ОБЪЕДИНЕННЫЙ ИНСТИТУТ ЯДЕРНЫХ ИССЛЕДОВАНИЙ
Дубна

## $459 / 20-71$

A.N. K vinikhidze, C.D. Popov, D.Ts. Stoyanov, A.N. Tavkhelidze

FACTORIZATION<br>OF DUAL AMPLITUDES AND LOOPS<br>IN THE COHERENT STATE MODEL

## 1971

## E2-5568

A.N.K vinikhidze*, C.D. Popov,<br>D.Ts. Stoyanov, A.N. Tavkhelidze

## FACTORIZATION

# OF DUAL AMPLITUDES AND LOOPS <br> IN THE COHERENT STATE MODEL 

Submitted to "Physics Letters"


In a recent paper $/ 1 /$ an operator technique for building the dual $N$-point tree diagram with the aid of loCi five-dimensional oscillators has been proposed. The purpose of the predsent paper is to build loops in this scheme. The creation $\left(a_{\mu}^{+}, b^{+}\right)$and annihilation ( $a_{\mu}, b$ ) operators, cor responding to such an oscillator, satisfy the following commutation relations:

$$
\begin{array}{ll}
{\left[a_{\mu}^{+}, a_{\nu}\right]=g_{\mu \nu}} & g_{\mu \nu}=0 \\
{\left[b^{+}, b\right]=1} & g_{1 v}=-q_{11}=-g_{\alpha}=-g_{13}=1 \tag{.1}
\end{array}
$$

(the all remaining commutators are equal to giro). In this oas the Hamiltonian has the form:

$$
\begin{equation*}
H=-g^{\mu \nu} a_{\mu}^{+} a_{\nu}-b^{+} b . \tag{2}
\end{equation*}
$$

Let us define the coherent states of the oscillator (2) as follows:
$|\beta\rangle \equiv\left|\beta_{0}, \beta_{1}, \beta_{2,}, \beta_{3}, \beta_{\eta}\right\rangle=e^{-\frac{1}{x} \sum_{i=0}^{4}\left|\beta_{i}\right|^{2}} e^{-g^{\mu \nu \beta_{\mu}} a_{\nu}^{+}-\bar{\beta}_{1} b^{+}}|0\rangle$
$\langle\beta| \equiv\left\langle\beta_{0,}, \beta_{v}, \beta_{1}, \beta_{3}\right\rangle, \beta_{4} \left\lvert\,=e^{-\frac{1}{2} \sum_{i=0}^{4}\left|\beta_{i}\right|^{2}}\langle 0| e^{\sum_{j=0}^{3} \beta_{\mu} a_{\mu}+\beta_{4} b}\right.$,
where 10$\rangle$ is the vacuum state, $\beta_{i}$ are arbitrary complex numbers and $\bar{\beta}_{i}$ their oomplex oonjugates. These states are normalized and form a complete set:

$$
\begin{gather*}
\langle\beta \mid \beta\rangle=1 \\
\frac{1}{\pi^{j}} \int|\beta\rangle\langle\beta| \prod_{i=0}^{4} d \operatorname{Re} \beta_{i} d \operatorname{Im} \beta_{1}=I \tag{4}
\end{gather*}
$$

where I is the unite operator and for every $\beta_{i}$ the integration is taken over the whole complex plane. In order to reveal the $N+2$-point amplitude factorization in osoillator operators we write it down in the form:

$$
\begin{equation*}
\left.B_{N+2}=\int_{0}^{1} \prod_{i=1}^{N}\langle 0| \Gamma_{i}|0\rangle\right\rangle_{i=1}^{N-1} x_{i}^{-\alpha\left(s_{i}\right)-1} d x_{i} . \tag{5}
\end{equation*}
$$

The operator $\Gamma_{i}$ depends only upon the 1-th oscillator operators and oorresponds to the diagram
with the following rules of correspondence: To every knot $\xrightarrow{\text { P } P_{k}}$ there corresponds the operator

$$
\begin{equation*}
V^{L, D}\left(p_{k} \cdot a_{i}, b_{i}\right)=\left(1+b_{i}\right)^{-\sqrt{2 \alpha^{\prime}}} \frac{\rho_{k} \cdot \alpha_{i}}{b_{i}}+\rho_{i k}^{L, D}, \tag{6}
\end{equation*}
$$

where one should write the index $L$ for $k>i$ and $D$ for
$k<i$. The constants $\rho_{k i}^{L}$ are defined as follows:

$$
\begin{align*}
& \rho_{i, i+1}^{L}=-1-\alpha(0)-2 \alpha^{\prime} p^{2} \\
& \rho_{i, i+2}^{L}=\alpha\left(p^{2}\right) \quad \rho_{i j}^{i}=0 \quad \text { for } \quad j>i+2 \tag{7}
\end{align*}
$$

