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k :L Ihtroduotion
1/

which is a generalization of the concept of .B*. -algebra was

In a prewous paper the concept of an AO* -algebra,“
developed 'Here we prove that the * -algebra R =

=C o s* @s%... of test functions (Borchers algebra) equipped with
‘a’ certain topology T becomes an AQ*‘ -algebra, The

" topology ‘fm’ is weaker than the direct sum topology r®
(tensor product topology) in R and the multiplication fig »f.g’ ’
in R is jointly continuous with respect to f,m , what doesv
“not hold with ‘respect vto‘ the topology 7 ®' . F‘rom the »Theory'em
proved .in this paper it could follow certain continuity properties
"of,' the representations of R . This problem is discussed in

12l

short in section 3, One result of this kind is given in
_section .2 a special system of norms defining the topology of the
Schwar'tz space s " is introduced and some proposltxons about
, d1fferent systems of norms for 8  are formulated without

" proofs, In sectlon‘ 3 the definition of the * -algebra- R is

' re‘called,y the two different topologies @ and T are

(-]

defined and compared and the Theorem is stated. The proof. of the

o




Theorem is givén in the last three sections., For that in section 4
some special representations of 'R analog to the free field
representations are introduced. The main part of the proof is

" concentrated in section 5, but the essential Lemma 1 is only

proved  in section 6. ’ '

2, Special Norms for the Schwartz' Space"l‘bpblog,y

For ouf purpose we need some relations between equivalent
systems“( of seminorms defining the topology in the 'Schwartz' space
sn  of all quickly decreasing functions f(£) . in n ~ variables

£=(£. € ,o.:r€ ) . For this we define

‘PJ‘___ (1+Ef)Jl ~’. ‘ ..A(l_'_f:).]n

. 75 | L
| S I B -

‘El o .En ) )
Ni—].-l-é-l'-aé.1 g : : . .
N<N,...N_,

where J , L are‘ n ~tubels of nonnegative integres. Further
we put yet | J| = max (J,.....d, ) and I17 = [ (©)FPdE,

the L , -norm, Then it holds the following proposition, which

we give without proof.



‘Proposition 2.1.

The following three systems of norms in s®

p ()= sup IPJDLf |’ o v J-,_L""

:J-Ij' f _’ R ; ‘ o )

q,, (D= I1P'D" ] VL

Nl =1 NVE | i,
v ‘ !

are "equivalent and. défining the well-known topology of the'-i

Schwartz' space s” . Specially it holds the estimates

(f)

: < K
pJ.L(f)_ Kq

J+1, L+1.

4y, (DS CIN

alal+lel

| o (3)
INYE <IN
' Where the constants C , K still depend on L,

J and where J+1 = (Jl+1,;..‘.Jn +1 )

A wé_ll—known fact is also the following one: e

Proposition 2.‘2

I n (f) , v = 0,1,2,.,. is an arbitrary system of
norms defining the topology of s *  and. ¢, an arbitrary
sequence .of positive numbers, then one can. find in.s "
an element g such that . .

"v(g)>#v ' vv . . 'A



In s'peéiaf one can find ‘an g - such that : FREROE

1IN g||># ’ va"
.",Next we deflne the’ ‘_* ;-algebra R of test funct.lons (Borchers
:algebra) /3 4/. For thls we -put R , the field of complex’
: numbers, and R =s*"  and deflne :

R = @R N (algebraic direct sum),.

-

The elements a ¢R’~ have from a#néoﬂ'n (formal sum), -
whe'f'e"“an‘ =a_(x, vees kx; )C R, . are the coﬁlponents of ‘a . For
every a only &’ finite number of components differes - from zero,

It is (x5 .., X, ) (f,...., €4, ) . The linear space R. kecomes

a . - * —algebra if we define the multlphcatlon by a . b .
=an-b (xl,....xn_Hx; .)-‘= nr(xl o oens xn)b (xn+1,..,n+m) where
2R, b CR_: and the * -operation by o
'(a*)(xl v X )= a (x Xy ) for every a, G-YR ' . By linearity

- the so deflned operatlon can be: umquely extended to the wholeR

" In every R it is defined the 11near operator N= N N»4n. (1)

