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I. Int r o d u c t i o n 

In recent pap_ers/l-S/ a· straight-line paths approximation (SLPA) 

has been f<?rmulated. which then • has been applied to considering 

problems · of high-energy particle scattering in the framework of stan-
. . 

dard mcidels of quantum field theory. 'This approximation is closely 

a~sociated with the m~thods which are extensively being developed 

by many authors/6-9/ for the so-called eikonal summation of the l<""eyn­

mann graphs, 'The eikonal approximation which is used for studying· 

the asympt~~ic behaviour of the _sum of a definite class of pertur-. 

bation diagrams is based on the modification ·of the nucleon propagator 

according to which the bilinear terms on the mesons momenta are-·· 

rejected. 'This modification has been studied well and proved in the 

infrared r.egion/10-13/. By the present time. we have already some 

grounds of its validity for a certain class of s -channel diag­

rams/14, 15/ in the asymptotic d_omain of high energies and fixed mo­

mentum transfers. 

In formulating SLPA it is convenient to start frorri . the· Feynman 

interpretation of the scattering amplitude as a sum over the paths. 

In so doing, the method of averaging over the functional variable 

used in refs./1-5/ and in the present paper is equivalent to the acco­

unt of paths which approach most closely the straight-line ones, 

Ir:i the case of. high-energy and fixed momentum transfer scattering 

the particle· trajectories are approximately intercepts of straight lines 

having the direction of the particle momenta before and after collisions, 
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respectively. Such a physical picture permits us to give to the 

rflethod used the name• of the straight-line paths approximation. 

The present p~per is devoted to the investigation of the beha­

viour of the· distribution of secondary "mesons" prcx:luced in high­

energy "nucleon" collisions on the SLPA basis. It is. useful to 

study aspects of this problem in order to clarify the hadron interac­

tion mechanism in the asymptotic domain in question. 

For the sake of simplicity, we shall consider the field theory 

models in which scalar nucleonsx/ exchange scalar and vector 

mesons. The inelastic amplitude and the n particle production 

cross,. section are factorized in these models under the condition that 

the components of the emitted meson momenta be restricted by the 

"softness" · conditions. 

It ,is interesting to study the differential cross section of inelas­

tic processes, whjch in SLPA has the shape of the Poisson distribu­

tion over the secondary particle number, as a function ·of the. choice 

of the integral cutoff parameters in vat}ous asymptotic regions. 

It should be noted that the· Poisson distribution was consi­

dered earlier in various phenomenological models /16/, electrodyna­

mics/17-20/, as well. as in other approaches. Recently it has been 

shown/21,1/ that such a distribution corresponds to the physical 

picture where the nucleons interact via their meson "clouds". It· is 

interesting to note that the total differential cross section summed 

up over all the emitted mesons may have no pronounced · diffraction 

peak in a certain domain of momentum transfers. In this. connection 

an analogy should be indicated with the automodel behaviour of· the 

cross sections of high-energy deep inelastic interactions of hadrons 

with leptons/22,23/. 

The problems formulated above are studied first on a simple 

example of potential scattering. Further the consideration is made 

in the framework of .ordinary quantum field theory models. 

x/In the framework of this method a generalization may be 
made to the case of spinor particles, too. 
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2~ Secondary Particle Distribution on Nucleon-Potential 

Scattering 

We consider a p·ote;.tial scatter.ing with multiple production 

of ·secondary particles, The field with which the scattered nucleon· 

interacts is rep~esented as the sum of the external (classic) V and 

quantized cf, fields, The amplitude of the scattering of a nucleon 

in the external field with n meson production is found according 

to the well-known formula 

where T ch is the sign of the T -product of the operators ¢ 

The generating functional F( p, q I g ¢ + V ) is expressed through 

the Fourier transform of the nucleon Green function G ( p, q I g¢ +_ V ) 

as follows 

F(p,qjg¢+V)= lim 

The transition to the mass shell is easily· performed using the 

~4/ ( . method of ref. .Thus, after extracting the poles, eq, 2,2) takes 

the formx/ 

x/ •. In the transition to the mass shell the terms corresponding 
to the. diagrams without interaction ~f the nucleon with the field 
V are eliminated, 

5 



where 

t 
J(x,y;v)= f dto 4 [x+a(e}+2 f v(77)d77-y]; a(t)".'2p0(t)+2q0~t), (2,4) 

Q 

I 
. r(x;v)= V(x) f dA exp! iA fd 4 z V(z)J(x,z;v)l (2,5) 

