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Summary

It is shown, that»the intréducﬁion of the spin leads to
an essentlal change in the‘strueﬁure of the j-plane and in the
behaviour of the amplitudes off the mass shell. The reason for
this is a singular character of the interaction at small dis—
tance. High-energy sqmmét;ﬁﬁ of the gl;, logarithmic terns of

all the dlagrams in pseudoscalar mesodynamics glves a new rep—

resentation for the scattering amplitudes. In addifion to the
moving Regge poles, there appears a standing singularity. In
the case of finite renormaliﬁation of the coupling constant
and the wave function it is a square root branch point the po-
sition of which is determined by the bare coupling constant.
The amplitudes do not vanish with the growth of external mass
(M2S—>= ).

This representation can serve as a basis for jhenomenolo—
glcal description and the study of the properties of the Regge
trajectorles, For example, here-we have the conspiration of v
and /¢ =~ trajectorles and the proportionality of the resi-
due of the Regge tiajectories in meson—baryon and baryon-baryon
scattering t; their position J = dff)- 'This‘leadS'to the

dips in the angular distributions when x(t)=0




I. Introduction

For many years a reasonable descripfion of the strong in-
teraction on the basls of perturbation theory was considered
to be impossible. Up to the present time the following three
problems were solved by different authors:

1) Summation of'seniorvlogarithmic termsl™? (usually in
the ladder type graphs).

2) Total Summatién of all the logarithmlc terms of ladd-
er graphs in }93—theory2’7.

3) Summation of the sénio: logarithms in the so-called

“double-logarithmic® approach8’9 which can be reasonable 1in
quantum electrodynamics but can not be applied to hadrons in-
teractions; ‘

Inlthe first two cases there was a hope that the ladder’
approximation would reflect at least some of the essential
featureé of the real situation becaﬁse of its simlilarity to
the potentlal description of scattering. However, except this
hope the matter had no serious progress. This more than modest
success 1n solvig ﬁhe above particular problems reduced theore-

tists to such pessimism that till now some of the llstcncrs come
to us after the seminars and ask with confidence: "What diagrams

did you sum up?"

Qur success in investigating the Feynman graph asympto-

tics (seell and references therein) gives us the possibility to

sum up all the 1ogarithmic’termé of all scattering diagrams

without any exclusion for the ?3-£heory and mesodynamics

* hecently the same ladder approximation has been used for in-
vestigating the asymptotics of the deep inelastlic ep -~ scatter—
ing9,10
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in the limit ~2/g {/:S"’ O ie.e. in the diffraction region
at high energy. It was found that the summation of Jjunior 1oga-
rithms does not change the character of the j ~ plane singulari-
ty of the amplitude only in ‘f3— theory., For mesodynamics,
in addition to the standing branch point due to senior terms
there appears moving Regge poles. In this paper we discuss only
the principal results of -such summation in the followlng prob—
lems:
1) Elastic and gquasielastic scattering of hadrons in the diff-
ractional reglon (Sec.4).
2) Asymptotics of the hadron amplitudes in the limit of the lar-—
re nass of the external particles (Sece5).
3 gp- . and /7~  forward scattering at high energy and
" large M™mass" of thc’photons (Sec. 6) which are connected with
the deep inélastic ép— and ee- scattering.

The solution. of thesc problems strongly deﬁends on the
type of interaction, The physical meaning of this dependence
and two hypotheseswhich permit us to perform the summation are

discussed in Section 7.

