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I, Introduction

Recently processes of hadron interactions at high energies
have been a subject of intensive theoretical and experimental
investigation,

The derivation of closed expressions for scattering amplitu-
des in the framework of some reasonable physical assumptions in
‘the high energy region is of special interest. In order to obtain
. expressions of such a kind one can use the unitarity condition
for the scattering amplitude with a definite parametrization of in-

-5/

ela.,hc channel contmbutmnsl

/6-10/

, the Log,unov—Tavkhehdze quasi-

potential equation , the functional integration method in quantum
field theor;J 11-14/ , summation of field theoretic perturbation theory
gra hs /15 16/, the reggeon diagram techmque/ 17—19/ .

In the present paper we derive a new representation for the

scattering amplitude at high energies, starting from the equations

of the quasipotential 1:ypex ,' which were considered in refs./ 20_23/.

x/ For simplicity we..confine our considerations to the case
“of scattering of spinless particles of equal masses,
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The amplitude A(p,q) is normalized to the differential

cross section of elastic scattering in the following manner:

do 1 af2 2312, _ 1,5
10 =| A(B,.§)] Ep—E?.. (1.5)

Comparing egs. (1.1)-(1.2) with the nonrelativistic Schoedinger
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and Lippmann-Schwinger equations
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it is easy to see that the relativization (1.3)-(1.4) reduces essen-

tially to the replacementx/

Pk +p () k _ (.8

The replacement (1.8) has a clear geometrié character. Indeed; on
the left hand sides of egs. (1.8) we see the images of three-di-
mensioﬁal Euclidean momentum space, . while on the right hand sides
we deal with quantities and operations which are defined on the
upper sheet of the hyperboloid '

x/

A nonrelativistic potential is replaced,of course, by the
quasipotential, ‘




(1.9).

i.e. in the Lobachevsky space,
Such a "geometric" point of view suggests a new approach
to the notion of the relativistic coordinate and relativistic confi-

/ 24_26/. All the considerations , we undertake -

guration space
below in the framework of the quasipofential formalism, generalize .
in the spirit of Lobachevsky geometry the treatment of the Schro-
edinger equation (1.3) which leads to the eikonal or Glauber
representation for the nonrelativistic scattering é.mplitude. For

the reader’s convenience a nonrelativistic case is considered in
detail (Section 2). A separate section (Section 4) is devoted to
the development of the special kind of "operator Fourier-transform"

which is the main tool in deriving the relativistic eikonal represen-

tation.

2. Eikonal Representation for the Nonrelativistic
" Scattering Amplitude

Let us put in eq. (1.6)

t o

=% -a
s . : (2.2)
k.—q:h.‘
vABr =g, () (2.2)



Taking into account that

Al =d N ‘ ’ (2.3)

we obtain

> 3 (3) » 1 ) 1 3 . N > o
- (A)=27) 8 (A)- V(A-A)g A)dA, (2,
¢q( (27) Aa) 2(EK+:"Eq‘i‘) (217)3[ (A-, }¢q4( . (2.9

Consider in detail the energy denominator (Green funéﬁon):

=] m
G = —— . , 2,5
2(Es , -E _ +ie) A2 2Rq + i (25)
A+ d q )

Let the incident plane wave move along the  z -axis
g=1(00,q) - ‘ | (2.6)

In this case, evidently

G- - : . ' - (2.7)
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" Now, assuming that at large q the term A 2/ 2q in the denomi-

nator of (2.7) can be omitted, we get the equation:

nd 3 (8) > ‘m 1 > 5 > ->
8 A - . bt > .
%, (8)L2m) 57 (8) BT JV(A-M)g .(Max.  (2.8)

As will be seen below, this is equivalent to neglect of the
second order derivatives of the slowly varying part of the wave
function in the traditional derivation of the eikonal representation

in configuration space (see, for instance,/27/)

The expression obtained for the scattering amplitude is
a good approximation in the kinematical region restricted by the
condition ' '
-3 ’
— =0, (2.9) ’
2q