Q 

and the averaging over v means 

<<ll(v)>v 
Jo 4 V exp 1-i {v 2 (77)d77l<ll(v) 

f o 4 v exp I - i f v 2 
( 7/) d71 \ 

(2,6) 

Let· us assume that all the particles produced (both real and 

virtual) are "soft" mesons/1/, namely that the region of change of 

their momenta D is limited so that they do not lead to a. strong 

change of the momentum trarisfer, It is easily seen that the x -de­

pendence in eq, (2,4) can be neglected, 

We neglect the variable v which describes the deflection 

of particles from the straight-line paths, 

Under these assumption the functional F takes the form· 

F(p,q\gcp+V) f (p, q ) exp I i g f d 4 y ¢ (y ) J (y ) I 
el . 

(2,7) 
D 
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where the elastic scattering amplitude/
25

/ is expressed as follows 

4 
ix (P -q) 

f el ( p' q ) = .r d X e < r ( X; lJ ) > lJ • (2,8) 

Hence, it is not difficult to ge/
1 7 / that the ··· cross section of 

scattering .on a potential w~th .n "soft". meson production has the 

~hape of the Poisson distribution, Indeed, 

f n f el < 0 I T cf, exp I i g .f d 4 x cf, ( x ) J ( x ) l I n > 
D 

(2,9) 

=fel _1_(-~ J(kl) ) I ig2 r d4kJ2.(k)D(k)I - 372 -- exp -2- · 
v'n! 1=1 (2rr) y'2k 0 

0 I 

· where D (k) is the casual function. Consequently, 

da 
n 

Now taking into account that 

i 
D (k) - D* (k) = -- o ( k 2 - m 2 (2.11) 

( 2rr )3 

we finally get 

da = d a 
(2. 12) 

.n 0 n! 
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where a 

\." 

is defined by the following formula 

g2 
a = --)3 J 

( 2 17 D 

d 3 k J 2 
(k ) 

2k 
0 

and the current J ( k ) is of the form 

J(k) = _1_ ~ 1 

2pk + i £ 2qk - i £ 

(2,13) 

(2,14) 

If the momentum transfer is in the region s >> t >> m 2 
, µ 2 ,/, O 

then 

a ~ g2 In 2 at 
· (2, 15) 

where a depends only on masses, 

Note that in electrodynamics, in eq, (2.15), there appears ari 

infrared singularity and the factor - 1 - vanishes, In this case the 
t 

asymptotics has a so-called doul::iy-logarithmic characterfi.o/, 

3, Poisson Distribution of Secondary Particles in 

Quantum Field Theory Models 

Now we proceed to the case of multiple production of "soft" 

particles in the model Lint = g: t/J 2 ¢ : , where, for simplicity, the · 
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fields t/J and ¢ are _assumed to be scalar, The vector exchange 

model was considered ~arlier/1/, Here we pre~ent only some results 

of, this model, , 

The amplitude of scattering of two n_!-tcleons (field t/1 ) w'ith 

meson production {field ¢.) is' determined by the formula/25/ 

n 

I= I 

k )f(p p;q,q ;k, ... ,k) 
I JI 2 I 2 I . n 

=<0 IT¢ T¢ F(p
1 

,p
2 

;q
1

,q
2 

;¢
1 

,¢
2

)l_n>, 
' I , 2 

where, the functional F 

is of the form/5/ 

after the transition to the mass shell, 

F(p ,p ;q ,q ;cf, ,cf,)= J dx dx «A(x ,x ;v ,v ). 
I 2 I 2 I 2 I 2 I 2 12 

2 

•expligfd 4 x I 
I= I 

cf,
1 

(x)J
1

(x;x ,x ;v ,v 
I 2 I 2 

H> > 
V .v 

I · 2 

'The following notations are introduced: 

I 

·J 
0 

. t , 
d,\ exp I i ,\ g 2 f d ~ d ~ D [ X -x ~ a, ( ~ )-a ( ~ ) + ( V ( 1/) d 1J -

, , I 2 ,I 2 I I 2 2 
0 

I 
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j (x; X , X ; V , V 
I ' l 2 . I 2 

.. 

)= Jd,;8
4
[x

1
-x+a

1 
(,;)+ f v/ry)dry] 

J'. 

. (3,4) 

and the symbol « ..... >v >v means the averaging over the both functio-
1 2 

nal variables v 
I 

and v
2 

(eq, 2,6), 

· We consider the case when the produced meson momenta are 

negligibly small compared with the nucleon momenta. This makes 

it possible to neglect the x 
I 

and x 2 dependence in eq,. (3.4) 

for quantum current J 1 • In other words, we consider the produc­

tion of the so-called "soft" mesons which do not nearly affect the 

motion of scattered rapid particles. 