2. The l.cading Singularities of Diagrams

The asymptotics of the Feynman graphs was studed by us in

the papersl;. For the description of the elastic scattering
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we use the symmetric energy variable \)z -{2— s three inde-~
pendent momenta
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and the relativistic classificatlon of the two-particle states
in t—channel and the transition amplitudes between them. There
are two oonserved quantum numbers: the signature &= C—-)J
and the 1ntrinsic parity or normality & P (G P= ":{. for
normal states, where the parity P- (- )j and. G P--4

3““). In particular, 6'P=‘+i

for axial states, where P- &)
‘it there is at least one two-pion intermedlate state in t-chan-
nel,

The states of a baryon - antiba.ryon system (B) are descri-
bed by wave functions aOuw » where ()  are the usual
combinations of the ?/“ matrices denoted by ,S(, V,7,A and
p . The two-meson state  1s denoted by {s The transition
amplitudes between these states ("the invaria._nt amplitudes™)
are labelled by two indices oorresponding to the states of the
pair 1, 1 and 2, 2°. Within the acouracy v oana taking

into account the Dirac equatlon, the projeétion operators on



these states are .
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It is shown'? that GAP=-7/  for the states P,A T~ and
¢ P=+4 for the states M,S,V,T+. The invariant amplitudes are
nornalized so that the situation would be similar to the case

of scalar graphs. This corresponds to the normalization to the

first Born term,-In view of (3),

/O
J{qe =z717[v4(J' * 7[.A(V )
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and, for instance,
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For the investigation of the asymptotical behaviour of the -
graphs the Mellin transformation is very suiltable. It must be

done for the positive and negative signature separately
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Using the usual &K ~ paramef{rization of propagators in the
exponential form (to each line there corresponds a parameter o )

we can wrlte down the oontridbution of any graph

s ) ¢, r77)
= ,L//@Z‘j“gaz‘,d) /Al J(é’fA/-*ﬁﬁ////EJ

where H is the product of the factors (;@Qi’) and }(’iééﬁ“,/

and A,D,J are functions of X of the same form as for the sca-

2

lar graphs, The numerators of spinor propagators turn into a pre-
exponential factor (?(o&ﬁi ) with polinomial dgpendence on Jo
The asymptotic behaviour of the graph is determined mainly
by the two-particle separations of the graph in t-channel, which
subdivide the graph into kernels. The kernel is_a subgraph with ,

nel, Any scattering graph is eithera kernel or a set of kernels

(Fig,2) linked by pairs of meson or_baryon lines,

" :
The asymptotics of J[ (U,{} s is evidently determined
by the most right sihgularity of ,QB(J:(/ in j~plane, We have

shown11

that the leading singularity of the positive signature
part of any graph in mesodynamics 1is a pole at ij = 0 which ori-
ginates from integration over o in the region where A( )~0
together with the seét of o —parameters corresponding to a ker-—
nel or a connected union of kernels, that 1s the leading pole
arising from "the asymptotical regime" of kernels or unions of

kernels, For each graph we systematically take into account all

the poles at j = 0 and drop out the part which is regular when



Re J > -1. PThis means that each graph is considered with the
accuracy (J () Lees all the powers of the logarithm ar§ ta-
ken into account.‘Each kernel or union of kernels V in asympto-
tical regime generates by itself a simple pole j—l, but the di-
vergent part§¥inside V increase the power of the pole at j = 0,
lloreover, there 1s some sort at factorlzation of the ésymptotics'
of the divergent parts. The simple pole 1/J for the asymptoti-

cal object without divergences turns to

36ﬂ ‘1G.) Jii —

for the same object but with thc nonoverlaping partially diver-
zent partS‘/: - /Z . where jﬁ~(£.) is the Mellin transform
of the asymptotics of /7 when all components of the momenta
tend to infinity. These are the only sources of singularity in
Re J > -1 for the positive sipgnature part of the amplitude,

In a theory of the type ypj (eege )9{}( ) the most
»ight singularities of the graphs are at the point j = -l. For
the nepgative signature part they are generated by the asymptoti-
cal regime of the simplest of the kernels, "the steps®", 1f any
(Fig.2b).

The “asymptotical regime" (i.c. x> O ) means topologi-
cally the contraction of the corresponding object into a point,.