( $\alpha^{\prime}$ beling the slope of the linear Reggentrajectory). The oonstants $\rho_{i k}^{D}$ are arbitrary.

$$
\text { To the vertex } \frac{\int_{i} p_{i}}{} e^{\sqrt{2 \alpha^{\prime}} P_{i} \cdot a_{i}^{+}+b_{i}^{+}}: e^{-H_{i}}:\left(1+b_{i}\right)^{-2 \alpha^{\prime} \frac{p_{i}, a_{i}}{b_{i}}+\rho_{i i}},
$$ there corresponds the operator:

where $\rho_{i i}=2 \alpha^{\prime} p_{i}^{2} \equiv 2 \alpha^{\prime} p^{2}$
and

$$
\begin{equation*}
H_{i}=-g^{\mu \nu} a_{\mu i}^{+} a_{r i}-b_{i}^{+} b_{i} \tag{9}
\end{equation*}
$$

To every element $S_{k}$ there corresponds the operator $X_{k} H_{i}$.

Using these rules of correspondence we find out the operator $\Gamma_{i}$ in the form

$$
\begin{gather*}
\Gamma_{i}=\left(\prod_{k=i}^{N-1} x_{k}^{H_{i}}\right) \prod_{n=i+1}^{N}\left(1+\prod_{e=i}^{n-1} x_{l} b_{i}\right)^{-2 \alpha^{\prime} \frac{P_{n} \cdot a_{i}}{b_{i}}+\rho_{i n}^{L}}  \tag{10}\\
e^{\sqrt{k^{2}} P_{i} \cdot a_{i}^{+}+b_{i}^{+}}: e^{-H_{i}}:\left\{\prod_{k=1}^{i-1} x_{k}^{H_{i}}\right)_{n=1}^{i}\left(1+\prod_{l=1}^{n-1} x_{i} b_{i}\right)^{-2 \alpha^{\prime} \frac{P_{n} \cdot a_{i}}{b_{i}}+\rho_{i n}^{D}}
\end{gather*}
$$

Substituting eq.(10) into eq.(5) we get the well known expression for $B_{N+2}$ :

$$
\begin{equation*}
B_{N+2}=\int_{0}^{1} \prod_{i=1}^{N-1} \prod_{n=i+1}^{N}\left(1-\prod_{i=i}^{n-1} x_{l}\right)^{-2 \alpha^{\prime} p_{n} \cdot p_{i}+\rho_{n i}^{L}} x_{i}^{-\alpha\left(s_{i}\right)-1} d x_{i} . \tag{11}
\end{equation*}
$$

Let us denote the $\mathbb{1}$-partiole ooherent state by $\left|\chi_{N}\right\rangle$ and define it in the following way:

$$
\begin{equation*}
\left|\chi_{N}\right\rangle=\int_{0}^{1} \prod_{i=1}^{N} \Gamma_{i}|0\rangle \prod_{i=1}^{N-1} x_{i}^{-\alpha\left(s_{i}\right)-1} d x_{i} \tag{12}
\end{equation*}
$$

$$
\begin{align*}
& \text { Using the expression (10) for } \Gamma_{i} \text { we get: } \\
& \left|X_{N}\right\rangle=\int d \varphi_{N+2}(x) e^{\sum_{i=1}^{N}\left(\sqrt{2 \alpha^{\prime}} f_{i}, a_{i}^{+}+b_{i}^{+}\right) \prod_{k=i}^{N-1} x_{k}} \tag{13}
\end{align*}
$$

$$
\left(\prod_{n=N}^{N-1} x_{k} \equiv 1\right)
$$

where $d \varphi_{N+2}(x)$ denotes the integrand of the Bardaokoi-Ruegg expression for the $N+2-p o i n t$ funotion. Then $B_{N+M+2}$ can be written as follows:

$$
\begin{equation*}
B_{N+M+2}=\left\langle\tilde{\chi}_{M}\right| \frac{D_{M N}}{H-\alpha\left(S_{N}\right)}\left|\chi_{N}\right\rangle \tag{14}
\end{equation*}
$$

where

$$
\begin{gather*}
D_{M N}=\prod_{i=1}^{N} \prod_{n=N+1}^{N+M}\left(1-b_{i} b_{n}^{+}\right)^{-\frac{a_{i}, a_{n}^{+}}{b_{i} b_{m}^{+}}+P_{i n}^{L}}  \tag{15}\\
<\tilde{X}_{M}\left|=\int d \tilde{P}_{M+2}(x)<0\right| e^{\sum_{i=N+1}^{N+M}\left(\sqrt{2 d^{\top}} P_{i} \cdot a_{i}+b_{i}\right) \prod_{k=N+1}^{i-1} x_{k}} \tag{16}
\end{gather*}
$$

and. the sign tilde denotes, that we have changed the numeratior of the variables $x_{i}, p_{i}, a_{i}$ according to the oonvention $\mathrm{M} \rightarrow \mathrm{N}+1, \mathrm{M}-\mathrm{I} \longrightarrow \mathrm{N}+2, \ldots \mathrm{I} \rightarrow \mathrm{N}+\mathrm{M}$.

