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§ 1. Introduction 

Recent measurements performed by the !HEP-CERN collabora

tion at the Serpukhov accelerator gave a number of. important re

sults about the behaviour of the total cross sections of the interac

tion of rr- and K---mesons and antiprotons w.th protons and deute

rons/1/. 

It was established that in the region of laboratory energy 

P r = (25-65) GeV/c: 

i) The total cross sections ( rr:!: p, K ±p) are almost en~rgy inde

pendent; 

ii) The differences of the total cross sections for interaction 

of particles and antiparticles with protons deviates appreciably from 

zero and has no tendency to vanish with increasing energyx/. 

. Such a behaviour of the total cross sections contradicts the 

notion that the high-energy pai;-ticle scattering is defined by the 

exchange of the finite number of Regge poles, and leads to the 

necessity of a more detailed theoretical analysis of the asymptotic 

of the total cross-sections. 

x/This conclusion was made by extrapolating the pp-, K + p -
interaction total cross section data from the energy region 25 GeV/c, 
where they are approximately constant, to the region of the· Serpuk
hov enel:'.gies. 

Besides, use has been mad~ of the Glauber correction theory 
for extracting the total 11 + p -scattering cross-section from the :r -d -
scattering data as well as of the charge independence principle 
a = a 

11 +p 17-n 
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There arises an interesting problem of theoretical interpretation 

of the observed significant difference of the total cross section for 

scattering of particles and antiparticles on protons_ at high energies. 

In the present note we use the experimental data obtained at 

the Serpukhov accelerator to analyse the behaviour of the cross 

section diffarence ti.a = a 
77 P 77 -p 

- a + and the differential cross sec-
11 p 

tions for the charge-:-exchange process ·( ..!£_ ) _ 
0 

• This inves-
d t 11p ➔ 11n 

ligation has been performed on the basis of the quasipotential theory 

of high-energy scattering, "nhich was developed in papers/2-4/. 

, As is . known, the assumption on the smoothness of the quasi

potential for the elastic scattering/5/ makes it _possible to reproduce 

the main regularities of the elastic scattering at high energies/6-8/. 

The main_ task of this note is the _construction of an "exchange" 

quasipotential describing pion-nucleon. sc~ttering with ·the exchange 

of . isotopic spin · ( I = 1 ) in the t -channel. 

. Some rather general. integral representation for the exchange 

qua_sipotential, which. in~ludes the singular and non-singular quasi

potentials is used •. 
. . 

·As an example, a more detailed Veneziano-type representati-

on/9-10/ for th~ exc'hange. quasipotential is considered. 

It will _be shown, that in the framework of this model the expe-

rimental data .on .the total cross-section difference ti. a lead to 
: . . . . 77p 

nonlinear fermion ·Regge-:-trajectories with quantum numbers of the 

11 N syste~x/. 

=(8 

. _The slope of the. trajectory in a high-energy region ( p L 

65 GeV/c) is described well by the following empirical formula 
-2 

af(s)=0,8(1+y•s) (GeV/c) 
-2 

y=0,02 (GeV/c) . 

(1.1) 

x~-:tailed experimental and theoretical analysis of the problem 
of linearity of Regge trajectories is given in/11/. 
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The account of the rescattering effects on the elastic poten

tial gave a correction of about 10"/o to the values of the parameters 

in eq. (1.1). 

Note, however, that the exact account of the rescattering effects 

in the region of Serpukhov energies requires the knowledge of the . 
Real parts of the scattering amplitude, polarizations, energy dependen-

ce of the diffraction slopes-parameters, etc. 

As is seen from eq. (1.1), nonlinearity of the Regge-trajectories 
,,,. GeV 

can be essential at energies p L ~ 1 /2 m y = · 25 -c-- . In the region 

of nucleon resonances p < 5 GeV/c the trajectory (1.1) does not 
L 

practically deviate from a linear one with a;. "' 1 ( ~)-:
2 

We note 
C 

the series ot a recent works/ 12, 13/ 1n wtuch the attempts ot the 

explaining of Serpukhov experimental data in the frame-work of comp

lex angular momentum theory was made. 