¥ llotice, that when Re J> 0 all kernels and unions of Xernels

are convergent,



The larger the number of asymptotical objJects the higher the or—'
der of the pole., But simultaneously can work only the objecté
which eilther have no common lines or are entirely contained 1n-
side one another, ‘ ‘

To take into acoount all the orders of the poles.at J = 0
it is necessary to sum up over all the possibilities of the
asymptotiéal and nonasymptotioal regime of all the kernels and
the unlons. The cbntraction of the objects in the aé&mptotical
regime transforms the initial graph into a weakly connected
vgraph consisting of thevcomponents of the type of Fig.B.

(c)

The oontribution of these nbncontracted objects, which are regu~
lar in Re j > -1 (in the }03 ~theory~ Re j > -2) will be de—
noted by C®(t) (Fig.3a) and B*(Fig.3b). The simplest of them
B°(t) (Fig.3c) and c°(t) are written down in the expression (15)
In studing the asymptotical behaviour in the mass of the
external particle we restrict ourselves to the case of elastic
scattering with asymptotically large mass of the first.particle,
1l.e. B‘-: v g’_—_— Miy il It is useful to introduce a new
varlable (O = - \6/h4l « The followipg two cases are of 1lnte-
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Tor the 1n§estigation of these limits the Mellin transfor-
mation with réspéct to u% - varlable of the type (5),(6) is
found fo be useful againe. This transformation reduces’the prob—-
lem of the asymptotical behaviour to the one of leading singu-~
larities in the plane of Mellin parameter f? +« For any graph

in mesodynamics in the limit (7a), these_slngularities are poles

at {if o generated by the asymptotical regime (by the con~

i;gctiog) of those kernels. and unions of kernels_which contain

both vertices 1 ang_gi The order of the pole can be increased
by the divergent parts 1nside the contrécted objécts. In the
)p'g-theory the most right singularity 1s a pole at [" -7
which i1s generated only by the asymptotical regime of the line
connecting the.vertices 1 and l; if any. In the limit.(7b).the

'gboveuparameter f changes uyf%J'..mthét is"poles.shift to.

- the left by J.

3. General Scheme of Summation

The method of summatioh we have'used12'14 is, in fact, a
method of solution of the exact Bethe-Salpeter equation, Really,
the results of investigation of the Feynmap4integral asymptotics
summarized above reduce the general problem of summatioh of the

10garithmic terms to the problem of a ladder type diagrams. It

10 .
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1s natural to assume that the kernel of the t — channel Bethe-GAl
peter equation (i.es the sum of all graphs without two-partiole
separation 1g t - ohannel) has the same asymptotical property
as fhe above mentioned kernels of the graphs, (For the disous-
sion of this assumption see Se0.7) ‘v ‘
fhe main difference between )”3 - theory and mesodyna—
mios 1s in the behaviour.of the kernel with 1noreasingli large
mass of external partioles. In )"3— theory the contribution
of the kerhel vanishes with the growth of the mﬁsa_therefore
in the equatlon we can use tha'properties of the kernel on
(or near) the mass shell, In this oase the‘kernel 1s of the
fredholmean<type; S0, the solution ﬁéé the moving Regge poles
only.vNameiy this hypothesis is usually made in all variants
of the multiperipherical, multiregglon, fire bail and parton
mode1s1”18,

In mesodynamlos the kernel turns out to be a nonfredhol~
mean one and the contribution of the region of large values of
the external mass 1s important. Suoh a kernel oan be broken in-
to a relatively simple nonfredholmean part VOVF whioh oor-
respondé to the aaymptotibal regime of the kernel and a fred-
holmean remainder \4: + The nonfredholmean part \CVF' is
not quadratioally integrable but the divergenoe is only loga-
rithmio one.Since \/;/F' oofrespdnds to @he asymptotical re-—
gime of the kernel the ploture of the J—-plene singularities in
this case is complicated by the internal divergences, That is

why the unavoidable question arises what 1s the sum of these

11



divergences, i.e. what is the character of the renormalizations
in field theory? Because of the agsymptotical character of its
series, which 1s displayd just there the perturbation.theory is