The formula (14) is remarkable by its full factorization in both external momenta and harmonic oscillators. Just as in the case of four-point function, when the initial and final states have been characterized by coherent states, in the more general case, when $N$ particles turn into M particles, there is also a possibility of presenting the inttial and final states ware functions as superpositions of coherent states.

Recently the possibility of building loops in dual models
has been intensively studied $/ 3 /, / 6 /, / 7 /$. In particular, in ref. $/ 6 /, / 7 /$ using the method of factorization with the aid of an infinite number of oscillators exponentially divergent expressions for the loops have been obtained. Below we shall show, that our method of factorization with final number of oscillators /I/ allows us to build a convergent expression for the planar one-loop diagrams.

It is obvious, that the operator $\Gamma_{i}$ takes into account the i-th particle contribution to the $N$-point dual amplitude. The fact, that $\Gamma_{i}$ depends on the momenta of other particles should most probably be interpreted as a result of the averaging over the fields of the external particles, that has been performed before the operator $\Gamma_{i}$ appears. It is clear from this point of view that the contribution of a given particle to the amplitude is determined rather by the appropriate oscillator, than the monentum. In principle, the oscillators corresponding to each particle can be built up, proceeding from the field operators of this particle. Such a possibility is disoussed in ref. /2/.

Now it is easy to see, that the loops should be built up also with the aid of the operators $\Gamma_{i}$. From the above considerations it follows, that before integrating over the internal loop momentum, the loop $L_{N}$ with $N$ external partioles should be a product of N closed chains, each having only one external particle. If we cut any of these chains at any point, we should get a linear chain of the type $\Gamma_{i^{\bullet}}$ This defines completely the way of oonstruoting closed chains $\phi_{i}$ :

$$
\begin{equation*}
\phi_{i}=S_{p} x_{v}^{H_{i}} \Gamma_{i(x, p)} . \tag{17}
\end{equation*}
$$

Then $L_{*}$ is to be defined by the formula:

$$
\begin{equation*}
L_{N}=\int \prod_{i=1}^{N} \phi_{i}(x, \rho) \prod_{i=1}^{N} x_{i}^{\alpha\left(s_{i}(\kappa)\right)} d x_{i} d^{\varphi} \kappa \tag{18}
\end{equation*}
$$

This method of constructing the loops well corresponds to the factorization (13). Indeed, from the symmetrized N-point dual amplitude ( $N^{\prime}>N$ ) we can always single out some operator part with $N$ external particles. Beoause of the oommutativity of different oscillators, the trace of this operator chain is represented as the product of the traces of the operators $X_{N}^{H_{1}} \Gamma_{1}(x, P)$. The function (17) can be calculated with the aid of a complete set of coherent states(3).

$$
\begin{equation*}
L_{N}=\int N_{(x)} \prod_{i=1}^{N} x_{i}^{\alpha\left(s_{i}(n)\right)} d x_{i} d^{4} k \tag{20}
\end{equation*}
$$

where

$$
=\begin{aligned}
& =4 n+1 \\
& \text { This form of } N(x) \text { shows, that the integral representa- }
\end{aligned}
$$

tion of the loop converges in some region of variation of the parmoters $\left(P_{i} \cdot P_{j}\right)$.

$$
\begin{aligned}
& N(x)=\prod_{i=1}^{N}\left(1-x_{i}\right)^{\left.-1-\alpha l\left(p_{i}+p_{i+1}\right)^{2}\right]}\left(1-x_{i} x_{i+1}\right)^{-2 \alpha \alpha_{i} p_{i+2}+\alpha\left(p^{2}\right)} \\
& \prod_{i=2}^{N-2}\left(1-\prod_{k+i}^{i=1} x_{k}\right)^{-i x^{\prime} p_{i} \cdot p_{i}} \prod_{i=1}^{n-1}\left(1-\prod_{k=i}^{N_{i+1}} x_{k}\right)^{-2 \alpha^{+} p_{2} \cdot p_{1}} .
\end{aligned}
$$

