{\alpha} \fallingdotseq R^{c}(0)_{P_{\alpha}}$ there exists $B \in R^{c}(0)$ such that $A_{\alpha}=\left.P_{\alpha} B\right|_{\mu_{\alpha}}$. Hence $B \in R^{c}(0)$ implies $A_{\alpha}=\left.P_{\alpha} B\right|_{\gamma_{\alpha}} \epsilon$ $\in R(C)_{\alpha}^{\prime}$ and $B \in R$ implies $A_{\alpha}=\left.P_{\alpha} B\right|_{\text {fe }} ^{\alpha}$ $\in R_{\alpha}$ what gives $A_{\alpha} \in R(0)_{\alpha}^{\prime} \cap R_{\alpha}$, i.e.

$$
\begin{equation*}
R^{c}(0)_{P_{\alpha}} \subset R(0)_{\alpha}^{\prime} \cap R_{\alpha} \tag{4.2}
\end{equation*}
$$

Now let us take $A_{\alpha} \in R(O)_{\alpha}^{\prime} \cap R_{\alpha}$. It follows from $P_{\alpha} \in R(0)^{\prime} \cap R$ that $B \doteq P_{\alpha} A_{\cdot} P_{\alpha} \in R(0)^{\prime} \cap R$ and $A_{\alpha}=\left.P_{\alpha} B\right|_{X_{\alpha}} \in\left(R(0)^{\prime} \cap R\right)_{P_{\alpha}}$, i.e,

$$
2^{c}(0)_{P_{\alpha}} \supset R(0)_{\alpha}^{\prime} \cap R_{\alpha}
$$

Together with (4.2) this gives the sectorial weak duality (4.I- α).

To prove the disjointness of $\widetilde{T}_{\alpha}^{c}$ let us no ie that the central support $P_{\alpha}^{c} \doteq \mathcal{Z}^{c}(0)-\operatorname{supp} \pi_{+}^{c^{\alpha}}\left(3^{c}(0) \doteq R^{\prime}(0) \cap R^{c}(0)^{\prime}\right)$ of the representation π_{α}^{c} can be represented is $P_{R^{c}}^{c}{ }^{c}(0)^{\prime}$ and the projection P_{\star} as $P_{\alpha}=P_{\text {He }}^{R^{c}(0)^{\prime}}$ The condition (4.I) clearly implies

$$
P_{\alpha}^{e}=P_{x}^{x_{\alpha}}(0)^{\prime}=P_{x_{\alpha}}^{R^{c}(0)^{\prime}}=P_{\alpha}
$$

and orthogonality of P_{α} and P_{β} with $\alpha \neq \beta$ gives the desired disjotntness of π_{α}^{c}.
Suffioienoy. If all π_{∞}^{e} are pair-wise disjoint, their centrail supports enjoy the property $P_{\alpha}^{c} P_{\beta}^{c}=\left.\delta_{\alpha \beta}\right|_{\beta} ^{c}$. Next, for every $\chi \in \sigma$

$$
P_{\alpha}^{c}=P_{\pi_{\alpha}}^{\pi^{c}(0)^{\prime}} \geqslant P_{\pi_{\alpha}}^{R^{c}(0)^{\prime}}=P_{\alpha}
$$

whence $P_{\beta}^{c} P_{\alpha}=\delta_{\alpha \beta} P_{\alpha} \quad$ Hence it follows

$$
P_{\beta}^{c}=P_{\beta}^{c} \sum_{\alpha \in \sigma} P_{\alpha}=\sum_{\alpha \in \sigma} P_{\beta}^{c} P_{\alpha}=\sum_{\alpha \in \sigma} \delta_{\alpha \beta} P_{\alpha}=P_{\beta}
$$

If in addition (4.I- α) holds, then for every $h \in R^{C}(0)$,
$\left.A_{\alpha} \doteq P_{\alpha} \hat{H}\right|_{\mathcal{F}_{\alpha}} \in{\overline{\pi L^{c}(0)} P_{\alpha}^{w}=R^{c}(0)_{P_{\alpha}} \text {. Hence with the }}^{w}$ account for $P_{ \pm}^{C} \in \frac{x}{\pi c^{c}(0)} w \quad$ we obtain $A=\sum_{x \in T} P_{x} A P_{x}=$
$=\sum_{\alpha \in \sigma} P_{\alpha}^{c} A_{\alpha} P_{\alpha}^{e} \in{\overline{\sigma^{c}(0)}}^{w}$ i.e. $R^{c}(0) \subset \bar{\pi}^{c}(0){ }^{w}$,
Taken together with the trivial inclusion $\overbrace{}^{c}(0) \subset R^{c}(0)$ this gives us (4.I).

The problem of finding the necessary and sufficient criterion of weak duality is of great interest. This problem is not solved until now, but we can point out a very general sufficient condition of global nature.

Theorem 4.2

in y coherent', sector ' χ_{α} such that $\chi_{\alpha}^{\prime} \leqslant \aleph_{0}$ satisfies the sectorial weak duality. If $x_{\alpha}^{\prime} \leqslant \gamma_{0}$ for all coherent sectors, and in addition the set σ of all sectors is coontable (ie., there are only discrete superselection rules) then the theory satisfies weal duality. Ie.

$$
\begin{aligned}
H_{\alpha} & \leq \lambda_{0} \\
\forall x_{+}^{\prime} & \Rightarrow \lambda_{0}, \quad \operatorname{card} T \leq \lambda_{0}^{c}(c)_{\alpha}
\end{aligned} \quad=R^{c}(0)_{\alpha} \quad(4.3-\alpha)
$$

$$
\text { Proof. we shill prove only }(4.3-\alpha) \text {, the proof of }(4.3)
$$ being completely.' analogous.