unable to answer in principle this guestion, Thus we need .a-hy-

pothesis, It seems natural and meaningful .from the physical view
poiﬁt”to assune that the wavp functlon and charge renormaliza-
tion constants é? are finite. (For the argument . of this hy-
pothesis -sce, e.g.,rcfs.lj’lg). This, makes 1t possible to redu-
cc the problem of the asymptotical regime of the general kernel
to the one..of the lrreduclible kernel, l.e. the kernel without.
internal divergent parts, but with bare coupling constantsé?,
and h/ irn the vertices and with bare wave. functions of.the
external to the kernel lines. Thus, .the total contribution of
the contracted objects after having been multiplied by. 2:71
(1.e. by <_72-2' 2;2 or 2;1 z_?;i depending on the lind.
of the cxternal lines) i5 a series in_the bare coupling cons—.
tants. The fredholmecan part 15 kept, as before to be a series

in the renormalized  constants.

4..§gattering_g§ Hodrons in the- Diffractional Reglon

The summatlon 'of all the orders of the leading poles of
all the graphs (under the above mentiohed'assumption Y. glves for
the amplitudes.of positive signature in mesodynamics and of nega-—

ive one in 503 — theory the following result

Blit)= CleIfuy) - Bee)] Ete) RH). &



In }p3 ~theory (/)= (/,1)/ 2 and B(t), c(t) (and B(t)) -
"are the series in the coupling oonstant ( 3/4/, ) s tach
term of which being regular in kﬂd > -2 and corresponding
to the graphs of fig.Jb or f£ig.3a. Thus, the amplitude has the
Bimple Regge poles and the anhiguitj in breaking the kernel con—
tiibution into the asymptotical and nonasymptotical parts ma-
(k98'1t possible to supply'the correct threshold behaviour
S
Bt~ (/~$)J*’Z mear ¢ ~4 &
7 ;
In mesodynamics all the quantities entering (8) are matri-
'oes, " U(f) and B(t) being symmetrical the first index of C(t)
oorresponds to the exfernal line the second one to the inter-
nal line of the graph and E' 1s the transposed matrix of C .
For & Pe<ed (the index T implies T)

| Buw  Voj By, B
Be- | i Bua Byv S04 Byr
| %\Eﬁ Bm %ﬁ Brv Brr

(10)
) uJ‘UA r ul}“f O '
YW= (&% uyy o

0 O Uy

Corae e Cor 7 Vit Cut

clt)= C v Ui Cvy "”"‘\/—/; Cvr
: Csu - \[I Cgv 2/\4@]{ CsT
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Tor - 6P= -1/ they are simple. functions

Ugalr) ) Bugld); V7 Caplé) , Qe

or (r.implies . TO)

Urr U, Brr (), 2201/, CPT &) . @y
The matrices L, C and R are the series of B, ¢” and R

(see Fig.3) 1in all sorts of the kernels and in their number.

The exanlple of the series for C(t) is shown on Fig.d.

;<{ + <(+€+<+ << ,\

Fig.4

where the wavy lines correspond to mesons, the Solid one - to
baryons and all the lines are in‘nonasymptotical regime, It is
naturaily assumed that the functions B, é and R:.do. not contain
the 1ead1hg singularity of the amplitude asueach‘term of the
series. ‘ ’

It is clear from (8) that the amplitude has moving poles
which are determined by zeros of det (U ) - B(£)). Thus,
in the channel witﬁ & P=+71  there are three such poles®,

¥ A similar situation must take place in quantum elegarodyna-
mics, too. Therefore, the concluslon of Cheng and Wu~ about the
nonregge character of electrodynamics based on the anal¥dsis of
the first several terms of the perturbation series seems to be
rather hurry,

14



The main feature of the mesodynamics is the nontrivial
function L/(J:) which 1s a consequence of nonfrcdholmean cha—
racter of the kérmel in the theory. The function & 2(/)
is the seriles in ‘j-i'. e have succeeded in summing it under
“the assumption about finiteness of the renornaliiation constant,
It turns out that” L((j‘Jpossesses the square—root branch pointe,
the pcsiticns of Wwhich ‘are determined by the bare coupling
ccnsténts (i.e. by the constants to be measured at small dis-
tances) certain of them being situated at Re J>0. ’ ‘