According to the method developed and employed in ;efs./10, 

12, 1- 5/ for the estimation of the functional integrals. over v we 

use the following approximation 

j 4 
« A ( x,

1 
, x 

2 
; v 

1 
, v 

2 
) exp I i g J d x cp ( x ) J ( x; v 

1 
, v

2 
)> > 

V V 
I 2 

(3,5) 

=«A(x
1

,x
2

; v
1 

,v
2

)>v >v expligfd 4 xcp(x)J(x) I, 
1 . 2 

where 

J(x)=<<J(x;v ,v )>v >v. 
. 1 2 l 2 

As a first simple example we consider the case when both 

the real and virtual mesons are "soft". In order to take into account 

the "softness" of mesons we cut off the region of integration over 

the meson momenta, Owing to the fact that now the integrals are no 

l_onger divergent in the upper limit,· the averaging over v , accor­

ding to eq. (3,5), may be replaced by other more rough approxima-
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· tion when the F dependence in quantum currents is eliminated, As 

\'\16.S already noted in the case of potential scattering, this appro­

ximation means an entire neglect of the deflexion nucleon from 

· straight-line paths. 

Thus,· in this approximation the functional F takes the form 

2 

F(p1,P2 ;q1,q2; ¢1•¢ 2)=fe1 (pl •P2 ;q 1•q2)expl~f d 
4
k 

1
;

1 
¢1 (k)Jl(k)l,(3,6) 

where 
1 

J l (k) = --
2P1 k. 

1 
----<; D is the region of integration over 
2q 1 k 

the meson momenta limited by the "softness" conditions; f el 
is 

the elastic scattering amplitude without taking into account radiation 

corrections. 

We note that, in principle, for .· fe1 it is possible to use the 

eikonal representation obtained in refs./1-3, 6-9/, 

Using (3.6) .for the cross section for inelastic process with 

"soft" meson production it is not difficult to get the expression/1/ 

n 

du= d ~ n a 0 
n! . 

(3,7) 

where 
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and 

a2 
g2 

(2rr) 3 
.r 

d3 k 

2k 
0 

[J2+J2]: 
I 2 

(3~9) 

are the contributions of the real and virtual meson, respectively, arid 

da =If 12 dn. 
0 el 

t 
.Since the interference term JI J 2 in the domain -- « 1 

s 

gives smaller contribution that the quadrupole terms/1/ we have 

a 1 = a 2 = a and the distribution over the secondary particles 

number takes the simple form 

n 

da·=da 
n 0 

a 

n.! 
e -a. (3,10) 

We notice that eq, (3, 7) holds in a more general case, If we 

restrict ourselves to the assumption about the softness of only real 

mesons (this condition is necessary for the amplitude to be factorized), 

and perform the· averaging over v , according to eq, (3,5), then 

eq, (3. 7) is valid, B~t in this case it is · necessary to make the fol-

lowing substitutions 

g2 d
3

k ::::::::: ::::::: 

a ➔ n = .r [J2 ; j2 l 
I m.e. (2rr)3 2k 

0 
I 2 ' (3.11) 

W'lcre 

J = 
1 1 ---

l 
µ2+2kp1 -µ 2 +2kql 

(3.12) 
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g2 i a4k "" 
a z ➔ n = 2Re l ---- f ----- I JI + J I 2 l ' (3, 13) r.c. 

( 2 1T )4 k 2-µ 2 +ir 2 
2 

where 

"' 1 1 
j I (3.14) 

k 2 +2kpl k 2 +2kql 

When the mesons are vector particles the quantities J and 

J read 

k + 2p 
~fl ___ i~µ- + 

2p k + k 2 
l 

. k,, + 2p i ,1 
-----<'-+ 

2p k + µ 2 
I 

2q k + k 2 
l . 

_k_L+ 2 ql/l 

2q k - µ 
2 

I 

(3.15) 

(3.16) 

Thus, · see that in quantum field models thE; n "soft" meson 

production cross section has the behaviour of the Foisson distri­

bution. 

4, Investigation of the Radiative Correction 

of Real Mesons Contributions to the Cross Soction 

We first consider the integral (3,13) with currents (3.1'1,) and 

(3.15) which corresponds to the radiative correction contribution, 

13 



In the models in question the integration over the functional variab­

les v and v , according to eq. (3.5), leads to a factorization 
1 2 

of the radiative corrections in the scattering amplitude and the. cross 

section. Then in the nucleon propagators the k 2 -dependence is 

kept and the integrals converge in the upper ,limit •. 

