# ON CHIRAL SU $2 \times \mathrm{SU}_{2}$ DYNAMICS 

 FOR A1, $P$ AND $\pi$ MESONS1970

## V.I. Ogievetsky, B.M. Zupnik *



# ON CHIRAL $\mathrm{SU}_{2} \times \mathrm{SU}_{2}$ DYNAMICS FOR A $1_{1}$, $\rho$ AND $\pi$ MESONS 

Submitted to "Nuclear Physics"

* Dniepropetrovsk State University, USSR



## I. Introduotion

In recent years the prooess with $A_{1}, \rho$ and $\Pi_{-}$mesons has been intensively investigated in ourrent algebra. Important Information on the $A_{1} \rho T$ system has been derived from the Ward identities for the n-point funotions in the tree approximation with some restriction on the momentum dependence of the contact vertices/l/.Nevertheless, such a restriotion leads to the solution of the Ward identities rhich depends on several arbitrary parameters/l/.

The oonstruotive way for the reproduotion of the ourrent algebra results is the effeotive Lagrangian method based on the $\mathrm{SU}_{2} \times \mathrm{SU}_{2} \operatorname{group}^{/ 2,3 /}$

In Seotion II of the present paper we show that the conventional Lagrangian of the $A_{1} \rho \pi$ system/2/ oontains threeand quadrilinear derivative terms due to the elimination of the nonphysical bilinear $A_{1} \Pi \quad$ coupling. Then one should add all independent terms with three and four field derivatives and this leads to the appearence of the arbitrary parameters in the Lagrangian. Besides, the very presenoe of such derivative terms is undesirable in the interaction Lagrangian.

In Section III we suggest in this connection the following natural requirement: The effective Lagrangian of the $A_{1} \rho T$ tem must contain no more than two field derivatives in eaoh term. This severe restriction determines oompletely the invariant Lag-. rangian containing four independent parameters $g_{\rho}, g_{A}, m_{\rho}, M_{A}$ with the aid of the nonlinear (in pions) substitution for the $A_{1}$

In the tree approximation each contaot vertex is a polynomial in 4-momenta, the degree $D$ of which is equal to the number of field derivatives in the appropriate term of the Legrangian. In Section IV we establish the oonnection of our Lagrangian model With the partial solution of the Ward identities under the condition $D \leqslant 2$ for any contaot rertex. In the $A_{1} \rho \pi$ system it is impossible to strengthen this restriction on the momentum dependence of the contact vertices. Note that in the conventional Lagrangian model/2/ $D \leq 4$.

In Section $\nabla$ we discuss some consequences for the amplitudes $\rho \rightarrow 2 \pi, A_{1} \rightarrow \rho \pi, A_{1} \rightarrow 3 \pi, \pi \pi \rightarrow \pi \pi, \rho \pi \rightarrow \rho \pi, \quad$ etc. We derive with necessity the reasonable value

$$
\begin{equation*}
\delta^{2}=\left(g_{A} / g_{\rho}\right)^{2}\left\{1-\left[\frac{m_{\rho}^{2}}{g_{\rho}^{2} f_{\pi}^{2}}-1\right]^{-2}\right\}-1 \sim-1 \tag{1.1}
\end{equation*}
$$

for the anomalous magnetio moment of the $A_{1}$ meson. The S-ware soattering lengths have been found to be in agreement with those obtained in current algebra/6/. We have estimated also the total width of $A_{1}$.

## II. Preliminaries

In the present paper we propose a new model for the Lagrangian of the $A_{1} \rho \pi$ system which contains no more than bilinear derivative couplings. With this end in view we shall mention here some features of the conventional soheme rith $A_{1}, \rho$ and $\Pi$ mesons (see, e.g., refs./2,3/).

The nonlinear Lagrangian for vector, axial-vector and pion fields $V_{\mu}, a_{\mu}$ and $\pi$ can be written as

$$
\begin{equation*}
\mathcal{L}=-\frac{1}{4} \vec{V}_{\mu \nu}^{2}-\frac{1}{4} \vec{a}_{\mu \nu}^{2}+\frac{m_{0}^{2}}{2}\left(\vec{V}_{\mu}^{2}+\vec{a}_{\mu}^{2}\right)+\frac{d^{2}}{2}\left(\nabla_{\mu} \vec{\phi}\right)^{2} \tag{2.1}
\end{equation*}
$$

With the covariant ourls

$$
\begin{align*}
& \vec{V}_{\mu \nu}=\partial_{\mu} \vec{V}_{\nu}-\partial_{\nu} \vec{V}_{\mu}-g \vec{V}_{\mu} \times \vec{V}_{\nu}-g \vec{a}_{\mu} \times \vec{a}_{\nu}, \\
& \vec{a}_{\mu \nu}=\partial_{\mu} \vec{a}_{\nu}-\partial_{\nu} \vec{a}_{\mu}-g \vec{V}_{\mu} \times \vec{a}_{\nu}+g \vec{V}_{\nu} \times \vec{a}_{\mu} \tag{2.2}
\end{align*}
$$

and covariant derivative of the pion field

$$
\begin{equation*}
\nabla_{\mu} \vec{\phi}=\Delta_{\mu} \vec{\phi}+[\sigma(1+\sigma)]^{-1} \vec{\phi}\left(\vec{\phi} \cdot \Delta_{\mu} \vec{\Phi}\right) \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma=\left(1-\vec{\phi}^{2}\right)^{1 / 2}, \Delta_{\mu} \vec{\Phi}=\partial_{\mu} \vec{\Phi}-g \vec{V}_{\mu} \times \vec{\Phi}+g \sigma \vec{a}_{\mu} \tag{2.3a}
\end{equation*}
$$

