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Summary 

It is shown, that the introduction of the spin leads to 

an essential change in the structure of the j-plane and in the 

behaviour of the amplitudes off the mass shell~ The reason for 

this is a singular character of the interaction at small dis­

tance. High-energy summation of the~, logarithmic tcrr:is of 

~ the diagrams in pseudoscalar mesodynamics gives a new rep­

resentation for the scattering amplitudes. In addition to the 

moving Regge poles, there appears a standing singularity. In 

the case of finite renormalization of the coupling constant 

and the wave function it is a square root branch point the po­

sition of which is determined by the bare coupling constant. 

The amplitudes do not vanish with the growth of external mass 

( (\,{~, s ➔ 0-0 ) • 

This representation can serve as a basis for phenomenolo­

gical description and the study of the properties of the Regge 

trajectories. For example, here we have the conspiration of 7T 

and 7fc.. - trajectories and the proportionality of the resi­

due of the Regge trajectories in meson-baryon and baryon-baryon 

scattering to their position J = ot{t). 

dips in the angular distributions when 

This leads to the 

o<{{-).::O. 



I. Introduction 

For many years a reasonable description of the strong in­

teraction on the basis of perturbation theory was considered 

tp be impossible. Up to the present time the following three 

problems were solved by different authors: 
1-5 1) Summation of senior logarithmic terms (usually in 

the ladder type graphs). 

2) Total summation of all the logarithmic terms of ladd­

er graphs in f 3 -theory2
' 7• 

J) Summation of the senior logarithms in the so-called 

"double-logarithmic" approach8 ' 9 which can be reasonabJP in 

quantum electrodynamics but can not be applied to hadrons in­

teractions. 

In the first two cases there was a hope that the ladder· 

approximation would reflect at least some of the essential 

features of the real situation because of its similarity to 

the potential description of scattering. However, except this 

hope the matter had no serious progress. This more than modnst 

success in solvig the above particular problems reduced theore-

tists to such pessil:lism that till now some of the listeners come 

to us after the seminars and ask with confidence: "What diagrams 

did you sum up?" 

Our success in investigating the Feynman graph asympto-

tics (see11 and references therein) gives us the possibility to 

sum up ill the logarithmic terms of ill scattering diagrams 

without any exclusion for the f 3 - theory and mesodynamics ---------· * Recently the same ladder approximation has been used for in­
ve~tigating the asymptotics of the deep inelastic ep - scatter-

ingg,10. . 
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cl,nl = d 01·-r; 'f., /2 '/~ (1) 

in the limit m
2/3, -i/4,- 0 i.e. in the diffraction region 

at hieh energy. It was found that the summation of junior loga­

rithms does not change the character of the j - plane singulari­

ty of the amplitude only in f 3 - theory. For mesodynamics, 

in addition to the standing branch point due to senior terms 

there appears moving Regge poles. In this paper we discuss only 

the principal results of such sw:unation in the following prob-

lcm3: 

1) Elastic and ~uasielastic scattering of hadrons in the diff­

ractionul region (Sec.4). 

2) Asymr,totics of the hadron amplitudes in the limit of the lar­

r:n r:i:iss of the external particles (Sec.5). 

J) rP- and ff- forward scattering at high energy and 

large "mass" o::: the photons (Sec. 6) which are connected with 

the deep inelastic cp- and ec- scattering. 

The solution of these problems strons].y depends on the 

type of interaction. The physical meaning of this dependence 

and two hypotheseswhich permit us to perform the summation are 

discussed in Section 7. 

2 • Th.£ ~_ging Si!!~~tl.th£.§....Qf..],!Q£ram s 

'£he asymptotics of the l!'cynman graphs v1as studed by us in 

the papers11 • For the 

(l."ig.1): f1.L : ~If}_: 

description of the elastic scattering 

m2. P, 2 - a 1:l. i , -t-r--,,_ =m,.2. 
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pi. 
Fig.l Fig.2 

,\ - :!...:::!.. 11e use the symmetric energy variable v -
2 

, three inde-

pendent momenta 

f 

b- ~-1~. 