It is not difficult to see that the integral (3.13) in this approxi-

mation does not contain the s -dependence/4/. 

In the asymptotic domain \ t \ « m 2 it is 

g 2 . mz t 2 

n r. c. ":' t ------ In ( -- ) + 0 ( --- ) 
µ 2 ID 4. 24 ( 2 ")2 m 4 

(4.1) 

if. the scalar current (3.14) i~ inserted in (3.1.3) and 

-v 
n 

r.c. 

2 2 2 
= t g [ln(-m-) 

3 ( 217) z m 2 /l z 

1 t 2 

+ -]+0(---) 
2 .. m4 (4.2) 

if the vector 'current (3.15) is used. _ 

As vvas already noted. in ref./1/, the quantity n ;-c· is the 

width of the diffractiqn peak. 

The softness conditions imposed on• the meson momenta are 

as follows/1;5/ 

1 n 
l 

ysl=I 
ko' << 1, 

n 

l 
I= I 

k ii\«\ p 1-1- -qd\ = \ P2l - g zl \ ' (4.3) 

where the particle momentum components are given in the c.m.s., 

the initial nucleon ~omenta being chosen· along the z -axis. 
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In order to cut off the .integrals (3.11) with currents (3.12) 

and (3.16) in the upper limit it is natural to single out in the whole 

momentum space· a cylindric domain oriented along the z -axis 
i 

fz 

(4.5) 

since in ·the majority of cases the experimentally observed secondary 

mesons are emitted forward. 

As was sho~ in ref./1/ in the infrared asymptotic limit µ ➔ 0 

as we 11 as · in a broader region defined by the condition 

m2 , 

1 >> a 2 » 
rn z 

where (4.6) 

µ2 1 
In ( -- ) >> In ( -- ) , 

m2 a2 

the absolute contributions from the radiative corrections and emitted 

mesons coincidex/. In this case, in summing in the expression for 

d an over the number of all the emitted mesons the t -dependence 

vanishes. This leads to the peak being also vanishing in the diffrac­

tion cross section, A similar feature has been noted in ref./21/ ahd 

is analogous to the automodel behaviour of deep inelastic interactions 

of_ hadrons with leptons at high energies/22,23/. 

x/Th~ results of estimation of the integrals for different domains 
are given in the Appe.ndix. 

15 



.Note that the quantity nm.e, in the Poisson distribution 

· has a simp~e physical meaning of the average number of emitted 

particles, i.e. multiplicity. Thus, in the region indicated, under the 

condition that .the cutoff boundaries are energy independent, the 

multiplicity of "soft" particles turns out to be independent of the 

incident nucleon energy. As a result, the n soft particle produc­

tion cross section at high energies is also independent of s • 

As was noted in Introduction, in the framework of the present 

method there is a certain amblguity in choosing the cutoff parameters 

and the result is sensitive to this choice. For example,· if in the 

infrared domain the cutoff parameter c ..l. is choosen to be increa-

sing with energy f J"' /3 s ( /3 « 1 and fixed) then the multiplicity 

increases logarithmically with energy. 

Let us, consider the case when the µ scalar meson mass is 

fixed and is not small as compared with the nucleon mass m and 

s .. oo • The average number of emitted particles in this domain is 

· · expre<ssed· as 

➔ .. 

..,,. 
n 

m.e • 

➔ 

- a 4 f d 2 k 
(k1t-4:)_ 

➔ 

(µ2+kJ>" 
(4.7) 

It is seen that at a fixed cutoff parameter f z the multiplicity 

decreases with increasing energy s .. oo • This means that with 

increasing the number of "soft" mesons, the momenta of which lie 

in a given interval defined by fixed · parameter c z , decreases. 

In addition, the condition may be imposed that the maximum 

longitudinal component of the meson momenta increases linearly 

with energy. In so doing, the average particles multiplicity tends 

with increasing · energy to a finite limit. A similar result is obtained 

for the vector mesons. 
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The Poisson Distribution of Secondary Particles 
in Straight-Line Paths Approximation · 

The problerri of multiple production of "soft" mesons · in pigh­
energy two-nucleon collision is considered in the framework of 
s~ndard quantum field theory models, _The straight-line paths appro­
ximation is used to obtain the Poisson distribution of the secondary 
particle numbe['. and to investigate the average particles as a func­
tion of tl:e choice of the integral cutoff parameters in various asympj 
totic regions, 
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