In these eqs. $\vec{\phi}=f_{\pi}^{-1} \vec{\pi} \quad\left(f_{\pi} \approx 95 \mathrm{MeV}\right.$ is the pion decay constant) and $m_{0}, g$, $d$ are some unrenormalized parameters. This Lagrangian is invariant under the $\mathrm{SU}_{2} \times \mathrm{SU}_{2}$ group. Moreover, only the mass term for vector and axial-vector fields oreaks the invariance under the gauge $\mathrm{SU}_{2} \times \mathrm{SU}_{2}$ transformations with the coordinate-dependent parameters $\vec{\alpha}, \vec{\beta} \quad 12,3 /:$

$$
\begin{align*}
& \delta^{2}\left(\vec{V}_{\mu} \pm \vec{a}_{\mu}\right)=-(\vec{\alpha} \pm \vec{\beta}) \times\left(\vec{V}_{\mu} \pm \vec{a}_{\mu}\right)-g^{-1} \partial_{\mu}(\vec{\alpha} \pm \vec{\beta})  \tag{2.4}\\
& \delta^{\rho} \vec{\phi}=-\vec{\alpha} \times \vec{\phi}+\vec{\beta} \sigma
\end{align*}
$$

It follows immediately that the interacting fields $\vec{\nabla}_{r}$ and $\vec{a}_{\mu}$ transfer spin 1 only /4/ (in the limit of zeromass pions), ie. the transversality oonditions $\partial_{\mu} \vec{V}_{\mu}=0, \quad \partial_{\mu} \vec{Q}_{\mu}=0$ are satisfied off the mass shell. However, the tern $\left(\boldsymbol{\nabla}_{\mu} \overrightarrow{\boldsymbol{\phi}}\right)^{2}$ in eq. (2.1) oontains the nonphysical bilinear coupling $\vec{a}_{\mu}, \partial_{\mu} \vec{\phi}$ Which is usually eliminated by the following substitution of the axial-veotor field:

$$
\begin{equation*}
\vec{a}_{\mu}=\vec{A}_{\mu}-\frac{g f_{\pi}^{2}}{m_{0}^{2}} D_{\mu} \vec{\phi} \tag{2.5}
\end{equation*}
$$

Then it is impossible to maintain the condition $\partial_{\mu} \overrightarrow{A_{\mu}}=0$ for the new axial-vector field $\vec{A}_{\mu}$ • The introduction of $D_{\mu} \vec{\phi}=\partial_{\mu} \vec{\phi}_{-g V_{k}} \vec{\phi}$ instead of $\partial_{\mu} \phi \quad$ is necessary to ensure transversality for the interacting veotor field $\vec{\nabla}_{\mu} / 4 /$ since it is important in connection with the vector dominance idea $/ 5 /$.

The crucial point is that substitution (2.5) contributes to $V_{\mu V}$ the term $\mathscr{D}_{\mu} \overrightarrow{\boldsymbol{\phi}} \times \boldsymbol{D}_{V} \overrightarrow{\boldsymbol{\phi}} \quad$ whioh is bilinear in the field derivatives. Hence, the conventional effective Lagrangian oontains the three- and quadrilinear derivative terms $\partial_{\mu} \vec{V}_{V} \cdot D_{\mu} \vec{\phi} \times D_{\nu} \vec{\phi}$ $\left.\left(\vec{A}_{\mu} \times D_{\nu} \vec{\phi}\right) \cdot\left(\mathcal{D}_{\mu} \vec{\Phi} \times \not\right)_{i}\right)$ and $\left(D_{\mu} \vec{\Phi} \times D_{\nu} \vec{\phi}\right)^{2} \quad$ generated by $\vec{\nabla}_{\mu v}$ in eq.(2.1). It should be said that it is undesirable to have the three- and quadrilinear derivative couplings in the interaotion Lagrangian. Nevertheless, if one admits the presence of such couplings, then all possible terms with three and four derivelives should be added and the number of parameters in the theory should increase. Besides, the three- and quadrilinear derivative couplings lead to non-smooth momentum dependence of the amplituides $\rho \rightarrow 2 \pi, A_{1} \rightarrow 3 \pi, \pi \pi \rightarrow \pi \Pi$ etc.
III. Lagrangian of the $A_{4} \rho \Gamma$ system without three- and quadrilinear derivative couplings.