/ - ..l I 

and the relativistic classification of the two-particie states 

int-channel and the transition amplitudes between them. There 

are two conserved quantum numbers: the signature 6= (-)J 

and the intrinsic parity or normality G P ( G P ., -.,J.. for 

normal states, where the parity .P:::; )'J and. GP= -i 
for axial states, where P:: (:-)J+i). In particular, 6P::+{ 

if there is at least one two-pion intermediate state in t-chan­

nel. 

The states of a baryon - antibaryon system (B) are descri-

bed by wave functions U O l/ , where O are the usual 

combinations of the r- matrices denoted by S, V, T, A and 

p . The two-meson state is denoted by JA. The transition . 

amplitudes between these states ("the invariant amplitudes") 

are labelled by two indices corresponding to the states of the 
I I ~ 

pair 1 1 l and 2, 2 • WithLn the accuracy lJ and taking 

into account the Dirac equation, the projection operators on 
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these states are 
A A ~ A 

n _ ..1. 1 x f. R = fl" P. R _ 1'
0f y f !;-

r- s - 4 I V ..zv' A -- ,,'l!) 

l<p=-fl''x,r~· R7=l<-,-,+Rr-
1

• R7 -= !tJ R,e (J) 

" A 

Rr+= -~l}IR,-,, +-4/tf_R - _2M_ l<sv)· f<<"v= ...:.,9_ ... t_+_J_xP 
t. (IV I) V I/ I ..., r.,,M 

It is shown12 that GP=-d for the states F,A T- and 

GP= +1 for the states M,s, V,T+. The invariant amplitudes are 

normalized so that the situation would be similar to the case 

of scalar. graphs. This corresponds to the normalization to the 

first Born term. In view of (J), 

" 
f .J.< 8 = z~ l,,u, s + ; f Av (4) 

f _ l<s £ + 2 Rv r + .2 Rsv r + ~ r -+ ~ 1 
88- 11-12. ss v Tvv v Jsv II TAA 11~ Tp_e 

and, for instance, 

al G,µwe = 
d.!2. 

(4a) 

ol 6,j,( 8 -o(Q = t71 f(1- /r";,2)/{;s,fi / f.uvl;~Re (~:, :lvJ}. 
For the investigation of the asymptotical behaviour of the 

graphs the Mellin transformation is very suitable. It must be 

done for the positive and negative signature separately 

s ... ,oc J i 
f {:v,i)= - -!:-. fo1 · (-v) = (~) ,r. <:Pr/t) • 

z,,L . :; :z. s:h 7i J rr '+d) 
0-1 c,o / 

(5) 
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Using the usual d.. - parametrization of propagators in the 

exponential form (to each line there corresponds a parameter c() 

we can write down the contribution of any graph 

where H is the product of the factors { J /t,,,--;) 
and A,D,J are functions of o< of the same form as for the sea~ 

lar graphs. The numerators of spinor propagators turn into a pre­

exponential factor J ( o<,J~i ) with polinomial dependence on j • 

The asymptotic behaviour of the graph is determined mainly 

by the two-particle separations of the graph int-channel, which 

subdivide the graph into kernels. The kernel is a sub~h with 

i.,~~Lna.l ~.§....!!h!2.h.. gas no tvrn-part ~-Q.!ill.G}:ill .Qn...in.J:.=£han­

!l!2J:!-..~§! t er!ruLgr~!L~Q.~.!!tl...2!'... fl:...!!~L2L~~§. 

ill~.t£Ll:inked b~ pairs of meson or barzon lines. 

The asyrnptotics of f :t ( U, f.) , is evident iv determined 

by the most right singularity of !J:,( / (} in j-plane. We have 

shown11 that the leading singulnrity of the positive signature 

part of any graph in mesodynamics is a pole at j = 0 which ori­

ginates from integration over o< in the region Yrhere A(o< )~O 

together with the set of o( -parameters corresponding to a ker­

nel or a connected union of l~crnels, that is the leading pole 

arist:mg from "the asymptotical regime II of kernels or unions of 

kernels. For each graph we systematically take into account all 

the poles at j = 0 and drop out the part which is regular when 
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Re j > -1. This means that each graph is considered with the 

accuracy O (Yl>), i.e. all the powers of the logarithm are ta­

ken into account. Each kernel or union of kernels V in asympto­

tical regime generates by itself a simple pole j-l, but the di­

vergent parts*inside V increase the power of the pole at j = o. 
:.10::-t.:over, there is some sort at factorization of the asymptotics 

of the divergent parts. The simple pole 1/j for the asymptoti­

cal object without divergences turns to 

I 
k olL1cz) f n - ~i. . l +•"~r,: ?. J-tsJ. , I ) • 

for the same object but with the nonoverlaping part1ally_ diver-

gent parts /; .. · r:c 
of the asymptotics of 

where 

r l 
I,- ( {.-) ls the Mellin transform 

when all components of the momenta 

tcnn to infinity. These are the only sources of singularity in 

Re j > -1 for the positive signature part of the amplitude. 