In the assume of such attempts lies that or another choice 

of parameters, which define the contributions of the cuts in the 

complex angular momentum plane, connected with the exchan15e of the 

several Pomeranchuk-poles, and taking into account the contribution 

of the multiparticle "streams" of "jets" /12/. Notice, also paper/14/ 

in which the similar results were obtained for the case of pp and 

p p scattering on the basis of the usual eikonal approach. 

It should be stressed that the complex potential, which descri

bes two-particle scattering, takes into account all the inelastic chan

nels, and inclusion of additional many-particle contributions (streams, 

jets, etc.) can lead to the contradiction, which is near to the "double 

counting" problem, in FESR/ 15, 16/. 

Perhaps, more crucial for the theory is the analysis of the 

differences of the total cross sections of particle and antiparticle 

scattering and the differential cross section for the processes of 

charge-exchange type, in which the elastic scattering effects do 

not contribute. 

" 5 



§ 2. Exchange 9t,tasipotential for the rr ;!: p Scattering 

The crossing-odd part of the. scattering amplitude T<-\ s, t ) 

which determines the difference of the total cross sections of the 
·+ 

rr - -mesons scattering on the proton and the differential cross 

section of the charge-exchaf)ge process rr - p ➔ rr0 
n: 

/),.a = a 
7TP TT-p 

-a+ 
7T p 

1 (-) 
= -- Jm T ls , t = 0) 
pvs 

(-) 
( ~ ) 

0 
= .!_ I T (s, t) 

d t 7T-P->7T n 2p ys 

2 

I 

(2.1) 

(2.2) 

are connected with the quasipotential scattering amplitudes/17,18/ by: 

(-). ➔ ➔ . 1 ➔ ➔ ➔ ➔ ] 
T (s;p,k)=-[T (s;p,k)-T (s;p,k) 

2 rr-p rr+p 

.<-.> a <-> -> ➔ 
T ( s , t ) = 32 rr T ( s ; p , k) I 

-;, 2= k2 
2 

e=(WP +wp') 

➔ ➔ 2 
t=-(p -k) 

(2.3) 

where w = y /l 2 + p 2 and W = vM 2 + p2 
- the energies of the pion and 

p p 

nucleon in the c.m.s. 

The quasipotential equation for the amplitude T<-!s;p,k) is de

termined by the exchange quasipotential V<->(s, t) = vT=l (s, 1), descri

bing the pion-nucleon scattering with an exchange of the isotopic 

spin T = 1 in the t -channel: 

T(-) = V T=l + vT=l xT(+) + V (+) xT (-! (2.4) 
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·' 

The solution of this equation has the formx/ 
T=1 (+) 

(-) ➔ ➔ T=l _.. ➔ 2 ➔ W + W V V 
T (s,p,k)=V (s,-(p-k) )+J dq _q __ q--------+••·, 

w •w (w +w )
2
-s-iO 

q q q q 

(2.s) 

where we omit the terms, which corresponds to the double rescattering 
(+) 

effects on the elastic quasi potential V ( s , t ) . As is known, the 

elastic scattering at small angles has basically diffraction character 

and can be described by the quasipote_ntial of the type/2/ 

(+) diffr 
V (s,t) ,,,,y (s,t)=isg 

7T p 
( s ) e 

a (e )t 
7T p 

(2.6) 

where g - and a • - are positive, slowly :varying functions of the rrp rrp ( 

energy. Assume now that the exchange quasi potential VT= 
1 

is an 
analytic function in the complex t -plane with the singularities 

at t~ t O and satisfies the spectral representation/20/ 

T=I 1 oo 
V (s,t)=- f 

1T t 
0 

p(t:s)dt' 

l - l 
(2.7) 

It can be shown that at t < t 0 the quasi potential (2. 7) can be 

rewritten in the following integral form/lo/: 

T=I I -1-t 

V (s,t)=fdxx f(x,s), (2.8) 
0 

where 

I oo t 
f(x,s) =- f dt x p (s,t). (2.9) 

1T t 0 

~In what follows for simplicity we will neglect the spin depen
dence of the scattering amplitudes, Notice that the quasipotential equa
tion for the two-particle scattering with unequal masses was consi
dered in/19/. 

.., 
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The representation (2.8) includes the singular quasipotentials as well 

as nonsingular ones. 