To avoid the above-mentioned difficulties of the conventonal Lagrangian model for the $A_{1} \rho \pi$ system we propose the following natural requirement:

Three- and quadrilinear in field derivatives terms must be absent in the effective Lagrangian of the $A_{1} \rho \pi$ system.

Now we start to construct the general Lagrangian which satisfies this requirement.

It is convenient to define for this purpose the new coveriant quantities

$$
\begin{align*}
& \vec{R}_{\mu v}=\vec{V}_{\mu v}+\frac{c^{2}}{g} \Delta_{\mu} \vec{\Phi} \times \Delta_{\nu} \vec{\Phi}  \tag{3.1}\\
& \vec{S}_{\mu v}=\vec{a}_{\mu v}+\frac{c^{2}}{g \sigma} \vec{\Phi} \times\left(\Delta_{\mu} \vec{\Phi} \times \Delta_{\nu} \vec{\phi}\right) \tag{3.2}
\end{align*}
$$

with some constant c. $\vec{R}_{\mu v}$ and $\overrightarrow{\mathrm{S}}_{\mu \nu}$ have the same transformatin properties as covariant curls $\vec{V}_{\mu \nu}$ and $\vec{a}_{\mu \nu}$

$$
\begin{align*}
& \delta^{R_{\mu v}}=-\vec{\alpha} \times \vec{R}_{\mu v}-\vec{\beta} \times \vec{S}_{\mu v} \\
& \delta \vec{S}_{\mu v}=-\vec{\alpha} \times S_{\mu v}-\vec{\beta} \times \vec{R}_{\mu v} \tag{3.3}
\end{align*}
$$

Here eqs. (2.2), (2.3a) and (2.4) have been used.
Let us write down at first the general expression'for the invariant Lagrangian of the $A_{1} \rho \pi$ system (containing threeand quadrilinear derivative terms):

$$
\begin{align*}
& z=-\frac{z_{\rho}}{4} \vec{R}_{\mu \nu}^{2}-\frac{z_{\mu}}{4} \vec{S}_{\mu \nu}^{2}-\frac{z_{\rho}-Z_{A}}{4}\left\{\left(\vec{\phi} \times \vec{\mu}_{\mu \nu}\right)^{2}-\left(\phi \times s_{\mu \nu}\right)^{2}-\right. \\
& \left.-2 \sigma \vec{R}_{\mu \nu} \times \vec{\phi} \cdot \vec{S}_{\mu \nu}\right\}+h\left[\nabla_{\mu} \vec{\phi} \times \nabla_{\nu} \vec{\phi}\right]^{2}+k\left(\nabla_{\mu} \vec{\phi} \cdot \nabla_{\mu} \vec{\phi}\right)^{2} \\
& +\frac{m_{0}^{2}}{2}\left(\vec{V}_{\mu}^{2}+\vec{a}_{\mu}^{2}\right)+\frac{d^{2}}{2}\left(\nabla_{\mu} \vec{\phi} \cdot \nabla_{\mu} \vec{\varphi}\right) . \tag{3.4}
\end{align*}
$$

where $Z_{\rho}, Z_{A}, m_{0}, d, h$ and $K$ are some arbitrary ionstents.

Our main purpose is the elimination of the three- and quadrilinear derivative terms from the Lagrangian (3.4) together with the elimination of the bilinear $A_{1} \pi$ ooupling. Also the kinetic terms must be correctly normalized. All these requirements can be satisfied only with $h=K=0$ in a unique way by performing the following substitutions for the vector and axial-vector fields:

$$
\begin{equation*}
\vec{V}_{\mu}=Z_{\rho}^{-\frac{1}{2}} \vec{\rho}_{\mu}, \quad \vec{a}_{\mu}=Z_{A}^{-\frac{1}{2}}\left[A_{\mu}+F\left(\vec{\phi}^{2}\right) D_{\mu} \vec{\phi}\right] \tag{3.5}
\end{equation*}
$$

We shall use below the renormalized constants:

$$
\begin{align*}
& g_{\rho}==Z_{\rho}^{-\frac{1}{2}} g, g_{A}=Z_{A}^{-\frac{1}{2}} g, m_{\rho}=Z_{\rho}^{-\frac{1}{2}} m_{0}  \tag{3.6}\\
& M_{A}=Z_{A}^{-\frac{1}{2}}\left(m_{0}^{2}+d^{2} g^{2}\right)^{\frac{1}{2}}
\end{align*}
$$

To exclude the bilinear $\overrightarrow{A_{\mu}} \partial_{\mu} \vec{\phi}$ coupling we fix in eq. (3.5) the value $F(0)=-g_{\rho}^{2} f_{\pi}^{2} / g_{A} m_{\rho}^{2}$ then the Iunotion $F\left(\overrightarrow{\boldsymbol{P}}^{2}\right)$ is uniquell determined by the requirement that the three- and quadrilinear derivative terms must be absent in the Lagrangian

$$
f\left(\vec{\phi}^{2}\right)=-\frac{c}{g_{A}(1+\sigma \sigma)^{2}}=-\frac{g_{\rho}^{2} f_{\pi}^{2}}{g_{A} m_{\rho}^{2}}\left[1+\frac{1}{2}\left(\frac{g_{f} f_{\pi}}{m_{\rho}} \vec{\phi}\right)^{2} \ldots\right](3.7)
$$

where $\sigma=\left(1-\vec{\phi}^{2}\right)^{1 / 2}$ and

$$
\begin{equation*}
C=\left[\left(\frac{m_{\rho}}{f_{\pi} g_{\rho}}\right)^{2}-1\right]^{-1} \tag{3.8}
\end{equation*}
$$