In a theory of the type f 3 (e.g. 'f 2
){ ) the most 

::.-it;ht singularities of the i::raphs are at the point j = -1. Fo::­

the ner,ative signature part they are generated by the asymptoti­

cal regime of the. simplest of the kernels, "the steps", if any 

(Fit;.2b) • 

The 11asym:ptotical regime" (i.e. o<,c-. 0 ) means topologi­

cally the contraction of the corresponding object into a point. 

--------* Irotice, that when Ile j > 0 all kernels and unions of '.rnrnels 
arc convergent. 
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The larger the number of asymptotical objects the higher the or­

der of the pole. But simultaneously can work only the objects 

which either have no common lines or are entirely contained in­

side one another. 

To'take into account all the orders of the poles at j = O 

it is necessary to sum up over all the possibilities or the 

asymptotical and nonasymptotical regime of all the kernels and 

the unions. The contraction of the objects in the a3yQptotical 

regime· transforms the initial graph into a weakly connected 

graph consisting of the components of the type of Fig.J. 

C> 
(o.) (() (C) 

Fig.J 

The contribution of these noncontracted objects, which are regu­

lar in Re j ) -1 (in the f 3 -theory;.. Re_ j > -2) will be de­

noted by Cn(t) (Fig.Ja) and If(Fig.Jb). The simplest of them 

B0 (t) (Fig.Jc) and c0 (t) are written down in the expression (15) 

In studing the asymptotical behaviour in the. mass of the 

external particle we restrict ourselves to the case of elastic 

scattering with asymptotically large mass of the first particle, 
I IIAJ i.e. R -:: fl = ,-1--,, e>0 It is useful to introduce a new 

variable W = - '\) jf.-12. • The following two cases are of inte-

9 



rest: 

(a) 

(b) 

z fl1--,.cx, .sv➔ oa , 

a M~o.o I /w/ :S 1 
(7) 

For the investigation of these limits the Mellin transfor­

mation with respect to :ii - variable of the type (5), (6) is 

found to be useful again. This transformation reduces the prob­

lem of the asymptotical behaviour to the one of leading singu­

larities in the plane of Mellin parameter i. . For any graph 

in mesodynamics in the limit (7a), these sin£ularities are ]Oles 

at f == 0 ~nmted.J2.Y the a§ZI.!1.]totical regim~~ the con­

traction2....9!,_ those kernels and unions of kernels which contain 
I 

both vertices l_illJ-Ll~ The order of the pole can be increased 

by the divergent parts inside the contracted objects. In the 

f 3
-theory the most right singularity is a pole at .f = -.f 

which is generated only by the asymptotical regime of the line 
I 

connecting the vertices 1 and 1, if any. In the limit.(7b) the 

~bove.parameter e changes by f+j .... that ;l.s~poles .. shift to. 

the left.by j. 

J. General Scheme of Summation 

The method of summation we have used12- 14 is, in fact, a 

method of solution of the exact Bethe-Salpeter equation. Really, 

the· results of investigation of the Feynman integral asymptotics 

summarized above. reduce the general problem of summation of the 

logarithmic terms to the problem of a ladder type diagrams. It 

10 



is natural to assume that the kernel of the t - channel Bethe-!M 

peter equation (i.e. the sum of all graphs without two-particle 

separation int - channel) has the same as;ymptotical property 

as the above mentioned kernels of the graphs. (For the discus­

sion of this assumption see Seo.7) 

