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1. Introduction 

In a previous paper /l/ the concept of an AO * -algebra, 

which is a generalization. of the concept of . 8 * · -algebra was 

developed. H~re ~ prove that the * -algebra R = 

= C @ s 4 @ s 8$... of test functions (Borchers algebra) equipped with 

a· certain topology roo becomes an AQ,*. -algebra. '!'he 

topology is weaker ·than the direct 

(tensor product topology) in R and the 

in R is jointly continuous with respect 

sum topology r 0 .. 

multiplication r,g .:. r ~ g' 
to r 

00 
, what does 

not hold with respect to the topology r 
0 

· • From the 'I'heorem 

proved .in this paper it could follow certain continuity P.roperties 

· of. the representations of R • '!'his problem is discussed in 

short in section 3. One result of this kind is given in /
2

/. In 

section .2 ·a special system of norms defining the topology of the 

Schwartz' space s is introduced and some propositions about 

different systems of norms for s are formulated without 

proofs. In section 3 the definition of the * -algebra R is 

recalled, the two different' topologies and r rtf!} are 
00 

defined and compared and the 'I'heorem is stated. 'I'he proof of the 
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Theorem is given in the last three sections. For that in section 4 

some special representations of · R analog to th~ free fil!!ld 

representations are introduced. The ma.in part of the proof is 

concentrated in section 5, but the essential Lemma 1 is only 

proved in section 6. 

2. Special Norms for the Schwartz' Space Topdogy 

For our purpose we need some relations between equivalent 

systems of. seminorms defining the topology in the Schwartz' space 

s n of all quickly decreasing functions r (g) in n variables 

g "" ( g , g , . . . , g ) • For this we define 
1 2 n 

J 2 J1 2 Jn 
P ""O+g) •.•. (1~ ) 

.. 1 . n 

L.. L 1 Ln n ""a g ..... a g. 
1 n 

(1) 
2 2 

N ,1+g -aJ: 
t· I . ':.1 

N ,N 1 ••• N n, 

where J , L are n -tubels of nonnegative integres. Further 
2 2 . 

we put yet I J I "" max ( J 1, • • . • , J n ) and II f II "" f If (g ) I d g , 
the L 

2 
-norm. Then it holds the following proposition, which 

we give without proof. 
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Pr·oposition 2.1 

n 
The following three systems of norms in s 

p (f) = sup I PJ D L r I 
J,.L g 

VJ,L 

qJ ,L (f) "" II pJ DL £11 VJ,L 

11£11 ""IINv£11 v ,0,1,2, ... 
v 

are · equivalent a~d defining the well-known toi 

Schwartz' space · s n • Specially it holds the 

p (f) .:S Kq (f) 
J,L J+l>L+l 

qJ L (f)< c II N21JI+ILI . - r II 

IINv£11 $.II Nv+tr II. 

where the constants C K still depen 

J and where J +1 ( J + 1' .•• ' J +1 ). 1 n 

A well-known fact is also the following one: 

Proposition 2.2 

If n (f) 
v 

v = 0,1,2, ••• is an arbitrary 

norms defining the topology of . s n and fL v 

sequence of positive numbers, then one can f 

an element g such that 

n (g) > fL v v 
v . v 

5 



For that in section 4 c · · 

,g to the free fil!!ld 

:1 of . the proof is 

Lemma: 1 is orily 

ms between equivalent 

in the Sch"I!Vartz' space 

in n variables 

ne 

~. 

(1) .. 

gative integres. Further 
• 2 . 2 . nr 11 = J 1 r <e >1 d e .• 
g proposition, which 

1 
I . 
1 

I 

l 

·Pr·oposition 2.1 

The following three systems of norms in s n 

J L 
p (f) = sup I P D f I 

J,L e . V J, L 

q (£)=II PJDL £11 
J,L 

V J, L 

11,;, o;112, ... 

are · equivalent at:ld defining the well-known topology of the . 

Schwartz' space s n • Specially it holds the .estimates 

p (£)~ Kq (£) 
J,L J+l,·L+t 

(3) 

., 

=-·" ··' 

where the constants C K still depend on L , 

J and where J +1 ( J t + 1 ' '" ' J n +1 ). 

A well-known fact is also the following one: 

Proposition 2.2 

If n (f) 
II 

11 .. 0, 1, 2,... is an arbitrary system of 

norms defining the topology of. s n and p.
11 

an arbitrary 

sequence of positive numbers, then one can find in s n ~ 

an element g 

nil (g)> P.ll 

such that 

v . 
II 



,·. 

... 

l ~ : 

·, 

In s pedal· one can find an g such that 
\ i~ <. 

l!Nvgll>llv• Vv .• 

.. Next we define the· * . ;..algebra R of test functions·· (Borchers 

. algebra) /3 •4 /. For this we put R
0 

= C , the field of comple·~ 
·numbers, and R n 

4n = s and define 

·n G) R n (alge~raic direct sum) •. 
n 

: 

The · elements · have from a= l: a 
n ~0 n 

(fo~mal sum), at;;; R 

where an =an(x 1 , ••• ,xn·)t;;; R~ -are the components of a • For 

every a ·only a·· finite number of components differes from zero. 

It is . (x 1 ·, ••• , xn ) =(g 1 , ••• , g 40 ) • The linear space .R l:ecomes 

;..algeb~a if v:re define the multiplication by an 0 b 
m * a 

=an • bm(x1 , •• :' xn+m ) = an (x·1 ••••• 

a n t;;; R n , b m c;.. R m. . and the 

x n) b m (xn+1,.~ •• xn+~ ), where 

* -operation by · 

= 

(a* )(x. 1 , ••• , x )=a (x . ,.,, x ) for every a c;.. R • By linearity 
n n nn. 1 · n n . 

the so defined operation cary be. uniquely· extended to the wholE? R • 

In every ·Rn it is. defi_ned ~e linear operator N = N 1 ••• N 4 ~ (1) 

and consequently we· obtain a linear operator in' R which· we 

also demote by N. • . From the definition · immediately follows 

Proposition 2.3 

N is a 

1. 

:2. 

.3. 