We have used here the relation $/ 2,3 /$ :

$$
\begin{equation*}
f_{\pi}^{2}=\frac{m_{\rho}^{2}}{g_{\rho}^{2}}\left[1-\left(\frac{m_{\rho} g_{A}}{M_{A} g_{\rho}}\right)^{2}\right] \tag{3.9}
\end{equation*}
$$

which follows from the correct normalization of the kinetio term $(1 / 2)\left(\partial_{\mu} \vec{\pi}\right)^{2}$.

In fact we have determined the nonlinear substitution of $A_{\mu}$ and the value of the constant $C$ to exclude the bilinear derivative terms from $\vec{R}_{\mu r}$ (3.1) and $\vec{S}_{\mu \nu}$ (3.2) (see, Appendix), the terms with three and four derivatives being eliminated from eq.(3.4).

Now we can write the final expression for our Lagrangian of the $A_{1} \rho \pi$ system which contains nonderivative couplings and the terms with one and two derivatives only:

$$
\begin{align*}
& \mathcal{L}=-\frac{1}{4} \vec{\rho}_{\mu \nu}^{2}-\frac{1}{4}{\overrightarrow{A_{\mu \nu}}}^{2}-\frac{1}{4} B\left(\vec{\phi}^{2}\right)\left(\Phi \times \rho_{\mu \nu}\right)^{2}+\frac{1}{4}\left(1-\frac{g_{A}^{2}}{g_{\rho}^{2}}\right)\left(\vec{\phi} \times \vec{A}_{\mu \nu}\right)^{2}+ \\
& +\frac{1}{2} H\left(\vec{\Phi}^{2}\right)\left(\vec{\rho}_{\mu v} \cdot \vec{\Phi} \times \vec{A}_{\mu \nu}\right)+\frac{1}{2}\left[\frac{f_{\pi}(1+c)}{1+c \sigma}\right]^{2}\left[\left(\nabla_{\mu} \vec{\phi}\right)^{2}+\left(\frac{m_{\rho} g_{A}}{M_{A} g_{\rho}}\right)^{2}\left(\vec{\phi} \cdot \partial_{\mu} \vec{\phi}\right)^{2}\right] \\
& +g_{A} f_{\pi}^{2}\left(\frac{1+c}{1+c \sigma}\right)\left[(\sigma-1)\left(D_{\mu} \vec{\phi} \cdot \vec{A}_{\mu}\right)+\sigma^{-1}\left(\vec{A}_{\mu} \cdot \vec{\phi}\right)\left(\vec{\phi} \cdot \partial_{\mu} \vec{\Phi}\right)\right]- \\
& -\frac{1}{2}\left(\frac{f_{\pi} g_{\rho} M_{A}}{m_{\rho}}\right)^{2}\left(\vec{\Phi} \times \vec{A}_{\mu}\right)^{2}+\frac{m_{\rho}^{2}}{2} \vec{\rho}_{\mu}^{2}+\frac{M_{A}^{2}}{2} \vec{A}_{\mu}^{2}+m_{\pi}^{2} f_{\pi}^{2} \sigma \tag{3.IO}
\end{align*}
$$

where the symuetry-breaking term $\mathrm{m}^{2} f_{\pi}^{2} \sigma$, leads to PCAC in this model ${ }^{/ 3 /}$. In eq.(3.10) the following notations have been

$$
\begin{align*}
& \text { used: } \\
& B\left(\vec{\phi}^{2}\right)=g_{A}^{2}\left[1+C^{-2}\left(\frac{g_{f}^{2}}{g_{A}^{2}}-1\right)\right] F^{2}\left(\vec{\Phi}^{2}\right),  \tag{3.11}\\
& H\left(\Phi^{2}\right)=\frac{g_{A}^{2}}{g_{\rho}}\left[1+C^{-1} \sigma\left(1-\frac{g_{\rho}^{2}}{g_{A}^{2}}\right)\right] F\left(\vec{\Phi}^{2}\right),  \tag{3.12}\\
& \vec{\rho}_{\mu v}=Z_{\rho}^{1 / 2} \vec{R}_{\mu v}=\partial_{\mu} \vec{\rho}_{\nu}-\partial_{\nu} \vec{\rho}_{\mu}-g_{\rho} \vec{\rho}_{\mu} \times \vec{\rho}_{\nu}-\frac{g_{A}^{2}}{g_{\rho}}\left(1-c^{2} \sigma\right) \vec{A}_{\mu} \times \vec{A}_{\nu}+ \\
& +C g_{A} / g_{\rho}\left(\vec{A}_{\mu} \times D_{\nu} \vec{\phi}+D_{\mu} \vec{\Phi} \times \vec{A}_{\nu}\right) \text {, }  \tag{3.13}\\
& \vec{A}_{\mu \nu}=Z_{A}^{\frac{1}{2}}\left[\vec{S}_{\mu \nu}-g_{A} F\left(\vec{\Phi}^{2}\right) \vec{\Phi} \times \vec{R}_{\mu \nu}\right]=\partial_{\mu} \vec{A}_{\nu}-\partial_{\nu} \vec{A}_{\mu}-  \tag{3.14}\\
& -g_{\rho} \vec{\rho}_{\mu} \times \vec{A}_{\nu}+g_{\rho} \vec{\rho}_{\nu} \times \vec{A}_{\mu}-g_{A} C \vec{\Phi} \times\left(\vec{A}_{\mu} \times \vec{A}_{\nu}\right)
\end{align*}
$$