The main difference between 'f 3 - theory and mesodyna-

mica is in the behaviour.of the kernel with increasingly large 
3 

mass of external particles. In '/ - theory the contribution 

of the kernel vanishes with the growth of the mass therefore 

in the equation we can use the properties of the kernel on 

(or near) the mass shell. In this oase the kernel is of the 

fredholmean t71>e. So, the solution lias the moving Regge poles 

onl;r. Namely this hypothesis is usually made in all variants 

of the multiperipherical, multireggion, fire ball and parton 

models15- 18• 

In mesodynamics the kernel turns out to be a nonfredhol­

mean one and the contribution of the region of large values of 

the externnl. mass is important. Such a kernel oan be broken in-

to a relatively simple nonfredholmean part V to/F whioh oor-

responds to the as;ymptotical regime of the kernel and a fred­

holmean remainder Vp • The nonfredholmean part 

not quadratically integrable but the divergence is only loga­

r~thmio one.Since VNF corresponds to the as;ymptotical re­

gime of the kernel the picture of the j-plane singularities in 

this case is complicated by the internal divergences, That is 

why the unavoidable question arises what is the sum of these 

11 



divergences, i.e. what is the character of the renormaliqations 

in field theory;? Becaus~ of the. asymptotical ,cJ:iaracter, of its 

series, which is displayd.just there the perturbation.theory is 

unable to answer in principle_this question. Thus we need a-hy­

pothesis. It seems natural and meaningful from.the physical view 

point,to assume that the wave functiop. and charge renormaliza­

tion constants Z are finite. (For the argument of this hy­

pothesis see, e.~. refs. 13 , 19). This, ml:lkes it possible to redu­

ce the pro.blel'l of the asymptotical regime of the general kernel 

to the one of the irreducible kernel, i.e. the kernel without 
I 

interi1al. divergent parts, but with bare coupling constants j 
I 

and h in the vertices and with bare ~mve functions of,the 

external to the kernel lines. Thus, the total contribution of 

the contracted objects after havinz been multiplied by 2: --< 
-2 

(i.e. by ~ , z-2 
J 

~-i J -i. 
or Zz z:J depending on the kind 

of the external lines) is a series in, the bare coupling cons­

tants. the fredholmcan part is kept, as before to be a series 

in the renormalized constants. 

4, Scatter;!.!ill_of llad::-ons in the Diffractional Ref.£!:on 

The summation of all the orders of the leading poles of 

all the graphs (under the above mentioned ~ssumption ),gives for 

the amplitudes of positive signature in mesodynrunics and of nega­

tive one in 1/'3 - theory the follov1ing result 

' - i 
cf? ( / i) = C ( i JI Vt/) - 13 { t) 1- C( t) + R (t ) . ( 8) 
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In y,3
-theory lt(i)={J~.i)/Jz and B(t), C(t) (and B(t)) · 

are the series in the coupling constant ( 8 /4u ) 2, each 

term of which being regular in Rej > -2 and corresponding 

to the graphs of fig.Jb or fig.Ja. Thus, the amplitude has the 

simple Regge poles and the a.abigMity in breaking the kernel con­

tribution into the asymptotioal and nonasymptotical parts rna-

,kes it possible to supply the correct threshold behaviour 

j-, .L 
8{t)'Y {!- t J -2 near t ~ 4 • (9) 

In mesod;rna.mics all the quantities entering (8) are matri­

ces, ·~(/)and B(t) being symmetrical the first index of C(t) 

corresponds to tho external line the second one to the inter­

nal line of the graph and C is the transposed matrix of C • 

For G .P.::+i (the index T implies T+) 

B.M..u. 

/3(0= vz] Bv.tt 

~(j)= 0~~~ 
cllt~ 

C (-t)= Cv~ 

~ v-2jt. BJff 

~ v-t Bv,-

BTT 

i/21 c~ v t ffi cJ,{T 

vI C.vv - lfMv-¾ CvT 
VI CAv £./1-1 {-¼ C..s, 

lJ 



l!'or p; 1. 6 ==- they.are simple functions 

UAA [/) ,· 81111 {t); vJ"' CAIi (f:) (lla) 

or (T. imi:;lies . T~ 

UT; U); l3rr (iJ,· 2M{-]/t 'Cp, {f) • (llb) 

'rhe matrices B, C and R are the series of Bn, en and Rn 

(see Fig.J) in all sorts of the kernels and in their number. 

The exrun'ple of the series for C(t) is shown on Fig.4. · 

• -+ <t -+ <{(/<(+ <(• <(. 