We find this expression in an explicit form, After neglecting the
term K?Zq , the Green fun'ction becomes one- dimensional,

because the action of the potential is transmitted through it only
along the z -axis. Indeed, performing the Fourier transformation

of the quantity

G=- N (2.20)

2q(A8—iE') .

we get the following expression:
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A similar transformation of the whole eq. (2.8) gives:
b (Shz)ele =B [ 0 (z=z)V(VF2+2°2)d, (F.20dz", (2.12)
q 2|q—eo q . :
where
) J 2 1 l;'A_.' ad -» .
V() =V(VF2+2®) =L fe V(A)A, (2.13)
, @2n)
o~ .lTJZ+lZA - ;
éo(prz) =Lt [e * ¢,(A)dR. (2.14)
e @n)® a
The solution of eq. (2.12) is ‘of the common eikonal form
L m }00(z—z") >\.r(\/f>"2 +z'—2—) dz’ '
- 21q : :
¢-r (r)=e ‘ (2-15)



One can evaluate now the scattering amplitude in this appro-

ximation . According to the general quantum-mechanical formulae:

>

AG A =--Tfe T VR, (Dad
4n d :

(2.16)
w1 oy pes T3 > 2
= = —— A\ -k o (k)dk.
ype m f [(P ) ]¢q ( )
Taking into account egs. (2.2), (2.13)<(2.15) we have:
ARrqa)e-B 1 rv(A-D e (R)ax -
47 (217)3 qd .
m —lE;—lA;'z - e -
ol vt K o dpsz(\/pk’+z”)¢;(p.z )= (2.17)
- . m = ’ 2 ’ ’
' —1Ap o —iA, z ) Lﬂ(z—z )V()/T) +z )Jg
=—:’ fe P dp [e >z V(ve3+z?)e 2 a :
" : _

In the kinematical region restricted by the inequality (2.9), the
- .

momentum transfer vector A is approximately transverse

- = 0; A=(A1A.Aa-). (2.19)
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Under the condition (2,18), the =z -integration in (2.17) can be
carried out and the final expression for the scafttering amplitude
takes the form: _ ,

s o0 = [ v (Vp e Dras
A(p,q) =—qi’ofp dp J,(pA) te O <1} (2.19)

Formula (2,19) is known as the eikonal or Glauber representation
for the scattering amplitude, We note that the Crug:ia.l.point in
deriving representation (2.19) is the transition to the "one-dimensio-
' nal" Green function (2,10)~(2.11), since in such.a way the equation
for the function ¢, (p,z) can be solved exactly. ¢, (;,z) is .
obviously just thefl "slowly varying part" of the wavweq function we
are dealing with when deriving the representation (2.19) in the

usual way, starting from the Schroedinger differential equation.

3. Quasipotential Equation in the High Energy

Approximation

We now consider the relativistic equation (.1.1); In complete *
analogy with (2.1)<(2.2) we put

reray
. . (3.1)
k(—)qLA.

11



V(A )=¢ ;EM- | | (3.9)

x/

Since

V1 (k) = B, E —pk | (3.3)

is a relativistic invariant, then

(B = (8 GX).? (3.4)

Making use of (3.4) and the relation

dk Ny
10 e —%  _qgo- 92 (3.5)
x ‘

= A —_—
Vis+k -; v1+n?

we get the following equation for ¢ 2 (4)

, R 3 R
8. (8)=(2n) 8 (R)-
1 1 (3.6) '

I FYLA @R g L de,
_Eq —ie€) @2r) a ‘

3

T

-
Awyqd .

)F/In what follows we use the system of units where h=c=m=1.