IV. Conneotion between our Model and the "Hard Pion". Method
in the Algebra of Currents.
$\Omega$-point functions derived from the effeotive Lagrangian of the $A_{1} \rho \pi$ system are known to be a solution for the Ward identities in $\mathrm{SU}_{2} \times \mathrm{SO}_{2}$ algebra of currents $/ 1 /$. In this Section we reformulate our basic requirement for the Lagrangian in terms of the "hard pion" method $/ 1 /$.

The vector and axial-vector ourrents $\vec{J}_{\mu}$ and $\vec{J}_{5 \mu}$ are obtained from our Lagrangian (3.10) by using the Gell-Levy method (see, eng. ref. ${ }^{15 /}$ ).

$$
\begin{equation*}
\vec{\eta}_{\dot{\mu}}=\frac{m_{\rho}^{2}}{g_{j}} \vec{\rho}_{\mu}, \vec{\eta}_{5 \mu}=\frac{m_{\rho}^{2} g_{A}}{g_{\rho}^{2}}\left[\vec{A}_{\mu}+f\left(\vec{\phi}^{2}\right) D_{\mu} \phi\right] \tag{4.1}
\end{equation*}
$$

Note that these currents obey the equal-time commutation relations of the algebra of fields ${ }^{\text {/5/ }}$
$\left[J_{0}^{a}(\vec{x}, t), J_{\mu}^{b}(\vec{y}, t)\right]=\left[J_{50}^{a}(\vec{x}, t), J_{5 \mu}^{b}(\vec{y}, t)\right]=i \varepsilon_{a} b_{c} J_{\mu}^{c}(\vec{x}, t) \delta^{\Omega}(\vec{x}-\vec{y})-$
$-i \frac{m_{\rho}^{2}}{g_{\rho}^{2}} \delta_{a b} g_{\mu k} \frac{\partial}{\partial x_{k}} d^{\prime}(\vec{x}-\vec{y})$,
$\left[J_{0}^{a}(\vec{x}, t), J_{5 \mu}^{e}(\vec{y}, t)\right]=\left[J_{50}^{a}(\vec{x}, t), \eta_{\mu}^{b}(\vec{y}, t)\right]=i \varepsilon_{a b_{c}} J_{5 \mu}(\vec{x}, t) d\left(\vec{x} \vec{y}_{4} .3\right)$
Here $k=1,2,3$ and $\mu=0,1,2,3$, The proof of these relations is equivalent to that ref. $/ 5 /$. We remark here that in all $\mathrm{SU}_{2} \times \mathrm{SU}_{2}$ gauge Lagrangian schemes the corresponding Sohwinger terms have the same simple c-number form if currents are calculated by the Gell-Mann-Levy method. There are, of course, some model-dependent commutation relations. The strong form of $\mathrm{PCAC} / 3 / \partial_{\mu} \vec{J}_{5 \mu}=m_{\pi}^{2} f_{\pi} \vec{\pi}$ is present in our model.

In the tree approximation the oontact vertex functions oorrespond to the various contact couplings in the Lagrangian. The diagram of any n-point function involves contact vertices oonnected by propagators without forming loops. Each contact vertex function is a polynomial in 4-momenta, the degree of which is equal to the number of field derivatives in the appropriate contao term. This polynomial degree $D$ characterizes the momentum dependence of a contact vertex function. In the tree approximatimon $D$ depends on the number $N_{g}$ of the $\rho$-meson and/or $A_{1}$-meson lines attached to the vertex irrespectively of the number of pion lines. We have $D=2$ for $\quad n_{z}=0,2, D=1$
for $n_{g}=1,3$ and. $\mathrm{D}=0$ for $n_{g}=4$.
In the conventional current - algebraic approach to the $A_{1} \rho \pi$ system $/ 1,2 /$ there are vertices with $D=3$ and $D=4$ Which correspond to the three- and quadrilinear derivative couplIngs. In our approach the momentum dependence of the contact vertex function 1 s minimal and cannot be reduced further. At least two field two field derivatives must be present because the terms $\left(\nabla_{\mu} \vec{\phi}\right)^{2},\left(\vec{\rho}_{\mu \nu}\right)^{2}$ etc. are always present.

