N-56

AABODATOPHI TEOPETHUE(KON

ОБЪЕДИНЕННЫЙ **ИНСТИТУТ**

ЯДЕРНЫХ

Дубна

E2 - 5337

Nguyen van Hieu

ON THE BEHAVIOUR OF THE ELASTIC SCATTERING AMPLITUDE AT MOMENTUM TRANSFERS DECREASING AS (ln s)-2

1970

Nguyen van Hieu

ON THE BEHAVIOUR
OF THE ELASTIC SCATTERING
AMPLITUDE AT MOMENTUM
TRANSFERS DECREASING AS (ln 8)-2

Submitted to "Nuclear Physics"

Нгуен Ван Хьеу

E2-5337

О поведении амплитуды упругого рассеяния при значениях передачи импульса, убывающих как (ln s)-2

В работе показано, что при $t = \frac{\text{const}}{\ln^2 s}$ амплитуда имеет такое же по-

ведение, что и ее поведение при t=0 .

Препринт Объединенного института адерных исследований. Дубна, 1970

Nguyen van Hieu

E2-5337

On the Behaviour of the Elastic Scattering Amplitude at Momentum Transfers Decreasing as (lns)⁻²

We prove that in any interval

$$-4k^2 + t$$
, $(s) \le t \le -t$, (s) ,

where

$$t_{1}(s) = \frac{const}{\ln^{2} s},$$

there must exist at least one value t_0 such that the magnitude of the elastic scattering amplitude at this momentum transfer has the same behaviour as its behaviour at $t=0:\left|\frac{F(s,t_0)}{F(s,0)}\right| \ge \mathrm{const}, \, s \to \infty$.

This conclusion is true also for the imaginary part of the amplitude. If the real part of the amplitude at t = 0 is bounded below by some power s⁻ⁿ, then for it we have the same result. **Preprint. Joint Institute for Nuclear Research.**

Dubna, 1970

In a recent paper $^{1/2}$ Kinoshita showed that at momentum transfers decreasing as

$$- t(s) = |t(s)| \leq \frac{\text{const}}{\ln^2 s}$$
 (1)

the real part of the elastic scattering amplitude has the same behaviout as that at $t=\mathbf{0}$

$$\left|\frac{\operatorname{Re} F(s,t(s))}{\operatorname{Re} F(s,0)}\right| \geq \operatorname{const}. \tag{2}$$

In proving this statement Kinoshita used the following representation of Ref F(s,t):

$$Re F(s,t) = D^{+}(s,t) - D^{-}(s,t)$$

the functions D t (s,t) being non-negative at

$$D^{\pm}(s,0) > 0$$
.

Further he proved that for values t decreasing as in Eq. (1) the functions $D^{\pm}(s,t(s))$ have the same behaviours as that at t=0:

$$\left|\frac{D^{\pm}(s,t(s))}{D^{\pm}(s,0)}\right| \geq \epsilon^{\pm}.$$

Since $D^+(s,0)$ and $D^-(s,0)$ are different, then due to the last inequality we can believe that for rather small s-independent constants in Eq. (1) the function $D^-(s,t(s))$ cannot cancel $D^+(s,t(s))$, and for these values of the constant in Eq. (1) we must have the inequality (2).

In this note we prove rigorously that in any interval

$$-4k^{2} + t_{1}(s) \le t \le -t_{1}(s),$$
 (3)

where k is the 3-momentum of particles in the c.m.s., and

$$t_1(s) = \frac{a^2}{\ln^2 s}, \qquad (4)$$

there must exist at least one value t_0 such that at this momentum transfer the magnitude of the scattering amplitude decreases not faster or increases not slower than that at t=0:

$$\frac{F(s,t_0)}{|F(s,0)|} \geq \beta(a), s \to \infty.$$
 (5)

Remember that the function

$$f_s(t) = F(s,t)$$

is analytic in the Martin ellipse $^{/2/}$ with the foci at t=0 , $t=-4\,k^2$ and the major semiaxis $2\,k^2+\delta^2$, $\delta^2>0$. For convenience we put

$$w = t + 2k^{2}$$
(6)
$$f_{g}(t) = g_{g}(w).$$

New function $g_s(w)$ is analytic in the ellipse E with the foci at

$$w_c = \pm c, c = 2 k^2,$$
 (7)

and the major semiaxis

$$a = 2k^2 + \delta^2 (8)$$

Its minor semiaxis is

$$b = \sqrt{a^2 - c^2}.$$

Let t_1 be some positive number, $t_1 < c$ and we consider the ellipse E' with foci at

$$W'_{c} + c', c' = c - t_{1} = 2k^{2} - t_{1},$$
 (10)

which has the same minor semiaxis b . Its major semiaxis is

$$a' = \sqrt{c'^2 + b^2} = \sqrt{a^2 + c'^2 - c^2}$$
 (11)

It is easy to check that for rather large s the ellipse E will contain the point $w=c \, (i.e. \ t=0)$ if

$$t_1 < \delta^2 \cdot$$

We assume that this condition is satisfied.