12



Taking into account (3,3), the Green function in eq. (3.6) can

be rewritten in the following manner

1 1 .
G= _ = : - . (3.7)
2(E:—EK(+):+i€) 2(E6.—EA" E'a. —Aq+ie)
In the high energy limit Eq > 1 we have approximately:
E = q+i; q=1q1. ‘ (3.8
4 2q .
Assuming, as before, the vector q to be along the z -axis
(relation (2.6)) and using (3.8) one obtains:
G = ' ! ;A, = E > (3.9)
Ao_l N 0o - A . - °
2q(1— A=A, - —"2 4ie)
5 2
2q

instead of (3.7). Further, we assume that at high energies the

term —_A% in the denominator of (3.9) can be neglected (cf.
9

Section 2), Finally the Green function takes the form

) _ .
G ~ . (3.10)
2q(1~ Ao—Aa +ie)

13



" Because of this, we deal now with the follovﬁng equatioh for

$ ~(A)

-

- 3 @
d,(A)=(@27) 8 (L) +

q
(3.1
1 1
+
2q(1- A -A +ie) @n)®

fV[(K(—)f)zqu;(X)dQ)\».

This equation is an analogue of the nonrelativistic equation (2,8).
We shall see that it can be solved explicitly by applying to it
.\a special kind of Fourier transform, ]

The' develdpmerit of the corresponding formalism is the sub-
ject of the following- section,

When one deals with the approximate expression (3.10) for
the Green function, a "quéstion arises about fhe conditions under
~which our neglect of the A—‘#-—
this equatibn. we express our earlier variables in terms of Mandel~

—term is valid, In order to answer

stam invariant variables s and t . Obviously

s =4(;]’2+m2)t='4;2
2 > >
t=(E_-E ) "~(p ~q)°= - (3.12)

=2(1-E E +3§)=2(1-4 ).
D q )

14



Therefore

= || IR | (3.19)

i ‘and consequently the neglect of the terms (3. 13) means that the
obtained expression for the scattering amplitude can be valid in the regmn
where the kinematic invariants s and t are restricted by the:

condition

l~;—\ «< 1, (cf. (2.9). - (31

" 4, Lorentz Group, Horospherical Coordinates

and Operator Type Fourier Transform

Consider the two-dimensional spinor representation of the

Lorentz group, realized by the complex 2x2 unimodular matrices

. (e, B
a= , deta=ad-yB =1, (4.2)
y, o
By means of the Pauli matrices o, (1 = 1,2,3), the unit matrix
o, = (0 1) and the 4-vector Ay, one can construct the spin-

tensor

15



. . v
which transforms under the Lorentz rotations A ;l= L# A v

in the following way

A'=a8a+='=A'a, . ' (4.2)
[ :

We choose now in the group (4.1) a three-parameter subgroup of

the triangle matrices of the type

a is real
K= ’ ‘ (4.3)

;/2 -a/2

ey e : Y=y, +iv,

a ' - ,
If we assume A =1 and put 4, =(1,0) into the eq. (4.2), we
obtain a relation which maps. the space of group parameters (4.3)

onto the upper sheet of the hyperboloid

16



’ Iy » : ' . a s —a am~ g
A +id,, A A , . e (yl+1y2).~e +ey

7 - denotes the two-vector (yl .y2)_ . Equating the corresponding

elements of the matricés_{in eq. (4.4) we get:

By -By=e " 4e® Y , ' . o (a.5)

The relatlons (a.5) determme the horosphemcal x/ coordinate system

on the surface A%?=1, Ap> 0 /28/

xBy definition, the horosphere. in. the Lobachevsky space, rea-
lized on the upper sheet of. the hypgrboloid A2?=1, is the two-di-
mensional surface determined by the following  equation

Azf-—const, 62_60 —{? o

in par‘tlcular'5 the . equation . :
‘ a=0 o ‘ (4.6)
gives the horosphere A +A . ' !

The remarkable property of the horosphere is the Euchdean
character . of its intrinsic geometry.

17



.

Since the maftrices (4.3). form a group, then in the space of para-
meters (a,y) and, according to (4.5), on the upper sheet of the

2
hyperboloid A" =1 some group operation is also induced.