Let the region $0 \in B(\mathbb{M})$ be given and $\hat{0} \in B(M)$ belong to 0^{\prime}. according t, corollary 2.18 , in the case $X_{i}^{\prime} \leqslant \mathcal{N}_{0}$ there is a non-roid set $M_{\alpha, \omega} \subset \mathcal{H}_{\alpha}$ consisting of analytical for the energy vectors cyclic for $R(\hat{0})_{\alpha}$. Since $R(\hat{0})_{\alpha} C$ $\subset \mathbb{R}^{c}(C)_{P_{x}} \subset \mathbb{R}^{*}(C)_{P_{\alpha}}$ such vectors are also cyclic for $\pi^{c}\left(U_{P_{\alpha}}\right.$ and $R^{c}(U)_{P_{a x}}$. Hence it follows that for every
 sition 2.17 implies that ψ_{x}^{∞} is separating for $R^{e}(\mathbb{C})_{P_{\alpha}}$. In this situation the desired result directly follows from Lemma 4.3

Let W^{*}-alger ra R be acting in $\widetilde{\Omega}$ and containing a *subalgebra \mathcal{f} with the identity operator. Let further \mathcal{A} satisfy the following condition: there exists a vector $\mathcal{\psi} \in \mathscr{K}$ separating for R and such that $P_{\psi}^{R}=P_{\psi^{\prime}}^{A}$. Then $R=\bar{\xi}^{w}$. Proof. For every $A \in R$ there exists a sequence $\left\{A_{n}\right\}_{n=1}^{\infty}$ of elements $A_{n} \equiv \mathbb{A}$ such that $A \Psi=\operatorname{silim}_{n \rightarrow \infty} A_{n} \psi$. Hence it follows for 3 very $T \in R^{\prime}$ that $A T \psi^{\prime}=\underset{n \rightarrow \infty}{\operatorname{solim}} A_{n} T \psi^{\prime}$.
ψ being cyclic for R^{\prime}, this equality implies that our sequince $\left\{A_{n}\right\}_{n=1}^{\infty}$ converges strongly to A on the set $R^{\prime} \psi$ dense in $\sqrt{\Omega}$. Further, for every $\varphi \in \sqrt[\Omega]{ }$ and $\varepsilon=0$ there can be found $\widetilde{\psi} \in R^{\prime} \psi$ such that $\left\|A_{n}(\Phi \cdot \widetilde{\psi})\right\|<\varepsilon$ for all n. Hence it follows that
$\underset{p \in \sqrt{\prime}}{\forall} \quad \sup _{n}\left\|A_{n} P\right\| \leq \sup _{n}\left\|A_{n}(P-\Psi)\right\|+\sup _{n}\left\|A_{n} \psi\right\|<\infty$. This means that the sequence $\left\{A_{n}\right\}_{n=1}^{\infty}$ satisfies tie condotion of the s-convergence criterion ($/ 24 /$, ch. II, § I) and so $A_{n} \xrightarrow{s} A$. Thus every element of k belongs to the strong cleosure \bar{A}^{s} of the algebra f, ie. $R \subset \bar{H}^{s}=\bar{A}^{w}$.

This proves lemma 4.3 and at the same time the theorem 4.2.

Corollary 4.4.

Let quantum theory in $\neq \mathcal{H}_{p}$ be given satisfy lag the axioms I-VI as well as the conditions

$$
\underset{\alpha \in \sigma}{\forall} x_{\alpha}^{\prime} \leqslant \mu_{0}, \quad \text { card } \sigma \leqslant \mu^{\prime} .
$$

Then all the representations π_{7}^{c} are pairwise disjoint. Proof represents the obvious combination of the theorems 4.I and 4.2.
is a result we find that under fairly general conditions the representations π_{α}^{c} do not generate any into twining operators of coherent sectors. This means that stull of them is hardily interesting from the viewpoint of obtain lng field--like properties of the theory.

Finally, let us proceed to the analysis of the representcations $\pi{\underset{\alpha}{\alpha}}^{\left(0^{\prime}\right)}$. In this point we shall consider as a rule the regions-diamonds, $0=D=D^{\prime \prime}$. According to corollary 2.5,
the algebras $\dot{F}:(た))_{\alpha}=\Pi_{\alpha}^{(よ り}(ひ(し))$ are factors and by the property of the primary representations，only two situations are possible：

$$
\psi_{x, \beta \in, j} \pi_{x}^{(i)} \approx \pi_{\beta}^{(2)} \text { or } \pi_{\alpha}^{(2)} d \pi_{\beta}^{\left(D^{\prime}\right)} \cdot(4.4-c, b)
$$

The case when the asymptotical quasiequivalence takes place for one part $\Gamma_{1} \mathbb{J}$ of coherent sectors，and the asymptote－ cal disjointness for the another part σ_{2} ，reduces also to （4．4），because the theory splits into two independent the－ fries with the sets of sectors J_{2} and J_{2} ．We shall develop successively the description of the situations（4．4－a）and （4．4－b）and stall compare their properties．At first we con－ slider the cast（b）．

Proposition 4． 5

Let quantum theory in $\nVdash=\mathcal{H}_{p}$ be given and the axioms I－VI be satis：iled．Then the following conditions are equiva－ len：

