N-S 6

-

ОБЪЕДИНЕННЫЙ
ННСТИТУТ
ЯДEPHはX
НССЛЕДОВАНМИ゙
Дубна

ON THE BEHAVIOUR
 OF THE ELASTIC SCATTERING AMPLITUDE AT MOMENTUM TRANSFERS DECREASING AS (ln s) ${ }^{2}$

Submitted to "Nuclear' Physics"

Нгуен Вая Хьеу
O пов'едении амплитуды упругого рассеяния при эначениях передачи импульса, убывающих $\operatorname{kaк}(\ln s)^{-2}$

В работе показано, что при $t=\frac{\text { const }}{\ln ^{2} s}$ амплитуда имеет такое же поведение, что и ее поведение при $t=0$.

Препринт Объедмненного института ядерных исследованин. Дубна, 1970

Ngutyen van Hieu
E2-5337
On the Behaviour of the Elastic Scattering Amplitude at Momentum Transfers Decreasing as (lns) ${ }^{-2}$

We prove that in any interval
where

$$
-4 k^{2}+t_{1}(s) \leq t \leq-t_{1}(s),
$$

$$
t_{1}(s)=\frac{\text { const }}{\ln ^{2} s},
$$

there must exist at least one value t_{0} such that the magnitude of the elastic scattering amplitude at this momentim transfer has the same behaviour as its behaviour at $t=0:\left|\frac{F\left(s, t_{0}\right)}{F(s, 0)}\right| \geqq$ conist, $s \rightarrow \infty$. This conclusion is true also for the imaginary part of the amplitude. If the real part of the amplitude at $t=0$ is bounded below by some power s^{-n}, then for it we have the same result.

Preprint. Joint Institute for Nuclear Research. Dubna, 1970

In a recent paper $/ 1 /$ Kinoshita showed that at momentum transfers decreasing as

$$
\begin{equation*}
-t(s)=|t(s)| \lesssim \frac{\text { const }}{\ln ^{2} s} \tag{1}
\end{equation*}
$$

the real part of the elastic scattering amplitude has the same behaviout as that at $t=0$

$$
\begin{equation*}
\left|\frac{\operatorname{Re} F(s, t(s))}{\operatorname{Re} F(s, 0)}\right| \geqslant c o n s t \tag{2}
\end{equation*}
$$

In proving this statement Kinoshita used the following representation of Ref $F(s, t)$:

$$
\operatorname{Re} F(s, t)=D^{+}(s, t)-D^{-}(s, t),
$$

the functions $D^{ \pm}(s, t)$ being non-negative at

$$
D^{ \pm}(s, 0) \geq 0 .
$$

Further he proved that for values t decreasing as in Eq. (1) the functions $D^{ \pm}(s, t(s))$ have the same behaviours as that at $t=0$:

$$
\left|\frac{D^{ \pm}(s, t(s))}{D^{ \pm}(s, 0)}\right| \geq \epsilon^{ \pm}:
$$

Since $D^{+}(s, 0)$ and $D^{-}(s, 0)$ are different, then due to the last inequality we can believe that for rather small s-independent constants in Eq. (1) the function $D^{-}(s, t(s))$ cannot cancel $D^{+}(s, t(s))$, and for these values of the constant in Eq. (1) we must have the inequality (2).

In this note we prove rigorously that in any interval

$$
\begin{equation*}
-4 k^{2}+t_{1}(s) \leq t \leq-t_{1}(s), \tag{3}
\end{equation*}
$$

where k is the 3-momentum of particles in the cim.s., and

$$
\begin{equation*}
t_{1}(s)=\frac{a^{2}}{\ln ^{2} s}, \tag{4}
\end{equation*}
$$

there must exist at least one value t_{0} such that at this momentum transfer the magnitude of the scattering amplitude. decreases not faster or increases not slower than that at $t=0$:

$$
\begin{equation*}
\left|\frac{F\left(s, t_{0}\right)}{F(s, 0)}\right| \gtrsim \beta(\alpha), s+\infty . \tag{5}
\end{equation*}
$$