Eq. (2.9) determines the function f ( x, s) which is analytic inside 

the circle Ix j <l with the cut at -1 < x-:;,_ 0. 

The behaviour of the function f ( x, s ) at the point x = 0 is deter
T-t 

mined by the nearest singularities o_f the quasi potential V - ( s , t) 

in the t -plane. 

Assume, for example, that the function f ( x , s ) can be expanded 

in the neighbourhood of the point x = 0 in a power series 

00 y+n 
f (x, s) = I g ( s )x 

n=O n 
lxl5a<l. (2.10) 

Inserting the series (2.10) in eq. (2.8) and integrating from x"" 0 to 

x= a we get the following contribution to the quasipotential 

T=l 00 

V (s,t)= I 
gn(s)a n+y-t 

~ .... (2.11) 
n= 0 y + n - t 

The series in eq. (2.11) can be considered as the sum of the poles, 

which correspond to the particle lying on the linear trajectory 

a(t) = -y+t /10/ x/. 
The asymptotic behaviour of the sum of this series at high 

energies uhder an assumption. of polynomial growth of the g 
O 

( s) 

with s, i.e. g ( s ) ➔ fJ • s 
0

, has the Regge-like form 
n n 

T=l /:J(at) at 
V (s,t) ➔ ------(-s) + ... 

sin TTa t 
(2.12) 

x7From the condition of integrability of the series (2.10) follows 
that -y=a(O) <l. For the p -meson trajectory 1-y=a (O),d/2 that corres
ponds to the branch point of the square root type at x=O 
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The asymptotic behaviour of th.e quasipotential (2.8) at high 

momentum transfers is determined by the behaviour of the function 

f ( x, s ) near the point x = 1 

In particular, for the local quasipotential which has singulari-

ties at the origin, 

T=I 
V (s,t) ➔ 

t ➔ -oo 

e.g.: 

C ( S) 
~-; ( > 0 

the function f( x, s ) goes to the infinity at x ~ 1 as 

-( 

f(x,s) ➔ 0-x) X =I. 

The connection of tli.e local quasipotential 

T=l ➔ 1 rir➔ T=l 2 
V ( s , r ) = f d q e V ( s , - q➔ ) 

with the function f( x,s) defines by the expression: 

T=I 3 ; 2 00 d I> 
V (s,r)=2TT f--e 

6 b2 

- ,2 / 4 b 2 
-b2 

f ( e , s ). 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

From eq. (2.18) it is seen that to the quasipotentials having Gaussian 

behaviour at large distances 

T= 1 - r 
2
/4a 

V (s,r) ➔ e 
r ➔ 00 

(2.17) 

there corresponds the function f(x,s), having the singularity of the type 

8 ( x - e - .. ) or vanishing inside of some interval e ~ x < I • Such 

a behaviour contradicts, however, to the dispersion relation (2.7). 
T=t 

· Below we shall consider a model for the exchange quasipotential V 
. ' 

which is based on the Veneziano-type representations for the 
..{-) 

scattering amplitude T ( ds, t ) 

~, 
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§ 3. Veneziano Model and the Problem of the Linearity 

of Regge Trajectories 

In the Veneziano model the invariant amplitude 1TC-> for the 

rr p -scattering is represented as a sum of the terms of the follow-

ing_ tvoe/9, 21/ 
( .... ) 

B (s,t,u)= f.k 

ru- aplt)J l' Lt -a F(s Jj 

r [ k - ap ( t) - °:F \ s ) ] 

- ( s ➔ u ). (3.1) 

Here C , and k - are positive halfintegers, and a ( s J - the fermion 
F 

trajectory with the quantum numbers of rr N -system ( N a , Ny 

11 0 -trajectories). 
In what follows we assume that in high energy limit all the 

fermion trajectories approximately coincide: 

aF(s) "'a (s) "'a (s),,,a (s). 
Na Ny /!.3 

~ ~ OCI 

The terms of type (3.1) for which C = k =3/2 

energies: 

<-) a/t > 
B

11
;:2 af:2 ( s, t , u) .... r [ 1 - a ( t, H- a ( s)] 