For two 

* -endomorphism . of R , i.e. it ·holds 

N is a linear operator in R 

N ( a. b ) = Na • Nb 

N( ~*)=(Na)*. 

homogeneous components f t;;; Rm , g t;;; R n 

it holds. llf· gil =IINv f.Nvg]] =IINvfl!IINv g II.; 11£11' II gil··. 
v v v 

6 
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3. Topologies in R 

In this section we regard different' topologies r 

such that R [r] becomes a topological algebra /! 
every R n is a lin~r topological space, there exis 

a· natural topology in R , namely the ~irect sum tc 

We denote by T@ · (the topology of the tensor produc 

logy for R is. taken in /4/. It is defined by the sys 

norms 

T@ : II f II <y n )(J.I n ) = n~ Y n II f ~II J.ln 
f = l: f c;..R 

n>O n 

where ( Yn ) js an arbitrary sequence of positive r 

0 = vo ~ v1 ~ 

II r o II o = . I r ol 
J,/2 < ...• an arbitrary sequence 

• With respect to this topology R 

a topological locally convex. * ;..algebra, but the mu 

f. g ... £'. ·g . is not jointly continuous with respec 

topology. To demonstrate, we choose the norm 

II £11 = I II r II • 
( 1) (n) n ;::_ 0 n n 

If the multiplication is jointly continuous in R J t: 

exist another norm II I I< y >< v > 
n n 

such that 

II f·gll · 511£11 II g II · 
(l)(n) ( Y n )(vn) <Yn )(Vn) 

holds, Now we take an arbitrary sequence g<•> f, 0 

R M R such that g t;;; ~ for. r = 1,2, ••• ar 

7 



1 that·. 

;t functions· (Borchers 

:he field of complex 

c direct _sum)~. 

(forl'OO.l sum), , 

mponents of a • For 

1ts differes from zero. 

• space .R becomes 

ottion by a 
, n 

• b 
,m 

X
0

.f. 1, ••• ,xn+m ), , where 

ation by 

= 

<;.R 
n n 

• By linearity 

ldended to the . who!~ R • 

ttor N = N 
1 
... N 

4
,; (1) · 

tor in' R which we 

immediately follows 

i~e. it · holds 

;; Rm , g ~ R n 

I NV g II~ .11 f II' II g II· .· 
v v 

:'! ,, 

·' 
'. ') 

'l l 

3. Topoiogies in R 

In this section we regard different' topologies r in R 

such that R [r ] becomes a topological algebra /sf .. Because 

every R n is a linear topological space, there exists immediately 

a natural topology in R , namely the ~irect sum topology, which 

we denote by r ® (the topology of the tensor product). This topo­

logy for~.R is. taken in /4
/. It is defined by the system of all 

norms 

T~: II f II = ~ y II f II "" <y )(V ) · n n V . n n n::::_o n 
f = ~ f c;.R 

n>O n 

where 'is an arbitrary sequence of positive numbers and 

0 =v
0 
~ v

1 
< 

II r o II o = . I fol 

v
2 

_< • • • • an arbitrary sequence of integers, 

• With respect to this topology R becomes 

a topological locally convex. * -algebra, but the multiplication 

f' g ... r. 'g is not. jointly continuous witH' respect to this 

topology. To demonstrate, we choose the norm 

II £11 = ~ II r II . 
(I) (n) n ~ 0 n n 

If the multiplication is jointly continuous in R there ·would 

exist another norm II II< y . > < v ) 
n n 

such that 

(2) 

g (r) 1 0 
holds. Now we take an arbitrary sequence F of elements of 

R such that g (r) ~ R • for . r = 1,2,... and put 

7 



a 
r = II g (~) II <Yn )(V~ ) = Y r II g {r) II V r 'lr.r, 

s 
4 

such that By Prop. 2.2 -we can choose a f ~R1 
II f llv =II Nv·f II -~ v av II 6<v >llv- 1 

right, it would follow 

• If the inequality {2) is 
' 

all£11 >.llf•(r)ll -11£• (r)ll --
r <y : ),(v ) - g (l),(n) - · g r + 1 -

n n .. 
= II N r+1 r. Nr +1g (r) II =II N r+l ~I II N r+1 g (r) II ~ 

~liN f II II N r g (r)ll .? r • a r 

for all r {see Prop. 2.3), but this is a contradiction for large · 

r 

If one regards the convergent -problem only for enumerable 

sequences, it is . easy to prove .that following statement holds: 

Proposition 3.1 

A sequense f <•> r = 1;2; ••• , of elements of R 

converges to zero with respect to r x if and only if 

1. the components f (r) 
n tend to zero in R n , 

2. above a certain ·degree n 0 , which is independent 

of r , all components f ~> are equal to zero, 

i•e• f <•> = 0 for n > n
0 

and all r 
n -

If r (r) g (r) r = 1, 2, • • • , are two sequences 

tending to zero, then also f <•>. g <rY = h <•> converges to. 

zero. 

'!'he. last statement follows immediately from 1. and 2. , which are 

-well-kriown facts. 

8 
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Now, as we shall see, the topology.· T, Q is. not ·det 

the properties expressed in Prop. 3~1. If one ,demar . ; . . 
· above· called properties 1. and 2. of convergence c 

sequences, e.a. so it is ~one in /
3 1,: then one can 

weaker; top.C?logy than . r0 Such·.a topology is U 

r defined ~ the following system of norms 
00 

r oo : II f II <y n ),v = n~ 0 Y n II f n II v 

(yn ) 'is an arbitrary sequence of positive numi::ier~ 

v = ·_1,_2, •••• In difference to 

of the norms llfnllv of the 

the topology i. r ·@ . I 
comp~nents f n . 

. ,' (3). . . 

Proposition 3.2 ' ' 

R equipPed with the topology r be com• .. 
locally convex ,topological . *'• -algebra and 

cation f , g ->. f • g is joir1tly continuous 
' 

Proof; The completeness· of · R[ r oo 1 can be pro 

standard considerations. -'!'hat the · multiplication is 

continuous -we· see from 

II f ~ gll<yn >,v :~o yn llk+1=/ k gellv 
) __ 

5', n!o Y n k~)l fk llv II gf II~-

. .. 
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such .that 

If the inequality (2) is 

r + l 

:ontradiction for large · 

n only for enumerable 

1g statement holds: 

of elements of R 

if and only if 

ta .. zero in . R n, 

, which is independent 

are · equal to zero, 

and· all r 

• , are two sequences 

I h (r) conve.rges to 

1. and 2. , which are 

I : 
' ., 

,".·" 

~ ... 

, 
·; 4 ) 

.••. t·t ... 
i •• 

Now, as we shall see, the topology · ~ Q is. not determined .by .· 

the properties ~xpressed in Prop. 3~1. If o~e ,demands only the 

· above called properties 1. ·a;,d 2. of 6onv~rgenc~ of usual 

sequences, e.a. so it. is ~one in /
3 1,. then one can work with'l ~ 

weaker top.C?logy than . r@ : Such·.a topology is the topology 

r 00 defined o/. the following system of norms 

(3) 

(yn ) 'is an arbitrary sequence of positive numbers and 

In difference to the topology} r ·e . (1) the degrees 
' _., 

II r n II v of the comp~nents r n are nxed in of the norms 

. . . '. ~3). 