Remember that the function

$$
f_{s}(t)=F(s, t)
$$

is analytic in the Martin ellipse $/ 2 /$ with the foci at $t=0, t=-4 k^{2}$ and the major semiaxis $2 \mathrm{k}^{2}+\delta^{2}, \delta^{2}>0$. For convenience we put

$$
\begin{gather*}
w=t+2 k^{2} \tag{6}\\
f_{s}(t)=g_{s}(w)
\end{gather*}
$$

New function $g_{g}(w)$ is analytic in the ellipse E with the foci at

$$
\begin{equation*}
w_{c}= \pm c, c=2 k^{2}, \tag{7}
\end{equation*}
$$

and the major semiaxis

$$
\begin{equation*}
\mathrm{a}=2 \mathrm{k}^{2}+\delta^{2} . \tag{8}
\end{equation*}
$$

Its minor semiaxis is

$$
\begin{equation*}
b=\sqrt{a^{2}-c^{2}} \tag{9}
\end{equation*}
$$

Let t_{1} be some positive number, $t_{1}<c$ and we consider the ellipse E^{\prime} with foci at

$$
\begin{equation*}
w_{e}^{\prime} \pm c^{\prime}, c^{\prime}=c-t_{1}=2 k^{2}-t_{1} \tag{10}
\end{equation*}
$$

which has the same minor semiaxis b. Its major semiaxis is

$$
\begin{equation*}
a^{\prime}=\sqrt{c^{\prime 2}+b^{2}}=\sqrt{a^{2}+c^{\prime 2}-c^{2}} \tag{11}
\end{equation*}
$$

It is easy to check that for rather large s the ellipse E^{\prime} will contain the point $w=c(i . e, t=0$) if

$$
\begin{equation*}
\mathrm{t}_{1}<\delta^{2} . \tag{12}
\end{equation*}
$$

We assume that this condition is satisfied. By means of the conformal mapping

$$
\begin{equation*}
\xi=\frac{w+\sqrt{w^{2}-c^{\prime 2}}}{c^{\prime}} \tag{13}
\end{equation*}
$$

we transform the ellipse E^{\prime} with the cut $\left[-c^{\prime}, c^{\prime}\right]$ into a ring with the internal radius 1 and the external radius. R

$$
\begin{equation*}
R=\frac{a^{\prime}+\sqrt{a^{\prime 2}-c^{\prime 2}}}{c^{\prime}} \tag{14}
\end{equation*}
$$

The point $w=c(i, e . t=0$) goes to the point $\xi=r$,

$$
\begin{equation*}
\mathrm{r}=\frac{\mathrm{c}+\sqrt{\mathrm{c}^{2}-\mathrm{c}^{\prime 2}}}{\mathrm{c}^{\prime}} \tag{15}
\end{equation*}
$$

We put

$$
\mathrm{h}_{s}(\xi)=\mathrm{g}_{s}(\mathrm{w}),
$$

and introduce some notations:

$$
\begin{align*}
& \mathrm{m}=\max \left|\mathrm{h}_{\mathrm{s}}(\xi)\right|=\max \quad\left|\mathrm{g}_{\mathrm{s}}(\mathrm{w})\right|= \\
& |\xi|=1 \quad-c^{\prime} \leq w \leq c^{\prime} \\
& =\quad \max \quad\left|f_{s}(t)\right| \text {, } \tag{16}\\
& -4 x^{2}+t_{1} \leq t \leq-t_{1} \\
& M=\max _{|\xi|=\mathrm{R}}\left|\mathrm{~h}_{\mathrm{s}}(\xi)\right|=\max _{w \in \partial E^{\prime}}\left|g_{\mathrm{g}}(w)\right|= \\
& =\max _{t \in \partial E}\left|f_{B}(t)\right|, \tag{17}
\end{align*}
$$

where ∂E^{\prime} and ∂E^{\prime} ' are the boundaries of the ellipses E and E^{\prime}, resp. Applying the Hadamard three circles theorem $|3,4|$ we have

$$
\begin{equation*}
\left(1-\frac{\ln r}{\ln R}\right) \ln \frac{m}{\left|h_{s}(r)\right|}+\frac{\ln r}{\ln R} \ln \frac{M}{\left|h_{s}(r)\right|} \geq 0 . \tag{18}
\end{equation*}
$$