Thus, using Lagrangian (3.10) we derive n-point functions which are the minimum momentum dependent solution of ward den tities in $S_{2} \times \operatorname{SU}_{2}$ algebra of currents with $c-n u m b e r$ Schwinger trams.

Note that in meson-nuoleon couplings we can limit ourselves to vertices which are linear in momenta.

## V. Some Consequences of the Model.

Various restrictions on the momentum dependence of amplitudeg are often used in the algebra of currents. In our Lagrangian model there are such severe restrictions for processes with $A_{1} \rho \rho$ and $\Pi$ mesons. The requirement of the minimum momentum dependence leads to some important consequences for the simplest n-point functions.

First, we present the results for 3-point functions. The
$A_{1} A_{1} \rho$ interaction in Lagrangian (3.I0) is described by :
$\mathscr{L}_{A A \rho}=\frac{g_{A}^{2}}{g_{\rho}}\left(1-C^{2}\right) \partial_{\mu} \vec{\rho}_{\nu} \cdot \overrightarrow{A_{\mu}} \times \vec{A}_{\nu}+g_{\rho}\left(\rho_{\mu} \times A_{\nu}-\rho_{\nu} \times A_{\mu}\right) \cdot \partial_{\mu} A_{V}$ (5.1)

The corresponding $A_{1} A_{1} \rho$ vertex $\Gamma_{\mu \nu \lambda}(p, q)$ is linear in momenta (ie. $D=1$ )


$$
\begin{align*}
& \Gamma_{\mu \nu \lambda}(p, q)=-i g_{\rho}\left[g_{\mu \nu}(p+q)_{\lambda}-g_{v \lambda} p_{\mu}-g_{\mu \lambda} q_{\nu}+\right. \\
& \left.\quad+\left(2+d^{\mu}\right)\left(k_{\mu} g_{\nu \lambda}-k_{\nu} g_{\mu \lambda}\right)\right] \tag{5.2}
\end{align*}
$$

Here $\delta^{\wedge}$ is the anomalous magnetic moment of the $A_{1}$ meson.

$$
\begin{equation*}
\delta=\frac{g_{A}^{2}}{g_{\rho}^{2}}\left\{1-\left[\left(\frac{m_{p}}{f_{\pi} g_{\rho}}\right)^{2}-1\right]^{-2}\right\}-1 \tag{5.3}
\end{equation*}
$$

Where eq. (3.7) for $C$ has been used. If the_KSFR relation
 is the most preferable (as discussed in details in ref./6/). In the conventional approach $/ 1,2 /$ the anomalous magnetic moment of $A_{1}$ is not determined. To obtain the value (5.3) for $\delta^{\wedge}$ it is sufficient to require $D \leqslant 2$ for any 3-point vertex.

The $A_{1} \rho \pi$. coupling in our Lagrangian (3.I0) is described by

$$
\begin{equation*}
\mathscr{L}_{A \rho \pi}=\frac{g_{A}}{g_{\rho} f_{\pi}}\left(\partial_{\mu} \vec{\rho}_{\nu}-\partial_{\nu} \vec{\rho}_{\mu}\right) \cdot\left[c \partial_{\nu} \vec{\pi} \times \vec{A}_{\mu}+\left(1-\frac{g_{\mu}^{2}}{g_{\mu}^{2}(c+1)}\right) \partial_{\mu} \vec{A}_{\nu} \times \vec{\pi}\right. \tag{5.4}
\end{equation*}
$$

Using the relations $/ 6 /$

$$
\begin{equation*}
g_{A}=g_{\rho}, \quad \alpha g_{\rho}^{2} f_{\pi}^{2}=m_{\rho}^{2} \tag{5.5}
\end{equation*}
$$

we obtain for the $A_{1} \rho \pi$ vertex


$$
\Gamma_{\mu \nu}(p, q)=\frac{1}{f_{\pi}}\left[k_{\mu}\left(q_{\nu}-\frac{1}{2} p_{\nu}\right)-g_{\mu \nu} k_{0}\left(q-\frac{1}{2} p\right)\right]
$$

$$
\begin{equation*}
\rho^{v_{( }}(k) \tag{5.6}
\end{equation*}
$$

This gives the ratio $G_{s} / G_{D}=-m_{\rho}^{2}$, where $G_{s}$ and $G_{D}$ are the constants which determine $s$ and $A$-wave decay of $A_{1} \rightarrow \rho \pi$ With $\delta^{\Omega}=-1$ one derives $\Gamma\left(A_{1} \rightarrow \rho \pi\right) \approx 45 M_{e}$

The $\rho \pi \pi$ coupling is very simple in this approach

$$
\begin{equation*}
\mathcal{L}_{\rho \pi \pi}=-g_{\rho} \rho_{\mu} \cdot \vec{\pi} \times \partial_{\mu} \vec{\pi} \tag{5.7}
\end{equation*}
$$

and the $\int_{\rho} \pi \pi$ vertex $\Gamma_{\mu}(p, q)$ is linear in momenta


$$
\begin{equation*}
\Gamma_{\mu}(p, q)=-i g_{\rho}(p-q)_{\mu} \tag{5.8}
\end{equation*}
$$

while in refs. ${ }^{11,2 /}$ it has $D=3$. Eq. (5.8) gives $\Gamma(\rho \rightarrow 2 \pi) \approx 135$ Met
Now we shall obtain expressions for some important 4-point functions.