The representation (8), has all the main Jeatures of the
uoual Regge picture. It is clear, in particular, thut the poui—
tion and character of the leading singularity for all acatterinv
processes (including quasielastic l) are universul and deter—
mined by the t-channel quantum numbers.rThe factori ation theo~

rem for the symptotics

r T :
X = )
][XX fyy fo  (xremsv) oo
is the direct consequence of the condition det (&r-/3 ) =
determining the poles of the amplitudes and . a similar con-—-

dition for the branch points. :
In addition

Ugage = Upgpe (232)

and When £t =20

BT /37 7, Cpr-=Cs7e=Cyre a7

15



The 1sotopic structure of the theory does not lntroduce

any essential difficultiesl
The representation (8) can help in solving the following

problems: -

A) It can serve as a basls for a oorrect phenomenologlcal des~

cription of high energy. soéttering whioh requires to include

the standing branch points in addition to the Regge‘poles.

B) A more detalled investigation of the funotions B, C and UL))
permits, in prinoiple, to answer the questions about oertain
properties of the Regge trajeotories and reslidues, for instan—

ce the questlon about thelr behaviour at large momentum trans-

fers and large mass of the external partioles. ,

C) In the case of a smail ooupling>oon5tan£ (for instanoe for
Jk‘ﬁ' ~ system) one can use the first terms of the series

for By C and WL for studing fhe prbperties of‘the Regge trajeo~

torles and the bound states.

For the time being, nothing can be sald which of the sin—
gularities, the Qtanding branch point or the moving pole —
1s the leadling one, We belleve that the standing branchpolnt
vis the most sultable oandidate for the Pomeranchuk singulari-
ty and moving poles for the P' and other'trajeotories. This
hypothesis better refleots the peculiar role of the pomeran-
ohon and in addition, 1s more self-consistent, beoause the
rescattering of such pomeranchons glves again the same pome-~
ranohon and there are no oomplication due to the Gribov many-
-reggion diagrams. DBut this, does not mean of oourse that

the standing’cut 1s the leading one in the nonvaouum channels

16
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as well. In the approximation of the small G?’ and 4

the effective coupling constants in nonvacuum channels are
smaller than in the vacuum one and even negative . ‘

The presence of the additional parameters 69 4 means,
that the problem of the nature of the pomeranchon can be solved
either by experiment or, probably, by a nonperturbative appro—
ach . Our hypothesis predicts the total cross—section. decreasing
as (-eﬂ \JA/)/and the ratio Im{/Ref -E,,, l//;/

The choice of the normalizatlon constant fV is e=sentia1 in
this aspect. If it is not too large (eeggs ), ~ /V’z ) the fac-

(f&. gé/ /f// for nowaday energies changes rather weakly.
The camparison of the hypothesis with the experiment for
’scattering made by Freedman22 gives the accuracy of 0.2 mb for
the total cross-section, 0 5 mb for the sum rules and 150 for
the real part of the amplitude. Now a more complete fit inclu-
ding different processes and angular distributions 'is necessa-
ry. The Serpukhov mea..urements,zJ seems, at first sight, to ‘con-
tradict the picture of the logarithmically decreas.ng cross
section, However the contributions of the electromapnetic pro—
cesses24 at these energies can reach ‘the order of soveral milli-
barns and does not permit to make a decisive conclusion on the
basis of these data. k ' ‘kﬂw

It is rather curious that the hypothesis about the leading
v branchpoint in vacuum channel is consistent with the weak coup-—-

ling approximation in ‘  and 4 .- Its position at /:41
. , p
is provided by]'2 C 4 <<j ) )

17
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3(5) X QY for Sty ,5ﬁ;ffjf£(i’/ia,2 L Qo
This corresponds to 3/91 ~25~ 3o+ In the other channels
the effective ~coupling oonstants are mach smaller than in the
vecuum one and for the axial amplitude it is even negative.
This corresponds to the cut along the imaginary axis, l1.e. in .
this channel we deal with the repulsion. ~ Thus - we v
shall often use this approximation in what follows. ‘