. and consequently we’ obtaln a hnear operator in" R whibh‘ we

also denote by N F‘rom the defimuon i 1mmed1ate1y follows

Proposition 2.3 :
N is a - f'.‘ —endomorp"usm of R , 1.e. it ‘holds _
1, N is a hnear operator in R k
2 N'(a.b ) =Na.Nb
.3, N( a*)=(Na ) *,

For two homogeneous components f c Rm g € R,
it holds. [ f-¢gll, —HN f-N gll =[INVFI] IINY & = Hfll HgH



3, Topologies in R

In this section we; regard different topologles T in R
such that RI[r] - becomes a topologlcal algebra 5/.' Because
’ everyv R, is a linear topological space, there exists i:mmedi'ately
a natural topology in R, namely the direct sum topology, whlch
. we denote by 7 o (the topology of the ‘tensor product), This topo-
logy forf»R, is . taken in 4. It is defmed by the system of all

norms

PR —2y|f|| v:f—Eff;R',

® (yn)(un) n20 | S w0

where ()'/n ) is an arbitrary sequence of positive numbers and

0 = po < v 2oy _< T an arbitrary sequence of mtegers,

g 1y =1 f.ol . With respect to this topology R becomes

a topolog1ca1 locally convex * -algebr-a but the multxpllcatmn.

f,g - f g _is not Jomtly continuous  with® respect to thxs

topology. To demonstrate, we choose the norm : -
1Rl =2 {If i

‘(l)(n) n>0 n n

If the multiplication is jointly continuous in R, there ‘would

exist another norm || ”(y yew ) such that
: . . n n '

Wegll - o<len el
TR § 1 ¢ -] ( yn)( )

n

(Y )v)

@ -

holdC;. Now we take an arbitrary sequence g() £0  of elements of}

'R such that g® ¢ R, for. r = 1,2... dnd put



IR ) RS o o
a P g 0, =7, NN, o
By Prop. 2.2 we can choose a f G-le= s*  such that
e, =IINYE I 2vay, | g(V [ . If the inequality (2} is

r1ght, it would follow

1 L () .
”f” )(v)—”f 5 ”(1).(::) =11 g ”r+1 =

&

r+1 v+1 (r).‘ r+1 1 (0 !
=INTT N TN N g >

>UN £ HIN g 3rea,

for all r (see Prop. 2.3), but this is a.contradiction for large
If one regards the convergent problem only for enumerable

sequences, it is easy to prove that follow1ng statement holds'

Proposition: 3. 1

A sequense Fo , ot = 1,25, of elements of R

_converges to zero with respect to 7y if and only if
1, the components f(’) tend to zero 1n R

2 above a certa1n degree n,’ , which is 1ndependent

of r , all components £ ®  are equal to zero, i

i.e, ff:) =0 for n >n, and all r .
r @ , g , r = 1,2,... , @re two sequences,
tending to zero, then also f ®.g® @ converges to

zero,
The. last statement follows immediately from 1, and 2, , which are

ll-known facts




Now, as we shall see, the topology're 1s not determmed by

the properties expressed m Prop. 3 1 1€ one demands only the o

*‘above called properties 1, and 2, of convergence of usual

/3/

weaker topology than f@ ..Such a topology is the topology

sequences, e.a, so it is done in then one can work with)a

1‘ o B defined by the followmg system of norms

T

t

urn(y,v_nz AL MR ENCY

(yn. ) 1s an arbltrar'y sequence of pos1t1ve numoers and
v *=' 1 2,... < In dlfference to the topology 9 (1) the degrees

~ of the norms Ilfnll,, >of the components »f,,’ . are fixed in

Proposition 3.2 ‘ ;

R eduipped with the topology r m" becomes a complete
locouy convex ‘topological *° -algebra and the mu1t1p11— '
cation f,g -+ f-¢g is Jomtly contmuous in R+, 1.