Fig.4 

where the vmvy lines correspond to mesons, the solid one - to 

baryons and all the lines are in nonasymptotical regime. It is 

naturally assumed that the functions B, C and R do. not contain 

the leading singularity of the amplitude as each term of the 

series. 

It is clear from (8) that the amplitude has moving poles 

which are determined by zeros of det (U(i)- /3(t)). Thus, 

in the channel with 6 P = -,.f there are three such poles*. ---------------
*Asimilar situation must take place in quantum ele2orodyna-
mics, too. Therefore, the conclusion of Cheng and Wu about the 
nonregge character of electrodynamics based on the anal1sis of 
the first several terms of the perturbation series seems to be 
rather hurry. 

14 



The main feature 'of the mes·odynamics is the nontriviul 

function ll {JJ which is a consequence of nonfrcdholr-:ean cha,-

ra.cter of the kernel in the theory. The function u--L{j) 
. -:i. 

is the series in J · . '.I e have succeeded in summing it under· 

the assumption about f:miteness of the renormali;~ation constant. 

It 'turns out thaf ll ( j) possesses the square-root branch poi nte, 

the positions of ,which are determined by the bare "coupling 

constants (i.e. by the constants to be measured at small dis.:_ 

tances) certain of them being situated at He j:;,,O. 

The representation (s), has all the main features of the 

usual Regge picture. It is clear, in particular, that the posi­

tion and character of the leading singularity for all scatterinf 

processes (includi~g ~uas~elastic21) are universal and dete;­

mined by the_ t-channel quantum numbers. The factorization theo­

rem for the asymptotics 

( x, y = i/11, S, V) 

is the direct consequence of. the condition det ( ll - 8 ) = 0 

determining the poles of the amplitudes and 

dition for the_branch points. 

In addition 

and when t = 0 

15 

a similar con-

(1Ja) 

(lJb) 



The isotopic structure of the theory does not introduce 

any essential difficul.ties12• 

The representation (B) can help in solving the following 

problems: 

A) It can serve as a basis for a correct phenomenological des­

cription of high energy. scattering which requires to include 

the standing branch points in addition to the Regge poles. 

B) A more detailed investigation of the functions B, C and Lili) 

permits, in principle, to answer the questions about certain 

properties of the Regge trajectories and residues, for instan­

ce the question about their behaviour at large momentum trans­

fers and large mass of the external particles. 

C) In the case of a small coupling constant (for instance for 

J'~e- - system) one can use the first terms of the series 

for B, C and U.for studing the properties of the Regge trajec­

tories and the bound states. 

For the time being, nothing can be said which of the sin­

gul.arities, the standing branch point or the moving pole -

is the leading one. We believe that the standing branchpoint 

is the most suitable candidate for the Pomeranchul: singul.ari-

' ty and moving poles for the P and other trajectories. This 

hypothesis better reflects the pecul.iar role of the pomeran­

ohon and in addition, is more self-consistent, because the 

rescattering of such pomeranchons gives again the same pome­

ranohon and there are no complication due to the·Gribov ma.ey­

-reggion diagrams. But this, does not mean of course that 

the standing cut is the leading one in the nonvaouum channels 
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9' as well. In the approximation of the small d and h 
the effective coupling constants in nonvacuum channels are 

smaller than in the vacuum one and even negative· • 
I 

The pr~s~~c~ of the additional parameters J~ h means, 

that the problem of the nature of the pomeranchon can be solved 

either by experiment or, probably, by a nonperturbative appro­

ach • Our hypothesis predicts the total cross-section decrflasing 

as (-&n. v/4)-½ a~d the ratio_ 1= f /Ref = -&, U/J)., ~ 
The choice of the normalization constant '\)0 is essential in 

this aspect. If it is not too la;ge (e.g. l) ~ P:',,,.-z. ) t·he fac-
. . • 0 

tor . ( fn 11/11.i J¾ fo; no~~day. energies changes rath~r weakly. 

The camparison of the hypothesis with the experiment for 
. . . . 22 . 

scattering made by Freedman gives the accuracy of 0,2 mb for 

the total cross-section, 0.5 mb for the sum rules and 15% for 
. ' .. 

the real part of the amplitude. Now a more complete fit inclu-

ding different processes and angular distributions ·is necessa­

ry. The Serpukhov meas~r~ment~, 2J seems, at first sight, to con­

tradict the picture of the logarithmically decreasi,ng cross 

section. However the contributions of the electromdgnetic pro­

cesses24 at these energies can reach ·the order of s,weral milli­

barns and does not permit to make a decisive conclusion on the 

basis of these data. 