The expressions for B(t) and C(t) allow to find the connec-
tions between different amplitudes and to ohoose among the dif-
ferent solutions of the kinema_tica.l oonstrains, In particular,
the factor j.‘ o (€£) appearing_vin different emplitudes of
and NN-scattering (see C(t) in (I0)) suppresses the corresponding
amnlitudes at oA (t) = 0 and leads to the dips in the angular
distributions, The same mechanism eliminates the‘pole at
A (t) = 0 in the conspiring T+‘and T~ amplitudes (see (I0))
whioh corresponds to the 7T and 7 trajectories. At t = 0
these amplitudes are equal and give a nonvanishing contribution
to the cross seotion. '

Thé processes with isospin 2 in t-ohannel have no NN inter-
mediate states. The suppression of this channel onn,be‘explai-
~ ned by the smallness of the coupling constant /9 « The splitting
of A ~ meson could find its explanation in the nondiagonality
of the octet representation in t -~ ohannel in the scheme of
SU4~-synmetTy.,

In conclusion of this section we write down the nonvani-

18



shing elements of C(t) and B(t)

a

C‘OO [ 1
) P ' ° ' (13a)
B, CUbt)-TG); Byy=8B =0, 8,7 Llstr)
B = (1-1)808rm)- 7 )e 208ttt 1) 85 =) 6 b 1)
87'7_'=2/‘12£//}jl Z(//lfj—_/f(//,/"f/, 64; =({—/}/{//£‘f/’f/—f’[l 15b)
[6VV = 6.44 - /37:7-1"" /3;-_7;-],
where )

L bnr)= 1) fon fpentad ] @59

5. Asymptotics of the _Scattering amplitude in_the External mass.

This scholastic, at first sight, probleﬁ becames recently
of great actuality in connection with the invéstigation of deep
inelastic ep—scattering and in connection with the hoving Regge
cuts due to the reScattering of reggions 25’26. The modern me-—
thod of finding such cuts assumes that the contribution of the amp-
litude vanishes fast enough with growth of the masses of the
external particles. It is interest;ng to'understand‘to wﬁat ex—
tent such a behaviour 15 Justified in field theory.

Let us first comsider the limit (%)% = Vo= (Fig.1)

in the 993 —~theory. The diagrams in which the vertices

19



1 and l(are linked by one iine are here of asymptotical impor-
tance and the leading singularity in f’—plane ;s generated
by asymptotical regime of this line. In the limit (7a)

this leads to the behaviour '

! < (€)
—m, (D) C (¢) . (16)

In the limit (7b) ( /w/< 4 ) the asymptotios is found
to be simple : ~ M-a.’Thus, in the 7V€-theory there 1s a
necessary decrease with increasing ma3525’26.

In mesodynamics the leading singularity in {?-plane is
geﬂerated by the asymptotical regime of the kernels and unions
of kernels which contain both vertices 1 énd l/. Using, as be-~
fdfe,'the hypotheslis of finlte renormalization we obtain in the

C1limit (7a)
“ ((£) Z v, \
£ w2t ()~ iy (172)

where ‘& (t) 1s the position of a leading singularity determi-
ned by (8)*. In the case of the leading branch point oA does

: -%
not depend on t and @4 (17a) 1s to be multiplied by (é%u)f
For small values of bare charges considered in (14)

—_ -z ~ — »
B()= () ~ 01+ 02 Q@)

¥ The matrix C(t) is written down in (IO0) and fi&i)has the
same form as 2/(/) but this matrix structure is nonessential
for us at the moment.

20




In the limit (7b)
s : fa(co)
f(rrs o, t)~ (17%) : (182)
6. Deep Lnelastic Eleot;g:ggggoh Processes in pesodynamics

Here we will describe the asymptotics of 3Cp- anduéﬁ/i
forward scattering‘inbthe l1imit of high energy and large "mass"

of photon whioh are measured (or can be measured) in the experi-
ments on deep 1nelastic ep-~ and ‘ee~ scattering or on scattering

of light by nuclei (see Fig.5).