.' .·, 

Proposition 3.2 · 

R equipped with the topology r becomes a complete 
.. ~ <' 

locally convex ,topological · *·. -algebra and the multipll~ 

cation f, g -+. f • g is jointly continuous in R [roo. ] • ·: . . 
Proof; The completeness of : R [r"" ] can be proved by 

standard considerations. That the multiplication is jow'ltlY: 

continuous we see from 

,' ;. 
'· 

9 
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;i 

{see Prop. 2.3). Namely, let f3 v be a sequenc:e of positive . .. 
numbers satisfying the inequalities Y n ~ {3 k f3e ; k + f. = n than 

it follows 

. II£. gii<Y. >.v~ II fll<{Jn>' v llg II<{Jn>.v 
n 

Now we formulate the main result of this paper: 
.f 

Theorem 

The locally convex topological * -algebra R [roo ] 

is an AO * -a,lgebra, i.e. it is algebraically and topologi-

cally * -isomorphic to a * -algebra ( <1. D ) of opera-

tor;5 equipped with. the uniform topology r. 0 

The proof of the Theorem is given in the next. sections. ~irst 

we repeat the definitions of the concepts used in the formulation 

of the Theorem, which are introduced i~ / 1/. A ' * ~lg~bra ~r'. . ,' \ 

operators {G , D .), Op * .:..algebra, Is given by a unitd~ ~pace 
" " 1' 

D, .with the scallar product. < , > and an algebr!:l \ :(H' 
' . '~ ' 

of {unbounded) linear operators .from D into D , such that for 

every A c.:; G there exists an · A+ c.:; G · with < cp, A t/J > = 

. = < A+ cp ,' tf.! > • We always assume G to. contain the unity 

operator . -:f- The uniform topology r 
0 

of G is defined 

by all. seminorms 

r : 
D 11 A 11m 

where :lTI c.D 

= sup I< cp , A t/.1 >I , 
cp,t/J c.:; m 

is an arbikary 

for which sup Ill B cp II ; cp c.:; m I <oo 

G -bounded set, i.e. a set 

for every B c.:; G • G [r 0 l. 
i.e. G equipped with the topology r 0 , becomes a locally 

convex * -algebra and is called 0 * -algebra when it is complete. 

10 
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A topological * -algebra, which is aigebraically a~ 

* -isomorphic to an 0* -algebra we, ccll'. AO*.-c 

rea~ on of the considerati~ns i~ /1
/ ·~ne ·may. expect· t 

of a 0 * -algebra ( ~0~ . ..: algebra) is a. suitabl~ ger 

the concept of a c * -algebra ( B * -algeb~).: The 

following 

Conjecture: Let ( ... A( f) be a. week continue 

presentation of th~ · AO * :-aJgebra R [ r .~ ] with . the 

· D c J( and let (1 · be the algebra of all .. ?perc: 

then the representation £ ... A (f) 

i.e. it is continuous as mapping from 

is also uniform!~ 

R [r · . ]. ante 
00 

As is very·. well-known, suc;;h a .statem~nt is right for 

-algebra, even for eVery. Banach . . * -algebra. : 

:;t.4. The "Free Field" Representations of R · 
·:~\·-..... 

We dEmote by 'J( n: the Hilbert space L 2 (R
4 n: 

J( 0 = c ;: the field of the complex numbers, and . (: 

' 
J( = :£ + J{n 

n 
(Hilbert. dir4 

D =:'£ J(n {algebraic dire 
n 

For every r c.:; R 1 
we. define the operators. c-

on D. by 

.11 



;eqi..tence of positive 

f3e'; k+ e =n than 

tper: 

algebra R [roo 

braic~lly and topologi­

•ra ( . (f. D ) of opera­

'Y. T, D 

1ext sections. First 

;ed in the formulation 
r 
• A ' * .:..algebra of 

~n by a unitary'! 'space 
.{';~:· .. ~\· 

1d an algebri'l .:· '(j' 

to · D , such that for 

ff with <¢,AI/I > = 
t6 . contain the unity 

'' I 

. ·of <t is defined 

nded set, i.e. a set 

, becomes a locally 

~ebra when it is complete. 

!., .. ·, .. ,. 

·:.:• 

A topological * -algebra, which is algebraically and topologically 

* -isomorphic to an 0* -algebra ~. c~ll.': . AO*,-algeb~a~ By 

. ·rea~ on of the considerati~ns i~ /if ·~ne . ~y expect· that the concept 

of a . 0 * -algebra ( AO* ·. -· algebra) is a· suitable generalization of 

the concept of a C * -algebra ( 

.following 

· B * -algeb~). That suggest~ the 

.. 
Conjecture: Let ( ... A(f) be a week continuous * -re-

presentation of th~ · · AO * ~lgebra . R [ r ,.,.; ] with the domain 

· D c .· J( and let <t · be the algebra of all operato,rs A ( f ) . 

then the representation f ... A (f) is also uniformly continuous, 

i.e. it is continuous as mapping. from R [ r ~. l . onto · <t [ r 
0 

] 

As is very._well-:-known, su~h a .statement is right for every B *-

.. -algebra, even for eVery. Banach . * -algebra. : 

1 
4. The "Free Field" Representation·~ of R 

We dEmote by J( 
. n the Hilbert space L 2 (R

4
n ), n.·:"' 1,2, ••• , 

J( 0 = c ' ' . the field of the complex numbers~ and construct ,. 
J( I + J(n 

n 
(Hilbert direct .sum) 

(1) 

D =I J(n 
n 

For every f (;; RI 

(algebraic direc::t. sum) 

we ·define the operators. C.:. ( f ) , C + ( £) 

on D by 

.11 



C ( f} ¢ n = f f{ X) ¢ n (X , ' X 1 , ••• , X n~ 1 ) d X , , n ~ l 

=0 for n = 0 

C+(f)¢n = f (x1 )¢ (x2 , ••• ,xn+1 ). 

1 2 m 
For any r m ( Xt .•••• ; X m ) = r ( X 1 ) r (X :1 ) •• • r (X m ) 

£=(£ 1 ····•£ ), f =+l weput ; m I .-

1 +£I 

cf (f >= n c+ ( r (I) >2 
m · 1=1 

1 -fl 

c-u m >-:1-

By linear continuation one defines C f (fm) 

1,1 m,l 
f m (X 

1 
, oo. , X m ) = 7 f ( X 1 ) •.. f. ( X m ) , 

Statement 1 · 

It holds 

£ 

IIC <£)¢n II~Pmllfmll 5 ll¢n.ll 

\,, 

(2) 

and a m -tuble 

(3) 

for every 

(4) 

(5) 

where ¢ r;;; J{ 
n n 

i 
and · p m is a constant not depending 

on n • Consequently, C f ( f m) does . not depend on the 

concrete representation (4) of r m 

· 4m 
continued to the whole R m = s 

f 
Proof: 'I'he action of C (£ m) 

12 

to ¢n 

and so it can be 

:~ '. 
·is a combination of 

l 

. i 

I 
} 

l 
i 

j 

.\ 

... 

the following three .·fundamental 'actions, which we dis 

special case : r :1 (x 1 • x2 ) . : 

I. t=O,l): ct (f 3 )¢n =f 2 (x 1 x 2)¢n(x 3 , ... ,xn+:~ ). 

It follows immediately 

IIC£ (f:l)¢n.11 = llf:JIIIIif>n II· 

n. t=0,-1): ct (f
3 

)¢,; =Jf2(x 1 ,x)¢n(~1• x 2 •••• ,x )lb 
n 

It holds 
£ :1 2 ( I c ( r ) ¢ I < f I r (X • x) I dx Jl ¢ X X ••••• X . · 2 n - . :1 . 1 n. 1 .:1 n 

and conseq~~nUy. II C £ (f 3 ) ¢ n II ~ 11£3 1111¢ n 

ffi. £ = ( :._1,1) : 'C £ (f ) if> = f f (x , X ) dx· if> (x 
1 

t ••• t X 
2 . n 2 n 

• 1' . 