When applied to the four-vectors of the type Ay =(V1+ A%, R)
we shall denote this operation by the symbol & and write

£’ =3 @1 | (4.7)

(4.8)

where (25%),(a,¥) and (e, ) are horospherical coordinates

of the four-vectors A'# , A g and q M respectively. The va-
lidity of all the group properties for the @ -operation can be
verified by straightforward calculations™ using eq. (4.8). The inverse

transformation is defined as

>, 2 >

A=A @®q7, (4.9)
,

x7V7Ve emphasize that the shift transformations (3.1) with which
we dealt earlier do not form a group.

18



where

! ). (4.10)

n
~—

1
e

I
e

q

jIn what follows, we shall call the set of ® -operations the group
of horospherical shifts and denote it by TE@)

It is easy to see from (4.5) and (4.8) that in the nonrelativis—
tic limit
a, |yl <1
. the horospherical coordinates transform into Cartesian coordinates

of the three:dimensional Euclidean momentum space and the group

T(3) into the Abelian group of translations of this space.

The volume element of the hyperboloid d@ 3 ~4A
V1t A?Z
in the horospherical coordinates (4.5) reads
2a =5 .
dnZ =e dady. (4.12)

Since T(3)  is a subgroup of the Lorentz group, then evidently

dQ =dQ » - (4412)

A@z " A

(cf. (3.5)). The property (4.12) allows one to interpret (4.11) as the

right invariant volume element on the group T(3) itself,

19



By means of (4.5), (4.8)-(4.10) it is easy also to show that

Agho - AX = \/1+(A—"®}? S , (4.13)

Comparing (4.13) with (3.3), we are led to the important relation:

-1 .2

R R ™  (a.19)

Now, taking into account (4.14), we can understé.nd the integral

" term in the equation (3.11) as a convolution on the group T(3)

A orvid @x e e, VA r gL (B, (a.15)
(2”) X Q A q 7

Finally, after transforming to the horospherical coordinates (4.5),

equation (3.11) takes the form:

é.(a,7) =8 ()8 (5) = —t V@, 5) ¢ éo (a,3).  (4.16)
q - ) 2q(e® =1-i¢ 4

An important prbperty of (4.16) is the one—diménsional nature
of the Green. function '
—_— ’ : (4.17)
2q(e*=l—iec) '
(ct. (2.10)).

G=-

20



The presence of the convolution opefation in {(4.16) suggests
that the Fourier transform defined on the group T(3) should be
applied to this equation. Let us explain the meaning of this notion.

A usual three-dimansional Fourier transform is an expansion
in terms of plane waves, which are one-dimensional unitary repre-
sentations of the Abelian group of translations of the Euclidean
3-space, or in other words, the unitary solutions of the functional

equation

Since the group T(3) is non-Abelian, it has no
non-trivial one-dimensional representations, i.e. the functional equa-

tion

U(A @A, )=U(A )U (A) ‘ (4.18)

permits only <‘>perator‘ solutions. The matrix’ elements of these ope-
rators form t.he basis in terms of which the functions on the group
T(3) can be expanded. The corresponding expansions then play
the role of the Fourier transform on tlﬁe given group. The Fourier
transforms obtained are the operators acting in the same space
where the operators U from (4.18) act.

Let us assume now that we have at our disposal some comp-
lete and orthogonal set of "state vectors" |p > ’

S4B 17 ><F) =1 s

(4.19)

s =5 @ (7=

i po=(p .p, ).

o

lp

g

<



Define .in the space of these vectors an operator UZ(Z)=U,_(E,’;)
z
putting

==
iaz +lyp2— a

S <p 1 U (a,7) |p, 2= e —e7". ) (4.20)

With the help of (4.20) it is easy to obtain

~ _52 =

U, (dlfaz ve Y +Y, ) = ‘
(4.212)

~

=Uz(al.}’l)Uz(02.)’2)

A+ ~ Py
U, (a,y)=U, (~a,~e"3) = UT'(a,7). © (4.22)

Thus the operators l’}‘z(a,’}’/) realize the unitary representation

of the group T(3). Further, let (Z) =f(a:; )  be some
function on the group T(3). According to the above considera-
tions its Fourier transform on this group is determined by the fc;l—

lowing expression

1

(2ﬂj3,

> o - A > o _ g " e 4,23
S H8)40 4<F, 10 (3)1F, >j<pl|f(?)|p2>. (4.23)