_ haolrong 6;
' / \ 54
7 f%— \!/f/< 9' »\06
3 vy iy v
A Al ot (88
nucC
Fig.5

At the avallable energles these processes are to be considered
in the first nonvanishing order with respect to the fine structu-
re constant o . One of the consequence of inclusion qf the
photonkinto the play 1s the appearence of a new kind of divergen-
ces whichare not redubmﬂto the hadron éonstant rénormalization.
As before these divergences work only when they are inside the
contradted objects l.e. inside the kernels and unions of kernéis
in asymptotical region., The summation of these divergences for

eaoh photon vertex results in a shift of the singularity in

21



{?—plane generated by the contracted objects to the left by
" a distance 3= (Z_i.j’g v‘(for small 09’ ). Notice for definite-
‘nes that in - 373-process one should distinguish between the
scattering amplitudes of the scalar (S) and the transverse (T)
photons whilg in ' QQV:scattering only the diagonal amplitudes
with definite polarization of each of the photons are to be dis-
tinguished among them, 'In other words the first process 1s cha~
racterizéd by the cross sections &g and G4 and the
second one by GJ_L‘GS_L, 641.3 and Ggg. For the séke of simpli-
olty we give here only the result in the limit of weak coupling.
¥hen the photon "mass" M2 is not too large (or on the mass
shell) there 1s only a slight modification of répresentation(e).
~ Namely,

Co (t) = M2 Cg (€
, (19)
Cite) - [C[ )+ Fagy(ieg-uts))™]
B , 2 $

where F~ 1is a number of order (??5/} « Thus, for the trans-—
verse’ﬁhotons an additional standing pble in the j-plane appears‘
(the second term in (19)) which, probably,yié not a leading
one. Vihen the photon mass becomes large the character éf depen-
dence (l7a); (18a) is conserved but the number {1 for trans;
versal photons decreases by Zg;Therefore, the electro-hadron
amplitudes ére "almost automodel" (the approximate scaling 1ow
'holds). For the scalar photons the situation is more complica—

ted but we can oonclude, that when /L/2~>t>°‘
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= 50 {ar‘ ]’,D—.smffen'nj ,
(20)

_€_’5_£-—>O Eﬁﬂ»o /or Z’r-sca{{er-/'y.

In the }Djltheory the photon formfactors do not work and
the electrohadron amplitudes practically behave iIn just the sa-

me manner as the hadron ones.

7. Discussion,
All the results enumerated above are based on two hypothe~
sis: ‘
» I. The renormalization of the charges and the wave functi-
ons in quantum field theory is finite. This hypothesis does not

contradict perturbation theory 13,19

and is natural from the
~ physical point ofvview.

I1. The charaoter of the singularity of the Bethe-Salpeter
kernel is the same as the singularity of each member of the
series forming the kernel, 1l.e. each graph without two-particle
separation in t-channel.

In the yﬁé-theory the second hypothesis is connected
with first one. It is probable that a similar connectlon exists
in mesodynamics too. In the limit of weak coupling the leading
singularity shifts from j = 0 (for separate graphs) at a distan—
ce of order é?/ (for amplitudes). We do not sece any reason
for the singularities at the polnts j = -1, =2... (for the se-
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parate graphs) to move much faster. So,we believe that the
Exp.(8) givés a leading singularity i'br the amplitude at least,
for not too large (9 and A . With increasing g and /I
the sum of the singularitlies at jJ = =1 can be comparable to the
sum of the singularities at j = 0. The result of the work525’26
means in our language that when the leading singularity of the ‘
graphs shifts due to summation from zero to a point \/'= Ja
then 1f the ‘a.mplitude vanishes with mass there exists the class
of graphs in which the singularity at the point j = =1 shifts
to the point J = 2 Jo—l, l.e. 1t reaches the first one at J°= 1.
This fact siverely complicates the considerationé + However,
the results of the investigation of jthe asymptotlics by the ei—
ternal mass rise the question about the validity of this sta-
tement. ' »