Since the symmetry is broken by the term $m_{\pi}^{2} f_{\pi}^{2}\left[1-\left(\frac{\vec{\pi}}{f_{\pi}}\right)^{2}\right]^{1 / 2}$ then in Lagrangian (3.10) the $\Pi \pi$ coupling is

$$
\begin{equation*}
\mathcal{L}_{\pi \pi}=\frac{1}{2 f_{\pi}^{2}}\left[\left(\vec{\pi} \partial_{\mu} \vec{\pi}\right)^{2}-\frac{m_{\pi}^{2}}{4}\left(\vec{\pi}^{2}\right)^{2}\right]+\frac{g_{\rho}^{2}}{2 m_{\rho}^{2}}\left[\vec{\pi}^{2}\left(\partial_{\mu} \vec{\pi}\right)^{2}-\left(\vec{\pi} \partial_{\mu} \vec{\pi}\right)^{2}\right] \tag{5.9}
\end{equation*}
$$

Where the first term is the same as in ref..$^{13 /}$ and the second term is due to the inclusion of the fields $\rho_{\mu}$ and $A_{\mu}$

Note that in the conventional Lagrangian $/ 2 / \pi \pi \quad$ coupling contains also the additional quadrilinear derivative
term $\left(\partial_{\mu} \vec{\pi} \times \partial_{V} \vec{\pi}\right)^{2}$

From $\mathcal{L}_{\pi \pi} \quad$ we obtain the contact $\pi \pi \rightarrow \vec{\pi} \vec{\pi} \quad$ vertex $\mathrm{T}_{\mathrm{a}} \mathrm{b}$ cd with $\mathrm{D}=2$


Where $s=\left(K_{a}+K_{b}\right)^{2}, t=\left(K_{a}-K_{d}\right)^{2}$. The matrix element for $\pi \pi$ scattering is the sum of the contact term and the terms with the $\rho$-meson exchange. In this sum the terms containing $g_{\rho}^{2}$ cancel out at the threshold ( $s=4 m_{\pi}^{2}, t=u=0$ ) and we obtain for the $\mathrm{S}-$ wave scattering lengths:

$$
\begin{equation*}
a_{0} \approx 0.20 m_{\pi}^{-1}, \quad a_{2}=-0,06 m_{\pi}^{-1} \tag{5.11}
\end{equation*}
$$

In accordance with those obtained by weinberg /6/ using current algebra, PCAC and smoothness condition which in effect oresponds to our restriction on the number of derivatives in the Lagrangian.

Note that in the conventional Lagrangian model $/ 2 /$ the con-
tact $\quad \pi \pi \rightarrow \pi \pi \quad$ vertex has $D=4$. Then the $\pi \pi$ scathering lengths cannot be fixed since it is possible to include in the Lagrangian the quadrilinear derivative term $K\left(\nabla_{\mu} \overrightarrow{\boldsymbol{\phi}}\right)^{4}$ (3.4) (K is an arbitrary constant) which would change $a_{0}$ and $a_{2}$.

- The direct $A_{1} 3 \pi$ coupling in Lagrangian (3.10) is

$$
\begin{equation*}
\mathcal{L}_{A_{3} \pi}=\frac{g_{A}}{2 f_{\pi}}\left[q\left(\vec{\pi}_{\mu} \vec{\pi}^{\vec{\pi}}\right)\left(\vec{A}_{\mu} \vec{\pi}\right)-\vec{\pi}^{2}\left(\vec{A}_{\mu} \partial_{\mu} \vec{\pi}\right)\right. \tag{5.12}
\end{equation*}
$$

The corresponding $A_{1} 3 \pi$ vertex $T_{a}^{\mu} b c d$ is in near in momenta

while in the conventional approach $/ / /$ it has $D=3$.
Eq. (5.13) gives for the partial width of the direct $A_{1} \rightarrow 3 \pi$ decay mode $\sim 35 \mathrm{MeV}$ if relations (5.5) hold.

It is possible to estimate roughly the total width of $A_{1}$ adding the direct $A_{1} \rightarrow 3 \pi$ and $A_{1} \rightarrow \rho \pi$ deoay rates. This gives approximately 80 MeV in agreement with experimental data. More detailed predictions can be obtained from the explicit $A_{1} \rightarrow 3 \pi$ amplitude which contain both the contact term (5.13) and $\rho$-pole terms.