1 J r 3 <x, x) dx 1 s s~p I Q __ r 3 (x ,x >I .J Q- dx 5 a P <1><0 / 

. . 2 . :1 

Q =0 + ~ 1 ) .... 0 + ~ 4 ) • where X. ~ ( ~ 1 t "' • e 4 

(l)= o .. ~ .. l), (0)=(0, ... , 0) (see Prop. 2.1, 

By Prop. 2.i (3) it follows finally 

f . 

IIC (f 3 )¢n II~ a p< 1>,<o> (£ 3 ) ll¢n II <S_kaq '(2),(1: 

< k c a II N II r 2 II II ¢ n II'= p II £2 II 5 I' 

So we have proved that for every £ =. ( £ 1 , £ 2 ) 

-13 



n,2:1. 

(2) 

and a m -tuble 

(3) 

m>. . for 'every 

(4) 

' ...• 

I • 

(5) 

constant not depending 

ices·. not depend on the 

and. so it can be' 

is a combination of 

I 
I. 

I 

I' 
I 
I 

• I 

the following three fundamental ·actions, which we discuss for the 

···special case : f 2 (x 1 , x 2 ) · : 

' 
·1. E'=(l,l): CE' (f2),Pn =f2(x1x2),Pn(xa'"''xn+2 ). 

It follows immediately · 

liCE' <r2>.Pn II= II£ 2llll~n II· 

B.£={1,-1): CE'(f2 ),Pri =Jf2(x 1 ·,x),Pn(~ 1,x2 , ... ,xn)dx (dJforn=O). 

It holds 

ICE' (f )if> 1
2< Jlf (x ,x)l 2 dxfi.P (x x , ... ,x )l

2
dx 

. 2 n - . 2 . 1 n, 1 2 n · 

and consequently. IICE'(f 2 )if>n II~ llf2IIII.Pn II· 
I f + , 

III.t=(-1,1): C (f )if> =Jf(x,x)dx·,P(x , ... ,x) 
2 n 2 · 1 n 

·-1 . 
IJ£ 2(x,x)dxl S s:p.IQ_f 2(x,x)l JQ dxS,ap(l)(0)(~2 ), 

. . 

. . 2 ' 2 . 
Q =O + e 1 > .... o + e 4 >. 

... 
where X = ( e 1 , ... , e 

4 
) 

( 1 ) = (1 ' ... ' 1)' (0) = (0' ... ' 0 ) (see Prop. 2.1, (2)). 

By Prop •. 2.1 (3) it follows finally 

liCE' (f 2 )cpn II< a P(1),(0) (f 2 )II.Pn II ~kaq'(2),( 1 ) {£ 2)llif>nll 

So we have . ·proved that for every t = ( E' 1 , t 2 ) 

·13 



j 

I 

( 't. 

IIC {f 2 )c/>nll ~ P 2 11£2 11
5 

llc/>n II 

holds with a certain constant p 
2 

It is easy to see that. in the general case, with an arbitrary in 

one can estimate quite analog and so the statement is p.roved. 

For an arbitrary sequence d = ( d 1 , d 2 , ••• ) · of P<;>sitive 

numbers we define a representation f -+ C d ( f V of R in D =!- J{n C J{ 

C d ( fo ) cf> = f o cf> ' f o ~ Ro 

cd(£ 1 )¢ =[d 1C+ (£1 )+d c (£ 1)]¢ , cf> ~J{ • d0 =o 
n n+ n n n n 

(6) 

and then by continuation for each f = n~i n ~ R • It is easy 

to see, analog to the free field representation, that f ... cd (f. ) 

is a * -representation of R , i.e. it holds < cf> , C d ( f ) if;· > = 

= < C d ( f * ) cf> , tfi > for all cf> , t/J , ~ D and for a cf> n ~ J{ n , 

f ~ R = s4m we obtain 
m m 

d ( 
C d ( f m) cp n = t [ £ ] n C ( f m) cp n (7) 

£={£ , ••• ,£) 
1 m 

arbitrary, 

where the [ ~ ] n are certain coefficients. From the definition 

of these coefficients we see immediately the following relations 

(a) ] 
[ £ n 

m 
=a £=(£ ••• ,£ 

1 m 
), (8) 

14 

\ 
' 

t 
1t 

. l ... l .·· . I' .·· 
I 

I. 

;· 

f. 

l 
·~ 

f I , 
·¥ 

t 

; 

where (a ) = (a 1 ~ 1 a 1 •• •• ) is a constant sequence, 

d. K d K 
[ ]Dc:[(]D[(]D, 

( 

where d·. K = ( d
0

K
0

, df K
1 

, ••• ) and 

d •,K 
[ ] < I sup ( K 

£ n·- n-m 

K m d 
n+m l [ ( 

] n , ... , 

Now we define in R m=s 4 m the following norm 

A c 
11£mll'=suplllcl:r [£]nC (fm)cf>nll, 

where n 2 m , the sum runs over all £ with I £I = 

and the supremum. is taken over .all r = -m . ;;m +I, .... 

cf> ~ J{ , II cf> II < I and all sequences A= (A , A , .. n n n - 1 2 

tive numbers with lA 1 I.:S · I • It is immedietely to s 

II f II ' is independent of n 
m 

... 

Statement 2 

It holds 

II r m II 5, II r mil '< am II r mil 5, 

where II f mil = II fm IIL
2 

and II f mll 5 = IIN.5 fm 
Prop. 2.1). a m is a constant· only depending on m· 

Proof: 

Because of (8) and (10) it hoids 
A 

[ £ ln ::;. I and co 

15 



with an arbitrary m 

tatement is proved. 

) ~ of P<;>Sit~ve 

f ) of R in D = ~ J{n C J{ 
n 

(6) 

R • It is easy 

::m, that f .... cd (f.) 

t~lds < rp , C d (f) t/I' > =. 

and for a rp n ~ J{ n , 

,(7) 

:;. ,From the definition 

e folloWing . relations : 

(a) 

,.· ..... 