E@_Of.'. The completeneSS' of "Rlr, I . can be proved. by
standard conslderatlons. That - the multiplication is jountly

contmuous we see from
P -3y ' .
n ol 1o LT gl

< X p) )
<5 v 5 G Nsgll,

O



(see'Prop. 2.3), Namely, let B, be a sequence of posmve
numbers sa’usfymg the mequaht.les y BkBg ik+€ =0 than

it follows
L gmy,v_ufuﬁg,v lellg,yw -

Now we formulate the main result of this paper:

Theorem
The"localiy convex topological * -algebra R [r. ]
is an . AO* -—algebra, i.e it is algebraically and 'topovlogi-
cally - * '—isomorphic to a * -algebra (@Dn) of opera-
tors equipped with the uniform topology - " '
The proof. of the Theorem is given in the next sect.lons. First
we repeat the definitions of the concepts used in the formulatxon
of the Theorem, which are introduced in / 1/. s -algebra of

operators @,D ), Op* ~algebrs, is glven by a urutary space

D. with the scallar product <> and an algebra |
of (unbounded) lmear operators from D into D , such that for
every . A ¢ '@  there exists an’. At ¢ @ - with <¢,Al/1 > =
L=< A+¢ S>> We always assurne ‘Cf to,oontain the unity
operator 3 . The uniforr;l topology. LA of 1 @ is defined |

by all' seminorms

o ANy = sup [<$.AY ],
pyc N
where T C.D is an arbitrary @ -bounded set, i.e. a set

for which supll| Béll: ¢ €M J<= for every B @ L@l

ie. @ equipped with the topology 7, , becomes a locally

convex * -algebra and is called 0* -algebra when it is complete._

s

10



A topologlcal * -algebra whxch 1s alg,ebralcally and topologlcally ~

* —1somorph.1c to an 0*-algebra we ca.ll AO*-algebra. By -

Ml

of a 0*-algebra ( AO* "~ alg,ebra) is a. suitable generahzatlon of -

J-reason of the consu:lerahons in one may expect that the concept
. the concept of a = C* -algebra ( . B* —a.lgebre). That suggests the

following

Conjecture: Let fj‘-,A(f) ~be a week continuous = * -re-
presentation of the *AO’*‘ —algebra R[r'.w'] with the domain
‘D c K and let - @ . be the 'élgebra of all. operators A(t‘) .
~ then the representetion f+A (f)  is also umform.ly continuous, -
Le, it is continuous as mappmg, from R [r_ -' onto a[r 1 .

- As is very. we].l—known, such a statement 1s rxght for every B*-

”‘.-alg,ebra, even for every Banach . * -alg,ebra. s

., 4. The "Free Field" Representations of R

.-_,,

- We denote by ‘X, the Hilbert space L, (R o = 12,...,

n

}(o = C the field of the complex numbers, and construct
H =32 % }(n : : (Hilbert direct _sum)

o | @
D ;nE X, _ (alg,ebraxc dxrect sum)

€R;, = we deﬁne the operators C ({) ct (f)

11



,.C'—(f)r¢‘n‘——- ffb(x) ¢n(x’ x1 - Xn_:l’);i'x ' nzvyl A Jih | ,
| | =:0 ; | for: n.—.—.O ’ (2) ;
C+(f)¢n =f(x1 )¢ (xAg 9---'!xn ). ; . . !

+1

For any fm (X seeixy) -’-=f1(x 1)f?(xa')... fm(xul ) and a m —tuble

e‘=(el,...,cm"), €, =l we put 5
l+€l 1.-.5l -
€ IR w2 —e T 2 T '
C(f)=0 C (e®)? ¢ (™) 2 S <)
i  f=1 LT vy ; o
By linear continuation one defines C € (f m)' “for every
1,1 7 m,d
fm(xl....,xm)= E".f _(xl ). f (xm ). (4)
" Statement 1 .
It holds
€ . : ‘ ’
0E (e lge, W N, e 01 ®)
where ¢ _ € L6 and - p, is a constant not dependir‘lg‘
on n . Consequently, C€ (f.) does not depengi on th‘e .
concrete representation (4) of fm and so it can ‘be P
4m

continued to the whole R_=s

Proof: The action of cé(r,) “to ¢, “is a combination of

12



. special case : fg (x; ,x53 )

. the following three fundamental ‘actions, which we discuss for the .