By means of the conformal mapping

$$\xi = \frac{\mathbf{w} + \sqrt{\mathbf{w}^2 - \mathbf{c}'^2}}{\mathbf{c}'} \tag{13}$$

we transform the ellipse E' with the cut [-c',c'] into a ring with the internal radius l and the external radius R

internal radius
$$R = \frac{a' + \sqrt{a'^2 - c'^2}}{c'} \tag{14}$$

The point w = c (i.e. t = 0) goes to the point $\xi = r$,

$$t = 0 / g$$

$$c + \sqrt{c^2 - c^2}$$

$$t = \frac{c + \sqrt{c^2 - c^2}}{c^2}$$
(15)

We put

$$h_s(\xi) = g_s(w),$$

and introduce some notations:

$$m = \max |h_{s}(\xi)| = \max |g_{s}(w)| = |\xi| = 1$$

$$= e' \leq w \leq e'$$

$$= \max |f_{s}(t)|, \qquad (16)$$

$$-4k^{2} + t_{1} \leq t \leq -t_{1}$$

$$M = \max |h_{s}(\xi)| = \max |g_{s}(w)| = |\xi| = R$$

$$= w \in \partial E'$$

$$= \max |f_{s}(t)|, \qquad (17)$$

where ∂E and $\partial E'$ are the boundaries of the ellipses E and E', resp. Applying the Hadamard three circles theorem $^{\left|3,4\right|}$ we have

From eqs. (7), (8), (10), (11), (14), and (15) it is easy to show that at

$$\frac{\ln \tau}{\ln R} \approx \sqrt{\frac{t}{\delta^2}} . \tag{19}$$

. If we choose

$$t_1 = t_1(s) = \frac{\delta^2 \gamma^2}{\ln^2 s},$$
 (20)

where γ is some constant, then from Eq. (18) we get

$$\ln \frac{m}{|f_s(0)|} \ge -\frac{\gamma}{\ln s} \ln \frac{M}{|f_s(0)|}$$
 (21)

Since F(s,t) for every t in the ellipse E satisfies the dispersion relation in s with two subtractions and |F(s,0)| is bounded below by some power s^{-n} , then we have

$$\ln \left| \frac{M}{f(0)} \right| \le \kappa \ln s. \tag{22}$$

From Eq. (21) it follows that

$$\ln \frac{m}{|\mathbf{f}(0)|} \gtrsim -\gamma \kappa , \qquad (23)$$

$$\max_{-4k^2+t_1 \le t \le -t_1} \ln \left| \frac{f_s(t)}{f_s(0)} \right| \ge -\kappa \frac{a}{\delta}.$$
(24)

Therefore

$$\max_{-4k^2+t_1 \le t \le -t_1} \left| \frac{F(s,t)}{F(s,0)} \right| \ge e^{-\kappa} \frac{a}{\delta}.$$
 (25)

Thus the inequality (5) has been proved. Moreover, we found the explicit expression for the constant $\beta(a)$ in Eq. (5):

$$\beta(a) = e^{-\kappa \frac{a}{\delta}} . \tag{26}$$

Suppose that in any interval of the type (3) the magnitude of F(s,t) reaches its maximum at the end point

$$t = -t, (s)$$
.

Then we have

$$\left| \frac{F(s,-t_1(s))}{F(s,0)} \right| \ge \beta(a). \tag{5'}$$

It is obvious that our conclusions are true also for the imaginary part Im F(s,t). If we suppose that at t=0 ' the

real part of the amplitude is bounded below by some power s^{-n} , then for it we have the same results.

In conclusion we note that the constant a in Eq. (4) can be chosen to be arbitrarily small.

References

- 1. T. Kinoshita. Preprint of Cornell University, 1970.
- 2. A. Martin. Nuovo Cim., 42, A930 (1966).
- 3. F. Cerulus, A. Martin. Phys. Lett., 8, 80 (1964).
- 4. Nguyen van Hieu. JETP Lett., 7, 391 (1968).
- 5. Y.S. Jin, A. Martin. Phys. Rev., 135, B1375 (1964).
- 6. Y.S. Jin, A. Martin. Phys.Rev., 135, B1369 (1964).

Received by Publishing Department on August 19, 1970.