Relations (5.5) lead to the simple expression for $\rho \pi \cdot \rho \pi$ coupling:

$$
L_{\rho \pi \rho \pi}=\frac{g_{\rho}^{2}}{2}\left(\vec{\rho}_{\mu} \times \vec{\pi}\right)^{2}-\frac{g_{\rho}^{2}}{8 m_{\rho}^{2}}\left[\left(\partial_{\mu} \vec{\rho}_{\nu}-\partial_{\nu} \vec{\rho}_{\mu}\right) \times \vec{\pi}\right]^{2} \quad(5.14)
$$

which gives the contact $\rho \pi \rho \pi$ vertex


$$
\begin{align*}
& T_{a b c d}^{\mu \nu}=\frac{g_{p}^{2}}{m_{\rho}^{2}}\left(2 \delta_{a c}^{2} \delta_{8 d}^{2}-\delta_{a B} \delta_{c d}^{2}-\delta_{B c} \delta_{a d}\right) . \\
& \cdot\left[g^{\mu \nu} m_{\rho}^{2}+\frac{1}{2}\left(p^{\nu} q^{\mu}-g^{\mu \nu} p \cdot q\right)\right] \quad \text { (s: } \tag{5:15}
\end{align*}
$$

In conclusion we would like to emphasize the importance of the restriction on the momentum dependence of the n-point fundtions in connection with the idea of algebraic realizations of the chiral symmetry /7/. We shall present the analysis of the aspmptotio behaviour of tree graphs for the processes in the $A_{1}$ system elsewhere.

Acknowledgements

The authors wish to thank I.V. Polubarinov, B.N. Valuer, A.N. Zaslavsky and especially M.A. Eliashwili and .M.N. Tuguiea for helpful discussions.

Appendix
The elimination of the bilinear derivative terms from the covariants $\vec{R}_{\mu r}(3.1)$ and $\vec{S}_{\mu r}(3.2)$ leads to the elimination of the three- and quadrilinear derivative couplings from Lagrangean (3.4) at $h=K=0$.

Let us introduce a general substitution for the axial-vector field:

$$
\begin{equation*}
\vec{a}_{\mu}=Z_{A}^{-\frac{1}{2}}\left[\vec{A}_{\mu}+F\left(\vec{\phi}^{2}\right) D_{\mu} \vec{\phi}+G(\vec{\phi}) \vec{\phi}\left(\vec{\phi} \partial_{\mu} \phi\right)\right. \tag{A.1}
\end{equation*}
$$

where only the value $F(0)=-g_{\rho}^{2} f_{\pi}^{2} / g_{A} m_{\rho}^{2} \quad$ is fixed by the requirement of the exclusion of the $\vec{A}_{\mu} \partial_{\mu} \vec{\Phi}$ coupling:

The functions $F\left(\vec{\Phi}^{2}\right), G\left(\vec{\Phi}^{2}\right)$ are determined by the requirement that the bilinear derivative terms be eliminated from $\vec{R}_{\mu \nu}$, $\overrightarrow{\mathrm{s}} \mu \mathrm{w}$ which gives the equations:

$$
\begin{align*}
& g_{A} F^{2}-C^{2}\left(1+g_{A} \sigma f\right)^{2}=Q \\
& {\left[f g_{A}-C^{2} \sigma\left(1+g_{A} \sigma F\right)\right] G=0}  \tag{A.2}\\
& g_{A}\left(G-2 F^{\prime}\right)-C^{2}\left(1+g_{A} \sigma F\right)\left(\sigma^{-1}+g_{A} F+g_{A} G \vec{\Phi}^{2}\right)=0 \\
& \text { Eqs.(A.2) are consistent only with } C=\left[\frac{m_{\rho}^{2}}{g_{\rho}^{2} f_{n}^{2}}-1\right]^{-1}  \tag{3.8}\\
& \text { and we have unique solution }(3.7): G=0, \quad C=-\frac{C}{g_{A}(1+C \sigma)}
\end{align*}
$$

## References

I. H.J. Schmitzer, S. Weinberg. Phys.Rev., 164, 1828 (I967). J.S. Gerstein, H.J. Schmitzer. Phys.Rev., 170, 1638 (I968).
2. J. Schwinger. Phys.Iett., 24B, 473 (I967).
J. Wess, B. Zumino. Phys.Rev., 163, 1727 (1967).
3. P. Chang, F. Gursey. Phys.Rev., 163, 1752(I967);169,1397E (I968 S. Weinberg. Phys.Rev.Iett., 18, 507 (I967);

Phys.Rev., 166, 1568 (1968).
B.W. Lee, H.T. N1eh. Phys.Rev., 166, 1507 (I968).
4. V.I. Ogievetsky, I.V. Polubarinov. Ann.Phys., (N.Y.) 25, 358 (I963).
5. T.D. Lee, S. Weinberg, B. Zumino. Phys.Rev.Lett., 18, 1029 (I967).
T.D. Lee, B. Zumino. Phys.Rev., 163, 1667 (I967).
6. S. Weinberg. Proc. of the 14-th Int. Conference on High EnerBy Physics, p. 253, Vienna, 1968.
7. S. Weinberg. Phys.Rev., 177, 2604 (I969).

> Received by Publishing Department on July, $13,1970$.