,l: e=(1,1) CC (f2)¢n =f2(x'lx2)<;b,m_l(xa,....'xm_';2 )

It followé immediately’

e (e, Il =1, e, Il o

. c_=(1,—l)- : C€ (i‘a )¢n, =ff2(xl*;x_)¢n(x_l; 5(2 ,....xn)d;( (=0 for n =0).
It holds o o ‘
.ICG (f 2)¢n | 2,-<- “.fn(.xn ' ")Ia‘dx”‘ﬁn-.(x: Xgv X, )l?dx

and consequently  {IC* (f,)¢, Il < IIf, [I1l4, II.
WL oe=(=1,1): "CE(6) @ =ff (x,x)dxx,, o x )

, U.fa("’ x)flxl s 5;'1{ | Qif 2(xx)] f Q-—IJXS ‘f p(:)(O)(,f2 ),

)

Q14 £7) e (13€]), where x =(£, 1o £,)

'»(1‘)=.(1..'..,‘1).  (0)=(0,..., 0) _ (see Prop, 2.1,‘(2)).‘ 4

By Prop. 2.1 (3 it follows finally
(el I

- ,”C" "

(f2)¢n “S a p(l),(O) (fﬂ)“¢n ” <—kaq'(2).(l)

. 5 , o "
Skea [INT LIS Hl=p TG 11, Hle, I
‘So we have proved that for every e = (cl.éa)

.13



€ . : 7
e (e Il < p,;lllelﬁ e

holds w1th a cerl:am constant p2 .

It is easy to see that in the genera.l case, with an arbltrary m_
one can estimate quite analog and so the statement is proved.
For an arbitrary sequence d= (d, ,/d2 vooe ) of positive

numbers we define a representation f » C, (f)° of R in D- E HcX

C,(f)¢ =f,¢ , f,CR

0 0

C, (1,08, =ld_,, ¢ G, )+d C 4, L p, <K, L 4,0

and then by continuation for each f = Zofa € R,

to see, analog to the free field representa’uon, that f » C, (f.)

It is easy

is a * —representa’uon of R K 1.e. it holds <¢,C, (f)z/r >=

=< CU*)d, ¥ > for all ¢,¢ €D  and fora ¢, ¢ X ,
) fm = Rm .=s4m‘ » we ‘obtain’ ‘ R . -
o ¢ e '
Cd(fm)(’bn: ; [6 ]nc (f )(’b . (7)

€= (e1 geens € ) arbltrary, o A

m

d

where the [ . ]Y,,‘ are certain coefficients, From the definition

of these coefficients we see immediately the following relations :

R L S @

€ n 1 m

14



where (a) =(a a, a e ) is a constant ‘sequence, -
d- 4, K |
d.X ]n = [ ]n [ ]n ’ : . ’ (8)

[E .

where d.K=(d,K,;d, K, ,..) and

d-;l’\‘ g Lo m d } A ) » )
' ‘ ~ 10

[, 1 <tewp(K_ K V0 1, (10)

Now we define in R m=s§m the following norm = -

2 [ 1.0 (e 1. ' (12)

Wl =sp Il 3T,

where n 2 m , the sum runs over all ¢ with‘|e|=el+;.'.+em=r '

and the supremum. is ktétken over-all r=—-m mm +l,..., m=Lm, all

¢ <H. |l¢n <l and all sequences A= ('\1 P ) . of posi-
tive numbers with |A, |<-1

. It is immedietely to see that

llf ||’ is independent of n . -
m

Statement 2 . .

It holds'
) e s Nfall?<aglHf gl g, (12)
where |1l = IIL. ly, and IIf ll,= IN® £ 0l (see

Prop. 2.1). ‘a_, is a constant only depending on m .

