
OE"hEnHHEHHbiH 
HHCTHTYT 
.s~nEPHbiX 

HCCnEnOBAHHi1 

ny6Ha 

~ • -• • ·• I = :r 
::1: ... ... 
A. • = I 
A. 

! 
2 • .. 
~ 
'111111:: 1970 

E2 - 5229 

V .1. 0 gievetsky 

ALGEBRAIC REALIZATION 

OF UNITARY SYMMETRY 



E2 - 5229 

V .1. 0 gievetsky 

ALGEBRAIC REALIZATION 
OF UNITARY SYMMETRY 

Submitted to "Physics Letters" 



·ii' 
!I 
1.\'' 

It is tempting to suppose that the SU 8 group is realized nonlinear­

ly and so the unltary symmen; is bro~en/2/, the hypothetic scalar 

K -mesons being Goldstone mesons. Only the good isospin-hy­

p~rcharge subgroup SU2 X Y must be represented linearly ensuring 

the conservation of the isospin and hypercharge. According to the 

general theory of nonlinear realizations/3 / the covariant derivative 
- K -i K 

of kappaons K = 1!..;2 ( 4 • 6 ) is 
K 6 .-I K 7 

\7 /l K a = a p. .K a + 0 ( K 8 ) ( a = 4, 5 , 6 , 7 ) (1) 

and the covariant derivative of any field rp is determined by 

its isospin T and hypercharge Y 

·V rp .,a rp +2if""2 K a K (f t+f. t )rp+0(K 4), (2) 
p. p. K a p. b abl I ab8 8 · 

where F is the decay constant {similar to F ), t 
1 

( i"' 1;2,3) 
K rr 

are isospin matrices appropriate to rp , t 8 = -~ Y , fabl , f abS 

are the SU8 structure constants and 0(K 8 ), 0( K 4 ) stand for the 

terms of the 3rd and 4th order in K 's. For the SU8 invariance 

it is only necessary that a Lagrangian should conserve the isotopic 

spin and hypercharge and be constructed of various isomultiplets 
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,;, , v f1 <jJ and 'V f1 K • At the first glance such an approach seems 

needless as the SUa classification and all other algebraic conse­

quences of SU 3 fail completely except those connected with its 

good Sll 
2 

x Y subgroup. However, for the case of the chiral 

Sl!
2 

x SU 2 group Weinberg/
1

/ had shown that algebraic properties 

will reappear if one imposes the following additional requirement: 

the forward scattering amplitudes must have a reas·onable asympto­

tic behaviour at high energies. In the present paper we shall 

consider the algebraic realization of the unitary symmetry SU 3 

(ARUS below) following Weinberg's programme /1./. 
The form of covariant derivative (2) dictates that a Lag­

rangian must contain the minimal contact cou P!ing 

2F-2 
K a K ( f VI + f V 8 

K a f1 b abl f1 o.b8 f1 
(a,b=4,5,6,6;i=l,2,3) 1 (3) 

where V ~ and V ~ are conserved vector isotopic and hypercharge 

currents,JV~(x) d 3 x =T 1
, JVg(x)d 3 x=T 8 =y;Y 

The nonminimal coupling can be written in the form 

-1 .. <7 

FK v f1 v flK .. ' (4) 

where V; is a phenomenological strangeness changing vector 

current (there can be also nonminimal couplings containing a 

higher number ofv f1 K which are nonessential for us). Consi-

der the forward scattering K + a -. K + {3 where a and {3 are 

any particles or resonances, neglecting the mass of K • Let 

P 11 =(-np,p 0 ), p'fl=(-np',p'0 ), qfl=nflw ,ql=nflw'(lnl =no"" l 

be 4-momenta of a , {3 . initial and final K 's respectively. The 

conservation of 4-momentum gives p + p ~ p + p ' = E . 
0 0 
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We are studying the behaviour of the invariant amplitude M{3b,a~w,,\) 
for a given helicity A as a function of the kappaon energy w 

keeping E fixed ( a and b are il'\dices of the initial and final 

K 's). The "strange" current V ~ is parametrized according to 

<p'A'{3\ nflV~(O)\pAa>=(2rr)..a(4p 0 po)-~4E8,\A{X""(A))f3a. (5) 

and this defines the important coupling matrix X"" (A ) . 