It is rather curious that the hypothesis about the leading 

branchpoint in vacuum channel is consistent with the weak coup­

ling approximation in j 1 

is provided by1 2 ( h '.::c: J 1 
) 

17 
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I _ 

,j I 'l. I' i / ~ 

a(~ .. )-:::~14 /orJL/i ~J'~) .s-6J~) 
.:1 - + - - • 0 1.2 -~ u o//, 3 f;,; · 

(14) 

This corresponds to /}!9,:;:: 2 S-+.30. In the other channels 

the effective coupling constants are mach smaller than in the 

vacuum one and for the axial amplitude it is even negative. 

This corresponds to the out along the imaginary axis, i.e. in 

this channel we deal with the repulsion. Thus we 

shall often use this approximation in what follows. 

The expressions for B(t) and C(t) allow to find the oonneo­

tions between different amplitudes and to ohoose among the dif­

ferent solutions of the kinematical constrains. In particular, 

the factor j • d {-l) appearing in different amplitudes of 

and NN-scattering (see C(t) in (IO)) suppresses the oorrespondinE 

amplitudes at o<. (t) .. 0 and leads to the dips in the angular 

distributions. The same mechanism eliminates the pole at 

d.. (t) = 0 _in the conspiring T+ and T- amplitudes (see (IO)) 

whioh corresponds to the 7(' and 7Tc trajectories. At t .. 0 

these amplitudes are equal and give a nonvanishing contribution 

to the cross section. 

Thi processes with isospin 2 in t-ohannel have no NN inter­

mediate states. The suppression of this channel can be explai­

ned by the smallness of the coupling constant /,. The splitting 

of A - meson could find its explanation in the nondiagonality 

of the octet representation int - channel in the scheme of 

su3-o/.rnmetry. 

In conclusion of this section we write down the nonvani-

18 



shing elements of C(t) and B(t) 

C0 ~, = 1 
(15a) 

BJ.u ~ t(it.1 )-/7{,i),· ,6Jr;= s.:r==O/ Bvr== -/r?+f, t,/1-f) 

8;v = (:f-J) /u,·t,n )- r'{;)1-,2M2lu~:1, t,M~· ,e;-r_=j8r.1: t, M) 

where 

I • 

tr;;~ M) = 1(;) J~x 1)-r'-x{t-.K)I ;-J. (15c) 

0 

5. As~tics of the scatterinumfiltude in the E:xternal Mass. 

This scholastic, at first sight, problem been.mes recently 

of great actuality in connection with the investigation of deep 

inelastic ep-scattering and in connection with the moving Hegge 

cuts due to the rescattering of reggions 25 , 26 • The modern me­

thod of finding such cuts assumes that the contribution of ·the E.rnp­

litude vanishes fast enough with grov,th of the masses of the 

external particles. It is interesting to understand to what ex-­

tent such a behaviour is justified in field theory. 

Let us first consider the limit (?Q) ll-fl_, ~, l) ...... c,.., (Fig.1) 

in the 'f 3 -theory. The diagrams in which the vertices · 
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I 
1 and 1 are linked by one line are here of asymptotical impor-

tance and the leading singularity in f -plane is generated 

by asymptotical regime of this line. In the limit (7a) 

this leads .to the behaviour 

/112. 
w ex {~JC { t J • 

(16) 

In the limit (7b) ( /0 / £ 1 ) the asymptotios is found 

to lJe simple ; ~ 111-2 • Thus, in the .f3
-theory there is a 

necessary decrease with increasing mass25 , 26 • 

In mesodynamics the leading singularity in / -plane is 

generated by the asymptotical regime of the kernels and unions 
, I 

of kernels which contain both vertices 1 and 1. Using, as be-

fore, the hypothesis of finite renormalization we obtain in the 

limit (7a) 

f +~ C-,_) a( {-t) fl1 :2/o ( (XO {i-)) C { t) I 
(17a) 

v,here o< (t) is the position of a leading singularity determi-

ned by (8)*. In the case of the leading branch point d... does 

not depend on t and '2</,· (17a) is to be multiplied 
L) -~ by ( c;,, IJ), 

For small values of bare charges considered in (14) 

e co(_) = l{ -.f rot) :::: o. 1 + o 2 • 
(17b) 