, 

where (a ) = (a 1 a 1 a 1 .... ) is a constant sequence, 

[ d. K 
( 

[ 
d K 

]n= (]D[(]D, (a) 

and 

lm [ d ]' 
( n 

d .Jc 
] < { sup ( K ·· 

£ n·- n-m 

(10) , ... , K 
n+m 

R 4m 
Now we define in m=S the folfowing norm 

(11) 

where n 2 m 

and the supremum is taken over all r = -m ;-W +I, .... , m-:-I;m 1 all 

rp ~ J{ 'II rp II ~ I n n n 
and all sequences A = ( A 

1 
, A

2 
, ... ) of posi-

tive numbers with lA 1 I ~ · I 
II r II , is independent of n 

• It is immedietely to see that 

m 

Statement 2 

It holds 

(12) 

(see 

Prop. 2•1). am is a constant only depending on m 

Proof: 
A 

Because of (a) and (10) it holds [ ( Jn .:5:. I and consequently 

. 15 
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·' 

. ~. 

' £ 
~I r m II , ~ •. $?~£~:. II ,c ( r m) rp~ II'.· Then fromStat. 1 it follo\vs 

II r m II , ~ 11.£. m 1111 • a m with a c~rtain constant ~.m • On the 

Other hand One Of the c£ (f m ) iS th~ 0perat0~ c £ (£ m ) rp n = 
= r m (x 1 •• : •• X m) rp (xm+1 ••••• ' X m+n ) i where £=(I) .. (1,1,"1 •• , I ) 

and it holds II c £ (fm) rpn II =II r m II II rpn II • Since £_= (1) ·.is 

the unique i with I £1 · = m this implies. II rm II , ~ II r m II • From 

the last remark in. the foregoing proof we still obtain the following 

• 
Statement 3 

Every representation f · ... C. d ( f) is an isomorphism, i.e. 

c (£)=0 
.d 

holds only for r = 0 

Finally,. from the foregoing considerations, especially from Stat. 2, . ' 

it follows the last statement of this ·section': 

. Statement 4 

If we put I 1'£ II '· = II N v r II ' - for ·, r c;;; R·. , then it 
m V . ·• m . m m 

'holds 

II r II < m V -
II r II ' , m .V -~-II r m II V+li' (13) 

.and consequently the topology T in R = + R is also 
00 

n> 0 n 
· defined by all the norms -

ll£11' =I y II r II ' (14) 
(y ), V D ~0 D D V 

D ·. 

f=If c;;;R, 
n~O .

0 
y positive numbers, v = 0, 1, 2' ..•. 

D 

,. 

16 

' 

5. The Proof of the Theorem 

The proof will be given in some· steps. Let >.. = 

be an' arbitrary sequence · of positive numbers with 

>.. •P. .. ·(1.>..
1

, 2 ->..
2
·,-••• , ),p. ... I,2,3 ••• ). For. any >.. 

Hilbert space 
>.. >.. 

J{ .. I+J{n 
n:l: 0 . 

and the dense domain 

D>.. .. I J{ >.. 
D 

n;;:,o 

as in ( 4.1) and construct 

J{.I+J{ 
>.. 

>.. 

>.. 
D .. I D • 

>.. 

In D >.. we take the representation f ... C >.. p. ( f ) 

(see 4.6) and construct the direct ;,~~ of all these 

T < r> ... ~ ex < r> 
1\ . p. 

with the domain D dense in J{ 

Let !J be the * -algebra of all the operators 

with the dol'll':lin D is an Op * .;.algebrc3. ·It hole 

Lemma; which we will prove in the next section: 

Lemma 1 

For an arbitrary sequence (y n ) n=0 : 1 •2 •• ~of pc 

there exists an !J -bounded . set . m. . in IJ 

17 



:m from Stat. 1 it follows 

• On the 

!rator c( (f m) ifJn = 

!re t= (1) =(1,1,"1 •• ,1 ) 

• Sif1Ce t.= (1) is 

; II rm II ' ~ II r m II • From 

lli1 obtain the following 

an is<;>morphism, i.e. 

specially from Stat. 2, 

, then it 

(13) 

in R= + R is also 
n~O 

n 

(14) 

nbers, v = 0,1, 2, .... 
' 

5. The Proof of the Theorem 

The proof will be given in some steps. Let >.. = ( >.. 1 • A 2 •••• ) 

be an arbitrary sequence of positive numbers with IAn I.S 1 and 

>.. • p. - ( 1 • >.. 
1 

, 2 • >.. 
2 

, ... , ) , p. ... 1,2,3 ••• ). For any >.. we take a 

Hilbert space 

J{>.. .. I. + J{>.. 
n::::o n 

and the dense domain 

as in (4.1) and construct 

J{ • I. + J{>.. 
>.. 

D .. I. D>.. . 
>.. 

(1) 

In D >.. we take the representation f ... C >.. p. ( f ) of R 

(see 4.6) and construct the direct sum of all these representations, 

(2) 

with the domain D dense in J{ 

Let be the * -algebra of all the operators T( f) 5" 

with the doma.in D is an Op * -algebra. It holds the following 

Lemma, which we will prove in the next section: 

Lemma 1 

For an arbitrary sequence ( y n ) n =O ,l,2 ... of positive numbers 

there exists an j" -bounded set m in D (see Sect. 3), 

17 



<* 

such that for every f.,.:£ fm~;R it holds , , m> 0 . · 

mi'o Y.;, II r m II ' s II T <£> II m ~ 

= sup I < ¢ . , T(f) cp> I . 
c/J.¢ ~; m 

\,, 

(3) 

l"urther, for every v ... 0,1,2 , ... we define the representation 
: 

f -+ A (f) .. T ( N v f ) 
v (4) 

of R • N 

sentation of R 

is the endomorphism of Prop. 2.3. This is a repre­

in a Certain Space. J{ (V), (one exemplar Of 

(1)). We put 

f -+ A (f) • :£ Av.( f) 
v>-_o . 

(5) 

the direct sum of· all these representations· A (f) 
, • ·.V 

which is 

defined in 

D .. :£ 0 <v> .. :£ J{ ,\ , c>. > 
v v,A, n n 

(6) 

dense in 

<v> A,<v> 
J<- :£ +J< .. :£ sJ<· 

V V ,X,n n (7) 

By (1 "" ((! • D ) 

operators A ( f ) 

we denote the Op * -cl!gebra of all the 

Then from Lemma 1 we obtain 

18 

Lemma 2 

For every norm II f II<' > • :£ Yn II f n llv' Yn ,v n>-o 
we find a (1 -bounded set - m in D, 

(s 

su 

II r II ' :o: II A< n II m = sup I < ¢ • A < n cfJ > I . 
<yn>.v ¢,¢~;m . 