From eqs. (7), (8), (10), (11), (14), and (15) it is easy to show. that at

$$
\begin{equation*}
\frac{\ln \mathrm{T}}{\ln R} \approx \sqrt{\frac{t}{\delta^{2}}} \tag{19}
\end{equation*}
$$

. If we choose

$$
\begin{equation*}
t_{1}=t_{1}(s)=\frac{\delta^{2} \gamma^{2}}{\ln ^{2} s} \tag{20}
\end{equation*}
$$

where γ is some constant, then from Eq. (18) we get

$$
\begin{equation*}
\ln \frac{m}{\left|f_{s}(0)\right|} \geq-\frac{\gamma}{\ln s} \ln \frac{M}{\left|f_{s}(0)\right|} \tag{21}
\end{equation*}
$$

Since $F(s, t)$ for every t in the ellipse E satisfies the dispersion relation in s with two subtractions $/ 5 /$ and $|F(s, 0)|$ is bounded below by some power $s^{-n} / 6 /$, then we have

$$
\begin{equation*}
\ln \left|\frac{\mathrm{M}}{\mathrm{f}_{\mathrm{s}}(0)}\right| \leq \kappa \ln s . \tag{22}
\end{equation*}
$$

From Eq. (21) it follows that

$$
\begin{equation*}
\ln \frac{m}{|f(0)|} \geqslant-\gamma \kappa \tag{23}
\end{equation*}
$$

$$
\begin{equation*}
\max _{-4 k^{2}+1_{1} \leq t \leq-1_{1}}\left|\frac{f_{g}(t)}{f_{8}(0)}\right| \geq-\kappa \frac{a}{\delta} . \tag{24}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\max _{-4 k^{2}+t_{1} \leq t \leq-t}\left|\frac{F(s, t)}{F(s, 0)}\right| \geq e^{-\kappa \frac{a}{\delta} .} \tag{25}
\end{equation*}
$$

Thus the inequality (5) has been proved. Moreover, we found the explicit expression for the constant $\beta(a)$ in Eq. (5):

$$
\begin{equation*}
\beta(a)=e^{-\kappa \frac{a}{\delta}} \tag{26}
\end{equation*}
$$

Suppose that in any interval of the type (3) the magnitude of $F(s, t)$ reaches its maximum at the. end point

$$
t=-t_{1}(s) .
$$

Then we have

$$
\left|\frac{F\left(s,-t_{1}(s)\right)}{F(s, 0)}\right| \geq \beta(a) .
$$

It is obvious that our conclusions are true also for the imaginary part Im $F(s, t)$. If we suppose that at $t=0$ the
real part of the amplitude is bounded below by some power s^{-n}, then for it we have the same results.

In conclusion we note that the constant a in Eq. (4) can be chosen to be arbitrarily small.
References

1. T. Kinoshita, Preprint of Cornell University, 1970.
2. A. Martin. Nuovo Cim., 42 A A93 (1966).
3. F. Cerulus, A. Martin. Phys.\&ett., 8, 80 (1964).
4. Nguyen van Hieu. JETP Lett, 7, 391 (1968).
5. Y.S. Jin, A. Martin. Phys.Rev., 135, B1375 (1964).
6. Y.S. Jin, A. Martin. Phys.Rev., 135, B1369 (1964).

Received by Publishing Department on August 19, 1970.