Consider the tree F'eynman graphs, i.e. graphs without clo­

sed loops. Each of the graphs gives a contribution to the ampli­

tude which grows unadmissibly at high energies. F'ollowing/
1

/ we 

require for the sum of all tree graphs to give the amplitude which 

rows no faster than would the Re 

The calculations are similar to those 

we omit them. From the above requirement it follows that 

e. b I 8 
[X (A) , X (A) ] = if ... bt T + if &b8 T (6) 

[X"-(,A), [ Xb(A), m 2]]=-tf ... 
08 

fbct
8
[X"(A),[Xct(A), m

2
]], (7) 

I 

where m 2 is the diagonal mass matrix m 
2
y a = m ~ 8 y a 

If in addition we assume that for exotic exchanges of the 

hypercharge .:!:_2 the intercept ay"'±2 (0)<- l (eq. (7) corresponds 

to a y =t.2 (0) < 0 ) , which seems to be reasonable/
4

/ we obtain 

more relation: 

one 

[ [X"-(A), m 21, [X 'A), m 2]],-{- £ ... .,
8 

fbct 8 [[X "(A), m t [X ct(A), m
2
11. (a) 
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Taken together with the isospin-hypercharge conservation relations 

[T 1 ,X"]~i·f Xb,.[T 8,X"] ~if Xb 
I" b 8ab 

relation ( 6) means that 

the operators X" , T 1 and T 8 form the SUa algebra. Hence, 

particles included in tree graphs must, for each helicity, furnish 

irreducible or reduicible representation of the SUa group. In other words 

the eighfold way classification of particles is reestablished. Sum rule 
2 

(7) states that m 2 ~ m ~nv + ml,where [X",m 
2
tnv ],()and m 8 

c c 2 
= _L [ X , [ X , m ]]is the 8th component of the octet (other octet 

3 2 I . [ b 2 ] 2 2 [X"[ X b 211 components are m,. = 4 3 lfa8b X ,m 1 m 1 = y-:r d,.b 1 • ,m • 

a, b, 4,5,6, 7 ; i = 1, 2, 3). Thus, the squared mass operator has been 

proved to be the sum of unitary invariant and the 8th component 

of octet. We have obtained the Gell-Mann-Okubo formula without 

assuming m2 to be small in comparison with m 2 • Note the impor-
B lnv 

tance of the A 2 trajeCtory without which the exact SU 3 symmetry 

would be reestablished for masses. 

Relation ( 8) is satisfied identically for decuplets and for 

the octet-singlet mixing ( 8) is written as 

( 2 ··e ) ( 2 2 ) ( 2 2 ) ( 2 . 2 ) 2(} ( 2 2 ) ( 2 2) . 2fJ m E - m"" m "" - m = m =- m A m A - m cos + m =-m A m A-m sm 
.,;. .,;. N- N _I 

1
N 

(8') 

Eliminating the mixing angle (} from ( 8') and from the Gell­

Mann-Okubo formula 

2m~ + 2mS = m I +3m A cos 2
(} + 3 m2A

1 
sin 2 

() (7') 

(which follows from (7)) we obtain the relation 

2 ( m 2 + m 2 ) ( m 2+ m 2 +2m 2 ) = 2 ( m 2 + m 2 ) + 3 m 2 m 2 + m 2 ( m 2 + m 2 +3m 2 ) • ( 9) = N -A A 1 ~ ~ N A A, ~ A A, ~ 
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(For bosons one has to replace m~ and 

m 2 m 2 by m 2 ). 
T/ 1 ~ TT 

m2 
N 

by m2 
K rnA 

The necessity of nonets. In the case of the pure octet (} = 0 

by 

and we obtain from (7) and (8) (or (7) and (9)) m A== m 
2! .• so a pure 

octet is possible if the Y = 0 states with T :0 and T = 1 have the 
• 2 2 2 2 

same mass. In th1s case mE + m N = 2m A ~ 2 m ~ for fermions 
2 2 2 and m K = m 71 ~ m 17 for bosons. 