' p F 

s ➔ oo 

t = fixed 

(3.2) 

will dominate at high 

-(s ➔ u). (3.3) 

We notice the remarkable feature of the asymptotic form· (3.3): the 

energy dependence of the amplitude contained only in a (s ) , which F 

is, generally speaking, the complex nonlinear function of s • Thus 

the ambiguity, which is connected with the choice of energy scaler 

in the Regge representation is absent in eq. (3.3). The corresponding 

parameter in (3.3) is the quantity a; (s) , which depends, generally 

speaking, on the energy. 
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Below we assume that the exchange quasipotential vT=t ( s, t) 

in the region of small scattering angles and. high energies is defi

ned by the expression of the type• eq. (3.3), i.e. 

T-1 a (t) 
V -(s,t) ➔ -g_(t)r[l-a (1)][-a (s)]P -(s ➔ u), 

1' p F (3.4) 
S ➔ 00 

t = fixed 

where gp< t) - is a smooth function- of 

The simplest quasipotential, behaving as (3.4) can be represen
ted in the integral form (2.8) with the function fl x, s J 

½ xaF(") 
f ( x , s ) = g (0) a ( s) x e 

p F 
-(s ➔ u). (3.5) 

Indeed, substituting expression (3.5) in eq. (2.8) we find 

Td I ½-t ( ) 
V (s,t)=g(0)Jdxx exaF" a (s)-(s ➔ u) ➔ 

p F 

(3.6) 

➔ g (0) r [l/2-t] [a (s)] 
p F 

- I TT t 
(1 +i e ) 

½ + t 

s ➔ 00 

t= fixed 

which corresponds to the limiting expression (3.4) with the trajectory 

a (t ) d/2 + t and constant form-factor g p ( t) = g p (0) . Quasi potential 
p bt 

with form-factor depending on t of the . type g ( t) = g (0) e can 
p p 

be constructed by means of the function f ( x,s) , obtained from 
T=l 

(3.5) by substituting x ➔ xe b • Note that the quasipotential V (s, t ), 

definep by the function of the type (3.5), essentially differs from 

the Veneziano-like expression (3.1) in the large mcmentum transfer 

region which corresponds to small distances. We use below the 

quasi potential vT=I (s, t), defined by the integral representation (2.8) 
"!).\ 

11 



with Hx, s) like (3.5) for describing the behayiour of the TT± p total 

cross section and the differential charge-exchange cross section 

1r-p ➔ TT 0 n at zero angle. 

Using eqs. (2.1), (2.2) and (3.6), neglecting elastic rescattering 

effects, we obtain: 

6.a 
1T p 

C 
_ p 1,'2 -s a F (s) (3.7) 

2 
d a 1 2 2 cp 

(--(0)) =--(6.a )(l+p )=--[ 
d t 1r -P ... 1r0 n 32 1r 17 P 16 1r 

2 

1/2 

ap(s) ]~ 
(3.8) 

s 

where P is the ratio of real and imaginary parts of the charge-

exchange amplitude at zero momentum transfer, and 

3 
C = 64 1T g (0) r (1/2 )•. (3.9) 

p p 

lr1 the case of linear trajectories a F ( s ) the eqs. · (3. 7) and (3.8) coin

cide with the corresponding formulae of the Regge analysis. Com

paring the new data/1,22/ on the "t. p total cross section differences 

at high energies with 1fie predictions of the Regge model · with 

linear trajectories, it is possible to explain the existing deviation 

(cf. Fig. 1) as the appearance the energy dependence in the slope 

a'=a'(s) 
F F 

We used eqs. (3.8) and (3.9) for determining 

of the energy dependence of the trajectories a ( s), 
F 

rimental data on 1rp scattering in the region PL 

The calculations shew that for the ratio aF( s ) / a fin 

ing numerical parametrization 

the character 

from the expe

= 8-65 GeV/c. 