Proof:

' A . L
Because of (8) and (10)-it holds [, l. <1  and consequently

15



Hfall” ‘r';: ”E || C€ (o) ¢nv “ . Then from Stat. 1 it fo].lows ‘
AL Hf wlls sy with a certain constant am . On the
other hand one of the Cf (fn) is the operator Cce (f, )¢n =
RS P C PRPIUE D K- I C SNPRRRRE P i where c=(l)=(lll..,l) ’
and it holds IIC€ (F ), =M 0l 1lg, I . Since e= (1) s
the unique ¢ with |€| =m ‘this 1mphes 1 fall .>|l fm|| . From

the last remark in the foregoing proof we still obtain the following

3

Statement 3

Every representahon f - C He) is an isomorphism, i.e.
c(f)=o“ holdsonlyforf . .
Fma.lly, from the foregoing con51derahons, espec1a11y from Stat. 2,

it follows the last statement of this sechon-

' Statement 4

If we put |I'f mll; =1| N"‘Afﬁ 7 ;*,,‘foAr‘ - f cR. -~ , then it -
‘holds ' ol g -
Wl s He iy sie i, o @3
.and consequehtiy the topology rw‘ in R=+ R is also
L ’ n>0 :

. ‘ideﬁned by all the norms

g f , = 2 f ) , . ' ' : '
R XA T FA o
£=3f cR, y  positive numbers, v = 0,1,2, ....
n>0 B n : .

16



5. The Proof of the Theorem

The proof will be given in some steps. Let A= (A, Ay )

be an arbitrary sequence of positive numbers with [An <1l  and

Aep o= (Led;,2:0,,.., ), p=123...). For any A we take a
Hilbert space
A A
]{ w2 2 + ]{n
nx0 '

and the dense dbmain
P - =¥
n>0

as in (4.1) and construct

H = E +‘]{A
A (1)

D-3D.
A
, N .
In D we take the representation [ - C/\y(” of R

(see 4.6) and construct the direct sum of all these r'epresentaiions,

T (f)= % F.‘Mu (f) )
with the domain D dense in H . ,
Let J  be the * -algebra of all the operators T(f) . T

with the domain D is an Op * —algebra. It holds the following

Lemma, which we will prove in the next section:

Lemma 1

For an arbitrary sequence (yn ) nmo.1.2...9f positive numbers
1,2 ...

there exists an J -bounded set M in D (see Sect.3),

17



such that for every f = Eof'“‘ €R it holds -
, M. . . T

.- T T

e N <T@
rall, 1 ST @,

mZQ . » . o ‘ ‘ ;
= sup | <y LT ¢> |. ~ : |
pch . - - S
Further, 'for every v =0,1,2,... © we define fhe representatién
f s A ()=T(N"f) @
v ) : o .

of ‘R . N is the endomorphism of Prop. 2,3. This is a repre-
sentation of R -in a certain space Her (one exémplar of

(1))5 We put '

f—»A(f)-EA(f) S
V>0 : ) . , .

the direct sum of - al.l these representatlons A, (f ) , which is

4defined in

X yCA)

D-3D%-3 X ’ : L " (e)
v o V.)\ n ' .
dense in
W) A ] _
H=Zsls ol . | N ¢
’ By @=(@, D) we denote the | Op * -algebra of all the
operators A(f) ., Then from Lemma 1 we obtain

18



! Lemma 2

For every norm || f|]’ =2y |If, ||,,’ ~ (see Stat. 4,3)
o O dv n20 ) e . .
we find a @ -bounded set M in D, such that

,ufn;yn,'u <A Iy P LI s

We need only to take the corresponding set M ' of Lemma 1
in the subspace D_(") c KHe : , ,v |
f‘grther, from VI'Jemm.a 2 we see that f-A(f) is an algebralc ‘

S isomorpmém; 1.e if A(f)=0 , then =0 (a fact Wthh in
“consequence ‘of Stat, 3 also follows direct from the constructlon of

A£) MR “
In other words, taking into acoount Stat, 4, by Lemma 2 itvisb

i proved

Lemma 3 ' -

The inverse * ~homomorphism A(f)+f is a continuous <"

mapping from &[rD. ] vonto R[r 1 - ., k .
This holds, because the system of all the norms || A (f) ]|m

- defines the topology ™o (see the remarks after Theorem)

Finally we prove

Lemma 4

The algebraic . * -isomorphism f+A(D) is a continuous

>

mapping of R [r w,] onto @ [rD] .

Proof: )
Let M be an afbitrary Cf.—bounded set of D .+ Then there

. exists a bo such that W ¢ f DY - | If that is not so, we
Y . S VY=s0 .