We need only to take the corresponding set m . of ] 

in t!'le subspace D <v> c J{ <v> 

Further, from Lemma 2 we see that f-+A(f) .is ana: 
/ 

· * - isomorphism., i.e. if A(f)..O , then f .. o (a fa, 

consequence of Stat. 3 also follows direct from the cc 

A(f)) 

In other words, taking into account Stat. 4, by Lemr: 

proved 

Lemma 3 

The inverse * -homomorphism A (f) -+ £ is. a 

mapping from (![ r ] onto R [r ] 
D oo 

This holds, because the system of all the norms II A 

defines the topology r 
0 

(see the rerncirks after Ti' 

Finally we prove 

Lemma 4 

The . algebraic * -isomorphism £ -+ A (f) is a 

mapping of R [r ] onto ff [r ] 
oo D 

Proof: 

Let m ' be an arbitrary ff -bounded set of D 
~ ' m c k D (V > • If that is 

V=O 
existS a v 

0 
such that 

19 



it holds 

(3) 

ine the representation 

. (4) 

2,3, This is .a repre­

( one exemplar of 

(5) 

'v(f) which is 

(6) 

(7) 

'-Cllgebra of all the 

)btain 

' . ' . t 

f. 

I 
I 
I 

I 
I 

-! 
r 

Lemma 2 

For every norm II f llcy,' > v • I Yn II f n llv" 
n • n).:.O 

we find a (j -bounded set m in D, 

(see Stat, 4,3) 

such that 

II f II , ~ II A ( f) II m "' sup I < y, • A ( f) ¢ > I . 
. cyn>.v 1/l.c,b~m 

We need only to .take the corresponding set m . of Lemma 1 

in be subspace D Cv> C J{ Cv> , . 

Further, from Lemma 2 we see that f ... A (f) is an algebraic 

· * -isomorphism., i,e, if A(f)..O , then f .. 0 (a fac~, which· in 

consequence of Stat, 3 also follows direct from the construction of 

A( f)) 

In other words, taking into account Stat, 4, by Lemma 2 it is 

. proved 

Lemma 3 ., 

The inverse * -homomorphism A (f) ... f is a continuous ~ ... · 

mapping from (j[ r ·onto R [r .] 
D oo 

This holds, because the system of an the norms II A (f) II m 
defines the topology r D (see the remarks after Theo~em), 

Finally .we prove 

Lemma 4 

The algebraic * -isomorphism f ... A (f) is a continuous 

mapping of R [r onto (i [r ] 
oo D 

Proof: 

Let m . be an arbitrary £i -bounded set ~f D , , Then there 

existS a v 0 such that m c ~ D (V) • If that is not so, we 
·v .. o 
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',_ 

·• 

.. 

>!! 

... ~ 

·.; 

'f. ' 
,, 

could find a sequence ¢ r I; m I. r .... I' 2·,- ••• ; such that.¢ . 
• ) _· \ 1• . '~ • ·, .. .;, ~ 

h · · t A. <vr ) ' D <v r ) 'th : "'h ·. · as a. componen _'l'r . 1n WI v, ... oo • .L en, ·.1n 

~onsequence ·of Prop. 2.2. one could ·find a f.(; :R 1 = s 4
· such 

that 
vr . <v.> 

IIA<r>¢ II "'II N £11 II¢ . II 
. r · r • 

... 00 

:.. 

for . r ... oo . , i.e. m would not ~e <1.o-bounded. Now, an 

arbitrary element '¢ ~ m has the decomposition ¢ ·= :£ ¢'A ,(il) 
. . v.X.n n 

(~ee (6)),, v ~ v 0 .• Because of ·/~~I!A~fm)¢ll<oo from·the 

construction of the A ( f ) it follows · . . m . 

I < n + .n > m II ¢ 'A,<v> 11 2 < k v m 
'A,n • n - (a) 

'for all ¢.~ m ·v 
' where k m' are· constants depending on m 

Further we put yet · u = stm __ ll ¢ II < oo 
. ¢>~ ]J( . 

If ¢ ' 1/J I; m ' then it holds 

~:. 

1<1/J,A _(f ,)¢, >12:!: a211 A(f m) cp 112. 1 
' I '. 

vo 
!. [ 'AIL ] C £ . ( N v f ) cp _'A ' <v > II 

2 
II A U m> ¢ 11

2 
= I . I II I 

V= 0 'A n l E ,n . · m n. 

vo 

_< !. !. 
V=O). 

( !. I 

~ 
2 m £ V 'A, (V) . 2 

> I n (n + m > II c ( N r > ¢ II 
n 1 £ m n n,£ 

vo 
K !. 

mV=O 
2 v 8211£ 112 . II r m II v +5 k m+2 · ~ m m v +5 • 

0 

< 

20 

... 

"'• 

.· 

. ~ .. · .. 
where· Km, om are .certain constants. In the last e 

have applied (4.10), Stat. 1 and (a). 

Consequently, it holds for 1/J , ¢ ~ m 

I< 1/J' A (f) ¢ >I < !. I <1/J 'A (f ) ¢>I < !. a 0 II r I . . - m20 m - m m . m 

and from that it follows 

II A (f) 11m :!: m}o a om II r m II vo +~~ 

i.e. f ... A (f) 

(1 (r D ) 

is continuous as mapping from· R [roo 

By Lemmas 3 and 4 it is given the proof of the The 

All that remains for us to prove is Lemma 1, what wil 

in the next section. 

'A 
By ml <PI 

and construct 

6. The Proof of Lemma 1 

'A 
we denote the ball { ¢

1 
~ J{ 

1 

{'An I 'A" m = I m .. <P , 

' n2 0 n 11 

t 'A" I +n 'A" 
n = !. !. m (p 

n>O r=-n ,. +r n 
n 

II 

(algebraic direct sums), where 

of integers satisfying 

I < s
0 

< s 1 < s 2 < ... ·i~ 
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l, 2 ,· ••• su<;::h that ·:f>, 
' ' ,, ... 

t v r · ... "" •. • Then, '.in 

a f·c;; ;R
1 

=s 4 such 

' \' 

0 

a -bounded. Now, an 

tposition ¢ '= I ¢A ,Cv> ' v.-x.n n 

)nii.A~fm)¢11<"" from·the 

.. 

(a) 

.·. 
ants depending on m .~ .. 

. v . A, (II) ·• 

(N 'f·)¢ 112· 
. m n 

... I -•. ' 
, . 

+5 .'. 
:; 

·'· 

. ~. ( ., .. 