Mass Relation (9) is satisfied to a great accuracy for well-estab­

lished nonets. For the nonet 1- eq. ( 9) gives for the mass of 

the ¢ -meson 1010 MeV (accuracy of about 1o/o). For the nonet 

2+( K (1420) 1 f (12tD ) , f ' (1514 ) , A (1320 )) we obtain for the mass 
2 

of the f '-meson 1500 MeV (again accuracy is about 1o/o). On 

these grounds; we shall discuss other possible nonets. 

The 0- nonet. Because of large differences in masses of K , 71 

and rr -mesons there must b~ the ninth 0- meson. There are two 

possibilities, E (1420) and X (958) • By using eq. ( 9) we obta_in 

m
71

"' 544 MeV (of about 1o/o accuracy) for E(H20) and m71 =495Me 

for X (958 ) • So ARUS prefers E (1420 ) as the 9th pseudosca­

Iar meson. Note that the broken SU (6) w symmetry teils the 

same/
5

/. The spin-parity of X (958) has not been firmly established 

till noJ
5

•
6/. It can amount either to 0- or to 2-. Suppose it is 2-. 

In the possible nonet 2- we can put together with X (958 ) the re­

sonances rr A (1640 ) and K, A(l775f6 /. Then the mass of the ninth 2-

meson will be 1835 MeV. The resonance of about the same mass 

•· 71 A (1830 ) is referred to in/
6

/ and ARUS predicts its spin parity 

to be 2-. 

In a nonet 1 + containing K A (1240 ) , U (1285 ) and A 1 (1070 ) 

resonances the ninth meson must be very heavy, eq. (9) gives 

for its mass 2400 MeV. Note that there are indications in favour 

of the existence of the resonance N N
1
=

0 
(2380) /

6
/. 
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The nonet 1/2+. l and A particles have different masses 

and because of this ninth baryon 1/2+ of the mass about 1310 MeV 

is prEdicted (if one takes the mean square of mass in isomultiplets 

l and S ). This value of mass is sensitive to small deviations 

in the masses of N , S , A and l as the mixing angle is small. 

Mass relation ( 9) is well satisfied for the 9th baryon mass in 

a region 1280-1340 MeV. At present there are some evidence 

in favour of the existence of the A -particle of such a mass, 

~.6 (1327) ->A+y /7 /. In the nonet 1/2- containing N (1535) , A (1405) , 

A' (1670 ) , l(l750) resonances for the mass of the S member 

wP obtain two solutions ( eq. ( 9) is quadratic for m;, ) : either .... 
0 - 0 

m:; = 1800 MeV, I e I "'18 ·, or m:; = 171Q MeV, JOI ,35 • By - -
analyzing A (1405) and A '(1670) decays Tripp has found the mixing 

angle e = -18.::!:..3° (in accordance with the first solution) but 

Levi Sett/
8

/ has found 0 =-36.5+'± 
0 

(in accordance with the se­

cond solution). In the nonet 3/2- containingN(l520),A(l690),A~{l520), 

l (1670) we again have two solutions for the mass of S either 

rn:; = 1830 MeV, or m :; = 1650 MeV. Levi Sett/
6

•
8

/ has - -
included in 3/2- nonet 2 (1820) in accordance with the first solu-

tion. We restrict ourselves to these nonets as others do not con­

tain the sufficient number of established members at present. 

In conclusion we would like. to thank Drs. M. Eliashwili, 

A. Filippov, B. Valuev and B. Zupnik for helpful discussions. 
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