* The matrix C( t) is written down in (IO) and l,,c«; has the 
same form as Zt{.J) but this matrix structure is nonessential 
for us at the moment. 
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In the limit (7b) 

(18a) 

6 • ~!!lLl:B~!:!:.£..!filll:!:.Q..-f!~~~r o c es s es .!!! . ..l~L!H! odynam:!:..£L 

Here we will describe the asymptotics of Y?- and '7 r 
forward scattering in the limit of high energy and large "mass" 

of photon which are measured (or can .be measured) in the experi­

ments on deep inelastic ep- and ·ee- scattering or on scattering 

of light by nuclei (see Fig.5). 

ht1.olrons 

>-~-✓ 
le. 1 ~ 

Fig.5 

At the available energies these processes are to be considered 

in the first nonvanishing order with respect to the fine structu­

re constant o( • One of the consequence of inclusion of the 

photon into the play is the appearence of a new kind of divergen­

ces which are not reducea to the hadron constant renormalization. 

As before these divergences work only when they are inside the 

contracted objects i.e. inside the kernels and unions of kernels 

in asymptotical region. The summation of these divergences for 

each photon vertex results in a shift of the singularity in 
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f -plane generated by the contracted objects to the left by 

a distance ~ ,z ( ,j 
1

) .2. (for small O 1 ) • Notice for definite-
'5 Y7i d 

nes that in J'f-process one should distinguish between the 

scattering amplitudes of the scalar (S) and the transverse (T) 

photons while in 'ff-scattering only the diagonal amplitudes 

with definite polarization of each of the photons are to be dis­

tinguished among them. In other words the first process is cha-

racterized by the cross sections 6 s and 6.i. and the 

second one by 6-LL I Gs.L 1 6.Ls and G~s • For the sake of simpli­

city we give here only the result in the limit of weak coupling. 
2 ( . When the photon "mass" M is not too large or on the mass 

shell) there is only a slight modification of representation(B). 

Namely, 

/ 

C.s (-1-) - M 2 Cs (t) 
(19) 

C.1, (t) ➔ [ C ~ (t) ~ F ll{j) (J-,.zf- u-:t.r.;J )-1/ 
where r is a number of order 

£ /) :l. 
{~7 • Thus, for the trans-

verse photons an additional standing pole in. the j-planc appears 

(the second term in (19)) which, probably, is not a leading 

one. When the photon mass becomes large the character of depen­

dence (17a), (18a) is conserved but the number fo for trans­

versal· photons decreases by 2t,Therefore, the electro-hadron 

amplitudes are "almost automodel" (the approximate scaling low 

holds). For the scalar photons the situation is more complica-

ted but we can conclude, that when 1112~= 
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Gs 
- -;, 0 
G.1. 

for rf-SCQ/ferinJ I 

(20) 

G :5.L 0 ~-o for rr- sc,:,{{er,·71. --:> 
0.L.J.. I G..£s 

In the f 3-theory the photon formfactors do not work and 

the electrohadron amplitudes practically behave in just the sa­

me manner as the hadron ones. 

7. ill..!! 2.!!§.!!!.2.!L 

All the results enumerated above are based on two hypothe-

sis: 

I. The renormalization of the charges and the wave functi­

ons in quantum field theory is finite. This hypothesis does not 

contrad1ct perturbation theory lJ,lg and is natural from the 

physical point of view. 

II. The character of the singularity of the nethe-Salpeter 

kernel is the same as the singularity of each member of the 

series forming the kernel, i.e. each graph without two-particle 

separation int-channel. 

In the yf -theory the second hypothesis is connected 

with first one. It is probable that a similar connection exists 

in mesodynamics too. In the limit of weak coupling the leading 

singularity shifts from j = 0 (for separate graphs) at a distan­

ce of order !J 1 (for amplitudes). We do not see any reason 

for the singularities at the points j = -1, -2 ••• (for these-
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parate graphs) to move much faster. So,we believe that the 

Exp.(8) gives a leading singularity for the amplitude at least, 

.for not too large /J and /2 • With increasing j and /2 
the sum of the singularities at j = -1 can be comparable to the 

sum of the singularities at j = o. The result of the works25 , 26 

means in our language that when the leading singularity of the 

graphs shifts due to summation from zero to a point j =Jo 
then if the amplitude vanishes with mass there exists the class 

o.f graphs in which the singularity at the point j = -1 shifts 

to the point j = 2 j 0 -l, i.e. it reaches the first one at j
0
= l. 