19



2

' W,
has a component P T

<

EXY

c'ould find a sequence ¢, & m' , r = 1,2/ ,v : ,' such that qb

)

consequence ‘of Prop. 2.2 one could find a fC R

that ~
AW g, I =1l N

V.

for ..r »w ., ie, M

arbitrary ‘element ¢ € W

“(see. (6)), v _<‘v0' . Bec

cohstructton 'of the, Al

=z (2 vin)” L%

for all $€ M, where k[

A) 2
"<

e e ' -

are’ consténts depending on n

_Further we put yet ‘0 = suﬁ Ngll < = .

1<, A ‘(\f;‘)c;b: >]2A'_< o

R 7 R
A GO 11 2 3 |
S Ve

oA
Y, ]
<X 3 (X — )=
v=0 N - nme . nZ . n, €

hace,) el ,

g . A ) a0 N .
N S I L I PTG

n €

. . N ’ A' . N )
o2 (n+m)” I c’ (Nv ‘fm')‘ibk n‘(V) ”2 o

<ELlr_IE -

““"2 - m 'y 45
o

- 20

m D w1th' ur N ':. Then, in
s* ' such
r TN R o
SRR
would not be - - @-bounded Now, an
has the decomposmon qb % qb'\ » @)
ause of - - suanA(f )¢|[<oo from the
) it follows .
<km T ®

It ¢,y SN , then it olds L n . -



" where' K, ,'8 i are certain constants, In the last estimation we.

" have applied (4.10), Stat, 1 and (8).
Consequently, it holds for ¥, ¢ ¢ N

¥ A g 51 3 1w AU, ) 8> < Zes lln Il o,
" and from that it follows
HA M lly 5 300 1,1,

i.e. f - A(f) is continuous as mapping from R [r ] onto
& [TD ] . '

By Lemmas 3 and 4 it .is given the proof of the Theorem,

All that remains for us to pré)ve is Lemma 1, what will be done

in the next section,

6, The Proof of Lemma 1 o

A \ .
By ?ﬂl (p, ) we denote the ball {k¢‘ c H')": e, s p, }

and construct

n"y A
m = E m! (P ) ,
""" n> 0 n
S IATE AT : |
- g, ,f.nmsn“ (o) N (1)
(algebraic direct sums), where 1 < s, <s ) {sg<... is éequence

of inte gers satisfyir}g

21



and ‘.
_o ™ _ T4, o _ 2n-1
pn =2 Sn ’ an - 4_— !
(A"} =A° ,,)\‘1,... } is a system of sequendes A , -
Property 1 v ‘ .
The sets N @A ¥,T(M ! are uniformly J -bounded, more
precisely it holds ' ’ ‘
sup ., NTE ) {1 < k I |
qS Q‘m,)\ } m m 5
S“F,,H TG Do 1< k I,
$eh ‘
where k. depénds only on m , but is independent of
(amy ' '

For if ¢ = X2¢_ C W‘{)‘ b

it holds
T (fm)¢ I < ;Y, I C)‘n#(fm)¢sn i

<z s MR ctuys Il FOI

€ € Tn

Leallf, |l

5 E(snfm) P, < G <o

n

- A v
This follows from Stat. 1 and the estimation [ (’L ]s < (sn+m)

n .
(see 4.8-10)., a,G are constants independent of {A"}

.22



T

Tha sgries on the right-hand side of (3) converges, because

m-’

(s +m) <mlms's

s

. "2 ‘."and’m-a ’-'-°° form »oes .Sowe
have proved that the m{ }; are umt’orm.ly g ‘ -bounded, Quite - '
analog one proves the umt’orm T -boundedness of the NIA"}
Bve;cause»ot' Property 1 also the set
, ,\“‘ ‘,>,\m | o
EITENS LA I AL (a)
{A “‘} ‘ ’ '
is . F —bounded

Next we prove

P‘r":_ope'rt'y 2.

Tbe'set‘quence .8, .. can be chosen in such a way. that
YRCL A <f>n
mZO co o : ) .