22



it turns out that there exists also the inversion formula making it |
p0551b1e to calculate f(A) from the known matrix elemen’rs
<p | f (z)|p >

£(A)=fdzdp, dp, <f, 1 £(2)U ) (A)|p, >. | (4.29)

) As is clear from (4.24), it is necessary in fact to know only the
integral of <, If(z) |p2 > ' over the parameter 7:1 in order
to find f(A) '

Jap < py 11(z) |p, > =1(2,5)) (4.25)

. ‘ n
and there is no need to know the matrix element < F lf(z)]F >
1tse1f. This point reflects the cxrcumstance that the formu]a (4 25)
also can be mverted, i.e, it is possible to reproduce the whole

matrix <p‘ 1 f,(z) lp2> :

tals =2 ") 2)

e A e 1 , £ ™ L= - ’
<p!|l'(z)lp2 ,>'§;r'f° dz’da & (pl ~-€ ’pz)f (z%p, ). (4.26)

Using (4.18), it is easy to obtain the "convolution theorem"
for the transformation (4.23)-{4.24).

23



Namely, if

T (D) [, (MU (A)d0 o
(2r) A

and

f =2 11, (R)0, (A)d0 ;

(2m)®
then
) A 1 ) - - " -
f, )1, (z)= faQ.{f (A)*f,(A)IU_(A),
. 3 @)’ AU 2 = (L‘}.27)
where the "convolution" of the functions fx and f 2 is defined

by the integral

-» > 1 i > > :
f!(A)<*f2(A)=22”—)3—ff‘(A@ At ) (A )dQX, . (¢.28)

In the non-relativistic limit, as is easily seen, all the relations
connected with the PFourier expansion on the group T(3) transform

into corresponding formulae of the usual Fourier analysis.

5. High Energy Representation for the Quasipotential
Scattering Amplitude

Now we apply the Fourier trahsform on the group T(3) to
the equation (4.16).

24



" We begin putting by definition (cf. (4.23)).

<P, ]‘f’a.(z)];’: >-=(21”)3 f¢é('a.;)<;l |ﬁz(a.7)|,7; >e’* dady  (5.1)

”~

<F, IV @)IF, >.=(21"

SV (0PG5 > ()

Using the formulae (4.20), (4.24) and (4.27), after some simple
calculations - we get from (4,16)

<p, 19 ,(2) lp, >=<p,lpy > +

ln(z—z')
Ll e z’ ) L —a s 3
+i— [da - Slp, ~e Pg)-2——-fdP <P IV (z’)¢ (z” )'ng )

271 =1 —ic

By means . of the relations (4.25)-(4.26) it is .veasy to show

that equation (5.3) can be written in the form

<p, l¢_& (z)|p, >= <p,lp,> +
: , (5.4)
+—2é-i-_f“dz’ 0 (z—z*)<p, IVq(z')an, ") |p, >,

25



A o0 ia(z—z")
. e
0 (z—z")=le | da (5.5)
2w —0 a .
- e =l—ic

is an analogue of the step function in the finite difference cal-
culus,.' sutisfying "a non-homogeneous finite-difference equation
of the first order

Az. ?) (z=z *)=8 (z—z")

_1..;_ (5.6)
Ao T =1
z -1 ot

Taking into account (5.6) we have from (5.4)

™ ~ = . 1 [ ol .
<pl[l‘.\lq5q—»(z)lp2 >=£_i-<p' qu (z) ¢ 2 (z)’lp2 >

\‘;\.

or

A‘¢I; (z)-2—q-—l— V‘q(z)tﬁ; (z). (5.7)

A~ .
The boundary ‘condition for the operator ¢ ,(z) follows from (5.4):
q

o0

palz)| o=l - (5.8)