1）ill cohere．ıt sectors H_{α} are asymptotically disjoint

$$
{\underset{\alpha, \beta \in \sigma}{ } \overbrace{\alpha}^{\left(D^{\prime}\right)} \delta \pi_{\beta}^{\left(D^{\prime}\right)} \quad \text { for every diamond } D, ~}_{D}
$$

2）All superielection operators are＂asymptotical observab－ les＂

$$
\underset{\alpha \in \sigma}{\forall} \underset{D \subset M}{\forall} P_{\alpha} \in R\left(D^{\prime}\right)
$$

3）$\underset{D<M}{\forall} R\left(D^{\prime}\right)=\underset{\alpha \in \tau}{ \pm} R\left(D^{i}\right)_{\alpha}$
4）

$$
R_{a s} \doteq \bigcap_{o \in B(M)} R\left(0^{\prime}\right)=\oplus_{\alpha \in \sigma}^{\oplus}\left(\mathcal{S}^{s}\left(\mathcal{H}_{\alpha}\right)\right.
$$

Proof． $2 \Rightarrow I$ is obvious，since for all $0 \subset M, P_{\alpha} \in H(0)^{\prime}$ and then 2）gives that $3\left(D^{\prime}\right)-\operatorname{supp} \pi_{\alpha}^{\left(D^{\circ}\right)}=P_{\alpha} 3 \Rightarrow 2$ is
obvious since due to 3$), 3\left(D^{\prime}\right)=\underset{\alpha \in \sigma}{ \pm}\left(\not \psi_{\alpha}\right) \rightarrow P_{\alpha}, \therefore \Rightarrow 3$ follows from the property of inductions of any V^{*}-algelira R : if projection P belongs to the centre of R then $k=R_{p} \|_{i} \mathcal{R}$. $4 \Rightarrow 2$ is obvious right away. is a result, we bi.ve to establush only $I \Rightarrow 4$. We start with the formula $\because\left(D^{\prime}\right)-\operatorname{supp} \pi_{\alpha}^{\left(D^{\prime}\right)}=$ $=P_{H_{\alpha}}^{H^{\prime} D^{\prime}}=P_{\alpha,}^{R\left(D^{\prime}\right)^{\prime}} \quad$ If $\alpha \in \sigma$ is fixed then due to I) the projection $P_{H_{\alpha}}^{R\left(D^{\prime}\right)^{\prime}} \geqslant P_{\alpha}$ is orthogonal to all $P_{\mathcal{H}_{\beta}}^{R\left(D^{\prime}\right)^{\prime}}$, $\beta \neq \alpha$ (and the latter are in their turn orthogonal to each other) and so to their sum ${\underset{\beta}{\beta \neq \alpha}}_{-}^{-} P_{i_{\beta}}^{R\left(O^{\prime}\right)^{\prime}} \geqslant I-F_{i \alpha}$. is a consequence, $I)$ implies that $P_{H_{\alpha}}^{R\left(D^{\prime}\right.}=P_{\alpha}$ or, equivalently $P_{\alpha} \in R\left(D^{i}\right)$ (the property 2)). Thus we have decuced $P_{\alpha}^{\alpha} \in \bigcap_{D C M} R\left(D^{\prime}\right) \doteq R_{a s}^{(D)}$ and now we shall demonstrate that $R_{a s}=R_{a_{j}}^{(0)} \cdot R_{a_{s}} \subset R_{a_{s}}^{(0)} \quad$ by definition. Inverse inclusion will be deduced from the fact that every bounded region $0 \in B(M)$ belongs to some diamond $D(0)$ and conversely, in every diamond D there exists some bounded region (for instance, $0=D$). Hence the desired result follows readily

$$
\begin{aligned}
& R(0) \subset R(D(0)) ; R(0)^{\prime} \supset R(D(0))^{\prime} \\
& R_{a} \supset \bigcap_{D(0) C M} R(D(0))^{\prime}=\bigcap_{D \in M} R(D)=R_{\text {as }}^{(0)}
\end{aligned}
$$

and the proof is finished.
It is easy to verify that the "algebra of asymptotical observables" $R_{d s}$, introduced in the proposition, belongs always to the centre 3 of global algebra. Indeed, by definition $k_{a s} \subset K=R(M)$; by the other side, due to locality
 that $R_{a s}$ belongs to the type of asymptotical central subalgebras" studied by Hag, Kadison and Kastler /25/. cor-
ding to general results ot these authors, properties of representations of $c^{*}-a l$ gebra with a net of local subalgebras, generalized with respect to $k_{\text {as }}$ in the sense of $\& I$ in $/ 25 /$, oh rasterize the asymptotical properties of the theory. Our concrete choice cf $H_{d i}$ somewhat differs from that of Haig-Kitisom-Kastler tut it coincides with the choice proposed hypothetically by them (cf. $/ 25 /$, $/ 26 /$, p. 29) for relutivistio quantum theory not satisfying duality. The results of propositions 4.5 and 4.6 confirm that such a choice is a reasonable one ow var, these results do not give yet detailed picture of $\|_{\text {f }}$ properties with respect to f_{as} and so the problem still remains (although rather simple one) to give a complete description of these properties in the spirit of /25/.

Now we proceed $\mathrm{t}:$ tia physically more interesting situaLion (4.4- \quad. Sufficiently complete characterization of Its properties giver the following proposition.