L3

_ holds, where ?ll is the set (4),
. F‘or 1f

p=3¢ .C m"‘ } : ;
. A"y o @
=33 ¢ LCT ‘ ) ’

(finite sums) we regard
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+
1

1< A=l S < Ty AUDS, >l 2
- m,n, r=—n St ) k h

> 12 < s .,ﬁs ‘“‘,A(fm’) g > - . (8)
_ B ' , (6)

E n.2k<m—l r&—n l< ¢°n'|" ’A(fm) ¢!k >l ) :(V) :
S X <3y, LAGDe, >l N)

m n>m+l r——n n m s

"

i
S,V,N "-are‘the‘ three different expressions on the right-hand
side, taken with  the positive sign., '
For the expression N ~we obtain the followmg ‘estimation :

_First it holds (because of n2m+l )

w<z v, .AUJ¢,H4<2 by A8, s

< <,_E_m ””, +, ’,_-m ﬁ_, °.,C “e, >l

>~ U

<3 6, +'m)“|<¢-+-.,”2_ [c I € (f,,.)qfrs >|
r=—m o v : L Bt e = n ’

< 2m (s +m)” @0 ILE, 11

+ wte -, In the last estlmahon we have apphed the

“|‘=“l‘ m

\_ineci;ual.ity' |¢s_+r||', le, 1l <p, and the relahon

n
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. = .= == . . L
where A=y A,n_m. A s, —mlr e )‘-’n yop e ) is a certain

sequence with 0 <)t='_$1 (see 4.8-10).

Iﬁ [, )¢, I'se NE 17 . - hods in
€] =r ) n g n - . . . . . R

1

consequence of the deﬁmhon (4 11) of . Hf || v'.'
‘ Because of m—2a, < 0 forn >m+4 1 we obtain

. m 2 - ,-2 ;2 % ‘ R B
2m(s +m) p_ < 2m 2msm @ g TIng oot T
. n : . - . - N

and consequently it is proved -

‘ a +1;-2 N R : co ) s
N < S om0 e W< 2N o). (@ ..
>0 ndmtl St T om0 om o ST
tBy ana.log considerations one proves ‘
Ve 2Bl " | | @

:

where for each m B, is constant dependmg on Sg s Sy v ,
, ‘but mdependent of s, s D e

m~1 m+1'

The estimations for. N and V were’ given for an arbltrary
sequence’ s, ’,s‘1 v s, .. satisfying (2) Now, we determine. ‘the
seque‘nceA {sn}~n:=0 1, by induction in the following way..‘ Suppose

that the s, s 'sll y e S 1‘ are already chosen, then we take s,
. S M- : ) . .

L
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so large that

(o, —m)"p) 2 20y, +B,+1). 4 )

That is possible because of

‘m ' s . m -2m -2a ~8m 1/
(sm—l_n) P:Z(Q‘m) 2 s m=27 s,
and because Bm Cis independent of s . With this determi-

nation of the sequence {s .} the @ -bounded set N (4) is
completely determined also,

Let f=Xf be a certain element of R, Then it is { =0 for
m>0 : o .

m>m . In dependenee on this f- we chose ¢,yc N (5) in the

following way: For m< m; we determine’ -m<r <m., AT ¢= .
: . . ) ) m
. l,qu +;m in sucn a‘way that
: ‘ )tmp. e '
< . el Co(r) >0
¢sm+r IC‘_=rm € _Bm m ¢sm (o (10)

’

2 el (s, -m) IIT Il

This is possible in consequence of the definition (4.11) of |} f ml.l ’

and the fact that

i
m

L WS OOl S DR NP

m € m

holds with a certain A = (A, ), 0<A <1 (see 4.8-10), -



o S V"e s> 1

z.<'¢'°w L3

+rm IEI =ron

B S SR

Because of. (‘7) o (8) and (12) from the last meq_uality_ it ;fQ-llyowvsf'u =

e .

R A<f>¢> > Ev i, H-"J;fg e

U_'where t,b qSCW at'e the elements (11) Thus, 1tmvis>sho‘wrv1,.f e -

" AW “m 3, 7 ll ||':"';~;.},:~ & f;’?‘ it

.m ..

- ‘f;and the Lemma 1 1s completely proved el

,,,,,,
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