(s ) the follow..;. 

aF ( S) 
----=a+ {3 • s (3.10) 

a ( s) 
ftn 

is in good agreement with the experimental data (Fig. 2) for the 

values of the parameters 

12 

;~?· 

:{ 
I 
l 

a= 0,-8 f3 = 0.015. (3.11) 

Thus the fermion trajectory can be approximated at high energy 
• by the following empirical formula 

a F ( s ) = 0, 8 s ( 1 + y s ) 

(3.12) 

s > 10 - . -2 
y = 0,02 ( GeV /c ) · 

In Fig. 3 the experimental data/ 
1

• 
22

/ on t,,. a 
1Tp 

are plotted 

together ~th the curve calculated by means of eq. (3.12) in compa-

rison with the predictions of the Regge pole model (linear fit with 

a (O) = 0.54+0.0l/231-:. Within the experimental errors the two theore-p - I) 

tical curves can be considered as describibg the experiment, but the 

possibility of such an explanation of the data by means of the tra

jectory (3.12) (which deviates from the linear form) may be essential 

if such a regime will continue to superhigh energies. It is interes

ting to note that with the persistence of such a behaviour of the 

trajectories (3.12) at energies above 70 GeV/c, the asymptotic cross-

section difference 6. a will be nonzero 
1T p 

6.a 
1T p 

C 1/2 
=_f!_ [a (s)] --> 0,98mb. 

F 
(3.13) 

s 
s ... 00 

We emphasize, however, that in the case of such a strong nonli

nearity, the interpretation of experimental data in .. terms of Regge 

poles can be hightly conditional. We note in conclusion that the 

elastic rescattering corrections can be described by means of eq. 

(2.5). By taking into account the first corrections instead of c p 

in eqs. (3. 7), (3.8), the quantity c (1-o ), 
p 

a 
41rg (s) 

1T p 

a ( s ) +b ( s) 
1T p 1T p 

13 

appears, where 

(3.14) 
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and b ( s ) = b + a ' Co a ( s) is half of the effective slope of the diffrac-
17 p p F 

tion peak for charge-exchange cross section. Using the experimental 

data/1,22/ on the sum of the 11± p total cross sections we find that 

the corrections constitute about 10o/o and do not change qualitatively 

the energy dependence of a F ( s) • Note, however, that these chan

ges do not exceed the limits of the uncertainties of the theoretical 

parameter, which are determined by the errors in the Experimental 

data. 

The empirical s -dependence of a ( s) makes it possible to 
F , 

draw some conclusion about the behaviour of the differential charge

exchange cross section 11...., p ➔ 17 ° n at zero angle and· high energy. 7 

The results of c_alculations from eq. (3.8) are presented in 

Fig. 4 (full line), together with the experimental data on ( da .l h· (t=O) .,). dt c .ex • 

the dashed line corresponds to the Regge pole model with linear 

trajectories/23/. Note that the quasipotential used corresponds to 

the choice p=l, which is in agreement with experimental data/25/ 

( cf. Fig. 5). 
The authors express their deep gratitude to N.N. Bogolubov, 

A.N. Tavkhelidze, D.I. Blokhintsev, V.R. Garsevanishvili, O.A. Khrus

talev, A.A. Logunov, D.V. Shirkov for helpful discussions. 

References 

1. J. V. Allaby, Yu.B. Bushnin et al. !HEP-CERN collaboration, Phys. 

Lett., 30B, 500 (1969). 

2. V.R. Garsevanishvili, V.A. Matveev, L.A. Slepchenko, A.N. Tavkhe

_lidze. JINR Preprint, E2-4251 (1969); Coral Gables Conference on 

Fundamental Interactions at High Energy, Gordon and Breach 

Science Publishers, New- York, 1969. 

3. V.R. Garsevanishvili, V.A. Matveev, L.A. Slepchenko, A.N. Tavkhe

lidze. Phys.Lett., ~ 191 (1969). 

4. V.R. Gars_evanishvili, V.A. Matveev, L.A. Slepchenko, A.N. Tavkhe

lidze. Preprint IC/69/B7, Trieste, 1969. 

14 

5. S.P. Alliluyev, S.S. Gershtein, A.A. Logundv. Phys.Lett., _1!}, 195 

(1965). 

6. V.R. Garsevanishvili, S. V. Goloskokov, V.A. Matveev, L.A. Slep

chenko. Yadernaya F'izika, 10, '627 (1969). 

7. O.A. Khrusf:alev, V.I. Savrin, N. Ye. Tyurin. JINR Preprint, E2-4479 

Dubna (1969). 