Proposition 4.6

The following conditions are equivalent:

1) all coherent sectors are asymptotically quasiequivalent

$$
\underset{\alpha, \beta \in \sigma}{\forall} \underset{D \in M_{1}}{\forall} \pi_{0}^{\left(D^{\prime}\right)} \cong \pi_{\beta}^{\left(D^{\prime}\right)}
$$

2) $W^{*-a l g e b r i s ~ o f ~ t h e ~ r e g i o n s ~} D^{\prime}$ are factors

$$
\xi(D)=\mathcal{E}(x) .
$$

3) The algebra (f asymptotical observables is trivial

$$
R_{a_{3}}=C^{\prime}(H)
$$

Besides this, conditions $(I=3)$ are equivalent to conditions obtained from those $(2-6)$ of proposition 3.2 by changing in then region 0 by U^{\prime}.
4) Induction $R\left(D^{\prime}\right) \rightarrow R\left(D^{\prime}\right)_{x}$ is an isomorphism,
5) all $\psi \in \mathcal{V}_{\alpha}$ are separating for $K\left(D^{\prime}\right)$,
6) there exists $\ddot{\psi} \in \dot{x}_{\alpha}$ separating for $R\left(D^{\prime}\right)$,
7) all $4 \in Y_{\alpha}$ are separating for ' 3 (D^{\prime})
8) there exists $\psi \in \mathcal{K}_{\alpha}$ separating for $Z\left(D^{\prime}\right)$.

Proof. Firstly we shall demonstrate the equivaleice of conditions $I=3$ by proving the implications $I \Rightarrow 2 \Rightarrow I$ and $2 \Rightarrow 3$. To obtain $I \Rightarrow 2$ we note that under the condition I), $P_{\alpha} \nexists Z\left(D^{\prime}\right)$ for all $\alpha \in \sigma$, since otherwise $\pi_{\alpha}^{\left(D^{\prime}\right)} \downarrow \pi_{\beta}^{\left(D^{\prime}\right)}$ (proposition 4.5). By the other side, $3\left(D^{\prime}\right)<3$ icorollary 2.5) and both facts taken together mean the absence of nontrivial projections in \quad B(2゙) i.e., $Z\left(D^{\prime}\right)=C^{c}()_{3} \Rightarrow I$ follows from proposition 4.5 too, since this pro.osition implies that $R_{a_{s}}=C^{S}(\neq)$ excludes $\pi_{\alpha}^{\left(D^{\prime}\right)}$ \& $\pi_{\beta}^{\left(D^{\prime}\right)}$ and consequently ensures the fulfillment of 1). $2 \Rightarrow 3$ follows from the inclusions $R_{a_{1}} \subset R^{\prime} \subset R\left(D^{\prime}\right)^{\prime}$ and $R_{a_{1}}=R\left(D^{\prime}\right)$ for all $D \subset M$, which give in total: $R a,(弓(\infty)$.

Further, the proof of the equivalence of the conditions I) to (4-8) goes exactly is in proposition 3.2. The only difference is that we now use not the usual verston of the Reeh-Schlieder theorem, but its extension to unb ounded reEions, obtained in the proposition 2.15.

In addition to the proposition just proved wa now shall obtain the conditions under which asymptotical quasiequatlence implies asymptotical unitary equivalence. [t is ew:y to prove that $\Pi_{+}^{\left(0^{\prime}\right)} \simeq \pi_{\beta}^{\left(0^{\prime}\right)}$ follows from $\pi_{\alpha}^{\left(0^{\prime \prime}\right)}=\pi_{\beta}^{\left(0^{\prime}\right)}$ exactly under the same (necessary and suffiolent) condltinis: under which $\pi_{\alpha}^{(0)} \simeq \pi_{\beta}^{(0)} \quad$ Pollows from $\pi_{\alpha}^{(0)}=\pi_{1}^{(0)}$.
and which were furmulated in detail in the theorem 3.3. To make sure of thi: it is sufficient to note that due to $\mathrm{R}^{\prime} \mathcal{C}$ $R\left(O^{\prime}\right)^{\prime}$ for all $O C 1$, the algebras $R\left(O^{\prime}\right)_{\alpha}^{\prime}$ contain, exactly as it was the case Nor $R(0)^{\prime}$, , the families of projections $\left\{P_{k, ~},\right\}_{k \in . K_{\alpha \alpha}}$ and these families anjoy with respect to the algebras $\mathrm{F}\left(\mathrm{O}_{\mathrm{i}}^{\mathrm{j}}\right.$, all the same properties that with respect to $H(O)_{\alpha}^{\prime}$ In otier words, we obtain the property

$$
\left.\begin{array}{l}
\pi_{\alpha}^{(0)} \approx \pi_{\beta}^{\left(0^{\prime}\right)} \\
\pi_{\alpha}^{(0)}=\pi_{\gamma}^{(0)}
\end{array}\right\} \Longrightarrow \pi_{\alpha}^{\left(0^{\prime}\right)} \simeq \pi_{\beta^{\left(0^{\prime}\right)}}^{(4.5)}
$$

Comparing th: propositions 4.5 and 4.6 with each other we can easily elicidate physical distinctions of both situations. Numely, w: see that in the case $\pi_{\alpha}^{\left(0^{\circ}\right)} \approx \pi_{\beta}^{\left(0^{\prime}\right)}$ all the principal properties of the algebras $R\left(D^{\prime}\right)$ repeat the
 then the properties of $l\left(D^{\prime}\right)$ are ratber close to those of the global algeb a $K=R(M)$. Further, the analysis of the proposition 4.5 and 4.6 as well as their consequences strong1ν assures us thit both situations (4.4- $)$ and (4.4- β) are compatible with all axioms I-VI, although we have no rigorous proof of this for the time being. If this supposition is really true then both cases give us the correct axiomatic theory of local observables, but only in one case, when $\pi_{x}^{(0)} \approx \Pi_{3}^{\left(D^{\prime}\right)}$ there exist intertwining operators between coherent sestors, which enjoy local properties, and so the construction of a field can be possible. In other words, the main difference between field theory and general theory of local observables is that the latter enjoys in general cuse the greater arbitrariness in its asymptotical behaviour.