.. . r ;: 

· .. ,. ~ 

] 
. ': ,. 

are certain constants. In the last estimation we · 

have applied (4.10), Stat. 1 and (a) • 

Consequently, it holds for 1/J , ¢ c;; m 

1<1/J,A(f)¢ >I:S I 1<1/J,A(f )¢>1 < Ia8 II£ mil .. + 5 m20 m m m ~ 

and from that it follows 

i.e. f -+ A (f) 

a [r D ) 

is. continuous as mapping from R [r"" ] 

By Lemmas 3 and 4 it is given the proof of the Theorem. 

onto 

All that remains for us to prove is Lemma 1, what will be done 

in the next section. 

mA < By I PI 

and construct 

{An I 
m = I 

n2 0 

{An I 
rc = I 

n,?O 

.. 
6. The Proof of Lemma 1 

we denote the ball I ¢
1 

t;; J{ ~ 

An 
m .. (p 

' n n 

+n An 
I m (p (1) 

" +r n r=-n n· 

(algebraic direct sums), where l < s 0 < s 
1 

< s
2 

< ••• 'is sequence 

of integers satisfying 

21 



.,, 
s > s + 2n 
n- n-1 (2) 

and 
-n -a 

= 2 S n 
n 

• a =~-1 
n 4--' p 

n 

{,\. n I = I,\ 0 !•A I • ••• is a system of sequences A 

Property 1 
lA n I IAn I 

The sets :lJl , il are uniformly j' -bounded, more 

precisely it holds 

sup l'n I II T Cr ) ¢ II < k II r II 
¢c;;:lJl" m - m m 5 

sup II T cr > cb II < k II r II • !A nl m • - m m . 5 

¢c;;il 

where k m depends only on m , but is independent of 

IAn I 

For if ¢ = ~ ¢.
8 

c;; :lJ! lA n I it holds 
n 

II T (f ) ¢ II < 
m -

~ II CAn (fm) ¢ II 
n IL "n 

< ~ II ~ [ An /L ] C i ( f ) 4 IJ (3) 
- n i l . :!In m l!n 

< a II f m 11 5 ~ ( s n +m) m p n _5. G < oo • 
n 

An 
This follows from Stat. 1 and the estimation [ IL ] c .. 

n 

.n 

< (s +m) 
- n 

(see 4.8-10). a , G are constants independent of {An I 

22 
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L· ~ 

··-:· 

Th ~ series on the right-hand side of (3) converges, 

. m ·m m-an --n 
(s·.+m) < m s 2 . and m-a -+-oo for-n -+oo 

n · - s . n 

: · : d .that th ~~rrl,\n I 'f rm1 cr b have prove e . 111 · • are unt o y J - oun 
1 

analog one prov~s the t.illiform. j' -boun'dedness of 

B.e·cause .. of Property 1 alSo the set 

.. m = u 
I A ml . 

. {,\ ml 
011 

is , j' -bounded. 

NeXt we prove 

Pr'ope~ty 2 · 

The sequence s n 

unl.\ml 

can be chosen in such a 

it}'o Y,;, I! f~ II.':$ liT (fm) II m 

holds, where m is 'the set (4). 

For if 

¢ = ~ ¢ . c;; ml,\ nl 
n " n: . 

1/1 = ~ ·i 1/1 c;; il IAn I 
n r=-n sn+r . 

(finite sums) we. regard 

23 



. ,., 

(2) 

,· 

!ences ,\ 

ly 5" -bounded, more 

'I . 

out is independent of 

t>, II (3) 
n, 

[ ,\np. ] ~ (s +m)n 
C L'!ln n 

ient of { A0 I 

' ' .. ,. ..... · .. 

Th :!1 series on the right-hand side of (3) conver ,ges, because · 

. m . m-a 
'· ' (s· .+ m) < mm s n 2 -n and m-an-+ -oo .for ·R -+ oo So we 

' .n - e 
{,\n I 

_> h~ve prmied that the m . . are uniformly 5" -bounded. Quite 

analog .one . proves the uniform 5" -boundedness of the j{ I,\ n I •. 

B.ecause of Properly 1 also the set 

. {,\mj {,\mj 
<m · un 

is , 5" -bounded. . . 

Next w~ prove 

(4) 

The sequence s n can .be chosen in such a way that , 

m~ Y.;.llfmll' SliT (fm)llm 
. . ., 

holds, . where m is 'the set ( 4). 

For if 

(s) n 
.n p, I 

!fr=I I ifF ~j{ 
n r=;-n "'n +r · · 

(finite sums) we. regard 
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·-... 
{; 

.,, 
n 

I<"' • A (f) cp > I = I ,l: < l: "' • A (£.) cp .. >I > 
m,n,k r=-n en i- r , k 

m 
> ll: < l: t/1 ,A(£ )cp >I -:- (S). 

m r=-m s +r m e: m m· 

n (6) 
l: l: ~ I< t/1,. • A (fm) ¢»,. >I (V) 
m n,k <m-1 r.:=-n n -lr k r 

n 
-l: l: l<l:Y, ,A(£)¢» >I (N) 

m n,?m+1 r=-n"n+• m "n 

S , V, N -are the three different · expressions on. the right-hand 

side, taken with the positive sign, 

For the expression N we obtain the 

. First it holds (because of n ~ m+ l ) 

following ·estimation : 

rn . +m 
·I< 

l: "' 
,A(£ ) cp >1=1< l: t/1 ,A-(£)¢» >I< 

r=-n l!ln_+r 
m. ,. r=-m s +r m e -n n n 

m -. +m An 

S I < r=I._m t/l,.n +r '~~m I~=; [ /L],.Ct(f)cp >I 
f n m sn 

,. 
m m A e 

< l: (s +m ) I < y, ' l: [ e 1
5 

C . (fm _) cp "n > I 
=-m m "n+• lel=r I'\ 

m 2 
< 2m(s +m) p 

- n n 
II£ II' m 

I e I = e 1 + .;. +em • In the last estimation we have applied the 

inequality I y, . II • II ¢» .. II 5 P.,. 
sn+r n 

and the relation 

24 
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·, ,• 

' ·.-.' 

n ' 

[ A IL] 
€ "n 

"' 
[ A. ] 

.€ "n 
m 

(s +m) 
n 

• ==s' :::· :::= ::::::: 

where A .,; ( ••• , . A,. 'em, A ,. · -m +1 ; ••• , A,. +D:t ; •• ) h: 
n n . - n 

sequence with 0 < A"'
1 
S l (see 4.&-:10). 

Ao 
. II l: [ e l c e <r m > ¢» .. II < P II r II ' 

lf'J =r sn . n ' - n .m . 

' ' 
co~equence of the ,definition ( 4.11). of II f m II ' 
Becaus~ ·of m -2a < 0 for n > m + I we obtain 

, n -

m 2 
2m(s +m) Pn 

. 
2 2 

m m-2a 
2 

-2n 
2 

m + 1..:.2n 
"m s n _<m 

n . 

and consequen~y it is proved 

N < l: l: 
m>O n'2:_m+1 · 

m+1-:in 
m2 II r II ' < 

. m 

By analog considerations one· proves 

v ~ l: fJ · II r II ·' .: 
m~O m m . 

l: U:r II ' .. 
m>O m 

where for each m fJ m is constant depending on 

sm_
1 

, .but independent of sm , 8 m+1 ••• 

The _estimations for N and V were given for'ar 

sequence s , s , s , ..•. satisfying (2). Now, we 
0 1 2 . 

sequence I s n l n = 0 , 1 ,.. by . induction in the following 
~ . . . 

s , s , ... , s are already chosen, theri 
0 1 m-1 

that the 
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... >I > 
k 

(V) 

(N) 

(6) 

s on. the right-hand 

.owing ·estimation : 

,A-(£. )¢ >IS 
r ,_ m .e 

. n 

·¢,.. >I 
n 

fm) cps >I· 
. n 

on we have applied the 

the relation 

I . , :· 
I· . I·~ 
j 
'; 

.• • 

•; l 

.. 