8. O.A. Khrusf:alev, V.I. Savrin, N. Ye. Tyurin. Yad.F'iz., 1.Q, 856(1969). 

9. G. Veneziano. Nuovo Cimento, 57A, 190 (1969). 

10. V.A. Matveev, D.T. Stoyanov, A.N. Tavkhelidze. JINR Preprint, 

E2-4844, Dubna (1969). V.A. Matveev, D.T. Stoyanov, A.N. Tavkhe

lidze. JINR Preprint, E2-497B, Dubna (1970). L.L. Jenkovsky, 

V.P. Shelest, B.V. Struminsky, G.M. Zinoviev. Preprint ITF'-70-12, 

1970. 

11. D.V. Shirkov. JINR Preprint, P2-4726, Dubna (1969). 

12. A.I. Lendyel, K.A. Ter-Martirosjan. JETP Lett., J:.b 70 (1970) .. 

13. V. Barger, R.J.N. Phillips. Preprint Wisconsin, C00-260, 1969. 

14. J.M. Kaplan, D. Schiff. Preprint Orsay, 69/64, 1969; Kolbig, 

B. Margolis. Phys.Lett., 31B, 20 (1970). 

15. A. Logunov, L.D. Soloviev, A.N. Tavkhelidze. Phys.Lett., 24B, 181 

(1967). 

16. R. Dolen, D. Horn, C. Schmid. Phys.Rev.Lett., 19, 402 (19_67). 

17. A.A. Logunov, A.N. Tavkhelidze. Nuovo Cimento, .?2, 380 (1963). 

18. V.G. Kadyshevsky, A.N. Tavkhelidze. Problems of Theoretical 

Physics, p. 2.61, Moscow-, 1969. 

19. V.A. Matveev, R.M. Muradyan, A.N. Tavkhelidze. JINR Preprint, 

P2-3900, Dubna (196B). R.N. F'austov. JINR Preprint, P2-4779, 

Dubna (1969). V.G. Kadyshevsky, M.D. Mateev, R.M. Mir-Kasimov. 

JINR Preprint, E2-4030, Dubna ( 1968). P.N. Bogolubov. Preprint 

Trieste, IC/69/76, 1969. 

20. A.A. Logunov, A.N. Tavkhelidze; I. T. Todorov, O.A. Khrustalev. 

Nuovo Cimento, 30, 134 (1963). 

21. K. Igi. Preprint CERN, Th. 959, 196B. 

22. K.J. Foley et al. Phys.Rev.Lett., .12, 193 (1967). W. Galbraith et 

al. Phys.Rev., 13BB, 913 (1965). 

~\ 

15 



23. v. Barger, M. Olsson, D. Reeder. Nucl.Phys., B5, ·411 (196_8). 

24, A. V. Stirling et al. Phys.Rev.Lett., J:j:, 763 (1965). P. Sonderreger 

et al. Phys.Lett., 20, 75 (1966). 

25. I. Manelli et al. Phys.Rev.Lett., 14, 40B (1965). 

Received by Publishing Department 

on July 2, 1970. 

16 

·\ 

0:::: 
Ll..J 
(.!) 
0:: 

~ 
(/) 

I z :Z 1-----+
l-o:: 0 
- f-

>-~~u 
wco'c 
_j_JO...LU 
o<Cwc::: 
LL(.!)Io... 
.._-...-o-.1 

~I .41', I 

....... 

' 

""i1l .... 
cS 

IN ..., 
d 

~ 
c5 

oc, 

~ 

oo?~o' oG> "§-
d~ a, 
:;:.-~ 
.e;_ a.. 
~ 

U) 
0 
cS 

~ 
0 
0 

0 

"" 

0 ,.,, 

s -I~ 
0 

0 
~ 

0 
I I ' I I '-

- I ' 0 I I ' c:'1 ~ • 'JO C) 
m 

§ 

6r5ror mb 
~' 

17 

a, 
0 
0. 

a, 

w 
0: 
a, 
:S 
-g 
It! 

b 
-<] 

"" I::: 

a, 
:S 
s:: 
0 -C\I 

.C\I 
.-1· -~ 

'O 
.... 
~ . 
a, ~ 
E o ·c :;j 
a, u 
0. .... 
>< 'O 
ril f 

0. .-i _ 
. a, 

.~'8 
Ii, E 



J
'~

)r
--

--
'-

--
_

:_
_

 _
_

 ~
-
-
-
:
;
:
-
-
-
-
-
-
-
,
 

F
 3.