Then the subclass of field theories should be siggled out from the set of all local observable theories by means of some "asymptotical condition", which forbids asy aptotical disjointness of coherent sectors and ensures the ir asynptotical unitary equivalence. In contrast to the loal unitary equivalence conditions found in § 3, such asymptstical conditions appear to include not only global constraiats. ...e prove below one form of asymptotical condition, which shows cleurly that, indeed, these conditions represent rest:ictions on asymptotical behaviour of states.

Our condition will be formulated in terms of the so called strictly localized states. ide shall use the . .ollowing convenient definition of them /5/:

Definition 4.2
We shall say that the state \dot{C} on observabl: algebra $\ell し$ is strictly localized in region $O \subset N$, if the values of \mathcal{L} on all observables belonging to 0^{\prime} coincide with :orresuonding values of the vacuum functional u_{Ω}.

For the theory in $\neq \mathcal{H e}_{p}$, poosessing the inique vacuum sector, the set of vectors representing vector siates strictly localized in 0 , will be denoted as $\bar{j} \dot{K}(し)$

$$
S E(0) \doteq\left\{p \in \nVdash\left|\omega_{p}\right|_{R\left(0^{\prime}\right)}=\left.\omega_{\Omega}\right|_{R\left(0^{\prime}\right)}\right\}(4.6)
$$

The vectors $\mathbb{P} \boldsymbol{S} \int_{\mathcal{L}}(0)$ will be called strictly ..ocalized vectors.

The asymptotical character of the strict locilizability is clearly displayed by the following property. .if we introduce the notations $S \mathcal{E} \doteq \bigcup_{i<M} S \mathcal{K}(0) \quad$ and $A_{i} \doteq v(a) A \cup(-a)$ for all $\in \in R, a \in M$, then
$\forall \quad \forall \quad \lim _{a \rightarrow \infty}\left|\omega_{p}\left(A_{a}\right)-\omega_{\Omega}(A)\right|=0$
fere $A \in O \quad \quad \begin{aligned} & a \rightarrow \infty \\ & u^{2} \leq 0\end{aligned}$
（This relation holds automatically for all $A \in \mathbb{A} \notin$ and extends to il by means of obvious estimates）．

The very useful tool of studying strictly localized sta－ teds we find ir our notion of the li－image（see § 1）．In fact， the formula（ 4.6 ）means exactly that every strictly locali－ zed vector must belong to the 11 －image $)_{-2}^{2}\left(c^{\prime}\right)$ of the vacuum state $\left(\because_{2}\right.$ ．with respect to algebra $i\left(0^{\circ}\right)$ ：

$$
S d(6)=m M_{2}^{1}(心)
$$

Such re－writirg of（4．6）immediately tells us，what is the subspace spanned by all vectors strictly localized in $0 \subset M$ ． Namely，according to the formula（I．2）

$$
\begin{equation*}
\chi_{S_{\alpha}(0)} \dot{\bar{L} \cdot\{\bar{S}(c)\}}=\mathcal{H}_{\Omega}^{R(こ)^{\prime}} \tag{4.8}
\end{equation*}
$$

The set of all strictly localized in 0 vectors from coherent sector \mathcal{H}_{α} will be denoted as $S \dot{\delta}(0)_{\alpha}$ and the subspace spanned by this set as 执 $\mathrm{Sa}_{\mathrm{x}}(0)_{\text {，}}$

It is important that in general case only the inclusion

$$
\Psi_{S E(0)}=H_{S K(0)} \cdot 1 H_{\alpha}
$$

takes place，but not the equality．The formulas（4．7－9） will be our main tool in proving the following basic result． Theorem 4.7

Quantum theory of the $\mathcal{H}=\mathcal{H}_{p}$ class possesses the asympto tical unitary equivalence if and only if in every coherent sector ${ }^{\prime} 火_{\neq}$and for every $O \in B(M)$ there exists a total set
of strictly localized vectors and in addition the (global) conditions of the local unitary equivalence are fulfilled:

Proof. Necessity. First of all we note that for ail $0 \in B(M)$

$$
\underset{\text { ats }}{\forall} H_{j \dot{j}(0)_{\alpha}}=H_{\alpha} \Rightarrow \exists_{s j(0)}=x_{14.10)}
$$

(the converse being not true in general case). Indeed, by
 - $\mathbb{H}_{S \&(0)}$ whence (4.10). Next, it follows from he definition 1.2 that every H-image $\operatorname{mi}_{p}^{1}$ of a vector state un any $W^{*}-$ algebra enjoys the property

$$
\psi \in M_{\varphi}^{1} \Rightarrow \mathcal{H}_{\psi}^{R^{\prime}}=H_{\phi}^{R^{\prime}} .
$$

Using this for the H-image $n \gamma_{\Omega}^{1}\left(C^{\prime}\right)$ and takin $n_{i j}$ into account formulas (4.8), (4.9) and (4.10) we obtain

$$
\begin{aligned}
& \forall \in S_{\alpha}^{\prime}(0)_{\alpha}
\end{aligned} \quad \Psi^{R\left(0^{\prime}\right)^{\prime}} \begin{aligned}
& 4
\end{aligned}=H_{\Omega}^{R\left(0^{\prime}\right)^{\prime}}=H .
$$