Without recourse to the hypotheses mentioned our results
are an exact aSymptotica.l sunmatlion of the ladder type dlagrams.
In. this case, of course, g lzj ) h ::6 and the series for
B(t) and C(t)’ turn out to be some other (in the series of Fig.4,
for instance, only the terms a,b,c are kept there). ‘l‘hus,> many

1,2,759510 (orrectly

of the results of the ladder approximation
devscribe the general situation in the }ﬂ?-theo'ry. The attempf?!e
of summation in mesodynamics,we are aware of,use the assumption,
which reduces 1t to the level of y3-theory).

The amplitudes with negative signature ‘in mesodynamlcs

11

are more complicated. They have, as follows from~— an accumu-

lation of poles at j = 0 due to plnch singularities similar to
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those found in l’27. Nevertheless, the experimental fact of the
slgnature degeneracy of trajectories gives the hint that the
acoumulating poles come: to J = 0 from thg left. This 1s a conse~
guence of the sign definiteness of the kernel of an integral

equation27’1

« A simllar situation takes place for the negative
signature amplitudes in the }93 —theory; but the poles accumu-
lated here at J = -l. All this demonstrates that the region
Re j <& 0 1is some sort of a "dump" where different unusual sin-
gularities oould appear. For this reason one can not make any
conclusion about the structure of the j - plane when Re . j £ 0.
- Thus, we see that in the y03—the6ry we have delt with
a rather "natural", from the widely accepted point of view si-
tuation: V
there are only Regge poles, the amplitude vanishes
with the growth of external mass, the scaling low
holds for ' ana ) - scattering.
However, the simplest attempt of takiﬁg into account the spig
leads to mesodynamicé with a number of "unusual® pfopertiés
There are standing branch points in addition to the
Regge poles, the amplitude does not vanish with the
growth of exterﬁal mass, the scaling low holds only
approximately. ’
This difference has a deep physical nature, The guantum
mechanical analog of‘the }93 ~theory is a nonsingular at
r?aclpotehtial of the Yukawa type. All the usual approximate

arguments appeal to the images which are familiar from quantum
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mechanical probléms with such potenfial. But the y73—theory can
by no means be considered as a physical one because it has
neither spin nor vacuum. The only renormalizable theory, which
can pretend td the description of experiments 1s mesodynamics,
The quantun mechanical analog of it 1s an exponentially vani-
shing at large  potential which, howéver, 1s singular at
small (of the type r2 )e it 1s just the singularity
which 1s responsible for the aﬁove mentioned “unusual" features
of mesodynamics. From thls point of view the standing branch
point 1s connected with "deeper"®™ internal parts of the particle
than the Regge poles. Really, the position of the branch point
i1s determined by the bare coupling constants, which are measu-
red at small distances, whereas the movement of the poles, i.e.
the function B(t) 1s determined by the renormalized constants

é? and /7 which are measured from low energy experiments,

It can happen that the scaling low in mesodynamics 1s exact one.
But ‘thls would be due to the compensation of the singular in-
teraction'by-"spreading".of the hadron with respect to the pho-
tpn (1.e. in a vanishing "formfactor” vanishing in a definite
way when all three momenta simultaneously tend to infinity).

A similar difference between - Va-theory and mesodyna-
mics was observed in the problem of the electromagnetic correc-
tion to the strong interaction. The enhencement of the role of
the_rigid'photon due to the singular interaction results there
in a rather noticeable aifference in the cross sections of par-

ticle and antiparticle scattering24.
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In conclusion we would like to stress once moré, that the

1ntrodﬁction of spin is not a simple -technical complication-

but .carries with itself serious modification of‘principle.
Attempts to consider the stated above problems in mesodynamics
(e.g.ls) are connected with the assumptions about the behaviour
of the amplitude in the unphysical region which is valid only
for a regulaxr 1nteraction.'We have no need for such a hypothe- .

sis.
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