This fact siverely complicates the considerations • However, 

the results of the investigation of the asymptotics by the ex­

ternal mass rise the question about the validity of this sta­

tement. 

Without recourse to the. hypotheses mentioned our results 

are an exact asymptotical summation of the ladder type diagrams. 

In this case, of course, !J 1= J J h ~ h and the series .for 

D(t) and C(t) turn out to be some other (in the series of Fig.4, 

for instance, only the terms a,b,c are kept there). Thus, many 

of the results of the ladder approximation 1 , 2, 7 , 9 ,io correctly 
10 3 -18 describe the general situation in the T -theory. The attemptB 

of summation in mesodynamics,we are aware of,use the assumption, 

which reduces it to the level of Y,3-theory). 

The amplitudes with negative signature in mesodynamics 

are more complicated. They have, as follows from11 an accumu­

lation of poles at j = 0 due to pinch singularities similar to 
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those found in 1 , 27• nevertheless, the experimental fact of the 

signature degeneracy of trajectories gives the hint that the 

accumulating poles come to j = 0 from the left. This is a conse­

quence of the sign definiteness of the kernel of an integral 

equation27 , 1 • A similar situation takes place for the negative 

signature amplitudes in the p3 -theory, but the poles accumu­

lated here at j = -1. All this demonstrates that the region 

Re j <.. 0 is some sort of a "dump"· where different unusual sin­

gularities oould appear. For this reason one can not make any 

conclusion about the structure of the j - plane when Re j L o. 
Thus, we see that in the y? 3 -the~ry we have delt with 

a rather "natural", from the widely accepted point of view si­

tuation: 

I 
there are only Regge poles, the amplitude vanishes 

with the growth of external mass, the scaling low 

hold·s for rf and rr- scattering. 

However, the simplest attempt of taking into account the spin 

leads to mesodynamics with a number of "unusual" properties 

There are standing branch points in addition to the 

Regge poles, the amplitude does not vanish with the 

growth of external mass, the scaling 10\Y holds only 

approximately. 

This difference has a deep physical nature. The quantum 

mechanical analog of the f 3 -theory is a nonsingular at 

r-:::: o potential of the Yukawa type. All the usual approximate 

arguments appeal to the images which are familiar from quantum 
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mechanical problems with such potential. But the y>3 -theory can 

by no means be considered as a physical one because it has 

neither spin nor vacuum. The only renormalizable theory, which 

can pretend to the description of experiments is mesodynamics. 

The quantum mechanical analog of it is an exponentially vani­

shing at large r potential which, however, is singular at 

small r (of the type r-2 ) • It is just the singularity 

which is responsible for the above mentioned "unusual" features 

of mesodynamics. From this point of view the standing branch 

point is connected with "deeper" internal parts of the particle 

than the Regge poles. Really, the position of the branch point 

is determined by the bare coupling constants, which are measu­

red at small distances, whereas the movement of the poles, i.e. 

the function B(t) is determined by the renormalized constants 

fj and h which are measured from low energy experiments. 

It can happen that the scaling low in mesodynamics is exact one. 

But this would be due to the compensation of the singular in­

teraction.by "spreading" of the hadron_ with respect to the pho­

ton (i.e. in a vanishing "formfactor" vanishing in a definite 

way when all three momenta simultaneously tend to infinity). 

A similar difference between i.f/3 -theory and mesodyna­

mics was observed in the problem of the electromagnetic correc­

tion to the strong interaction. The enhancement of the role of 

the rigid photon due to the singular interaction results there 

in a rather noticeable difference in the cross sections of par­

ticle and antiparticle scattering24 • 
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In conclusion we would like to stress once more, that the 

introduction of spin is not a simple -technical complication· 

but carries with itself serious modification of principle. 

Attempts to consider the stated above problems in mesodynamics 

(e.g.18) are connected with the assumptions about the behaviour 

of the amplitude in the unphysical region which is valid only 

for a regular interaction. We have no need for such a hypothe­

sis. 
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