This means that all vectors from the (non-void in supposi-
 to the point 6) in proposition 4.6 this implies $\pi_{\alpha}^{\left(0^{\prime}\right)} \approx \pi_{\rho}^{\left(0^{\prime}\right)}$. This result together with the formula (4.5) and the condi$\operatorname{tion}\left(\beta\right.$) gives $\pi_{\alpha}^{\left(0^{\prime}\right)} \simeq \pi_{\beta}^{\left(0^{\prime}\right)}$.
Sufficiency. We shall verify firstly that total set of stricthy localized vectors exists always in the vacuum coherent sector. This follows from another simple proper if of H-image on any W^{x}-algebra $B: 1 f^{C} C^{i N}$ is the set o: all unitary
operators from β^{\prime}, then

$$
\begin{equation*}
{\underset{p e t}{t} M_{p}^{1} \supset B^{\prime \prime} \phi ~}_{t} \tag{4.II}
\end{equation*}
$$

On account of locality this means in our case that

$$
\left.S よ(0)_{\Omega}=\|_{\Omega}^{2} 0\right)_{i} \psi_{\Omega} \rightharpoonup\left[R\left(0^{\prime}\right)^{n} \Omega\right], \psi_{\Omega} \supset R(0)^{4} \Omega
$$

and correspondingly

$$
H_{S E(0)_{\Omega}} \supset \overline{L\left\{R(0)^{\cup} \Omega\right\}}=\overline{R(0) \Omega}
$$

Taking into account that Ω is analytic for the energy and is in our context an arbitrary vector from the H-image $h C_{\Omega}^{1}$ of the vacuum state $\omega_{\Omega} \in R_{1}^{*+}$ we obtain

Further, the vacuum state being pure (proposition 2.20) we can apply to it the formula (30) from /I/:

$$
\underset{p \in T}{\forall} \mathcal{H}_{p}^{3^{\prime}}=L\left\{\begin{array}{l}
U \\
+\in M_{\Phi}^{2}
\end{array} \mathcal{H}_{\psi}^{R}\right\}
$$

Taking this together with (4.12), we have the desired result:

$$
H_{S f(0)_{\Omega}}=H_{\Omega}^{3 i}=H_{\Omega} .
$$

From here and using $\pi_{\alpha}^{\left(0^{\prime}\right)} \simeq \pi_{\beta}^{\left(0^{\prime}\right)}$ it is not difficult to deduce the condition (α) of the theorem. Let us use Kadison's criterion /27/ of the unitary equivalence:

$$
\pi_{\alpha}^{\left(0^{\prime}\right)}=\pi_{\beta}^{\left(0^{\prime}\right)} \Longleftrightarrow V\left(\pi_{\alpha}^{\left(0^{\prime}\right)}\right)=V\left(\pi_{\beta}^{\left(0^{\prime}\right)}\right) .
$$

Let us take here $\pi_{\beta}=\pi_{\Omega}$ and an arbitrary $\alpha \in \sigma$, and let $V_{\alpha \Omega}\left(0^{\circ}\right)$ be partially isometric operator realising the
unitary equivalence of $\pi_{\alpha}^{\left(0^{\prime}\right)}$ and $\pi_{\Omega}^{\left(0^{\circ}\right)}$. Using the isometry of $v_{\alpha \Omega}\left(0^{\prime}\right)$ on t_{Ω} we obtain:
$\mathcal{H}_{\alpha}=l_{\alpha \Omega}(i) H_{\Omega}=l_{\alpha \Omega}\left(C^{\prime}\right) \overline{L\left\{S \dot{L}(i)_{\Omega}\right\}}=\overline{L_{1}\left\{v_{\alpha \Omega}\left(C^{\prime}\right) S \mathcal{L}(i)\right.}$ (4.13)$\}$
By the other side, the property of $v_{\alpha} \Omega_{2}\left(0^{\circ}\right)$ us an intertwiming operator: $l_{\alpha \Omega}\left(c^{\prime}\right) P_{\Omega} \in R\left(0^{\prime}\right)^{\prime v}$ and the formula (4.II) give us

$$
V_{\alpha s}(c) S f(i)_{\alpha} \subset S f(c) \cdot f_{\alpha}=S \dot{X}(i)_{\alpha}
$$

The putting of this into (4.13) leads to (\downarrow):

$$
\underset{\alpha t_{\sigma}}{\forall} H_{+}=\mathbb{K}_{s \times(0)_{+}}
$$

To end the proof it is sufficient to note that due to the formula (4.5), (for all $0 \in B(M)$) $\pi_{\alpha}^{(0)} \simeq \pi_{\beta}^{\left(0^{\prime}\right)}$ inplies $\pi_{\alpha}^{(0)} \simeq \pi_{\beta}^{(0)}$.

Corollary 4.8

Let H_{α} be coherent superselection sector such that $\pi_{\alpha}^{(0)} \simeq \pi_{\Omega}^{(0)}$. Then $J f_{\chi}$ contains a total set of strictly localized vectors if and only if $\mathrm{ft} \mathrm{A}_{4}$ contains at least one such vector:

$$
H_{s f(0)_{\alpha}}=H_{\alpha} \Longleftrightarrow S \mathscr{L}(0)_{\alpha \alpha} \neq \psi
$$

Proof. The necessity is obvious, while the sufficiency follows from the proof of the theorem. In fact, we have seen that due to proposition 4.6 the existence in \mathcal{H}_{α} of only one strictly localized vector is already sufficient for $\pi_{\alpha}^{\left(0^{\prime}\right)} \approx \pi_{\beta}^{\left(0^{\prime}\right)}$. This means that $\pi_{\alpha}^{(0)} \simeq \pi_{\beta}^{(0)}$

cording to the theorem, implies the existence in \mathcal{H}_{2} of a total set of strictly localized vectors.