0 

2.
0 0 

3. 5 
10

 

--
--

--
--

--
--

--
--

-~
-

20
 

40
 

60
 

80
 

10
0 

S
 

(G
e

V
/c

)2 

F
ig

. 
2

. 
E

n
e
rg

y
 d

e
p

e
n

d
e
n

c
e
 

o
f 

th
e
 

sl
o

p
e
 

o
f 

th
e
 

fe
rm

io
n

 
R

e
g

g
e
 

tr
a
je

c


to
ry

. 

iF
O

L
E

Y
 

J.'
UJ

 

I 
G

A
L

B
R

A
IT

H
 

~ 
IH

EP
-C

ER
N

 
--

-P
R

ED
IC

TI
O

N
S 

BA
RG

ER
 

-- -
-

.....
.....

.... 
__

 --
--

--
--

--
-

--
--

-~
--

--
--

--
--

-.
!.

 __
__

_ _
 

20
 

30
 

4
0

 
· P

 (G
ev

/c
) 

50
 

F
ig

. 
3

, 
T

o
ta

l 
c
ro

s
s
 
s
e
c
ti

o
n

 
d

if
fe

re
n

c
e
 

( L
'1 a

17
 <'.

 
) 

d
a
ta

, 
th

e
o

re
ti

c
a
l 

c
u

rv
e
 

(f
ul

l 
li

n
e)

, 
c
a
lc

u
la

te
d

 
b

y
 

m
e
a
n

s 
e
q

. 
(3

.1
2

) 
a
ri

d
 

th
e
 

R
e
g

g
e
 

p
o

le
 

p
re

d
ic


ti

o
n

s 
(d

a
sh

e
d

 
li

n
e)

. 

60
 



-
-

-
-
-
-
-
-

-
-
-
-
-
-
~

 

ry;_
J qo·
 

yb
/(

G
 ev

/c
)i 

f'
 

tl
 

U
1 

b 
~ 

b 
0 

0 
0 

0 
C

)
 

"'S
 

(I)
 

0 
::s 

• 
--

i=
; 

Pl
 

0
-,

 
.... 0 :r

 
Pl

 
/ 

"'S
 

(fO
. 

.,7
 

(I)
 

6 
(I)

 

/'P
.-

X
 

$2
-ls

i. 
0 

.,-y
 

~ 
.:0

 
rt

-
O

l!
' 

/
r►

. 
' 

II
) 

[\
) 

~ 
.... 

t<
 

r-
" 

0 
(I)

 
r-

.. 
~
 

.0 
►
 

(i
) 

"' 
0 

0 
I 

~
 

.,, 
(I

) 
(/

) 
"'S

 
(1

) 
0 {/

l 
~
 

I 
0 

0 
-;

 
{/

l 

~
 

I 
r 

z 
-

{/
l 

;o
 

(I)
 

I 
m

 C
J 

0 
( 

m
 
r 

.... 
-<

 
.... 

,._
, 

0 
( 

::
0 

::s 
z 

I 
m

 
::

j 
, 

G
) 

(j
) 

I 
"C

 
I 

en
 

+
 

::
j 

m
 

0 

:::
0 

=
 

Pl
 

b 
.... 

0 
ii C

 

-
-

-
--

--
·-

-
-

-
~

,,,
 
--

--

3 2 i 

6 
10

 
12

 
ii

 
16

 
.18

, 
P,

 (
G

ev
/c

) 

F
ig

, 
5

, 
E

x
p

e
ri

m
e
n

t.
a
l 

d
at

.a
/2

4
•2

5
/ 

o
n

 
e
n

e
rg

y
 d

e
p

e
n

d
e
n

c
e
 

o
f 

p 
=

 ,:~
;it)

 
fo

r 
c
h

a
rg

e
 

e
x

c
h

a
n

g
e
 1

1 
-

p 
➔
 11

 o
 n

 
, 