26



" v
It is clear that quantity ¢ (z) is a relativistic analogue of the
"slowly varying part" of the wave function (cf. Sect. 2). The formal

solution of the equation (5.4) and (5,7) is an "ordered" exponential

A~ ) 1 A A ~
¢;(Z)=n=20 —(2.:;;)-;_ f@ (Z-—Z!)e(z l-?z)...e(zn_! —Zn)x

qu (z,).. Vq (z )dz; .. dz_ =

(5.9)

=P exp[l— F 6 (z—z )V (z ")z 1.
§ 2q § 4 ’

For simple quasipotentials the series (5.9) can be calculated
explicitly. .
Now we proceed to consider the quasipotential scattering

amplitide AR ,q). According to/ 24/

[ Y4 1 1 > T2 ) >

By means of (3.2), (3.4), (4.14) and (4.15) we find from this

expression that
CAG ) =A(A, P =A(A2q) -

=l v (A)*g,(A) | (5.10)
q q :

47
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Further, due to the "convolution theorem" and formula (4.24),

we conclude that

)=- -41—fdz dp1 dpa<p1 |V (z)(ﬁ (z)Ut (A-’)[;2 >. (5.11)

This expression allows some simplifications., Namely, considering

(4.20), let us rewrite (5.11) in the form:

ia

A(A? ,q)—-re “fage” P famag oGV, (z)é;(z)[S). (5.11Y)

Now, let us consider the condition (3.14). Since (see (2.6), (3.12)
and (4.6))

- G —q ) =~ 1 t
"(pofps)(qo qa) 1+:+ s

then at s>1 and lt;{ «<1l, we have
e =1, a~0
(5.12)
y~=4&, Lef=y?2.

In other words, in this approximation the momentum transfer

>
vector A Dbelongs to the horosphere (4.6). This fact can be
thought of as a particular "transversality condition" in the rela-

tivistic case.

28



After inserting (5.12) into (5.11') we obtain:

Y S . A " -
A(s,t)=..i..fdpe : Pfdp dz<p |V (z) ¢ »(z2)]p > =
A 1 1 q q

. (5.13)
27 Tpdp Jo(\/: p)fdzd'p?! <F!‘V (z)q’g_.,(z)-‘ﬁ' >.
0 q q

.
4n

(In the last equation the azimuthal symmetry has been taken into
account). It is possible to carry out the z, -integration in eq.

(5.13) explicitly. Namely, on the basis of (5.7) and (5.9) we have:

o0

fdz<p | v, @) @) 5> =

(5.14)

= 2qi [ d=z <F! [Azpzexp[_le F 0 (z—= ')Vq(z')dz '][p= > L

2ql ——0Q

Now, due to (5.6), we can easily obtain that

=201 1<F, [P expl2— [V _(2)dz1lp >-8"(5,-F )1 (5.15)

’2q] —00

29



where, by definition,

o0

1 la)
P, exp[2qi _me q (z)dz 1= 1+

(5.16)

1

o —

2qi

}e

Vq(zl)dzl+ 2_ _['9(zlv—z2)...G(Z‘J_l—zn)V(l (z!)...Vq(zn)-dz!... dzu

n=2

After inserting (5.15) into (5.13) we obtain the sought - for high

energy representation for the quasipotential scattering amplitude:

A(s,t)=

(5.17)

.

—-qi fpdp J, (VU fa5 < 5 IP, exp[ﬁ-:—i—-—f:vq (z)dz1} 5 >-11L

Obviously this formula can be considered as the direct generaliza-

tion of the eikonal representation (2.19) to the relativistic case,

6. Concrete Examples

”n

Now consider the case when the matrix <p,|V_(z) g, >

is diagonal
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A @) _ - =
<p, | v, @1p, >=8 (p,-p,)V _(z,p ) (6.1)

It tirns out that under the condition (6,1) the following rela-

tion heolds

<5 |P [—-—}"v (2)az 1|5 > =

1, %

(6.2)

(, )
-5 ( —p)expil f fn (1= ——— 2

2q

Ydz }

Equality (6.2)‘ can be proved.starting from the expansion of the
Pz ~exponential in pdwers of the potential by means of succes~

sive applications of the identity

0(z—2 )O0(z—z *)=0 (z—2z ") 0(z "~z ") +

A ~ ~ (6'3)
+0(z~2z")6{z"-2")+ i—l—-e(z—z VS (za’-z ).