Note. It can easily be shown that the vacuum Ω as well as any vector analytical for the energy cannot represent pure state on any local subalgebra $R(0)$ or $R\left(0^{\prime}\right)$. On account of this and the property (I.3) of the H-image

$$
\mathcal{f}(u)=\operatorname{Mr}_{\Omega}^{1}\left(U^{\prime}\right) \neq \operatorname{H}_{\Omega}^{R\left(0^{\prime}\right)^{\prime}} \cap S^{1}
$$

This opens the possibility of a situation, in which $\Psi_{S k(0)}=\Psi_{\Omega}^{1,10 \%}=\Pi$ but for some $\alpha \in \sigma$, the coherent sectors \mathcal{H}_{α} (o not contain any strictly localized vector, 1.e. $S \mathbb{F}(0)_{\alpha}=\varnothing$. By this reason the following implications take place:

(the left ont follows from the analytioity of Ω for the energy, while: the right one was established in the proof of the theorem), but no one of them can be replaced by equivalance relation. This means, in particular, that our formulatimon of the theorem 4.7 does not allow any essential simplefication.

Now let is discuss in more detail the obtained necessary. and sufficient condition of the asymptotical unitary equivalance. This condition is rather similar in form to our main initial condition ' $\neq \mathrm{F}_{\mathrm{p}}$. However, the difference is that In the latter case the "full" condition is completely equivalent to the sum of sectorial ones:

$$
f t=\exists_{p} \ll f_{\alpha}=\left(f_{\alpha}\right)_{p}
$$

whereas it is not so for the "asymptotical cond: ion" (α):

The physical content of the condition is alsuclear in general features. Like other asymptotical condi ions introdued in quantum field theory (quasilocality conc. Lion by Hag /28/ space-like asymptotical condition by Rue e /29/, etc.) this condition establishes for the expectation values of the theory a definite law of asymptotical behaviour in space-like directions. But the detailed investigation oi tais condition is not performed yet. In the sphere of this investigation fall several problems of significant interest, such as decompositions of arbitrary states into strictly localized states and/or relation of the class of strictly localized states to that of "states without long-range correlations" of Hag and Kastier ${ }^{\prime 23 /}$; relations between strict localizability, asymptotical abelianness end cluster properties, etc. The last point is of interest, in particular, because of possible dependence of cluster properties of the theory on the type of its statistics. And also always in the close analogy with the history of other asymptotical conditions, the problem is still open whether our asymptotical condition is the consequence oi the Hag-Araki axioms or the independent addstional restriction.

CONCLUSION

Here we shall compare results obtained with the results of Doplicher, Hag and Roberts /5/ (ion the sake of brevity referred to below as DHR).

The general scieme of LHR represents the algebraic theory
 les ard C^{*}-algebri F of fields are acting, both provided with nets D_{i} local subalgebras, $\{R(0)\}_{0 \in B(M)}$ and $\{f(0)\}_{c \in B(M)}$
 belongs to a certin subclass of theories in $\neq \mathcal{H}_{p}$. Namely, A coincides with , he commatint $U(G)^{\prime}$ of representation in He of sane compa; gauge group G, and as a consequense is of the form $R=\underset{\alpha+\sigma}{\oplus} R_{\alpha}$, all the R being type I factors. However, in this :ase the algebra $R^{\prime}=U(G)^{\prime \prime}$ possesses only finite-dimensiona: irreducible representations. This means

 is factor of the ${ }^{\text {y }}$ ype $I_{N_{\alpha}}, N_{\alpha}<\infty$; or equivalently, $\star_{\alpha}^{\prime}=N_{\alpha}<\infty$, Apart from tiis, another uistinction of our global structure is tiat for its deduction we do not assume the existence of either thie groip G or the algebra \mathcal{F}, but use only a minimal necessary cincretization: the object of our study is an arbitrary quantum system with superselection rules. rurther, the,H hr scheme includea also a great number of local additional conditions. In most part, they are of the form of relations connecting with each other the nets $\{R(0)\}$ and $\{f(0)\}$ and so they cannot even be formulated in the "usual" axiomatic theory where the input includes only one of these objects. Besides of this, such questions as the range of necessity of introduced conditions, their independence on each other and on the axioms etc. were not answered most often. For all these reasons we did not consider as superfluous after the works by UHR to return once more to the analysis of the F-problem.

Now we proceed to the consequtive comparisor. The § I of our work contains the physical basing of structire used and so has no parallels in the DHR work. The content of § 2 is equally not connected with DHR. With respect to the f-problem (the only problem of DHR) the results of that siction are either quite irrespective of or very remote. Attention paid by us to these results is explained by their indep:ndent interest and also by our hopes on other applications of our scheme, besides the F-problem. Next, the $§ 3$ results (e quivalence properties of coherent sectors for global algebras and local algebras of bounded regions) play only the preliminary part in the problem of relationship between fields and observables. For this reason and also, probably, due to the simplicity of their obtaining, they were practically not considered by UHR. In fact, the only complicated result in $\S 3$ is the theorem 3.3, but its complexity is caused entirely by the tcking into accou-
 scheme where only the values $\ell_{\alpha}^{\prime}=\omega$ are allowid this theorem reduces to a semi-trivial assertion.