'\' 

[ >.. ] .. 
.€ n 

m 

(s +m) 
n 

"'· . == ... ' where >.. "n -m +1• ••• • >..,. . n +mo ... 

sequence with 0 (see 4.S..:10). 

>.,; (' 
. II I [ ( J,. c . <r . > ¢ II' < p 

~~~ =r n m . "n • - n 
II£ II' m 

cor1sequence of the ,definition (4.11) of II f m·ll ' 
B~cause of m -2an < 0 . for n ;::_ m + l we obtain 

' -2n m
2 

m+ 1.:.2n 
2 _< 

and consequentJ.y it is proved 

N < I I 
m+l-2n 

m2 II£ II'< 
m 

By analog considerations one proves 

v :::; I f3 m II r m II ' ·~ 
m~O 

., 

I 11:r II'·· 
m>O m 

.. 

is a certain 

holds in 

(7) ~-

(a) 

where for each m f3 m is constant depending on s 0 , s 1 , ... , 

sm-l , .but independent of sm 
·' 

5 m+l ~ .. 

The estimations for N and V were given for· an arbitrary 

sequence s s s satisfyin_g (2). No,N, we determine the 
0 ' 1 ' 2 ..... 

••: 

sequence Is n In =O,l, .. by induction in the following way: .. Suppose 
. . 

that the s
0 

, s
1 

, ... , sm-l are already chosen, then we take sm 
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so large that 
'•· 

(s -m)mp 2 > 2(Y. +f1 +0. 
m m - m m (9) 

That is possible because of 

m : 

·m 2 sm m 
(sm-m) p > (-) 

. m - 2 

-2m -2a -3m 
2 S m = 2 

m 

~· 

s 

and because flm · is independent of sm • With this determi-

nation of the sequence Is I the 11 -bounded set m (4) is 
n 

completely determined also. 

Let f = "i. f m be a certain element of R 
m"<:,O 

• Then it is f =0 for 
m 

m > m 
0 

• In dependence on this f we chose ¢ , t/J c;; m ( 5) in the 

following way: For m ~ m 
0 

we determine -m ~ r mS. m., Am , ¢" 
"' in such a way that t/J., +~ m 

·m 

Am/l . f 

< t/J" +r 
m m 

IEI:•m [ l ].,m C (fm)rp,.m > ~ 
(10) 

1 m 
?: TP!<sm-m) II£ II'· 

m 

This is possible in consequence of the definition (4.11) of II f II ' 
m 

and the fact that 

m · ,. m 

[A ll ] = ( s -m) m [ A 
l "m m l 

] 
" m 

'€=(£ , •• ,£. 
1 ·m 

holds with a certain >: = (A ) , 0 <A < I 
I I-

(see 4.8-10). 

.:"'"--' '<( ·t~ ~"' ,-

"':'··· 

.. ~ 

Now ,·we ~ need: oru;:~~~ put :' < •• 
:• :" • i . ~-+ <:.. . 

-i.· .. 
,;:_mo 

. .. ' ¢ ='·:"i. ¢. 
·•• . n=O sn 

m' 
0 

t/1 = "i.· 
· n=O 

i/J . c;; m . 
8 n--:+ rn~ 

_.,_. 

.. ~ ' 
~-~ ...... 

With thes~ ¢, t/J · then it follows. from (9) a~d (10) 

s,; 
m 

"i. .<:,tfr . ·,A.(f .. ).¢ >.J.= 
s +r _ . m • 8 

m _.m m ~ ~-·<'":, 

-r 
. . . Am l 

· ·• ; = I "i. .<1/J ·· · "i. [ · ll l ·. c 
, . m ·l!m+~~'lll=r €··' em 

. , - .• m 

(£,;) ¢s •>· I 
m. 

,_·, . 
. 1 2 . : m ·> "i. - p . (s -m) 

-·, m 2 . m m .. II r:, II ' 

·.> !.' .<r + f1 + 1 > ll.f II': 
'"";"'. m, m m · . m · 

' . :, 

Because of (7) , (8) and (12) from the last inequality it 

· (~ee ·(6)) 

-~ < '\ 
.~ .•.. ·<tfr ,A (f)¢ > > .. "i.y II£ II;., 

m . m 

· ·0her~.; tfr , ¢ c;; m are the elements ( 11)~ Thus;: it: is shown 
,. 

-~· .. -: ·: li.A(r_>lim. ~;-~;/m II r;,IL' · 

·.and the Lemma 1 is completely proved. 

~ ··. 
.'· 



(9) 

I' z 

• With this deterrni­

.mded set m {4) is . 

Then· it is f .. o for 
m 

;e ¢,t/J'(;, m (5) in the 

- m < r < m , Am , ¢., m-
u; 

(10) 

finition (4.11) of II f II ~ 
m 

{see 4.8-10). 

I 
[: 

f 

---~<:$~:. 
. Now·,'we: ne~d: of.uy;~:to 

\ >: ,. . ~' 

'' ~· - i.;. . '"'·. ;,, 

.. :,':_mo 
. , .. ¢ ='· : I ¢ . . ' 

•· n=O · 15 n 

-
•'• 

, ... 

'~ .... 

put. ._,, 

. " 

if_, - (;, m·. 
" + r ~-- n 

··-· 

... 

vYiih" thes_e ¢.' "'- then it follows from (9) and (10). 

..... . 

' . . . 
. . . . ~ . ~-

i:"' .· ' . :.s ~ 

.-, 

+.r .. 
m· 

; A. (f m ) ¢ .,· > :r = •. 
.m ··-. 

( 

c 
~ -. 

}:· <r .+/3 +1 >II r II': 
m m m · m · 

' ~···· 

·-. 
' ' ~ . .., 

, .. -~- •' 

"' ~ .'' 

(11)· 

. ; 

..;. \ < '" ~-

.(1.2),_. 
,, . ' 

· .... 

Because of (7) , (8) and (12) from the last inequality it follows · 

(~ee ·(6)) 

-~ere ·:1/I, ¢ (; m ai·e the_ elements_ (11). ThuS,· it. is shown. 

>·I r 'II£· 11:'-
-· m~~--~-- _m 

. . 
. :_and the Lemma 1 ·is compl-etely proved. 
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