Anocther method connected with the use of (5. 7), is also poss1b1e.'
Due to the diagonality of V (z). the operator qS is evidently

also diagonal
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= ~o == ‘ 2 = =
<, 1¢as (z)lp, >=86 (p, -p, )¢;(z. p ) (6.4)

and
= 1 = , 3
Az¢;(z,p)=ﬁ-vq(z,p)¢a, (z,p ). (6.5)

The solution of the " ¢ -number" equation (6.5) is. diven by

the expression

- o A v "= .
¢ (z,p)=expli f0(z-z'>zn(1—-—°—(—z—ﬁ—’)-—>dz'! (6.6)

q —o0 2q

as is ‘easy to verify with the help of (5.6). Now, taking into
consideration the fact that the left-hand side of (6.2) can be repre-

sented in the form

(2)

by 18, (=) 15, >= 87 (B, =78l (=) (6.7)
q

and that 6 (e)=1, we get the formula (6.2),
Representation (5,17) in the case of quasipotentials (6.1)

is of the following form
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00 v (z.;)
i-_ofoln Q- ---‘g-q--- dz)

A(s.t):-qiofopdp.lo(\/:'t-p){'e -11. (6.8)
(4]

In the approximation -‘-/12%’—"—)- <<1 this expression coincides with

the non-relativistic formula (2,19).

Now we choose V_(z,p) in the form of a "potential well":

V @, p)==V 6~ Vaz?+p?) (6.9)

where r is the radius of the well and V, is its "depth"x/..

0
Simple calculations led to:

e RN
2nHoVrg -~ p

Als ) ==qi [p dpy (p VT e -1 (e.10)
. : 1] .
where
fa(1 Yo )
o = f(l + - (6.11)

x/’Zl.‘he quantity V, , In general, can be complex and energy-
dependent., ‘
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Formula (6. 10) differs from the corresponding non-relativistic

expression (see, for mstance,/ 9/) only by the type of dependence

on the parameter V, /2q.

in

in

We note in conclus1on that the technique of decomposition
terms of representations of  [(3) group which is developed

this 'paper can be applied, for instance,' for the study of

asymptotic behaviour of perturbation theory graphs,
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‘Tapcepanpmsunun B.P., Kannimescku#t B.I'., Mup-Kacumor P.M.,
Ckaukos H.B. E2-5341

[Mpeacrapnenne QMg peNSTHBHCTCKON aMINIMTYARl paccesHHs
NP BBICOKHX 3HEprHusX

[Mony4yeno npepcrasiedHre AN PENATHBHCTCKON AMIMIMTYABl paccesHud
Ip¥ BBICOKMX BHEPrAsgX B paMKaX KBa3HNIOTeHIMalbHOT'O noaxoana., KioueBbriMm
MOMEHTOM BO BCEeM paCCMOTPeHHH fBAsieTCs dypbe-aHanM3 Ha TpeXmapameT-
pnueckoll HeaGenepoll rpynne TpaHcaguuil, BIOXEeHHOR B KayecTpe NOATPYNIIbI
B rpynny Jlopenna, IMonmyuenHoe npeactabneHue oGobmaer 3iiKOHanbHoe NpuG-
NMXeHUe X KBAHTOBOH MeXaHHKe.
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Mir-Kasimov R,M,, Skachkov N,B.

" Representation for the Relativistic Scattering
Amplitide at High Energies

In the framework of the quasipotential approach high energy
representation for the relativistic scattering amplitude is obtained.
A basic point is an application of the Fourier analysis in terms
of the non-abelian group of translations embedded as a subgroup
in the Lorentz group. The representation obtained corresponds . to
the eikonal one in quantum . mechanics.
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