Further, analysis of the representations $\pi_{,}^{-}$and weak duality condition was undertaken by 0 HR in § 5 of /5/. In this point our results supplement and clear up the : esults of $0 H R$ and some of their additional conditions. Thus the theorem 4.I shows that the weak duality condition obtained by HHR in their theorem 5.2 is not only necessary, but also sueficient. Next, we prove the fulfillment of the weak duality if all coherent sectors \mathcal{K}_{α} with $\chi_{\alpha}^{\prime} \leqslant \lambda_{0}$ and also in the whole $\not \subset \notin$ for the theories with discrete superselection rules only; for the same theories the axiomatic proof of the disjointness of all J_{α}^{c} is obtained. These results have no overlapping with DHR. Let
us mention also that the result of the theorem 5.6 by DHR (necessary condjtion of duality) was re-proved in the work by one of us $/ 3(/$ in the slightly more general form and without the assimption of weak duality made by DHR. Finally, analyzing the representations $\sqrt{j}^{\left(0^{\prime}\right)}$ DHR proved their quasiequivalence witt the ald of strong restrictions on the connection between the nets $\{R(0)\}$ and $\{f(0)\}$, The net $\{F(0)\}, \mathcal{P},(4)$ being not given in our case, we cannot exclude the alternative situation, $\pi_{\alpha}^{\left(0^{\prime}\right)}$ b $\pi_{\beta}^{\left(0^{\prime}\right)}$ and so we perform tie detailud analysis of both situations. Then we formulate in terms of local observables and prove the "asymptotical condition", winch is necessary and sufficient for the unitary equivalence of all $\pi_{\alpha}^{\left(\sigma^{\prime}\right)}$. The necessity of this condition was stated by 1 HR without proof and under restrictiuns on $\{\because(0)\}$,

As a result, from all the complex of properties, which is, according to $\mathrm{DH} / \mathrm{h} / 6 /$, sufficient for the construction of field group and field operators, the following properties are not yet obtained in our scheme:

1) sufficient conditions of the fulfillment of duality in coherentsectors;
2) conditions of the existence of localized automorphisms.

In future we are intended to return to these properties.

1. V.N.Sushko, S.S.Khoruzhy. Theor. \& mathem. physics, 4, 171, 1970.
2. V.N.Sushko, S.S.Khoruzhy. Theor. \& mathem. physics, 4, 341, 1970 (in Russian).
3. H.J.Barchers. Commun. Nath. Phys., 1. 57, 1965.
4. H.J.Borchers. Commun. Math. Phys., I, 281, 196!.
 I, 1969.
5. S.Doplicher, R.llaag, J.L.Roberts. Commun. Matn. Ihys., 15, 173, 1969.
6. J. Dixmicr. Les algebres d'operateurs dans l'espace Uilbertien (les algebres de von Neumann). Paris, 195\%.
7. J. Vixmier. Les cialgebres et leurs represeritations. paris, 1964.
8. J.Antoine. Journ. Math. Phys., 10, 54, 1069.
9. G. orcin, N.Guenin. Journ. Nath. Rhys., 7, 19151966.
10. K.Kraus. Zs. F.Phys., 181, 1, 1964.
11. H.J.borchers. Commun. Meth. Phys., 4, 315, 19,7.
12. A. Schooh. Intern. Journ. of Theor. Phis.1, 10', 1968.
13. J.M.Knight. Journ. Math. Phys., 2, 459, 1961.
14. S.Echlieder. Commun. Math. Phys., 13, 269, 19,9.
15. A.S.Wightman, Ann. Inst. Henri foincaré, 1,405 , 1964. 17. R.V.kadison. Journ. Math. Phys., 4, 1511, 1963.
16. N.Guerin, B.Misra. Nuovo Cim., 30, 1272, 1963.
17. HoReeh, ©. Schlieder. Nuovo Cim., $22,1051,1951$.
18. H.J.Borchers. Commun. Math. Phys., 2, 49, 196j.
at. H.Araki. progr. Theor. Hys., 32, 844, 1304.
19. a.istüruer. jommun. Math. Phys., 5, 306, 1967.
20. H.Hag, N.Kıstler. Journ. Nath. Phys., 5, 848, 1964.
2.4. A. manford, J.Tr.chwartz. Linear operators, vol. I.
"r. R.Hare, R.V.Kadison, D.Kastler, Comm. Math. Phys., 16, 81. 1970.
21. D. Kastler, in: Systèmes avec un nombre infini des degrés de liberte, Paris, 1969.
22. R.V. Kadison. Hroc. Natl. Ac. Uci. USA, 43, 173, 1957.
23. R.Haag, Phys. Rev., 112, 669, 1958.
24. H. Huelle. Helv. Hi,se dcta, 35, 147, 1962.
25. ㄱ.S. Horuzty. Theor.\& nathen. Physics, 5, 29, 1970 (in Kussiar)

[^0]: v) Examples of statistical systems with observab e algebras of the types II and III being explicitly known, i. is clear that in the statistical mechamics (in contrast to relativistic quantum theory) the structure proposed by us :annot be too universal.

[^1]: x) Of course, it is possible in our scheme to stady the relations between coherent sectors by means of the theory of $W^{*}-a l_{g} e b r a s$, without introducing representations of $C^{*}-a l g e b-$ ra. However such a way is less effective and hinders the comparison with known results.