$$
\begin{align*}
& S_{\rho} x_{i_{i}}^{H_{i}} \Gamma_{i}(x, p)=\prod_{n=1}^{i}\left(1-\prod_{k=1}^{n-1} x_{n} \prod_{i, i}^{*} x_{i}\right)^{-2 x^{\prime} p_{n} \cdot p_{i}+\rho_{i n}^{D}}  \tag{19}\\
& \prod_{n=i=1}^{1}\left(1-\prod_{i=i}^{n-1} x_{l}\right)^{-2 \alpha^{\prime} p_{n} \cdot p_{i}+\varphi_{i n}^{L}} \\
& \text { Substituting eq.(19) into eq.(18) we get }
\end{align*}
$$

After performing in eq. (20) the integration over $d^{4} k$ the expression for $L_{4}$ takes the form
$L_{4}=-\frac{\pi^{2}}{\alpha^{2}} \int_{0}^{1} \prod_{i=0}^{4} d_{i} \frac{\omega^{-\alpha(1)-1}}{\ln l^{2} \omega} e^{-\alpha^{\prime} s \frac{\ln x_{i} \ln \lambda_{1}}{\ln \omega}-\alpha^{\prime} t \frac{\ln x_{1} \ln x_{1}}{\ln \omega}-\alpha^{\prime} \rho^{2} \frac{\ln x_{1} x_{3} \ln x_{1} x_{1}}{\ln \omega}}$ $\left[\frac{\left(1-x_{1}\right)\left(1-x_{3}\right)\left(1-x_{2} x_{3} x_{4}\right)\left(1-x_{1} x_{2} x_{4}\right)}{\left(1-x_{1} x_{2}\right)\left(1-x_{2} x_{3}\right)\left(1-x_{3} x_{4}\right)\left(1-x_{4} x_{1}\right)}\right]^{-1-\alpha(s)}\left[\frac{\left(1-x_{2}\right)\left(1-x_{4}\right)\left(1-x_{1} x_{3} x_{3}\right)\left(4-x_{1} x_{2} x_{4}\right)}{\left(1-x_{1} \lambda_{2}\right)\left(1-x_{4} x_{3}\right)\left(1-x_{3} x_{4}\right)\left(1-x_{4} \lambda_{1}\right)}\right]^{-1-\alpha(t)}$ (22) $\times\left[\left(1-x_{1} x_{2}\right)\left(1-x_{2} x_{3}\right)\left(1-x_{3} x_{4}\right)\left(1-x_{4} x_{1}\right)\right]^{-2-\alpha(p)}\left\{\left(1-x_{1} x_{2} x_{3}\right)\left(1-x_{2} x_{3} x_{4}\right)\left(1-x_{3} x_{4} x_{1}\right)\left(1-x_{4} x_{1} \lambda_{2}\right)\right]^{\alpha\left(i_{p}^{2}\right)+1}$,
where $\omega=x_{1} x_{2} x_{3} x_{4}$.
For $S-\infty$ the leading term in the asymptotic of $L_{4}$ has the form:

$$
\begin{equation*}
\Gamma(-\alpha(t)) \Delta(t)\left(-\alpha^{\prime} s\right)^{\alpha(t)} \ln \left(-\alpha^{\prime} s\right) \tag{23}
\end{equation*}
$$

where $\Delta(t)$ is a known function $/ 8 /$.
It is olear, that this expression well corresponds to the general expression for $L_{4}$, that has been derived $\mathrm{in}^{\prime} / 3 /$. The authors express their deep gratitude to N.N. Bogolubov, A.A.Logunov and also to V.R.Garsevanishvili, V.A.Matreer and R.M.Muradyan for many fruitful discussions.

## References

1. A.N.Kvinikhidze, B.L.Markovski, D.Ts.Stoyanov, A.N.Tavkhelidze. JINR Preprint, E2-5182, Dubna (I970).
2. V.A.Hatveev, A.N.'Tavkhelidze. JINR Preprint, E2-514l, Dubna (I970).
3. K.Kikkawa, B.Sakita and M.A.Virasoro. Phys.Rev., 184, 1701 (I969).
4. S.Fubini, D.Gordon and G.Veneziano. Phys.Lett., 29B, 679 (I969).
5. C.Lovelace. CERN Preprint TH 1123.
6. D.Amati, C.Bouchiat and J.L.Gervais. Lettere al Nuovo Cimento, 2, 399 (I969).
7. K. Bardakci, M.B. Halpern and J.A.Shapiro. Phys.Rev., 185, 1910 (I969).
8. D.Sivers and J.Yellin. Preprint UCRU-19418.

Received by Publishing Department on January 12, 1971.

